Calculating the total noise for ADC systems TIPL 4204 TI Precision Labs – ADCs

Created by Art Kay, Dale Li Presented by Peggy Liska

SNR of Amplifier + ADC: General Equations

Solve for noise

From ADC data sheet

Total RMS Noise

ADC+Amp+Ref

Find the REF6050 Noise

Simulating Amplifier Noise

For more information: <u>http://www.ti.com/precisionlabs</u>

SNR of Amplifier + ADC: Example Calculation

Signal Chain Noise: Analog Engineer's Calculator

SNR of Amplifier + ADC: Measured Result

7

Averaging to Reduce Noise

Meas

sured vs. Calculated Averaging					
	Measured RMS codes	Calculated RMS codes			
dard Deviation					
Data	1.80	na			
ard Deviation					
Averaging	0.59	0.57			
ard Deviation					
Averaging	0.18	0.18			

 V_n is the RMS noise N is the number of averages V_{nAvg} is the RMS noise after averaging

$$V_{nAvg} = \frac{V_n}{\sqrt{N}} = \frac{1.8 \ codes}{\sqrt{10}} = 0.57 \ c$$

$$SNR_{avg} = 20 \cdot \log\left(\frac{V_s}{V_n/\sqrt{N}}\right) = 20 \cdot \log\left(\frac{V_s}{V_n}\right) + 10 \cdot \log(N)$$

codes

Thanks for your time! Please try the quiz.

Quiz: Calculating the total noise for ADC systems TIPL 4204 TI Precision Labs – ADCs

Created by Art Kay

- The histogram below was measured with a data converter: 1.
 - What is the RMS noise voltage? a)
 - Assume the output is averaged using a 8 point rolling average. What is the averaged noise? b)

- 2. For the attached Excel file:
 - a) Graph the raw data, 8 point rolling average, and 128 point rolling average.
 - b) Calculate RMS noise in codes.
 - c) Calculate RMS noise in volts. Assume FSR = $\pm 5V$ and resolution is 18 bits.
 - d) Compare theoretical to measured averaging.

this problem.

Click on this embedded file, for the Excel file used for

Microsoft Excel Worksheet

2.<u>5</u>V

Vin 2.5

- For the circuit below. 3.
 - a) Find the total RMS amplifier noise.
 - b) Find the total RMS reference noise.
 - c) Calculate the total ADC Noise in microvolts RMS.
 - d) Find the total RMS system noise.

Solutions

- The histogram below was measured with a data converter: 1.
 - What is the RMS noise voltage? ANS: 85.83µV rms a)
 - Assume the output is averaged using a 8 point rolling average. What is the averaged noise? b) ANS: 30.35µV

 $FSR = \pm 5V$ Resolution = 18Standard Deviation= σ = 2.25 codes Mean = 29558.4

RMS Noise Voltage $LSB = \frac{FSR}{2^N} = \frac{2 \cdot 5V}{2^{18}} = 38.15\mu V$ $V_n = LSB \cdot \sigma = (38.15 \mu V) \cdot (2.25) = 85.83 \mu V rms$ **Output With 8 point rolling average** $V_{nAvg} = \frac{V_n}{\sqrt{N}} = \frac{85.83\mu V}{\sqrt{8}} = 30.35\mu V$

2. For the attached Excel file:

a) Graph the raw data, 8 point rolling average, and 128 point rolling average.

Microsoft Excel Worksheet

Click on this embedded file, for the Excel file used for

2. For the attached Excel file:

- b) Calculate RMS noise in codes.
- c) Calculate RMS noise in volts. Assume FSR = $\pm 5V$ and resolution is 18 bits.

d) Compare theoretical to measured averaging.

Find Measured Stdev

In Excel use "=AVERAGE()" and select the appropriate number of samples.

Find Theoretical Stdev

$$\sigma_{codeAvg} = \frac{\sigma_{codeRaw}}{\sqrt{N}} = \frac{2.2284}{\sqrt{8}} = 0.7878$$

Find Stdev in Volts

$$LSB = \frac{10V}{2^{18}} = 38.14\mu V$$

$$\sigma_{volts} = LSB \cdot \sigma_{codes} = (38.14\mu V) \cdot (2.228)$$

$$\sigma_{volts} = 84.97\mu V rms$$

Number Averages	Measured Stdev	Theoretical Stdev	Stdev in Volts (measured)
-na-	2.228437	-na-	84.97µV
8	0.82137	0.787872	31.32µV
16	0.355782	0.196968	13.57µV
		1	

Comparing measured vs. theoretical you can see that the measured averaging is not as effective as theory predicted. This is not an uncommon result and is related to fact that the signal is not fully Gaussian; e.g. the signal has some drift with temperature and time. Also, the maximum reduction of noise is limited by the ADC resolution.

3. For the circuit below.

make sure you are in the linear range.

imbedded file, for the TINA file used for this problem.

3. For the circuit below.

a) Find the total RMS amplifier noise.

🖳 Noname - Schematic Editor	Noise Analysis	×	_{√N} 10.00n-
File Edit Insert View Analysis T&M Tools TI Utilities	Start frequency 1	[Hz] 🗸 ОК	1.00n-
✓ ✓ ✓ ✓ ✓ Mode Select Control Object	End frequency 1G	[Hz] X Cancel	
Set Analysis Parameters	Number of points	7 Help	та 10.00р-
DC Analysis AC Analysis	S/N Signal <u>A</u> mplitude 1		ð 1.00p-
Transient Steady State Solver	Diagrams		100.00E-15
Fourier Analysis	✓ Output Noise		1
Noise Analysis	I Input Noise I Signal to No	Dise	
Options	7		9.60u¬
Run "Noise Analysis	s". This	Integrated nois	
is a wide bandwidth	amplifier	converges to	otal
so use 1GHz and fr		0.6uV rms	
		9.00V 1115.	
Select "Output Nois	e" and		0.00
("Total Noise" Diagra	ims		1

100.00n----

Texas Instruments

3. For the circuit below.

- c) Calculate the total ADC Noise in microvolts RMS. From calculator 35.35uV rms
- d) Find the total RMS system noise. From calculator 37.17uV rms

$10^{\overline{20}}$

