TIPL 4201 TI Precision Labs – ADCs

Created by Art Kay Presented by Peggy Liska

Find the worst case offset

This result may be statistically unrealistic

Statistics Behind Typical and Maximum

PARAI	METER ADS8860	MIN	ТҮР	MAX	UNITS
Eo	Offset Error	-4	±1	+4	mV
E _G	Gain Error	-0.01	±0.005	+0.01	%FSR

Probability that we are near worst case

PARAMETER ADS8860		MIN	ТҮР	MAX	UNITS
Eo	Offset Error	-4	±1	+4	mV
E _G	Gain Error	-0.01	±0.005	+0.01	%FSR

Compounding probabilities "near" worst case

5

A more practical approach: use the typical limit

A more practical approach: use typical

Number of Standard deviations	Probability Inside limit	Probability Outside limit
±1·σ	68.27%	31.73%
±2·σ	95.45%	4.55%
±3·σ	99.73%	0.27%
±4·σ	99.9937%	0.0063%
±5·σ	99.99994%	5.73·10 ⁻⁵ %
±6·σ	≈100%	1.97·10 ⁻⁷ %
		1

Set end system specifications based on risk tolerance

Thanks for your time! Please try the quiz.

TIPL 4201 TI Precision Labs – ADCs

Created by Art Kay

1. The two uncorrelated Gaussian distributions below are being added. Draw the graph for the sum of the two distributions.

- 2. What is the statistical significance of the typical offset specification?
 - a) The typical offset specification is the mean offset.
 - The typical is the mean plus one standard deviation. However, typically the mean is b) near zero so typical can be approximated as one standard deviation.
 - The typical is tested and any device that exceeds the typical value is discarded. C)
 - d) 99.7% of devices will be inside the typical limit.
- 3. When combining error sources A and B, they should be added _____
 - Directly (Total Error = A + B). a.
 - b. Using Simpson's rule
 - Using the Adaptive Runge-Kutta Method C.
 - d. As the square root sum of the squares (*Total Error* = $\sqrt{A^2 + B^2}$)

Solutions

1. The two uncorrelated Gaussian distributions below are being added. Draw the graph for the sum of the two distributions.

- 2. What is the statistical significance of the typical offset specification?
 - a) The typical offset specification is the mean offset.
 - b) The typical is the mean plus one standard deviation. However, typically the mean is near zero so typical can be approximated as one standard deviation.
 - The typical is tested and any device that exceeds the typical value is discarded. C)
 - d) 99.7% of devices will be inside the typical limit.
- 3. When combining error sources A and B, they should be added _____
 - a. Directly (Total Error = A + B).
 - b. Using Simpson's rule
 - Using the Adaptive Runge-Kutta Method C.
 - d. As the square root sum of the squares (*Total Error* = $\sqrt{A^2 + B^2}$)

