mmWave Radar – IWR1642 People Counting Demonstration

Presenters

Abdulraheem Killedar Wesley He Gondalia Akash

Please Note: This Webinar is being recorded and will be made available to the public.

2

mmWave Webinar Series

Webinar Series for Showcasing latest offering for mmWave Devices from Texas Instruments

Link to upcoming Webinars announced at : mmWave Webinar Series Announcement

mmWave Sensors:

http://www.ti.com/sensing-products/mmwave/overview.html http://www.ti.com/sensing-products/mmwave/iwr/overview.html http://www.ti.com/sensing-products/mmwave/awr/overview.html

Agenda

- Demonstration Introduction
- Implementation
 - Signal Processing Chain
 - Tracking Module
- Demo and Run
 - Demo Setup
 - Live Demo Show
- Q&A

People Counting Demonstration using IWR1642

Platform

 IWR1642 – TI's FMCW mmWave (76-81GHz) Single chip Radar with 2Tx/4Rx RF front End, ADC, DSP(C674x) and MCU(Cortex-R4F)

Features

- Single chip solution.
- Device outputs point cloud and object tracking information
- Demonstration is locating and tracking moving objects
 Benefits
- Count and track the people with mmWave Radar, especially in privacy-conscience applications or in challenging environments such as nighttime, fog, smoke

Applications

- People Counting
- Motion Detector
- IPNC Video Camera
- Lighting Sensors
- HVAC Control
- Factory Safety Sensors

Implementation

Hardware

• IWR1642

Software

- mmwave_industrial_toolbox_2_1_2
- Check the latest version in TI-REX
 - <u>http://dev.ti.com/tirex/#/</u>
 - TI-Design coming soon.

Key Performance Specifications

Parameter	Short Range	Long Range
Max range	5 m	12m
Max velocity	18.64 Km/h	18.9 Km/h
Range resolution	4.9 cm	12 cm
Velocity resolution	0.297 Km/h	0.297 Km/h
Field of View	120° horizontal 30° vertical	120° horizontal 30° vertical
Power Consumption	2 watt	2 watt

Low Level Signal Processing Chain: Block Diagram

- Low level signal processing chain is implemented on DSP (C674x) of IWR16xx
- Low level signal processing chain outputs detected point cloud with information of range, Doppler, angle, and detection SNR.
- Output point cloud information are shared with R4/tracker in L3 memory for the current implementation.

Front End and Range Processing

- ADC samples are EDMAed into local scratch buffers in PING-PONG fashion.
- Range processing performs FFT per antenna per chirp.
- Range processing results in local scratch buffers are EDMAed to L3 with transpose.

Angle (Azimuth& No elevation) Processing

- Static clutter removal is performed removing DC components per range bin.
- Per range bin, calculate the Capon BF solution and store the angle spectrum in memory to construct the range-azimuth heatmap.

Object Detection

- 2-pass CFAR is performed on the range-azimuth heatmap.
- First pass is cell averaging smallest of (CFAR-CASO) in the range domain.
- Second pass is cell averaging smallest of (CFAR-CASO) in angle domain.

Doppler Estimation

• After detection, per detected point, estimate Doppler by filtering the range bin using Capon beamweights and then FFT with peak searching.

Point cloud, tracking and grouping

Tracking Module

Classification Implements Object Localization ٠ - Example: "I am consistently observing an array of objects. Each object has a set of following properties" Target List Uses Detection Layer Data Is a State-full Layer **Tracking Module** _ Localization Does not Classify at object Input: Point Cloud Point Cloud ~1000s of measurements (detection points)/frame Each point has range/angle/radial velocity with associated variances Detection Output: Target List ~100s of targets/frame Range/Doppler FFT Each target properties may include Cartesian position **Digital FE** Cartesian velocity Additional Features » Number of points/reflections Analog FE » Dispersion/Sizes/Density » Timing/History » Velocity spread

Tracking Algorithm Blocks

- **Point cloud** input is first tagged based on scene boundaries. Points outside the boundary are ignored
- **Predict function** estimates tracking group centroid for time n based on state and process covariance matrices estimated at time n-1. a-priori state and error covariance estimations for each trackable object are computed At this step we also compute measurement vector estimations.
- Association function allows each tracking unit to indicate whether each measurement point is "close enough" (gating), and if it is, to provide the bidding value (scoring). Point is assigned to a highest bidder.
- Allocation: Points not assigned, are going through an Allocate function. During the Allocation process, points are first joined into a sets based on their proximity in measurement coordinates. Each set becomes a candidate for allocation decision. It has to pass multiple tests to become a new track. Once passed, the new tracking unit is allocated.
- **Update:** During Update step, tracks are updated based on the set of associated points.
- The **Report function** queries each tracking unit and produces the algorithm output.

Implementation Details – Tracking Config

Parameter	Default Value	Description
maxNumPoints	250	Max # of detection points per frame
maxNumTracks	20	Max # of targets to track at any given time
initialRadialVelocity	0 m/s	Expected target radial velocity at moment of detection
maxURadialVelocity	20 m/s	Max unambiguous radial velocity; sets valid rates from –max to +max
maxAcceleration	5 m/s ²	Max targe acceleration; used to compute processing noise matrix
deltaT	50 ms	Frame Rate

TI Confidential – NDA Restrictions

TI Resource Explorer(TIREX)

Locate the Demo and Run

TI Confidential - NDA Restrictions

16

Demo Customization

TI Confidential – NDA Restrictions

17

Demo Setup and Customization

There are 3 major steps involved to get to a desired People counting Demo.

Chirp configuration design

For the area of interest like the conference room, hallway etc where the demo is being setup, working with the 5m/12m chirp configuration examples, chirp configuration needs to be designed with max range, range resolution, Max velocity and Velocity resolution in mind.

EVM installation

The EVM needs to be installed at a proper height and with a Elevation tilt to maximize the energy reflection from the objects and hence to get to a rich point cloud. This means directing the majority of transmitted energy towards the area of interest for better reflected energy reception.

GUI and Tracking Parameter Customization

Demo customization is done in GUI matlab code for setting up the Demo visualization

The Group tracker needs to be configured for various parameters in task_app.c file under the project pplcount_16xx_mss, to work on the input point cloud data for localization and tracking via. These parameters include

Scenery Parameters

Allocation Parameters

State Transition Parameters

and the Demo needs to be recompiled & built after any change to the above said tracking parameters

Steps for Demo setup

EVM installation

• Height:

EVM needs to be installed at least 2-2.5mtrs above ground

Tilt in Elevation

EVM needs to be tilted as shown in the picture with a angle x deg where 10 < x < 45 deg.

X=10 deg works better for conference/meeting rooms

The elevation tilt helps focus the transmitted energy towards the area of interest and achieve better reflection which results in a good detection thus a rich point cloud.

Steps for Demo setup

TI Confidential - NDA Restrictions

Tracking Parameter Customization

Run the demo once with the test scenarios in the area of Interest Observe the performance and note down the artifacts seen.

Steps for Demo setup

TI Confidential - NDA Restrictions

Tracking Parameter Customization

Allocation Parameters

The reflection points reported in point cloud are associated with existing tracking instances. Points that don't get associated are subjects for the allocation decision. Each candidate point is clustered into an allocation set. To join the set, each point needs to be within maxDistance and maxVeIThre from the set's centroid. Once the set is formed, it has to have more than setPointsThre members, and pass the minimal velocity and SNR thresholds to start tracking.

appAllocationParamTable[2]={SNRThreshold,VelocityThreshold,Pointsthreshold,MaxDistanceThre,MaxVelThre}

Parameter	Default		Description
SNR Threshold	250	-	Minimum total SNR for the allocation set, linear sum of power ratios
Velocity Threshold	0.1	m/s	Minimum radial velocity of the allocation set centroid
Points Threshold	5	-	Minimum number of points in the allocation set
maxDistanceThre	1	m²	Maximum squared distance between candidate and centroid to be part of the allocation set
maxVelThre	2	m/s	Maximum velocity difference between candidate and centroid to be part of the allocation set

TI Confidential – NDA Restrictions

Steps for Demo setup

TI Confidential - NDA Restrictions

Learn more about TI mmWave Sensors

- More Training Videos : https://training.ti.com/mmwave-training-series
- Ask question on TI's E2E forum @ http://e2e.ti.com
- Device product pages
 - IWR1443: http://www.ti.com/product/IWR1443
 - IWR1642: <u>http://www.ti.com/product/IWR1642</u>
 - AWR1443: <u>http://www.ti.com/product/AWR1443</u>
 - AWR1642: <u>http://www.ti.com/product/AWR1642</u>
- Evaluation Modules
 - IWR1443 EVM: <u>http://www.ti.com/tool/IWR1443BOOST</u>
 - IWR1642 EVM: http://www.ti.com/tool/IWR1642BOOST
 - AWR1443 EVM: <u>http://www.ti.com/tool/AWR1443BOOST</u>
 - AWR1642 EVM: <u>http://www.ti.com/tool/AWR1642BOOST</u>
- Download mmWave SDK @ <u>http://www.ti.com/tool/MMWAVE-SDK</u>

© Copyright 2017 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com