

Very high voltage AC-DC power: From 3-phase to single phase offline bias supplies

Bernard Keogh, Billy Long

What will I get out of this session?

- Purpose:
 - Design Considerations for low power bias supplies from 3-phase inputs.
 - Configurations to meet the bulk cap and switch voltage rating.

Part numbers mentioned:

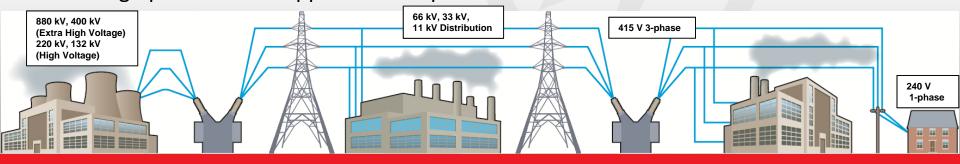
UCC2872x, UCC2891x, UCC2870x, UCC2871x, UCC2888x, UCC28C4x, LM5021

• Reference designs mentioned:

PMP11236 PMP10937 PMP10834 PMP7769 PMP10415 TIDA-00628 PMP8678 TIDA-00173 PMP11302

Relevant End Equipment:

E-Meters, Industrial Power Supplies


Agenda

- High voltage background
 - Why so high, what are the implications?
- Bias supplies and high voltages
 - Why are they needed, what topologies can be used?
- Bulk capacitor considerations
- Switch rating considerations
- Conclusions

Power distribution grid

- Power distribution at very high voltage reduced currents & losses; lower cost & weight infrastructure
- Three-phase distribution allows constant power transfer; lower rms currents
- High kV distribution voltage down-converted at local distribution transformer.
 - Single phases tapped off for domestic use at ~120/240 V ac
 - High power loads supplied with 3-phase

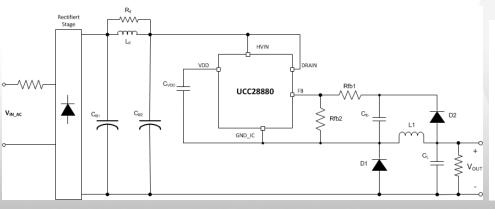
Three phase supply voltages

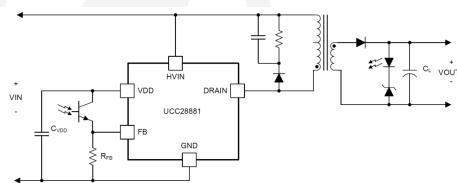
- Three phase voltage is typically 400 V ac in Europe and 210-270 V ac in the US
- Voltage levels vary considerably by region, by configuration and by application
- Voltage ranges of 525-600 V ac or up to 690 V ac are sometimes encountered

Three phase loads

- Three-phase induction motors, industrial motor drives
- High power heating and welding equipment
- High power UPS for Data centers
- High voltage EV chargers
- E-meters sometimes three-phase rated to withstand mistaken phase-phase wiring

Auxiliary bias supplies for three-phase input voltages


- Require bias power at low voltages to power controllers, gate drivers, CPUs etc.
- High input voltage => require physically larger and more expensive components
 - Since power is low, large & costly bias supply becomes unpalatable for customers
- Principal design requirements:
 - Robust and reliable
 - Low cost
 - Low EMI and low noise
 - Easy to design & develop.
- Secondary considerations:
 - Efficiency & thermal performance
 - Regulation & cross-regulation accuracy
 - Size
 - Fault response



High-voltage bias supplies topologies

- Most common approaches:
 - Non-isolated outputs: HV Buck or Flyback

Isolated outputs: Flyback

Most significant components for high-voltage – bulk capacitors and the power switch.

Low power, non-isolated integrated buck

- UCC28880/1 700-V integrated switchers [different Rds(on)]
- Can be used in buck configuration up to ~450 V ac input line
- E.g. <u>PMP11236</u> dual 24-V & 5-V outputs
- Can be deployed in high-side or low-side

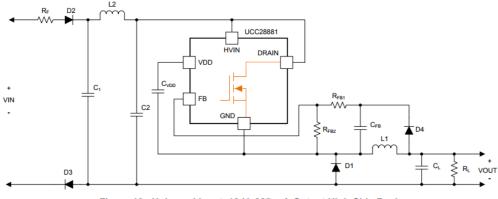
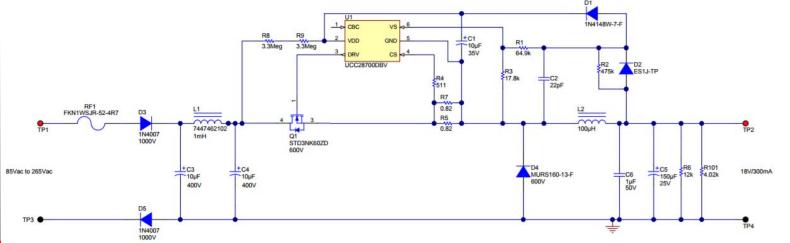
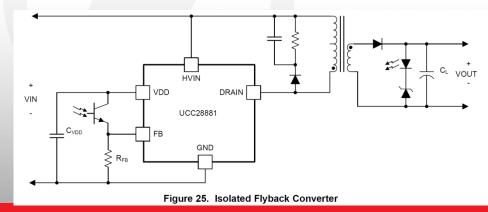


Figure 16. Universal Input, 12-V, 225-mA Output High-Side Buck


Can be used in non-isolated Flyback for higher power

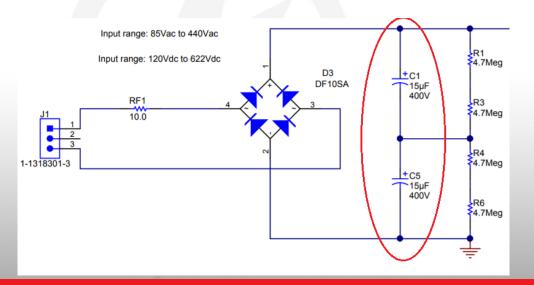
Power Handling Capability with Different Topologies			Table 1. Current Handling Capability for UCC28880 and UCC28881				
	MAXIMUM OUTPUT CURRENT for 85 ~ 265 VAC OPEN FRAME DESIGN	MAXIMUM OUTPUT POWER for 85 ~ 265 VAC OPEN FRAME DESIGN FLYBACK	DEVICE	CURRENT HANDLING MODE	230 V _{AC} ±15%	85 V ~ 265 V _{AC}	
PRODUCT			UCC28881	Discontinuous Conduction Mode (DCM)	150 mA	150 mA	
	NON-ISOLATED BUCK		UCC28881	Continuous Conduction Mode (CCM)	225 mA	225 mA	
UCC28880	100 mA	3 W	UCC28880	Discontinuous Conduction Mode (DCM)	70 mA	70 mA	
UCC28881	225 mA	nA 4.5 W		Continuous Conduction Mode (CCM)	100 mA	100 mA	


Low power, non-isolated buck with external FET

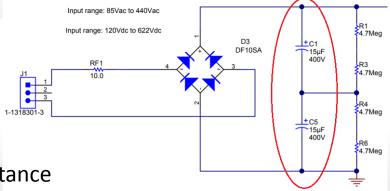
- External FET controlled by PWM IC for higher current & wider Vin/Vout range
- UCC287xx or UCC28C4x families can be used with external FET, e.g. <u>PMP10937</u>
- D2/C2 generates level-shifted FB signal tradeoff no-load regulation vs burst freq

Low power isolated bias supply – Flyback

- For isolation, Flyback is near-universal choice
 - Only requires single magnetic for both isolation and voltage conversion
- Inherently better-suited to wide input range
 - Disadvantage peak switch voltage is higher than the input voltage.
- For universal input range (90-264 V ac),
 650-700V switch is typical
- For 440 V ac, switch rating > 1kV is required
 - Unless the bulk cap voltage is clamped or reduced in some way

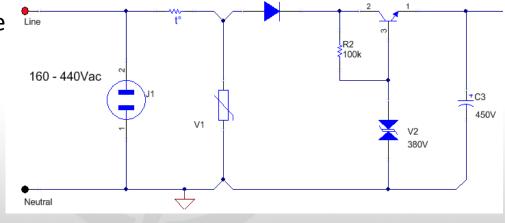

Bulk capacitors

- Necessary for energy storage & filtering of 50-Hz AC voltage
- Aluminium electrolytics : high volumetric efficiency relative to other capacitor types
- Despite low cost vs other capacitor types, still quite expensive big % of BOM cost
- Single-phase mains 240 V ac + 10% tolerance -> 373 V peak =>
 - Wide range of 400-V aluminum electrolytic caps available
 - At > 450-V aluminium electrolytics become expensive
 - Capacitance values required for 1-W to 100-W levels not generally available above 600 V
- How to cope with high bus voltage up to 1 kV? Several possible methods


Bulk capacitors for high bus voltage – connect in series

- Extra bulk caps connected in series to meet required voltage rating
- Most common approach
- Example here from <u>PMP10236</u>
- Here max AC input 440 V ac, peak equivalent to 622 V dc
- Two 400-V caps stacked in series to achieve required rating

Bulk capacitors for high bus voltage – connect in series


- Advantages
 - Robust and reliable
 - Simple implementation
 - Re-use existing 400-V rated caps
- Disadvantages
 - More caps required to achieve required capacitance
 - Expensive, bulky
 - Balancing resistors required to ensure that voltage divides equally across caps
 - Extra dissipation, PCB area and cost
 - Balancing current must be >> cap leakage current

Limit high bus voltage – add input clamp/regulator

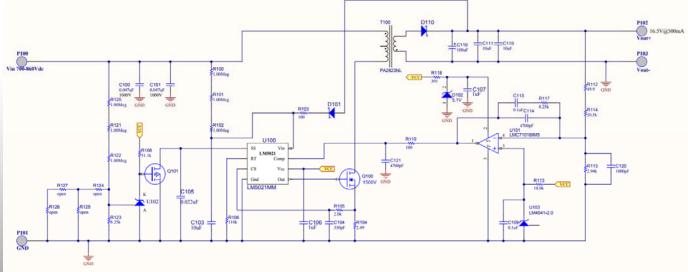
- TVS diode sets clamp voltage
- BJT transistor drops the excess voltage
- Clips the voltage to the bulk cap
- BJT limited by base current and R2 value, causes line-dependent clamp
 - See appendix slide for more detail
- At higher power (> ~3 W), MOSFET may be required instead of BJT

• Disadvantage – high voltage MOSFETs are more expensive than high voltage BJTs.

Limit high bus voltage – add input clamp/regulator

Advantages

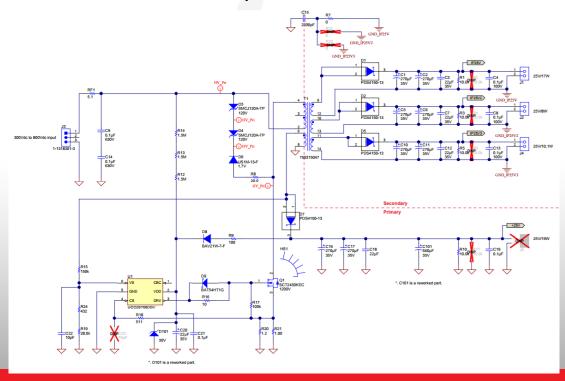
- Smaller solution size vs extra bulk capacitance
- Lower cost solution, (BJT + R + TVS) vs bulk cap
- Allows lower voltage-rating power switch
- Effective for short-term line surges


R1 D1 Q1 1 Line 160 - 440Vac N2 100k 1700k 1800V 1800V 1800V

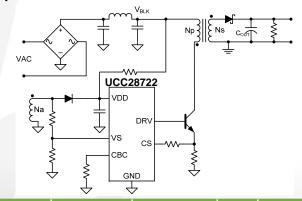
Disadvantage

- Limited in power capability if using BJT; MOSFET solution adds cost
- Can suffer high clamp dissipation if operated continuously at high line

High voltage power switch – single switch options

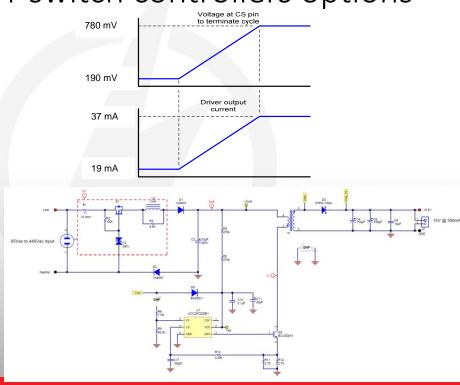

- Simplest solution use a single high voltage Si FET
- E.g. <u>PMP7769</u> 8-W Flyback
- 860 V dc max Vin
- LM5021-based fixed-frequency
- 1.5-kV Si MOSFET STP3N150 6-ohm
- But SiC FETs getting cost competitive...

High voltage power switch – SiC switch options


- E.g. <u>PMP10415</u> 54-W Flyback
- Multi-output Flyback
- Based on UCC28700
- Uses 1.2-kV Silicon Carbide MOSFET
 - Rohm SCT2450KEC 0.45-ohm

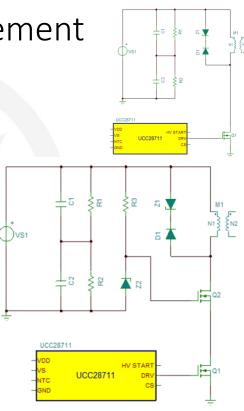
High voltage power switch – BJT switch options

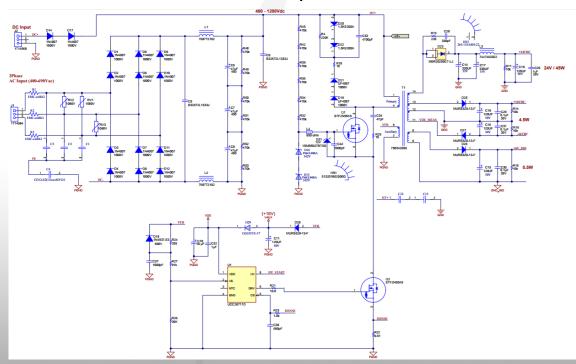
- Low cost option high voltage BJTs
 - Less expensive than high voltage MOSFETs
- BJTs are current-controlled more complex drive requirements compared to MOSFETs
- Excess base current => saturation & very slow turn off
- Proportional drive
 - Modulates base current, proportional to load
 - Light load base not driven with excess current vs collector current, improves switching speed & efficiency



Part	Manufacturer	Voltage Rating		I _c	Est High	
		V_{CEO}	V _{CBO}		Vol Cost	
STN2580	ST	400V	800V	1A	\$0.05	
ST13003	ST and others	400V	700V	1.5A	\$0.05	
STX616-AP	ST	500V	980V	1.5A	\$0.09	
KSC5026	ON/Fairchild	800V	1,100V	1.5A	\$0.10	
KSC5027	ON/Fairchild	800V	1,100V	3A	\$0.11-\$0.12	
FJI5603	ON/Fairchild	800V	1,600V	3A	\$0.15	

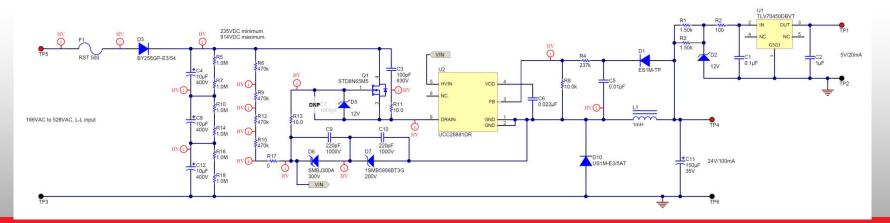
High voltage power switch – BJT switch controllers options


- UCC28720 & UCC28722 designed for high voltage BJTs
 - Current source output rather than voltage source
 - Proportional drive, improves light load performance
 - Ideal for low power, high voltage applications
- High BJT blocking voltage may allow removal of snubber
 - E.g. <u>TIDA-00628</u> BUJ302AX 1,050-V V_{CESM}


High voltage power switch – cascode arrangement

- Cascode two lower voltage devices in series
 - Achieves desired rating with LV devices
- Lower device driven by controller
- Upper device switched via the source/emitter
- For low power, integrated devices can be used as lower cascode switch, e.g UCC28910/28911
 - Reduces the solution cost
- For higher power level, two external switches may be required.

High voltage power switch – cascode example


- E.g. <u>TIDA-00173</u> 50-W Flyback
- 690 V ac, up to 1200 V dc
- ~300 V reflected
- Require Vds 1200 + 300 +
 spikes + margin = ~1.8-2 kV
- Cascode of two 950-V MOSFETs
- Efficiency > 88% @ full load,
 400 V dc

High voltage power switch – non-isolated cascode example

- PMP11302 same cascode concept used for non-isolated 2.5-W buck design
- UCC28881 (700-V max) cascoded with external MOSFET (650-V max)
- Increase voltage rating to ~1200 V (note three 400-V bulk caps in series)

Conclusions & key take-aways

- High voltage input adds considerable cost and component count to bias supplies
- Various methods to deal with voltage ratings for bulk capacitors and power switch
- Choosing the best configuration for your application bias supply can minimise cost & size overhead, whilst preserving required robustness.
- <u>TI Designs</u> has many high voltage reference designs
 - May be suitable for your application, or give a starting point for your design.

© Copyright 2017 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com