Introduction to Hardware Accelerator of mmWave Sensor 1443

Introduction to Hardware Accelerator

mmWave Sensor

16xx

- mmWave Sensor + Processing
- mmWave Sensor + Processing with DSP
- A hardware IP introduced in mmwave sensor SOC 1443

•

- Off-loading the burden of signal processing from the main processor
- To obtain radar image across the range, velocity and angle dimensions

Key features

- Fast FFT with programmable FFT size up to 1024-pt
- Internal FFT bit-width of 24 bits (for each I and Q) for good SQNR performance
- Built-in capability for simple pre-FFT processing (windowing, BPM removal, interference zeroing out and complex multiplication)
- Magnitude (absolute value) and Log-Magnitude computation capability
- Flexible data flow and data sample arrangement; transpose access
- Chaining and looping mechanism along with interface to the EDMA allow the accelerator to operate with autonomously with minimal intervention from the processor
- CFAR-CA detector support, including variants CFAR-CASO and CFAR-CAGO
- FFT stitching get equivalent 2048 or 4096-point fft

High-level Architecture

- It's connected to a 128-bit bus in the main processor system
- Typical data flow is for EDMA module to bring in samples into local memories of HWA and reads the output samples from the local memories of the HWA
- HWA and main processor operates on a single clock domain (200MHz) process one complex sample per clock cycle

Accelerator Local Memories

- Four memories, each of 16KB size (1024 words of 128 bits each)
 - ACCEL_MEM0, ACCEL_MEM1, ACCEL_MEM2, ACCEL_MEM3
- Two of the memories (ACCEL_MEM0 and ACCEL_MEM1) are directly shared with the ping and pong ADC buffers
 - No need for a EDMA transfer for 1D FFT processing,
 - When 1D FFT is complete, these memories can be used for 2D FFT processing by bringing in data via EDMA transfer
- Four memories enable "ping-pong" mechanism, for both the input and the output
- Any of the four local memories can be the "source memory" and any can be the "destination memory", but not be both.
- Continuous address enables as large as 32KB memory when not in ping-pong mode

State Machine

- Operation:
 - enabling/disabling of the HWA
 - Sequencing an entire set of operations and loop through operations
- Trigger Mechanisms:
 - 4 incoming trigger
 - Immediate trigger
 - Wait for processor-based software trigger
 - Wait for ADC buffer ping-to-pong or pong-to-ping switch
 - Wait for EDMA based trigger
 - 2 outgoing trigger
 - To main processor
 - To EDMA

Parameter-set Configuration Memory

- Structure:
 - 16 parameter sets
 - Each set consists of eight 32-bit registers -
- State machine can be programmed to loop through a specific subset of parameter sets
- Functions:
 - Choosing and configuring each of the blocks in the computational engine
 - Configuring the input/output data format
 - Configuring the 2D-memory indexing
 - Configuring the trigger for the parameter set

Input/Output Formatter

- Accept various data formats: real/complex , 16/32-bit , signed/unsigned
- Supports data scaling/formatting at input/output
- Input formatter supports zero-padding

• BPM removal is accomplished in the input formatter block

Input/Output Formatter: 2D Memory indexing

- Flexible data streaming is made possible
 - ACNT : Number of samples (sample count)
 - AINDX : Separation between consecutive samples
 - BCNT : Number of iterations
 - BINDX : Offset per iteration
- Data streaming is separately configurable at the source and destination:
 - SRC_ACNT, SRC_AINDX, SRC_BINDX, DST_ACNT, DST_AINDX, DST_BINDX
- BCNT is the same for both source and destination.

Input/Output Formatter: 2D Memory indexing

- Input/Output data need not to be placed contiguously (see input memory)
- Easy to repeat the same computation across multiple data vectors

Core Accelerator Engine

- FFT Engine path and CFAR Engine path
- Only one of these two paths can be operational at any given instant

Hardware Accelerator : FFT Path

- Perform range/doppler/angle FFT's
- In a one sample per clock streaming manner
- By-pass option controlled through parameter-set registers

Hardware Accelerator : FFT Path

- Pre-processing:
 - Interference zeroing out (zero out samples that are larger than a specified threshold)
 - Complex Pre-multiplication, to support functions such as
 - Complex de-rotation of antenna phases
 - DFT mode: frequency shifter with auto-increment mode
 - FFT stitching mode
- Windowing+FFT:
 - Dedicated Window RAM for window coefficients
 - FFT sizes supported power of 2 until 1024
- Post-processing Magnitude/Log-Magnitude:

- Cell averaging (CA) is used for threshold calculation
- This path implements a CFAR detector on a real input vector
 Option of taking Mag/LogMag prior to CFAR (in case input is complex)
- The output is a list of indices corresponding to detected peaks
- Various popular flavors of the CFAR algorithm are supported (CFAR-CA, CFAR-CAGO, CFAR-CASO)

Operations proceed in a ping/pong fashion : When the front end is filling up the ping buffer, the accelerator processes the pong buffer

21

Example: Range computation (1D FFT)

