HSR and PRP Redundancy on RT Linux

Part 3: Redundancy and Linux

Which Operating System on the host for HSR/PRP?

Which Operating System on the host for HSR/PRP?

Linux is recognized with networking

- Since these applications are networking based, Linux seems like a natural choice
 - Allows scale across products and platforms
 - Reuse common networking stack, applications, tools, scripts, etc.
- Some packet deadlines may require RT Linux
- TI-RTOS solutions are also available

Linux architecture

User Space

Linux Kernel

Network Hardware

Focus on application in User Space

User Space

IEC61850 Application

Linux Kernel

Network Hardware

Existing Linux network stack – No redundancy

Adding a second port for redundancy

Need LRE to handle duplicates

Should we duplicate the LRE?

Move the LRE lower in the stack

Adding a HSR driver to implement protocols

Adding capability to create a HSR connection

Adding packet forward and LRE

Creating supervisory packets

Existing HSR Driver

Adding PRP to the driver

Why RT Linux?

Section summary

- Given the focus on networking, Linux is a good OS choice
- Redundancy requires at least two ports
- HSR implementation abstracts two ports to one HSR port implemented lower in the stack
- PRP implementation is very similar
- With either implementation, upper software layers (i.e. applications) are abstracted from details
- RT Linux provides more deterministic latencies to meet requirements

For more information

- HSR and PRP on RT Linux Training Series: <u>http://training.ti.com/hsr-prp-rt-linux-training-series</u>
- Sitara Processors Product Overview: <u>http://www.ti.com/sitara</u>
- AM571x Industrial Development Kit (IDK): <u>http://www.ti.com/tool/tmdxidk5718</u>
- AM572x Industrial Development Kit (IDK): <u>http://www.ti.com/tool/tmdxidk5728</u>
- Processor SDK Software Developer Guides:
 - Linux: <u>http://processors.wiki.ti.com/index.php/Processor_SDK_Linux_Software_Developer's_Guide</u>
 - RTOS: <u>http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Software_Developer_Guide</u>
- PRP TI Design using TI-RTOS: <u>http://www.ti.com/tool/tidep0054</u>
- HSR TI Design using TI-RTOS: <u>http://www.ti.com/tool/tidep0053</u>
- For questions regarding topics covered in this training, visit the Sitara Processors support forum at the TI E2E Community website: https://e2e.ti.com/support/arm/sitara_arm/f/791

