High Where power supply design meets collaboration

Multiple Output Flybacks: How to Improve Cross Regulation Bernard Keogh, Michael O' Loughlin

What will I get out of this session?

- Purpose:
- 1. Causes of poor cross regulation in multi-output Flybacks
- 2. Design techniques for improving cross regulation

- Part numbers mentioned
- 1. TL431, UCC28630, LM5023, UCC24630/6
- Reference designs mentioned:
- 1. PMP20001, PMP4444
- Relevant end equipment (<150W):
- 1. Bias or auxiliary embedded supplies
- 2. Appliances
- 3. HEV/EV

Agenda

- Review multiple output flyback converter
- Causes of poor cross regulation
- Techniques to improve cross regulation
 - 1. Transformer design recommendations
 - 2. Preload the outputs
 - 3. Zener clamps
 - 4. LDO series pass regulators
 - 5. Stacking output windings to improve cross regulation
 - 6. Multiple feedback TL431/opto Isolation
 - 7. Use of SR's (synchronous rectifiers)

Reference Material

- "Under the Hood of Flyback SMPS Designs"
 - https://www.ti.com/seclit/ml/slup261/slup261.pdf Jean Picard
- "The Effects of Leakage inductance on Multi-Output Flyback Circuits"
 - <u>http://www.ti.com/lit/ml/slup081/slup081.pdf</u> Lloyd Dixon
- Effects of Leakage Inductance on Cross Regulation, EDN, Power Tips #78: "Synchronous rectifiers improve cross-regulation in flyback power supplies"
 - ✓ <u>http://www.edn.com/electronics-blogs/power-tips-ti/4458559/Power-Tips--78--</u> <u>Synchronous-rectifiers-improve-cross-regulation-in-flyback-power-supplies</u> Brian King

Multiple output Flyback converter

- Economical, fewer components

 ✓ One transformer (coupled inductor)
 ✓ Multiple windings
 ✓ One switch
 ✓ No output filter inductors
- Cross-regulation can be challenging

What is cross regulation?

- How well do outputs (V2, V3, V4) regulate with varying loads?
- Worst case
 - One or more outputs at minimum or zero load
 - Another output at heavy or maximum load
- Example of three-output design, 15-V, 12-V and separate Vbias (also 12 V)
- No-load on 15-V rail, fixed load on Vbias
 - As 12-V load increases, 15-V -> 20 V!
 - As 12-V load -> zero, Vbias drops

Question #1: Which techniques have you used to improve cross regulation?

- A. Transformer Winding Techniques to Reduce Leakage Inductance
- B. Pre-Load Outputs
- C. Zener Clamps
- D. LDO and Series Pass Regulator
- E. AC-Stacking Output Windings
- F. DC-Stacking Output Windings
- G. Weighted Feedback TL431/Opto

Cross regulation causes

- Non-ideal transformer leakage inductance to primary and from secondary-to-secondary
- Circuit impendences & voltage drop mismatch
- Variation in rectifier diode V_F
- Equivalent circuit normalised turns ratios with ideal transformer
- Equal voltage imposed, lightly loaded output has less drop across leakage, resistance, diode => higher cap voltage

Transformer Equivalent Circuit Model

Transformer winding recommendations

- Minimise leakage inductance primary-to-secondary, and secondary-to-secondary
 - High leakage inductance causes lightly-loaded outputs to "pump up"
- Interleave primary (or winding with highest number turns)
 - Reduces leakage inductance by half
- Wind full layers for best layer-layer coupling
 - Fill layer with multi-strands ٠
- Wind secondaries bifilar or multifilar same layer
- Sandwich (shield) low power secondary windings between layers of high power secondaries

(🗄

Cross-regulation effect of secondary winding structure

- Customer request for dual 12-V outputs (isolated GNDs) @ 90 W using ER35
- Require +/-5% cross-regulation (11.4 12.6 V) with min loading
- Passes with 12VB @ 0.25 A min RHS winding achieves ~40 nH leakage inductance sec-sec

	I SPEC		Measure data		Nom	12.00			
ſ	12VA	12VB	12VA	12VB	12VA	12VB			
	4.0A	0.15A	11.53V	13.13V	-3.92%	9.42%			
	0.5A	3.5A	12.24V	11.22V	2.00%	-6.50%			
	4.0A	3.5A	11.81V	11.80V	-1.58%	-1.67%			
1	0.5A	0.15A	11.63V	11.88V	-3.08%	-1.00%			
C	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		0000000000			
		00000	000000	000000	00000	00000			
	0000 0		000	0000	0	000			
C									

	I SPEC		Measure data		Nom	12.00
	12VA	12VB	12VA	12VB	12VA	12VB
	4.0A	0.15A	11.55V	12.85V	-3.75%	7.08%
	0.5A	3.5A	12.17V	11.24V	1.42%	-6.33%
	4.0A	3.5A	11.81V	11.78V	-1.58%	-1.83%
_	0.5A	0.15A	11.63V	11.84V	-3.08%	-1.33%
	000000000000000000000000000000000000000		000000000000		000000000000	000000000000000000000000000000000000000
	000000	000000	00000	000000	000 000	000000
	0000		0000 0000		0000	

Add pre-load to outputs (R_{L1} and R_{L2})

- Improve no/light load regulation
 - Add preload resistors
 - ✓ This will help discharge transformer leakage energy and keep the output in regulation.
 - ✓ Effectively adding some minimum output loading
- Disadvantage:
 - Increase standby power, reduces light-load efficiency
 - May require excessive pre-load for tight regulation

Texas Instruments

Zener clamps (D1 and D2)

- Can improve light-load cross regulation
 - ✓ Will only dissipate leakage energy
 - When secondary voltage is above Zener voltage
 - ✓ Improves overall system efficiency compared to pre-load resistors
- Disadvantage:
 - Will still impact standby power & light-load efficiency to some extent
 - Higher Zener voltage => less dissipation, but worse cross-regulation

LDO/series pass regulators

- Regulate main output with feedback
- Second/other output(s)
 - Use series pass regulator or secondary side regulator
- Disadvantages:
 - Need headroom for LDO dropout
 - LDO P_{diss} impact on efficiency
- Higher power applications may require switching regulator (efficiency)

Question #2: What mix of multi-outputs do you usually require?

- A. Shared common GND or isolated from each other
- B. Bipolar outputs e.g. +/- 12V, +/- 15V, etc.
- C. Paired low & high voltage outputs, e.g. +5V/+12V, +5V/+24V, +3V3/+15 V, etc.
- D. Multiple similar-voltage rails

Stacked transformer windings

- Improves cross regulation for lower output
 - I_{out2} always flows through lower winding
 - Leakage energy of lower winding flows to V_{out2}
- AC-stacking very commonly used
- DC-stacking less common
 - Gives superior performance
 - Excellent regulation for lower V_{out1}
 - V_{out1} never at no load
- Requires common-GND & V_{out2} > V_{out1}

Cross regulation performance with DC-stacked outputs

- Design for V_{out2} = 24 V @ 1.3 A, V_{out1} = 12 V @ 3A
- Secondaries wound trifilar in 1 layer (2+1 strands)
- PSR (primary-side-regulated) UCC28630 no opto

Reference design with AC-stacked transformer windings

- UCC28630-based PMP4444, <u>http://www.ti.com/tool/PMP4444</u>
- Employs zener/npn based active bleed on 24-V rail
 - Only pre-loads the 24-V rail when it gets too high
 - No impact on standby power

28

Texas Instruments

Multiple/weighted feedback TL431/opto PMP20001

- UCC28740 primary controller with weigthed opto feedback
- Degrades regulation of each output slightly
- Helps improve cross regulation

B180B-13-F

B140B-13-F

+C2 470μF 16V

10µF 10µF 16V 16V

 470µi

1 0k

TEXAS INSTRUMENTS

Secondary side synchronous rectification

- Bidirectional current through SR
- SRs (Q2,Q3) allow current flow in reverse direction under lighter loads
 - Helps dissipate energy from lighter loads, improves cross regulation
 - Waveform example (I₁ full load, I₂ no load)

UCC24630 CCM

UCC24630/6 synchronous rectifier (SR) controllers

- Use Volt-Second balance to control SR gate drive
- Wide VDD range 3.6 to 28V
- 5V to 24V outputs
- UCC24630 200 kHz f_{max}
- UCC24636 130 kHz f_{max}
- 0.9-A source/1.1-A sink
 ✓ Self Limited

Summary – cross-regulation improvement & mitigation

- Main causes of cross-regulation have been outlined
- Several different techniques discussed to help improve cross-reg:
 - Transformer construction minimise leakage inductance
 - Minimise secondary wiring resistance & inductance (flying leads)
 - Minimise rectifier on-state drop, especially for low voltage outputs
 - Add pre-load or minimum loads, Zener-clamps, or linear regulators to outputs
 - AC or DC-stack the outputs (if they share the same GND)
 - Weighted multi-feedback to TL431
 - Use SR (synchronous rectification)
- However, there is no free lunch not easy to get great cross-regulation at low cost
 - It's all about compromise and managing trade-offs
- Pay close attention to detailed internal transformer construction

 good design goes a long way to achieving good cross-regulation

© Copyright 2017 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com