Using SPICE Monte Carlo Tool for Statistical Error Analysis

TI Precision Labs – ADCs

Created by Art Kay Presented by Peggy Liska

Discrete resistor tolerance sets gain error

Set tolerance on resistors and capacitors

Set to 1% or 0.1% per resistor spec

Monte Carlo Analysis

Note the default of 68.26% will not give realistic results for resistor and capacitor tolerance.

More cases will give you a better statistical distribution. The max is 1000.

99.73% sets the component tolerance to ±3 Standard deviations

X

Monte Carlo for DC Transfer Characteristic

The cut option

Generate the statistical data and histogram

Press Calculate to get statistics, and draw to show histogram

$$TypGainError = \frac{standard\ deviation}{Mean} \cdot 100 = \left(\frac{9.7m}{4}\right) \cdot 100 = \pm 0.24\%$$
For 68.2
$$MaxGainError = 3 \cdot Typical = 3 \cdot (\pm 0.24\%) = 0.73\%$$
For 99.7

6% of the population

'3% of the population

TEXAS INSTRUMENTS

Thanks for your time! Please try the quiz.

Quiz: Using SPICE Monte Carlo Tool for Statistical Error Analysis

TIPL 4203 TI Precision Labs – ADCs

Created by Art Kay

Use Monte Carlo analysis to determine a statistical estimate of typical and worst case gain 1. error. Assume each resistor has a $\pm 0.1\%$ tolerance. Note: this exercise assumes that you are using the "Industrial" version of TINA SPICE. TINA-TI does not include this feature. Many other SPICE simulators also include Monte Carlo capabilities, so you should get similar results if you are using another simulator.

Solutions

Use Monte Carlo analysis to determine a statistical estimate of typical and worst case gain error. 1. Assume each resistor has a $\pm 0.1\%$ tolerance. Note: this exercise assumes that you are using the "Industrial" version of TINA SPICE. TINA-TI does not include this feature. Many other SPICE simulators also include Monte Carlo capabilities, so you should get similar results if you are using another simulator.

- Click on graph and press "Ctrl+A" to select all the curves. It will highlight red when selected.
- 2. Select "Process>Statistics"

🔱 Texas Instruments

Tolerance Analysis - Statistics				
<u>O</u> utput	Vdif_total	•		C <u>a</u> lculate
- Option			×	Cancel
<u>X</u> MAX	○ X <u>M</u> IN		-	
○ <u>Y</u> MAX			?	<u>H</u> elp
• C <u>U</u> T	0.9			Draw
Number of bars				
Mean value		3.277291		
Standard deviation		2.832492m		
Nominal value		3.2772		

 $\frac{StandardDeviation}{NominalValue} \cdot 100$ TypicalGainError = - $TypicalGainError = \frac{3.83mV}{3.2777V} \cdot 100 = \pm 0.11\%$

MaximumGainError = *TypicalGainError* \cdot 3 = \pm 0.33%

Note: Typical gain error represents one standard deviation of gain error or 68.3% of the population. Maximum gain error represents ±3 standard deviations or 99.73

