Created by Tim Green, Art Kay

Presented by Peggy Liska

Agenda

- 1. SAR Operation Overview
- 2. Select the data converter
- 3. Use the Calculator to find amplifier and RC filter
- 4. Find the Op Amp
- 5. Verify the Op Amp Model
- 6. Building the SAR Model
- 7. Refine the Rfilt and Cfilt values
- 8. Final simulations
- 9. Measured Results
- **10. SAR Drive Calculator Algorithm**

Concept behind the math

- Assumptions based on multiple designs •
- Vin = Full Scale
- $\frac{1}{2}$ of Q_{sh} is from C_{filt} & $\frac{1}{2}$ from Op Amp
- 100mV Droop small signal response
- Error target = $0.5 \cdot LSB$
- Op amp approximated as second order system
- Op amp four times faster than filter

TEXAS INSTRUMENTS

C_{filt} Selection

$Q_{sh} = V_{FSR} \cdot C_{sh}$	(1)	Total Charge in Csh and the end of acquisition
$Q_{sh} = Q_{frmOpa} + Q_{frmCfilt}$	(2)	Charge is from amplifier and filter capacitor
$\Delta Q_{Cfilt} = 0.5 \cdot Q_{sh}$	(3)	Half the sample and hold charge (Q _{sh}) is delive This results in a change in the charge on Cfilt.
$\Delta Q_{Cfilt} = 0.5 \cdot V_{FSR} \cdot C_{sh}$	(4)	From (1), and (3)
$\Delta Q_{Cfilt} = \Delta V_{filt} \cdot C_{filt}$	(5)	The change in charge on Cfilt will cause a droo
$C_{filt} = \left(\frac{0.5 \cdot V_{FSR}}{\Delta V_{filt}}\right) C_{sh}$	(6)	From (4), and (5). This is the general relationsl Cfilt, given a droop in filter voltage (Vfilt)

4

C_{filt} Scaling Continued

$C_{filt} = \left(\frac{0.5 \cdot V_{FSR}}{\Delta V_{filt}}\right) C_{sh}$	(6)	From previous slide: This is the general relationship for scaling Cfilt, filter voltage (Vfilt).
Assume $V_{FSR} = 4V$, $\Delta V_{filt} = 100 \text{mV}$		
$C_{filt} = 20 \cdot C_{sh}$	(7)	Typical value for Cfilt
$C_{filt} = 30 \cdot C_{sh}$	(8)	Maximum value for Cfilt
$C_{filt} = 10 \cdot C_{sh}$	(9)	Minimum value for Cfilt

Note 1: Experience shows that using the fixed factors of 20 yields good results. Note 2: In rare cases, you may need to sweep Cfilt. Thus the factors of 10 and 30.

TEXAS INSTRUMENTS

Time constant required for settling to error target

$V_{filt} = (V_{init} - V_{final}) \cdot e^{-t/\tau_c} + V_{final}$	(10)	This is the standard RC charge
		τ_{c} = time constant for charging C_{sh}
		V_{init} = initial voltage at start of t
		V _{final} = final voltage for fully cha
$0.5 \cdot LSB = V_{final} - V_{filt}$	(11)	Error is less than 1/2 LSB
$V_{init} - V_{final} = 100 mV$	(12)	Droop is 100mV
$0.5 \cdot LSB = (100mV) \cdot e^{-t/\tau_c}$	(13)	Substitute 11 and 12 into 10
$-t_{acq}$	(14)	Solve (13) for τ_c
$l_c = \frac{l_c}{\ln\left(0.5 \cdot LSB\right)}$		Note: τ_c includes effects from Op .
(100mV)		The op amp is being modeled as a
		system (RC circuit)

e equation.

•

acq arged C_{filt}

Amp and C_{filt} a second order

Find Rfilt and Amplifier Bandwidth

$\tau_c = \sqrt{(\tau_{RC})^2 + (\tau_{OA})^2}$	(15)	τ_c can be approximated as the RSS of the time constant of the filter and the op amp.
$\tau_{RC} = 4 \cdot \tau_{OA}$	(16)	Rule of thumb for good settling
$\tau_c = \sqrt{(4 \cdot \tau_{OA})^2 + (\tau_{OA})^2}$	(17)	Substitute (16) into (15)
$\tau_{OA} = \frac{\tau_c}{\sqrt{17}}$	(18)	Solve (17)
$\tau_{RC} = 4 \cdot \left(\frac{\tau_c}{\sqrt{17}}\right)$	(19)	Substitute (18) into (16)
$R_{filt} = \frac{\tau_{RC}}{C_{filt}}$	(20)	Nominal filter resistance.
$R_{filt_min} = 0.25 \cdot R_{filt}$	(21)	Minimum value of Rfilt used in SPICE iteration
$R_{filt_max} = 2 \cdot R_{filt}$	(22)	Maximum value of Rfilt used in SPICE iteration
$UGBW = \frac{1}{2 \cdot \pi \cdot \tau_{0A}}$	(23)	Minimum amplifier bandwidth

in SPICE iteration

in SPICE iteration

Thanks for your time! Please try the quiz.

The Math Behind the R-C Component Selection TIPL 4406 TI Precision Labs – ADCs

Created by Art Kay

- The external charge bucket capacitor is _____. 1.
 - Half the size of the internal sample and hold capacitor a.
 - Equal to the internal sample and hold capacitor b.
 - Double the size of the internal sample and hold capacitor C.
 - 20 times the size of the internal sample and hold capacitor d.
- 2. The error target for settling is _____.
 - Half the size of the LSB a.
 - Equal to the LSB b.
 - Double the size of the LSB C.
 - 20 times the size of the LSB d.

- (T/F) The algorithm determines the RC charge bucket circuit and the amplifier slew rate. 3.
 - True a.
 - False b.
- (T/F) The amplifier bandwidth is usually lower than the charge bucket filter cutoff frequency. 4.
 - True a.
 - False b.

Solutions

- The external charge bucket capacitor is _____. 1.
 - Half the size of the internal sample and hold capacitor а.
 - Equal to the internal sample and hold capacitor b.
 - Double the size of the internal sample and hold capacitor C.
 - 20 times the size of the internal sample and hold capacitor d.
- The error target for settling is _____. 2.
 - Half the size of the LSB **a**.
 - Equal to the LSB b.
 - Double the size of the LSB C.
 - 20 times the size of the LSB d.

- (T/F) The algorithm determines the RC charge bucket circuit and the amplifier slew rate. 3.
 - True a.
 - b. False
- (T/F) The amplifier bandwidth is usually lower than the charge bucket filter cutoff frequency. 4.
 - True a.
 - False b.

