Statistics Behind Error Analysis

TIPL 4201
TI Precision Labs - ADCs

Created by Art Kay
Presented by Peggy Liska

Find the worst case offset

Device	PARAMETER		MIN	TYP	MAX	UNITS
LMP8481	$\mathrm{V}_{\text {OS }}$	Offset Error	-265	± 80	+265	$\mu \mathrm{~V}$
OPA320	$\mathrm{V}_{\text {OS }}$	Offset Error	-150	± 40	+150	$\mu \mathrm{~V}$
ADS8860	E_{O}	Offset Error	-4	± 1	+4	mV

Worst case offset at ADS Input
$V_{O S T}=$ Gain $\cdot V_{U 1}+V_{U 2}+V_{U 3}$
$V_{O S T}=20 \cdot(265 \mu V)+(150 \mu V)+(4 m V)$
$V_{O S T}=9.27 m V$

Statistics Behind Typical and Maximum

PARAMETER ADS8860	MIN	TYP	MAX	UNITS	
E_{O}	Offset Error	-4	± 1	+4	mV
E_{G}	Gain Error	-0.01	± 0.005	+0.01	$\%$ FSR

Typical $= \pm \sigma$ 68.27% of population

Figure 41. TYPICAL DISTRIBUTION OF OFFSET ERROR

Probability that we are near worst case

PARAMETER ADS8860	MIN	TYP	MAX	UNITS	
E_{O}	Offset Error	-4	± 1	+4	mV
E_{G}	Gain Error	-0.01	± 0.005	+0.01	$\%$ FSR

Probability $=P(C)=2.272 \%$

Figure 41. TYPICAL DISTRIBUTION OF OFFSET ERROR

Compounding probabilities "near" worst case

A more practical approach: use the typical limit

A more practical approach: use typical

Number of Standard deviations	Probability Inside limit	Probability Outside limit
$\pm 1 \cdot \sigma$	68.27%	31.73%
$\pm 2 \cdot \sigma$	95.45%	4.55%
$\pm 3 \cdot \sigma$	99.73%	0.27%
$\pm 4 \cdot \sigma$	99.9937%	0.0063%
$\pm 5 \cdot \sigma$	99.99994%	$5.73 \cdot 10^{-5} \%$
$\pm 6 \cdot \sigma$	$\approx 100 \%$	$1.97 \cdot 10^{-7} \%$

Set end system specifications based on risk tolerance

Typical offset at ADC Input
$V_{\text {OST }}=\sqrt{\left(20 \cdot V_{\text {OSINA }}\right)^{2}+\left(V_{\text {OSOPA }}\right)^{2}+\left(V_{\text {OSADS }}\right)^{2}}$
$V_{\text {OST }}=\sqrt{(20 \cdot 80 \mu V)^{2}+(40 \mu V)^{2}+(1 \mathrm{mV})^{2}}$
$V_{\text {OST }}=1.887 \mathrm{mV}$

Thanks for your time! Please try the quiz.

Quiz: Statistics Behind Error Analysiste:

TIPL 4201
TI Precision Labs - ADCs

Created by Art Kay

Quiz: Statistics Behind Error Analysis

1. The two uncorrelated Gaussian distributions below are being added. Draw the graph for the sum of the two distributions.

Quiz: Statistics Behind Error Analysis

2. What is the statistical significance of the typical offset specification?
a) The typical offset specification is the mean offset.
b) The typical is the mean plus one standard deviation. However, typically the mean is near zero so typical can be approximated as one standard deviation.
c) The typical is tested and any device that exceeds the typical value is discarded.
d) 99.7% of devices will be inside the typical limit.
3. When combining error sources A and B, they should be added \qquad .
a. Directly (Total Error = A + B).
b. Using Simpson's rule
c. Using the Adaptive Runge-Kutta Method
d. As the square root sum of the squares (Total Error $=\sqrt{A^{2}+B^{2}}$)

Solutions

Quiz: Statistics Behind Error Analysis

1. The two uncorrelated Gaussian distributions below are being added. Draw the graph for the sum of the two distributions.

Typical $= \pm \sigma= \pm 100 \mu \mathrm{~V}$

Quiz: Statistics Behind Error Analysis

2. What is the statistical significance of the typical offset specification?
a) The typical offset specification is the mean offset.
b) The typical is the mean plus one standard deviation. However, typically the mean is near zero so typical can be approximated as one standard deviation.
c) The typical is tested and any device that exceeds the typical value is discarded.
d) 99.7% of devices will be inside the typical limit.
3. When combining error sources A and B, they should be added \qquad .
a. Directly (Total Error = A + B).
b. Using Simpson's rule
c. Using the Adaptive Runge-Kutta Method
d. As the square root sum of the squares (Total Error $=\sqrt{A^{2}+B^{2}}$)
