# The Math Behind the R-C Component Selection 

 TIPL 4406TI Precision Labs - ADCs

Created by Tim Green, Art Kay
Presented by Peggy Liska

## Agenda

1. SAR Operation Overview
2. Select the data converter
3. Use the Calculator to find amplifier and RC filter
4. Find the Op Amp
5. Verify the Op Amp Model
6. Building the SAR Model
7. Refine the Rfilt and Cfilt values
8. Final simulations
9. Measured Results

## 10. SAR Drive Calculator Algorithm

## Concept behind the math



- Assumptions based on multiple designs
- Vin = Full Scale
- $1 / 2$ of $Q_{\text {sh }}$ is from $C_{\text {filt }} \& 1 / 2$ from Op Amp
- 100 mV Droop - small signal response
- Error target = 0.5•LSB
- Op amp approximated as second order system
- Op amp four times faster than filter


## $\mathrm{C}_{\text {filt }}$ Selection



| $Q_{s h}=V_{F S R} \cdot C_{s h}$ | (1) | Total Charge in Csh and the end of acquisition period. |
| :--- | :--- | :--- |
| $Q_{s h}=Q_{f r m o p a}+Q_{f r m c f i l t}$ | (2) | Charge is from amplifier and filter capacitor |
| $\Delta Q_{C f i l t}=0.5 \cdot Q_{s h}$ | (3) | Half the sample and hold charge $\left(Q_{\text {sh }}\right)$ is delivered from the filter. <br> This results in a change in the charge on Cfilt. |
| $\Delta Q_{c f i l t}=0.5 \cdot V_{F S R} \cdot C_{s h}$ | (4) | From (1), and (3) |
| $\Delta Q_{C f i l t}=\Delta V_{\text {filt }} \cdot C_{f i l t}$ | (5) | The change in charge on Cfilt will cause a droop in voltage. $\Delta \mathrm{V}_{\text {filt }}$ |
| $C_{\text {filt }}=\left(\frac{0.5 \cdot V_{F S R}}{\Delta V_{\text {filt }}}\right) C_{s h}$ | (6) | From (4), and (5). This is the general relationship for scaling <br> Cfilt, given a droop in filter voltage (Vfilt) |

## $\mathrm{C}_{\text {filt }}$ Scaling Continued



| $C_{\text {filt }}=\left(\frac{0.5 \cdot V_{F S R}}{\Delta V_{\text {filt }}}\right) C_{s h}$ | (6) | From previous slide: <br> This is the general relationship for scaling Cfilt, given a droop in <br> filter voltage (Vfilt). |
| :--- | :--- | :--- |
| Assume <br> $V_{\text {FSR }}=4 \mathrm{~V}, \Delta \mathrm{~V}_{\text {filt }}=100 \mathrm{mV}$ |  |  |
| $\boldsymbol{C}_{\text {filt }}=\mathbf{2 0} \cdot \boldsymbol{C}_{s h}$ | (7) | Typical value for Cfilt |
| $C_{\text {filt }}=30 \cdot C_{s h}$ | (8) | Maximum value for Cfilt |
| $C_{\text {filt }}=10 \cdot C_{s h}$ | (9) | Minimum value for Cfilt |

Note 1: Experience shows that using the fixed factors of 20 yields good results. Note 2: In rare cases, you may need to sweep Cfilt. Thus the factors of 10 and 30.

## Time constant required for settling to error target

| $V_{\text {filt }}=\left(V_{\text {init }}-V_{\text {final }}\right) \cdot e^{-t / \tau_{c}}+V_{\text {final }}$ | $(10)$ | This is the standard RC charge equation. <br> $\tau_{c}=$ time constant for charging $\mathrm{C}_{\text {s. }}$. <br> $V_{\text {init }}=$ initial voltage at start of $t_{\text {acq }}$ <br> $V_{\text {final }}=$ final voltage for fully charged $\mathrm{C}_{\text {filt }}$ |
| :--- | :---: | :--- |
| $0.5 \cdot L S B=V_{\text {final }}-V_{\text {filt }}$ | $(11)$ | Error is less than $1 / 2$ LSB |
| $V_{\text {init }}-V_{\text {final }}=100 m V$ | $(12)$ | Droop is 100 mV |
| $0.5 \cdot L S B=(100 m V) \cdot e^{-t / \tau_{c}}$ | $(13)$ | Substitute 11 and 12 into 10 |
| $\tau_{c}=\frac{-t_{\text {acq }}}{\ln \left(\frac{0.5 \cdot L S B}{100 m V}\right)}$ | $(14)$ | Solve (13) for $\tau_{c}$ <br> Note: $\tau_{c}$ includes effects from Op Amp and $C_{\text {filt }}$ <br> The op amp is being modeled as a second order <br> system (RC circuit) |

## Find Rfilt and Amplifier Bandwidth

| $\tau_{c}=\sqrt{\left(\tau_{R C}\right)^{2}+\left(\tau_{O A}\right)^{2}}$ | $(15)$ | $\tau_{\mathrm{c}}$ can be approximated as the RSS of the time constant of <br> the filter and the op amp. |
| :--- | :--- | :--- |
| $\tau_{R C}=4 \cdot \tau_{O A}$ | $(16)$ | Rule of thumb for good settling |
| $\tau_{c}=\sqrt{\left(4 \cdot \tau_{O A}\right)^{2}+\left(\tau_{O A}\right)^{2}}$ | $(17)$ | Substitute (16) into (15) |
| $\tau_{O A}=\frac{\tau_{c}}{\sqrt{17}}$ | $(18)$ | Solve (17) |
| $\tau_{R C}=4 \cdot\left(\frac{\tau_{c}}{\sqrt{17}}\right)$ | (19) | Substitute (18) into (16) |
| $R_{\text {filt }}=\frac{\tau_{R C}}{C_{\text {filt }}}$ | (20) | Nominal filter resistance. |
| $\boldsymbol{R}_{\text {filt_min }}=\mathbf{0 . 2 5} \cdot \boldsymbol{R}_{\text {filt }}$ | (21) | Minimum value of Rfilt used in SPICE iteration |
| $\boldsymbol{R}_{\text {filt_max }}=\mathbf{2} \cdot \boldsymbol{R}_{\text {filt }}$ | (22) | Maximum value of Rfilt used in SPICE iteration |
| $\boldsymbol{U G B W}=\frac{\mathbf{1}}{\mathbf{2} \cdot \boldsymbol{\pi} \cdot \boldsymbol{\tau}_{\boldsymbol{O A}}}$ | (23) | Minimum amplifier bandwidth |

## Thanks for your time! Please try the quiz.

# The Math Behind the R-C Component Selection 

 TIPL 4406TI Precision Labs - ADCs

Created by Art Kay

## The Math Behind the R-C Component Selection

1. The external charge bucket capacitor is $\qquad$ .
a. Half the size of the internal sample and hold capacitor
b. Equal to the internal sample and hold capacitor
c. Double the size of the internal sample and hold capacitor
d. 20 times the size of the internal sample and hold capacitor
2. The error target for settling is $\qquad$ .
a. Half the size of the LSB
b. Equal to the LSB
c. Double the size of the LSB
d. 20 times the size of the LSB

## The Math Behind the R-C Component Selection

3. (T/F) The algorithm determines the RC charge bucket circuit and the amplifier slew rate.
a. True
b. False
4. (T/F) The amplifier bandwidth is usually lower than the charge bucket filter cutoff frequency.
a. True
b. False

## Solutions

## The Math Behind the R-C Component Selection

1. The external charge bucket capacitor is $\qquad$ .
a. Half the size of the internal sample and hold capacitor
b. Equal to the internal sample and hold capacitor
c. Double the size of the internal sample and hold capacitor
d. 20 times the size of the internal sample and hold capacitor
2. The error target for settling is $\qquad$ .
a. Half the size of the LSB
b. Equal to the LSB
c. Double the size of the LSB
d. 20 times the size of the LSB

## The Math Behind the R-C Component Selection

3. (T/F) The algorithm determines the RC charge bucket circuit and the amplifier slew rate.
a. True
b. False
4. (T/F) The amplifier bandwidth is usually lower than the charge bucket filter cutoff frequency.
a. True
b. False
