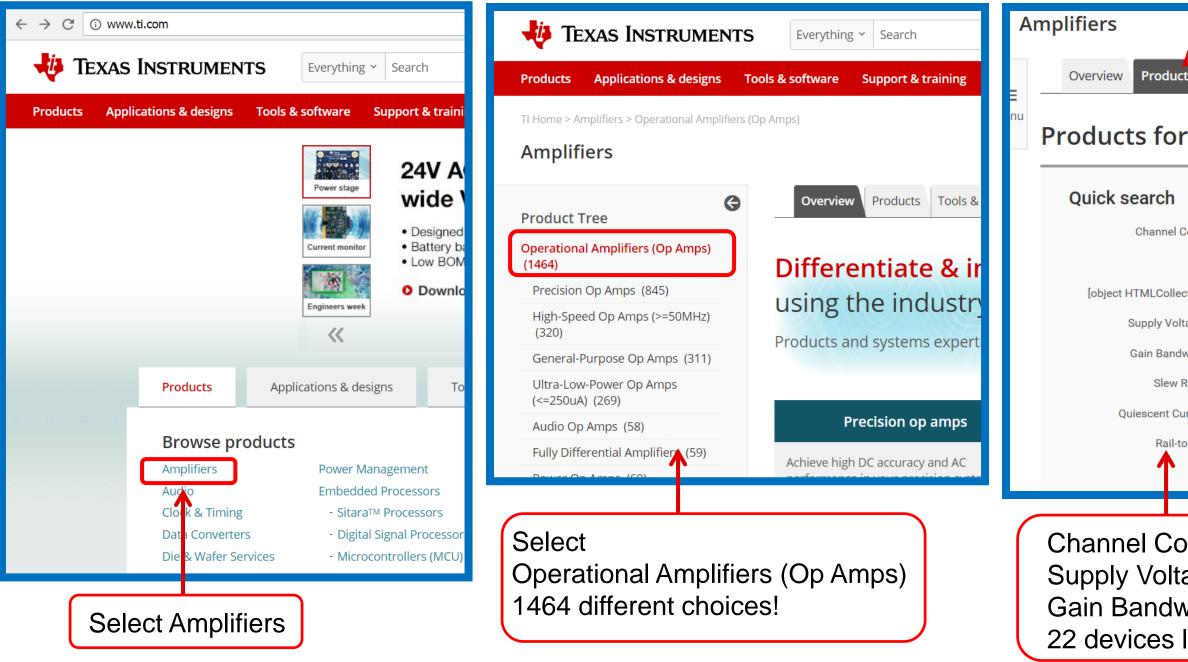
Selecting and Verifying the Driver Amplifier TIPL 4402 TI Precision Labs – ADCs

Created by Tim Green, Art Kay

Presented by Peggy Liska



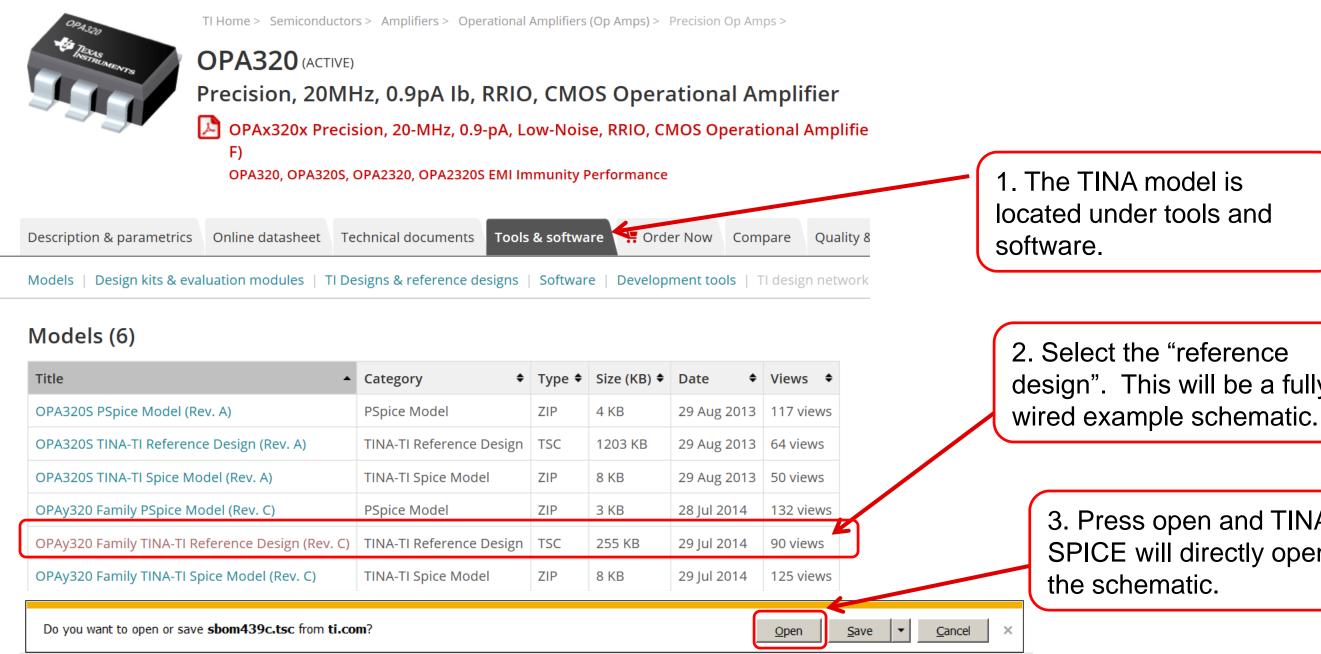
Agenda

- 1. SAR Operation Overview
- 2. Select the data converter
- 3. Use the Calculator to find amplifier and RC filter
- 4. Find the Op Amp
- 5. Verify the Op Amp Model
- 6. Building the SAR Model
- 7. Refine the Rfilt and Cfilt values
- 8. Final simulations
- 9. Measured Results
- **10. SAR Drive Calculator Algorithm**

Find the Op Amp

	Selec	t Products
ts T	ools & software	Technical documents
	peration	al Amplifier
	-	
Count	≥1 ≤	1
ction]	● Single ○ Dua	
tages	5	(V)
width	17.8	(MHz)
Rates		(V/µS)
urrent		(mA)
o-Rail	🗹 In 🗹 Out 🗌	In to V+ 🔲 In to V-
	View 22 parts	
bun	t = 1	
	e = 5V	
-	th = 17.8	MHz
left		J

🔱 Texas Instruments


Set filters to find the best device

Use the filters to narrow options					 Package Group SO PowerPAD SOIC SON SOT SOT-23 SSOP TO-220 View 9 parts 			 ✓ Vos (Offset Voltage @ 25C) ∧ (Max) (mV) ≥ 0.001 ≤ 0.5 View 5 parts 			 Rating AND Automotive Catalog HiRel Enhanced Product High Temp Military View 3 parts 				
		atching pa	arts out of 1464 total parts Part Number Filter by part number Q	Number of Channels (#)	Total Supply Voltage (Min) (+5V=5, +/-5V=10)	Total Supply Voltage (Max) (+5V=5, +/-5V=10)	GBW (Typ) (MHz)	Rail- to- Rail	Slew Rate (Typ) (V/us)	Vos (Offset ↑ Voltage @ 25C) (Max) (mV)	lq per channel (Typ) (mA)	Rating	Email Coperating Temperature Range (C)	Oownload 1 Package Group	Approx. Price (US\$)
OPA320 Best offset	$ \neq $		OPA320 - Precision, 20MHz, 0.9pA lb, RRIO, CMOS Operational Amplifier	1	1.8	5.5	20	ln, Out	10	0.15	1.5	Catalog	-40 to 125	SOT-23	0.80 1ku
			OPA365 - 2.2V, 50MHz, Low- Noise, Single-Supply Rail-to-Rail Operational Amplifier	1	2.2	5.5	50	ln, Out	25	0.2	4.6	Catalog	-40 to 125	SOIC, SOT-23	0.65 1ku
			LMP7731 - 2.9 nV/sqrt(Hz) Low Noise, Precision , RRIO Amplifier	1	1.8	5.5	22	ln, Out	2.4	0.5	2.2	Catalog	-40 to 125	SOIC, SOT-23	0.63 1ku

וA)	Rating	Operating Temperature Range (C)	Package Group	Approx. Price (US\$)	
	Catalog	-40 to 125	SOT-23	0.80 1ku	
	Catalog	-40 to 125	SOIC, SOT-23		
	Catalog	-40 to 125	SOIC, SOT-23	0.63 1ku	

i TEXAS INSTRUMENTS

Get the latest model from the web

design". This will be a fully

3. Press open and TINA SPICE will directly open

Agenda

- 1. SAR Operation Overview
- 2. Select the data converter
- 3. Use the Calculator to find amplifier and RC filter
- 4. Find the Op Amp
- 5. Verify the Op Amp Model
- 6. Building the SAR Model
- 7. Refine the Rfilt and Cfilt values
- 8. Final simulations
- 9. Measured Results
- **10. SAR Drive Calculator Algorithm**

Op Amp Model: Open Loop Gain

Test Circuit for Aol Simulated results 140-C1 1T L1 1T 160 DC Gain = 130dB 120-140 VG1 100-120 100 80-Gain (dB) Gain (dB) 80 U1 OPA320 UGBW 60-Vout 20.2MHz 60 40-A_{OL} Gain 50p 2.500037V 40 20ŧ Vin 2.5 Vdd 5 20 8 0-0 -20 -20-Use test 10 condition Test dc 180 loading operating 46.8° at UGBW point $180^{\circ} - 45.8^{\circ} = 133.2^{\circ}$ 135-Phase [deg] **1. Test dc operating point to assure** 90that circuit is correctly wired **A_{OL} Phase**

45-

1

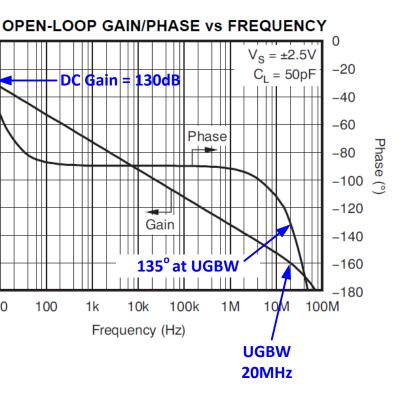
10

100

1k

10k

Frequency (Hz)


100k

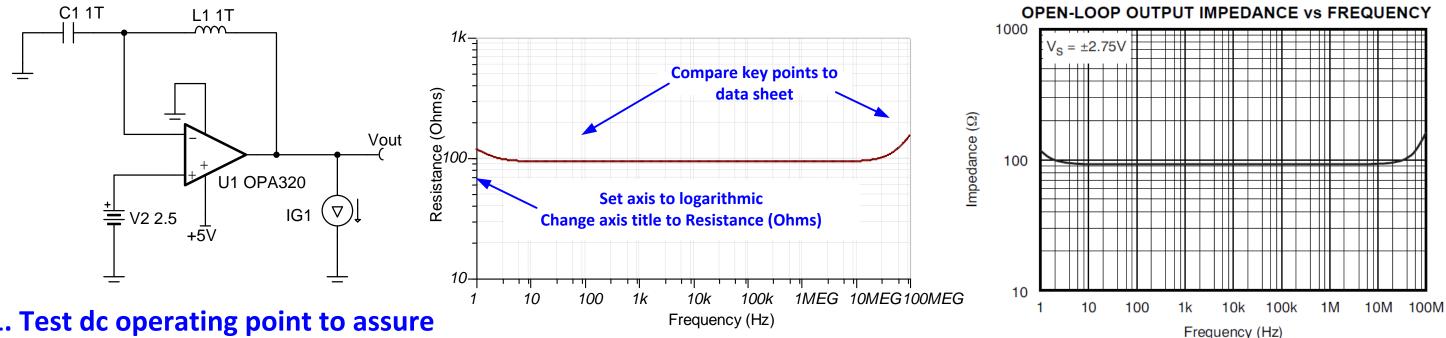
1MEG 10MEG100MEG

2. Run ac simulation for A_{OL} curve $A_{OL} = Vout$

100

Data Sheet Specification

Compare key points on simulation results to data sheet curve.



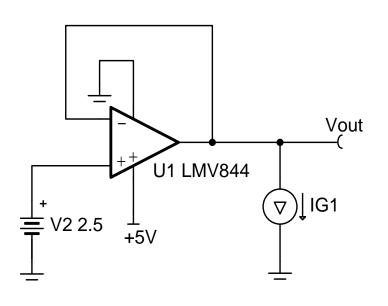
TEXAS INSTRUMENTS

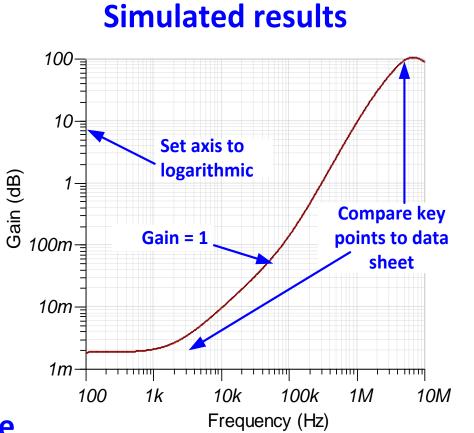
Op Amp Model: Open Loop Output Impedance

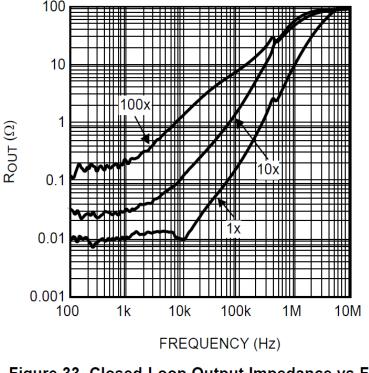
Test Circuit for Aol

Simulated results

- **1. Test dc operating point to assure** that circuit is correctly wired
- **2.** Run ac simulation for Z_o curve. $Z_o = Vout.$


Data Sheet Specification





Op Amp Model: Closed loop output impedance

Test Circuit for Aol

1. Test dc operating point to assure that circuit is correctly wired **2.** Run ac simulation for Z_{out} curve. Z_{out}= Vout.

Data Sheet Specification

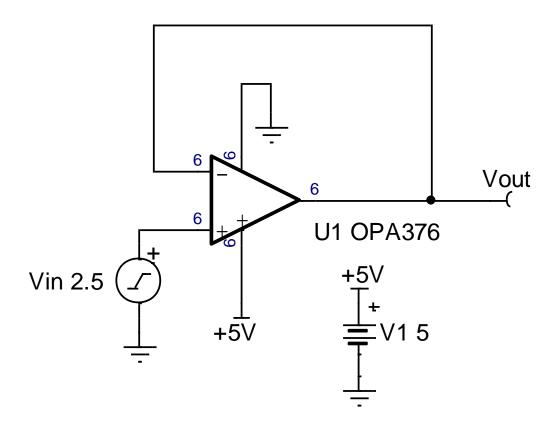
Figure 33. Closed-Loop Output Impedance vs Frequency

LMV844 Zout.TSC

Agenda – next video...

- 1. SAR Operation Overview
- 2. Select the data converter
- 3. Use the Calculator to find amplifier and RC filter
- 4. Find the Op Amp
- 5. Verify the Op Amp Model
- 6. Building the SAR Model
- 7. Refine the Rfilt and Cfilt values
- 8. Final simulations
- 9. Measured Results
- **10. SAR Drive Calculator Algorithm**

Thanks for your time! Please try the quiz.


Selecting and Verifying the Driver Amplifier TIPL 4402 TI Precision Labs – ADCs

Created by Art Kay

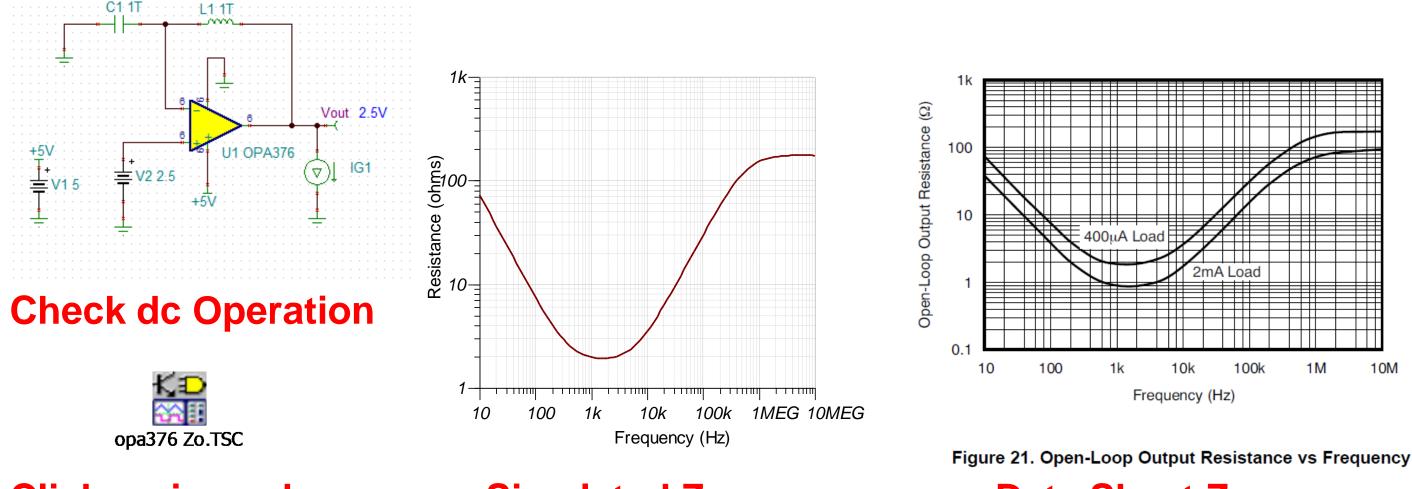
- Use parametric search to find an amplifier with the following specifications: wide bandwidth 1. (BW > 10MHz), single supply 5V, rail-to-rail in/out, zero input crossover distortion, low offset (Vos < 200 μ V), low noise (e_n < 10 μ V/rtHz), and small package (single channel SOT-23).
- 2. For the circuit below, graph the open loop output impedance, closed loop output impedance, and open loop gain.



Solutions

Use parametric search to find an amplifier with the following specifications: wide bandwidth 1. (BW > 10MHz), single supply 5V, rail-to-rail in/out, zero input crossover distortion, low offset (Vos < 200 μ V), low noise (e_n < 10 μ V/rtHz), and small package (single channel SOT-23).

Precision Op Amps - Products

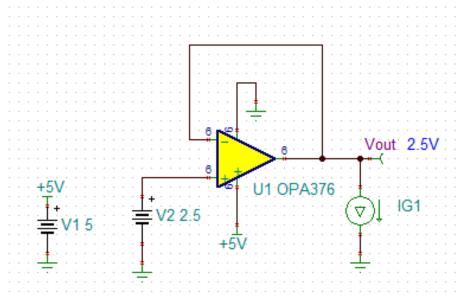


Compare	Part Number Filter by part number Q	Number of Channels (#)	Total Supply Voltage (Min) (+5V=5, +/-5V=10)	Total Supply Voltage (Max) (+5V=5, +/-5V=10)	GBW (Typ) (MHz)	Rail- to- Rail	Vos (Offset Voltage @ 25C) (Max) (mV)	Slew Rate (Typ) (V/us)	Offset Drift (Typ) (uV/C)	lq per channel (Typ) (mA)	Vn at 1kHz (Typ) (nV/rtHz)	CMRR (Typ) (dB)	Rating	Operating Temperature Range (C)	Package Group	Approx. Price (US\$)
	OPA320-Q1 - Automotive Qualified Precision, Zero- Crossover, 20MHz, 0.9pA lb, RRIO, CMOS Operational Amplifier	1	1.8	5.5	120	ln, Out	0.15	10	1.5	1.5	8.5	114	Automotive	-40 to 125	SOT-23	0.94 1ku
	OPA388 - 10MHz, CMOS, Zero- Drift, Zero-Crossover, True RRIO Precision Operational Amplifier	1	2.5	5.5	10	ln, Out	0.005	5	0.005	1.7	7	138	Catalog	-40 to 125	SOIC, SOT-23, VSSOP	0.98 1ku
	OPA192 - High-Voltage, Rail-to- Rail Input/Output, 5μV, 0.2μV/°C, Precision Operational Amplifier	1	4.5	36	10	ln, Out	0.025	20	0.15	1	5.5	120	Catalog	-40 to 125	SOIC, SOT-23, VSSOP	1.15 1ku
	OPA320 - Precision, Zero- Crossover, 20MHz, 0.9pA lb, RRIO, CMOS Operational Amplifier	1	1.8	5.5	20	ln, Out	0.15	10	1.5	1.5	8.5	114	Catalog	-40 to 125	SOT-23	0.80 1ku
	LMP7707 - Precision, CMOS Input, RRIO, Wide Supply Range Decompensated Amplifier	1	2.7	12	14	ln, Out	0.2	5.6	1	0.715	9	130	Catalog	-40 to 125	SOIC, SOT-23	1.07 1ku

2. For the circuit below, graph the open loop output impedance, closed loop output impedance, and open loop gain.

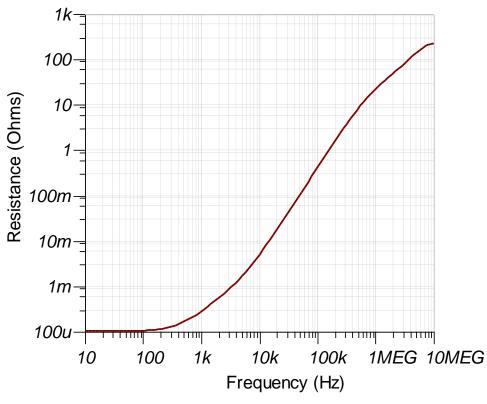
Click on icon above for TINA circuit.

Simulated Zo


Data Sheet Zo

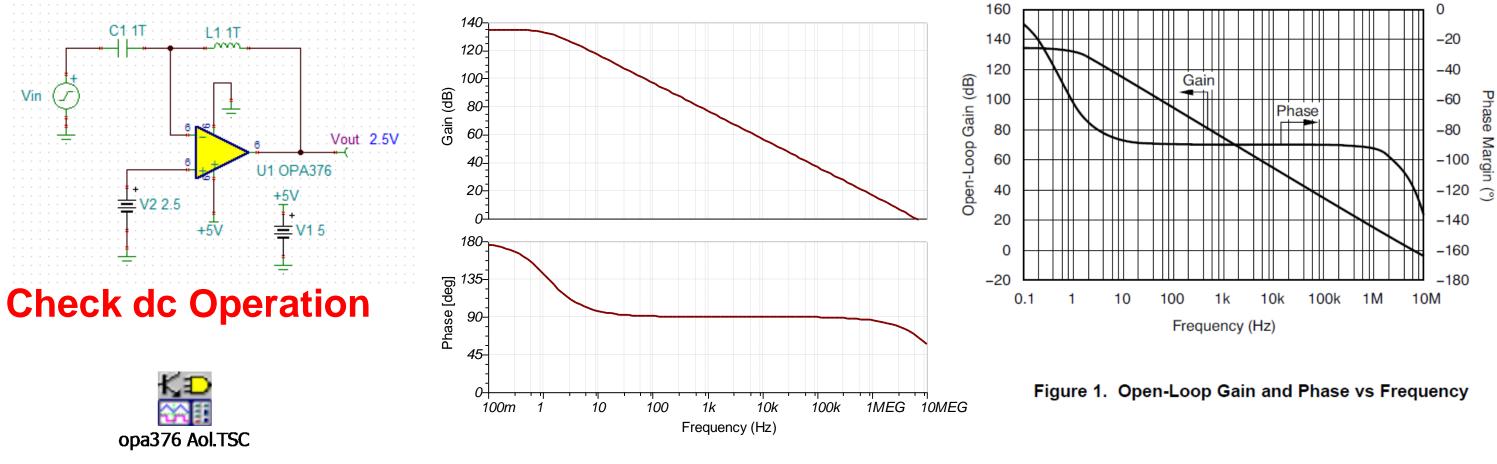
TEXAS INSTRUMENTS

6


2. For the circuit below, graph the open loop output impedance, closed loop output impedance, and open loop gain.

Check dc Operation

Click on icon above for TINA circuit.


Simulated Zout

7

2. For the circuit below, graph the open loop output impedance, closed loop output impedance, and open loop gain.

Click on icon above for TINA circuit.

Simulated Aol

Data Sheet Aol

