
Application Development Using
Processor SDK RTOS

Presenter
Presentation Notes
Slide 1: Application Development using Processor SDK RTOS <pause>

Hello Everyone, Thank you for joining this training presentation on Application Development using Processor SDK RTOS. Processor SDK is a unified software development package that is designed to help users to quickly develop applications using either bare-metal code or TI RTOS software. In this presentation, we will go through all the steps involved with application development on TI Processors using this software package.

<pause>

Done!!

Processor SDK RTOS: Software Stack
• Let’s start with basic, bare metal code to talk to peripherals
• This code is OS Agnostic
• Great for OS porting, board diagnostics, etc.

• From this solid base, Platform or EVM software can be built
• Serves as functional examples of what customers will need to do
• Exercises lower-level code examples

• Add in some cool DSP enablement
Application OOB Demos

Industrial HPC Video Audio Infotainment Vision

Hardware

TI RTOS/Bare Metal Drivers
EDMA3 ICSS-EMAC PCIe PRUSS

McSPI/QSPI GPIO UART ….. USB

I2C

MMCSD

Chip Support Library

EMAC

O
S-

In
de

pe
nd

en
t

So
ft

w
ar

e

Platform/EVM Software
Secondary
Bootloader

Board Library

Diagnostics

FATFS

Algorithm Libraries
DSPLIB IMGLIB MATHLIB

TI RTOS
Kernel

Network

NDK or
3rd Party Stack

Software Framework Components
Inter-Processor
Communication

Framework
Components

OS Abstraction
Layer (OSAL) NIMU

Presenter
Presentation Notes
Done !!

Slide 2: Processor SDK RTOS Software Stack

We start the presentation with a quick look at the Processor SDK RTOS software stack.

Processor SDK RTOS provides foundational software that is required to create bare-metal or TI RTOS based applications across wide variety of TI Processors. It aims to provide unified look and feel to software on ARM only, DSP only or heterogeneous multi-core devices.

Some of the key components in the SDK software have been described in the slide. The basic low level components of the software consists of the chip support library and the low level drivers which are OS agnostic. The chip support library contains low level register level definitions and basic functionality to configure cores and registers on the device. The low level driver or LLD builds on top of the CSL layer and provides an interface to operate and control the peripherals on the device.

Animation 1

In addition to SoC specific code, the SDK also provides bare metal code for configuring platforms and interacting with board specific components on evaluation platforms. The platform software consists of the board library and diagnostics for validating board functionality that simplify platform migration. It also contains code tools and utilities to boot the SoC and may contain a secondary bootloader that allows for deployment of code on slave cores and filesystem support in case of multi-core devices.

Animation 2

For DSP developers, we provide application specific DSP libraries that are optimized for the C66x DSP core that helps speed up development on the DSP and also helps developers take complete advantage of the DSP architecture.

The platform software along with the low –level drivers and the register and functional CSL layer consitutes the bare-bone software elements that are OS agnostics and can be used across various OSes or in an OS less system.

Animation 3:

The SDK then adds TI RTOS based components that builds on top of the bare-metal drivers and platform libraries to provide all the features of high level OS in an environment that can help meet the real time requirements of the application. The TI RTOS components include a SYSBIOS kernel that provides all the OS services, Framework components which can be used to manage resources such as EDMA, memory between algorithms or application task, an OS abstraction layer, that acts as a bridge between the OS and the bare-metal code underneath, Network stack that consists of Network development kit (NDK) which provides network services and a Network Interface management Unit which acts as a transport layer between the network services and the ethernet driver.

Animation 4:

The SDK adds example applications, out of box demos to demonstrate the device functionality and also to provide a easy starting point for embedded developers for creating their own application on the TI Processor. The Processor SDK RTOS will be the baseline software that will be utilized for creating application specific SDKs.

Processor SDK RTOS: Maximize Software Reuse

May be used “as is” or customer can
implement value-add modifications
Needs to be modified or replaced
with customer version

No modifications required

CSL

TI Platform

Network
Dev Kit

Demo Application

TI Demo Application on
TI Evaluation Platform

IPC LLD

EDMA,
Etc

Tools
(UIA)

CSL

Custom
Platform

TI Demo Application on
Customer Platform

IPC LLD

Network
Dev Kit

EDMA,
Etc

Tools
(UIA)

Demo Application

CSL

Custom
Platform

Network
Dev Kit

IPC LLD

EDMA,
Etc

Tools
(UIA)

Customer Application
on Customer Platform

Custom Application

CSL

Next Gen TI
Platform

Network
Dev Kit

IPC LLD

EDMA,
Etc

Tools
(UIA)

Custom App on Next
Generation TI SOC

Platform
Customer Application

Platform Migration Application Migration Future Proof

Software may be
different. But API
remains the same

(CSL, LLD, etc.)

Presenter
Presentation Notes

Before we get into application development with Processor SDK RTOS, let us briefly discuss the intent behind creation of Processor SDK software and take a look at the benefits of this approach to application developers using TI Processors.

Processor SDK RTOS software is designed to maximize application software reuse and reduce the time to market for end application developers. It provides a unified approach to software by maintaining common API interface across all supported platforms and by consolidating all platform specific software into a single software component. To elaborate on this let us look at the graphic in the slide.

Animation 1:
Application developers spend significant time creating an application on a particular platform typically with limited software resources. To jump start the application development, they start with a TI validated evaluation platform that has all the functionality and features of the processor tested out and prototype portions of their application development. The Processor SDK software, is built in such a way that it consolidates all of the platform specific information into a single software component which all of the other components rely on to configure the underlying hardware. The components marked in blue and yellow in the graphic all rely on the platform software that configures the underlying hardware.

Animation2:
Animation 3:
 After the prototyping stage, developers need to migrate their application software to the custom application platform that may be based of the TI hardware design or may have significant variations. At this stage, they need tools and software that can minimize the effort to bringup software on their custom platform and quickly validate the feature and functionality of the SoC with the custom board components. Due to the consolidation of the platform software in the Processor SDK, developers can just modify the board library in the package to setup the board initializations based on the requirement of their application to port it to the custom platform. In addition to the board initialization changes, the board diagnostic software included in the SDK allows for quick validation of the board functionality.

Animation 4:
Animation 5:
 Due to the ease of migration of baseline software across platforms, developers can spend more time customizing their application and add more features to enhance it. This also helps in reduce the duration of application development cycle and helps reduce software development costs.

Animation 6:
 This approach also protects software investments made by embedded developers on existing TI parts, as all software releases for future TI SoC platforms will use this software methodology. From application perspective even if the underlying SoC is different, the API interfaces to functional CSL and LLD will remain the same which will allow them to reuse the application software even when the underlying software may be different. Due to this approach to software, application developer who have developed their software on one of TI`s Processors will not need to re-learn working with the TI software.

Processor SDK RTOS: Typical Development Flow

EVM Kit, Processor SDK RTOS Package

Start

Run

Setup

Boot RTOS O/S, Start UART, Network, USB

Run SDK demo applications

Setup EVM
Connect UART, Network Cable, USB, Power

Port Custom hardware bring up

Customize Customize application software

Develop Develop application

Presenter
Presentation Notes
Slide 4: Processor SDK RTOS: Typical Development Flow <pause>

In this slide we take look at a typical application development flow that a software developer would go through while using Processor SDK RTOS. This development flow also defines the flow of this training as we will look at each of these stages in little more detail as we go through the presentation.

<first click>

User typically start off with purchasing an Evaluation platform on which the processor functionality has been validated and by downloading the software environment required on the host to start their development.

<second Click>

Once you have the evaluation module in hand, users need to follow some common hardware Setup steps in order to run software on their evaluation platforms like setting up development environment by hooking up an emulator and may optionally involve hooking up cables for connectivity through UART, USB interfaces. Typically EVM kit come with Quick start guide instructions that provide steps to follow to setup the EVM and run an out of box demonstration on the platform.

<third click>

Once users are done with the hardware setup to run software, they need to go though the process of setting up the host development environment and then run some simple example code to verify the EVM functionality like running hello world examples on cores, learn to run RTOS applications and check some basic functionality on the EVM like blinking LEDs using GPIOs and checking for UART, USB and Network connectivity on the EVM.

<fourth click>

After checking out the basic functionality on the EVM, users are recommended to run demo applications provided in Processor SDK. These demos integrate multiple components of SDK and highlight the device features by creating a real world system usecase.

<fifth click>
We will then deep dive into application development using drivers included in the SDK and then look at some key elements in the SDK that will aid you to create your own application.

<sixth click>
Next we look will discuss the Portability aspect your application while migrating from the TI evaluation platform to your custom application board and look at components of Processor SDK that makes the software easy to port.

<seventh click>
We finally look at customizing your software after migrating to the custom platform and provide some pointer that will help with your system integration.

Application Development Using
Processor SDK RTOS

Processor SDK RTOS: Setup

Start

Run

Setup

Port

Customize

Develop

Presenter
Presentation Notes
Done!!

Slide 5: Processor SDK Setup.

Let us get started with the Hardware setup. For the purpose of this training, we will be using TIs newest AM572x EVM . Users are free to use any EVM that supported by the Processor SDK RTOS release.

The training is designed to be used in conjunction with the Processor SDK wiki documentation so many of the slides in the presentation will provide links to relevant sections of the wiki documentation to refer to details that aren`t in the scope of this presentation.

Processor SDK RTOS: AM572x GP EVM

LCD Module

Camera Module Processor Module

Presenter
Presentation Notes
Done!!

Slide 6: Processor SDK RTOS AM572x GP EVM

The Slide shows a picture of the AM572x General purpose EVM kit. The AM572x EVM include 3 boards which together compose the EVM. The 3 module boards which are shown in the slide are the main Processor module shown on bottom right and the LCD and Camera modules. The Processor board is the base board which has the AM5728 Processor. It is fitted on the back off the LCD module in the EVM kit. The camera board is a small daughter card that fits on the front left edge of the LCD panel.

<pause>

Removing the Processor Module from the LCD

NOTE: This is mandatory to connect an external emulator to the AM572x GP EVM.

Presenter
Presentation Notes
Done!!

Slide 7: Removing the Processor Module from the LCD

In order to setup the AM572x EVM for development with Processor SDK RTOS, you would need to connect an Emulator to the Processor Module. The emulation pins are provided on the back of the module. The EVM kit ships with processor module fitted on the back of the LCD panel so you may not have access to these pins to connect the emulator. Let us take a look at how to carefully remove the Processor module from the LCD panel.

<pause>

Animation 1

<pause>

On the back of the LCD Panel, there is a silk screen marking to indicate how to remove the Processor module.

<pause>
Animation 2
<pause>

Careful lift the Processor module from the LCD Panel from the two corners module that are closest to the marking and then proceed to separate the boards as shown in the picture to your right.

It is not recommended to do this procedure multiple times, so we recommend that you leave the Processor module unattached from the LCD Panel unless you want to use the Display, Camera or the PCIE interface.

<pause>

Processor SDK RTOS: AM572x GP EVM Setup

Emulation
and boot
settings

Optional
peripheral

connections

For EVM-specific instructions, select Setup EVM Hardware in the Processor SDK RTOS Getting Started Guide:
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Getting_Started_Guide

Configure boot jumpers

Insert SD card (only for SD boot & mass storage) Plug in FTDI cable for UART console out

Connect emulator (only for debugging)

Connect Ethernet cable

Presenter
Presentation Notes
Slide 6: Processor SDK RTOS AM572x GP EVM Setup.

Now that we have access to both sides of the Processor module, let us look at some basic setup instructions that you may require to get started with your development.

<first click>
First let us look at the Emulation and Boot settings on the Processor module. Connect you emulator to 20 pin JTAG interface on the back of the processor SDK module. The image shows an Spectrum Digital XDS200 emulator. For complete list of supported emulators, refer to the Hardware User guide that is linked from the wiki link provided on the slide.

<second click>
The EVM provides boot pin configurations for SD/MMC, UART and SATA boot which can be found on the left side of the Ethernet ports on the board. To simplify the configuration, there is a graphic on the EVM that shows how the jumpers need to be populated on the board. The kit ships with the jumpers configuring the boot to SD/MMC as the kit ships with a SD card which boot linux and runs an out of the box demo from the SD card.

The jumpers are used to configure the SYSBOOT pins on the device that is used to create a device list where the BootROM looks for a boot image. The main loop of the BootROM goes through the booting device list and tries to get an image starting from the currently selected booting device which in this case is SD/MMC.

<third click>
We will now look at some optional steps that users may need to configure based on their use case. For UART connectivity to the board hook up the FTDI cable included in the kit to the 6 pin connector marked Serial debug on the Processor module. Pin one is the ground pin so align that to the black cable on the FTDI connector while making the connection.

For Network connectivity, connect ethernet cable to the top ethernet port on the EVM and the other end can connect to the host or may connect to your network based on the configuration you need in your application.

For booting using SD/MMC or for using SD card for mass storage you can insert the micro SD card in the micro SD card slot provided on the back of the board besides the USB CLIENT connector.

For more hardware configurations or if you are using a different EVM, refer to EVM specific instructions on the wiki link provided on the slide.

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Getting_Started_Guide

CAUTION: EVM Power Up/Down Sequence
(AM572x EVM Only)

PMIC shutdown in 7 seconds:
• PMIC on the TMDXEVM5728 turns off the board in 7 seconds

due to a hardware errata.
• Software needs to write to PMIC register to keep it on.
• GEL files and board library provide board configuration.

Errata: http://www.ti.com/product/AM5728

Safe power up/ power down sequence:
 Refer to wiki article for safe power up/down sequence:
 AM572x_General_Purpose_EVM_HW_User_Guide

Push power button

Connect power jack

Presenter
Presentation Notes
Slide 7: Caution Power Up/ down Sequence (AM572x EVM Only)

Before we start let us look at a couple of issues that users need to be aware of while working with this board. We recommend that all users nees to follow a safe power down and power up sequence while working with the board in order to prevent causing any board damage. The sequence is documented in Important Usage notes section of the EVM Hardware User guide.

The second issue relates to an errata i863 for the SoC that limits the maximum power on hours of the device without applying a software work around to prevent line contention of the eMMC data lines. To avoid running into the issue the Power management IC on the EVM turns off the board in seven seconds after initial power on reset.

If users require the PMIC to be on for more than 7 sec a jumper should be soldered or a simple staple pin can used with J5 connectors on the board.

If you do decide to work around this configuration, we recommend that you do not leave the board on without first either:
Connecting to CCS and running the AM572x GEL file, or Booting using the u-boot or some RTOS application image that uses AM572x board library

These software components apply the recommended software work around that will prevent the issue discussed in errata i863.
�

http://www.ti.com/product/AM5728
http://processors.wiki.ti.com/index.php/AM572x_General_Purpose_EVM_HW_User_Guide

Processor SDK RTOS: Software Setup
Recommended host setup supported:

• Windows: Windows 7 on 64-bit machine

• Linux: Ubuntu 14.04 or 12.04 on 64-bit machine

Setting up the development environment:
– Processor-SDK RTOS installer
– Code Composer Studio v6.1.1 or later

For software instructions, select Setup Software in the Processor SDK RTOS Getting Started Guide:
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Getting_Started_Guide

Presenter
Presentation Notes
Slide 10: Processor SDK RTOS: Software Setup

Now that we have the hardware setup, let us get started with the software setup required to start development on the EVM hardware.

To start development, let us first install the Processor SDK RTOS Installer and Code Composer studio development environment. These installers can be downloaded and installed either on a 64 bit Windows or Linux Host Machine.

Users can start off with downloading and installing Processor SDK RTOS installer for the SoC on which they plan to develop code. The Processor SDK RTOS is an single installer that can be used to download all the components required for developing bare-metal or RTOS code.

For bare metal software development or TI RTOS development on TI Processors, we recommend users to download TI`s Code composer studio (CCS) development environment which provides an IDE environment to single step through code and also view device memory and registers while debugging application code. It also provides a variety of tools to develop, visualize and benchmark your applications.

The Slide lists all the compilers that are required by all the different cores supported in Processor SDK RTOS. While downloading CCS make sure that you select the appropriate device family and check all the compiler required by the cores on your device. For Eg AM572x SoC is part of the Sitara ARM Processors and will require users to download Linaro GCC tool chain, TI ARM compiler along with TI CGT toolchain for development on A15, M4 and C66x cores that are on the SoC.

For more instructions, refer to the link provided in the slide.

.

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Getting_Started_Guide

Processor SDK RTOS: CCSv6 Product Discovery

NOTE: Mandatory CCS restart is required for product discovery to take effect.

Presenter
Presentation Notes
Slide11: Processor SDK RTOS CCSv6 Product Discovery.

An important configuration step before we start developing code is to have the Code Composer Studio development environment recognize all the components from the Processor SDK RTOS installer that we just installed.

When you start CCS for the very first time after installing it, it will show you a list of products on your host machine that it discovered and will ask you if you wish to install them in the CCS repository. If you installed the Processor SDK RTOS in the default location specified by the installer, you will find all the components listed in the CCS Product Discovery Window. Select and install these components.

You will have an option to configure CCS to look for new products every time CCS is started or you can choose to find only new products when CCS starts.

After you click finish, CCS will need to be restarted for the product discovery to take effect.

If you choose not to install the SDK in the default path, please refer to instructions on the wiki link on the previous slide to add that path to CCS search path.

For EVM-specific instructions, select Setup EVM Hardware in
the Processor SDK RTOS Getting Started Guide:
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS
_Getting_Started_Guide

Processor SDK RTOS: CCSv6 Target Configuration
CCS Edit View: File ->New->Target Configuration

• Gel files for A15, C66x, M4 are auto-populated.
• Test connection option available.
• Advanced options allows customization.

CCS Debug View: Launch target configuration

• Connect to CortexA15_0
• GEL initializes SoC clocks, DDR, PMIC
• All slave cores are in reset and need wake up

Presenter
Presentation Notes
Slide 12: Processor SDK RTOS: CCSv6 target configuration

Code composer studio environment requires users to create a target configuration file in order to connect to the device over an emulator. In order to create a new target configuration, you can select File- >New -> Target Configuration. This will Pop a window that appears like the screenshot provided on the left on the slide.

Begin by selecting your emulator in the Connection option. Then for Board or Device type in the name of your SoC. For Eg, since we are using AM572x, type AM572 in the device field. This will provide a list of AM572x related platforms supported in CCS for a given emulator. Select GPEVM_AM572x_SiRevA which is an EVM specific configuration. AM572x_RevA is a generic configuration that you may use for your custom boards. Selecting the platform auto populated the initialization scripts called GEL files for the SoC to the configuration.

Save the configuration file. You can now view the new target configuration under View-Target Configurations in Edit View. If you have connected the emualtor as described in the hardware setup, you can right click to launch the target configuration. This will open up the CCS Debug View that shows all the cores on your soc as shown in screenshot shown on the right side of the slide. All the Sitara devices are ARM master boot devices so on Power on Reset the ARM core is the first one to wake up and execute ROM bootloader code. So after you launch the target configuration, connect to the ARM core first. When you connect to the core the GEL initialization script, will setup the clock, external DDR memory for the EVM and other configuration that is required to load and run code.

You can now load and run code by options provided in the Run Menu in CCS Debug View.

Please note that since the PMIC on the AM572x EVM, switches the board off in 2 seconds, ensure that you connect to the ARM core as soon as you push the power button the board else the GEL will not force the PMIC to stay on to keep the board power on.

If you wish to run code on the slave core, like the C66x and M4, the ARM core needs to wake up the cores and enable the clock to those cores. The GEL file provides a menu option to enable the slave cores that is demonstrated on the right hand side of the slide. Under Scripts menu user can enable all or individual slave core using the Multi-core Initialization options.

For More options on target configuration refer to the EVM setup wiki on the link provided on the slide.

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Getting_Started_Guide
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Getting_Started_Guide

Application Development Using
Processor SDK RTOS

Processor SDK RTOS: Start

Start

Run

Setup

Port

Customize

Develop

Presenter
Presentation Notes
Slide13 : Processor SDK RTOS: Start

We have now completed setting up the hardware and the development environment and are now ready to get started with running code on the EVM.

Done!!

Processor SDK RTOS: Start

Boot RTOS O/S, Start UART, Network, USB

Init O/S, Interrupts, Timers

Start UART

Start Ethernet Driver

Start USB

Start RTOS Tasks

Presenter
Presentation Notes
Slide 14: Processor SDK RTOS Start

In the Processor SDK Start Section, we will take a look at running basic Bare-metal and SYSBIOS hello world examples, we will then proceed to take a look at how to generate CCS projects for low level driver examples included in the PDK software package that will allow us to test GPIO, UART, USB and Ethernet functionality.
We will conclude this section by taking a look at bare metal CSL code examples to configure watch dog timers, real time clock etc.

Done!!

Processor SDK RTOS: Bare Metal Hello World Example
• CCS “Hello World” template available.

• Template provided for all cores on SoCs.

For more details:

Processor SDK Bare Metal Examples

Presenter
Presentation Notes
Processor SDK RTOS: Bare metal Hellow World Examples.

Code Composer studio allows user to quickly get started with baremetal code development by allowing user to create a hello world examples template for a specific SoC using pre-defined templates. In this slide we take a look how to create a hello world project for the A15 core of the AM572x platform.

In order to create a example CCS project, In CCS Edit view select new Project, Select the target for which you need to generate the example

Click1 click2

select the core for which you need to create the example and provide a Project name. Ensure that the correct compiler is selected in the compiler version and select the hello world template. This is usually auto populated based on the core you have selected.

Click3 and click4

Select the Hello world template and click finish. This will create the CCS hello world project and load it into your workspace. You can now build the project by right clicking on the project and selecting Build project.

You can now load and run the example on the A15 core in the Debug view. For new CCS users, this also a quick way to get familiar with the GUI interface and to learn to single step through code on TI processors. To set break points user can right click on the line of code where they need to set a break point and select if they wish to set a hardware or a software break point.

http://processors.wiki.ti.com/index.php/Processor_SDK_Bare_Metal_Examples

Processor SDK RTOS: SYSBIOS Hello World Example

Wiki Link: http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Examples

Presenter
Presentation Notes
Processor SDK RTOS: Bare metal Hello World SYSBIOS Examples.

Same as the earlier slide, we can also create hello world examples using SYSBIOS using templates defined in CCS. In this slide we take a look how to create a hello world SYSBIOS project for the A15 core of the AM572x platform. You can also choose to do this for C66x or M4 cores on the SoC.

SYSBIOS project templates in CCS are integrated in the TI Resource Explorer, which you can open from the View Menu as shown in the slide.

Click 1

Proceed to select the SoC for which you want to create a SSYBIOS project and choose the core on which you want to generate the project. In the Generic examples, select the example template you wish to create

Click 2
Click 3
Click 4

This will bring up an additional view in your editor that provides details regarding the template that you have selected. Follow the steps to import, build and debug the SYSBIOS project.

Once You build the project, you can load and run the example on the A15 core in the Debug view. If you are new to SYSBIOS development, the other SYSBIOS examples, may provide you additonal insight into SYSBIOS feature like creating tasks, swi, semaphores and using clocking functions in SYSBIOS.

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Examples

Set Up Build Environment to Build PDK Components
Build instructions:
• Navigate to processor_sdk_rtos_<soc>_2_xx_xx_xx>
• Set environment variables:

– SDK_INSTALL_PATH is SDK and CCS installation path.
– Default sets it to “C:\TI” (Windows) & “/home/[user]/ti” (Linux).

• Run the script setup.bat (Windows) and source setupenv.sh (Linux)

Build all components:
make clean
make all

For other build target options:
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Building_The_SDK
Custom installation options:
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Install_In_Custom_Path

Presenter
Presentation Notes
Slide 17: Setup Build Environment to Build PDK Components.

Now that we are familiar with the CCS and SYSBIOS environment, we are ready to step into building the processor SDK RTOS components.

The top level build file for the Processor SDK RTOS is provide in processor_SDK_RTOS folder. You can build this using gmake in the Windows environment and using standard make commands in the Linux Host environment.

We start off by defining Environment variables SDK_INSTALL_PATH and PROC_SDK_INSTALL_PATH using set command in Windows and export command in Linux
We then need to run the setup.bat or setup.sh file provided in the same folder to setup the environment variables for all the components of the SDK. These paths are set relative to the SDK_INSTALL_PATH and PROCESSOR_SDK_INSTALL_PATH so ensure that you don`t set those paths incorrectly.

You can then build the entire package by invoking gmake clean and gmake all in Windows and make clean and make all in Linux.

For more component specific build options refer to the link in the slide.

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Building_The_SDK
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Building_The_SDK
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Install_In_Custom_Path
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Install_In_Custom_Path

Script to Create Unit Tests for Device Drivers
pdkProjectCreate.bat [soc] [board] [endian] [module] [processor] [pdkDir]

Description:
soc – eg. am335x
board – refer ${PDK_INSTALL_DIR}\package\ti\board\lib
endian - little
module - all – eg uart
processor – eg arm, dsp
pdkDir - THIS FILE LOCATION

Example:
pdkProjectCreate.bat am572x evmAM572x little uart arm

File location: {PDK_INSTALL_DIR}\packages

pdkProjectCreate.sh [soc] [board] [endian] [module] [processor] [pdkDir]

 (Windows)

(Linux)

Refer to PDK Example and Test Project
Creation in the RTOS Software Developer
Guide:
http://processors.wiki.ti.com/index.php/
Rebuilding_The_PDK

Presenter
Presentation Notes

Slide 18: Script to Create Unit Tests for Device Drivers.

In the Processor SDK RTOS package, the pdk package contains on the low level chip support libraries and the device drivers. The PDK software provide a script called pdkProjectcreate in the packages folder. This script can be run in windows or Linux to generate example project using device drivers.

The calling convention for the script is pdkProjectCreate, is shown in the slide.

As an example, let us run the script to create an UART example for the ARM on the AM572x EVM. You can create the project by typing in the command at the bottom of the slide.
pdkProjectCreate.bat am572x evmAM572x little uart arm

Note the script is case sensitive so please type in the soc names and the board names as specified in the script description.

http://processors.wiki.ti.com/index.php/Rebuilding_The_PDK
http://processors.wiki.ti.com/index.php/Rebuilding_The_PDK

Processor SDK RTOS: Set Up GPIO LED Example
GPIO example location:
pdk_1_x_x/packages/exampleProjects/GPIO_LedBlink_<soc>_
evm_armExampleProject

• Import the project in CCSv6 and build the project.

• Connect the serial cable on host to view console.

• Host setup for serial console software:

User LED blink output

UART console output

GPIO LLD and example documentation:
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_GPIO

Presenter
Presentation Notes
Slide 19: Processor SDK RTOS Setup GPIO LED Examples.

One of the first examples that users like to test on hardware is a simple LED blink example that is driven using a GPIO pin. You can create the GPIO example project using the PdkProjectCreate script described in the previous slide.

The script installs the project in packages/exampleProjects

You can import the project in CCS and build the project and load it on the A15 core.

When you run the code you will see the user LEDs above the mircoSD card slot will blink periodically.

All PDK examples send out UART console message to communicate with the host and log information from the target application. If you wish to see the UART console log, Ensure that you have connected the FTDI cable to the 6 pin UART on the Processor module. On the host configure the serial console software like hyperterminal or Teraterm to settings described on the slide.

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_GPIO

Processor SDK RTOS: Set Up UART
Locate UART example:
pdk_1_0_0/packages/exampleProjects/UART
BasicExample<SOC>_armTestproject

• Import the project in CCSv6 and build the
project.

• Connect UART using FTDI or microUSB
cable.

• Configure the serial terminal on host to
view console.

• Host setup for Teraterm:

Example output

UART LLD and example documentation:
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_UART

Presenter
Presentation Notes
Slide 20 Processor SDK RTOS Setup UART.

We proceed to test the console output over UART. To test UART connectivity ensure that you have the FTDI cable or microUSB cable as per your specifications.

You can choose to run the UART driver project by using the pdkProjectCreate script or choose to run the UART sample test in the diagnostics package under the board diagnostics.

The Slide describes the UART driver project that is created in the packages/exampleProjects using the PDK script. To run the example, import the project in the CCS workspace and build the example. After you build the binary power up the board, connect to the ARM core and load the UART example on the core.

Configure the Serial terminal on the host to settings described in the slide.

After you run the example code, you will see the console output shown in the slide in your serial console on the host, that will prompt you to either type 150 character or Esc.

The example will echo the character you typed on the keyboard back on the serial console.

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_UART
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_UART

Processor SDK RTOS: Set Up USB Device
• USB device instance will behave like a USB thumb drive.

• EVM DDR memory acts as storage to external host.

• Compile and run project under
pdk/packages/exampleProjects
usb_dev_msc_<BoardName>_arm_project

• Connect USB cable to USB device port on EVM and to
USB port on the PC.

• Hook up UART cable to PC to view console logs.

• PC detects the EVM hardware as USB mass storage and
prompts user to format disk before using the device.

USB device mode
connections

UART console

Host view of the AMXX hardware

Wiki Link:
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_USB

Presenter
Presentation Notes
Slide 21: Processor SDK RTOS Setup USB Device.

In this slide, we take a look at testing the USB device functionality wherein the EVM will behave like a USB thumb driver and allows the host to use its DDR memory as storage to read and write files from.

In order to test this example hook up the USB device port on your EVM to one of the USB ports on your host as shown in the figure USB device mode connections in the slide. Create the USB device mass storage example project using the pdkProjectCreate script in the PDK and import and build the project in CCS similar to the GPIO and UART examples we discussed in the previous slide.

After you load and run the example, your host machine will detect the EVM hardware as shown in the host view of the hardware on the bottom right of the slide. If you have hooked up the UART to view the test USB device application will print console message as shown in UART conole log on the slide.

For more details refer to the wiki link in the slide.

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_USB

Processor SDK RTOS: Set Up USB HOST (MSC)

22

• USB instance acts as USB host communicating with a USB
mass storage class device.

• Compile and run the following project under
pdk/packages/exampleProjects
usb_host_msc_<BoardName>_arm_project

• Plug in USB flash driver (FAT formatted) in the USB host
port (USB0/1 on AM437x EVM).

• Connect UART cable to view example console prompt.
Screenshot of example console is shown.

• Example demonstrates mass storage class functionality of
the USB driver.

USB host mode setup

UART console

Wiki Link:
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_USB

Presenter
Presentation Notes
Processor SDK RTOS Setup USB Host mass storage example.

USB host port allows users to connect a mass storage device like a thumb drive to target platform and communicate with the USB device.

In order to setup this example connect a USB thumb drive to the host port of your EVM as shown in the USB host mode setup on the slide. The thumb drive needs to be formatted to FAT format for the example to recognize the files contained on the drive. This example also requires you to connect the UART cable to the host as the UART console displays options to communicate with the USB thumb drive.

Create the USB host mass storage driver example using the PdkCreateProject script and import and build the project in CCS. When you load and run the example, you will view the console log similar to one on the slide on the UART terminal program on your host machine. Type help to view all available options.
You can type in the command options displayed in the console terminal to display the list of files, create, delete and navigate into directory or to open up a file on the thumb driver.

Detailed implementation of the is example is explained on the wiki link provided in the slide.

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_USB

Processor SDK RTOS: Set Up Networking
Example Application:
NIMU_BasicExample_<SOC>_Evm_armExampleproject

• Import project into CCSv6 and build unit test.

• Load unit test via CCS using emulator.

• Example configures IP address 192.168.1.2 on the target.

• Before running:
– Create interface on PC with static address 192.168.1.x
– Hook up Ethernet cable from PC to Ethernet port on EVM.
 e.g., ETH0 interface. (top Ethernet port) on AM572x GP EVM

• To verify, ping 192.168.1.2 IP address (EVM board) from your host.

Wiki Link: http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_NDK

Presenter
Presentation Notes
Slide 23: Processor SDK RTOS Setup Networking.

The final example in this section that we will take a look at is to setup networking on the platform. The networking stack in Processor SDK RTOS uses a Network interface management unit(or NIMU) that builds on top of the ethernet driver or in certain cases on top of the EMAC implementation on the Industrial subsystem.

The example we are going to look at uses NIMU layer on top of the CPSW driver on the AM57xx platform. As in the earlier examples, we start of by creating the CCS project for the NIMU example using the PDK Project Create script and import and build the unit test example in CCS.

The example configures a static IP 192.168.1.2 on the target EVM ethernet port0, so connect an ethernet cable to port 0 on the EVM as shown in the slide and connect the other end directly into your host ethernet port or through a 10/100 ethernet switch.

Before you load and run the unit test, configure an static IP on your host machine and set the static IP to 192.168.1.x where X is any value other than 2 as that value has been assigned to the target ethernet port.

After you load and run the program, you can send a ping from your host machine to the target by typing in ping 192.168.1.2 from the command prompt. The host will transfer send ping packets from your host to the target and report back if the target loops back the ping messages. This test the basic connectivity between your host machine and the target EVM.

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_NDK

CSL Examples
• Chip Support Library (CSL):

– Provides a set of well-defined APIs
– Abstracts low-level interface details of underlying SoC
– Allow users to configure, control (start/stop, etc.) and read/write from

peripherals

• User can use the CSL layer to create examples and custom drivers.

• Example location: (TI_PDK_INSTALL_DIR)\packages\ti\csl\test

24

Example Name Description

WDT (Watchdog timer) The application resets the A15 CPU0 core.

RTC (Real Time Clock) The application prints date and time on UART console.

GMAC(External PHY) The application prints on console the configuration of PHY.

Wiki Link:
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_CSL

Presenter
Presentation Notes
Slide 24 CSL examples:

In addition to the GPIO, UART, USB and Network drivers, there may be additional drivers supported for your device. Please feel free to run those examples if your application requires the usage of those drivers.

In addition to driver examples, platform development kit (PDK) contains other bare-metal examples, that program chip components and board level components using Chip support library. This demonstrates that for Ips that don`t have a driver in Processor SDK, users can use the CSL layer code to create their own examples and custom drivers.

Some examples that are created directly using the CSL code can be found in the package in the packages\ti\csl\test folder in the PDK package. These include examples to program the watch dog timer to reset the A15 core, programming the real time clock to track date and time and programming the ethernet PHY to read the configuration of the PHY.

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_CSL

Processor SDK RTOS: Run

Application Development Using
Processor SDK RTOS

Start

Run

Setup

Port

Customize

Develop

Presenter
Presentation Notes
Slide 25: Processor SDK RTOS: Run

Now that we have setup the basic functionality on the target platform using Processor SDK RTOS components. Let us look at running a system level demonstration that integrates multiple components on the SDK. We will also look at how we can boot such application directly from a boot media in a production environment.

Done!!

Creating SD Card to Boot SDK Demos
Script location in Processor SDK:

 <SDK INSTALL DIR>/bin/create-sdcard.sh (Linux host only)

Notes:

• Linux script formats, partitions and loads the boot images to the SD card.

• Windows requires formatting, partitioning and copying of boot image using Win32 Disk Imager.

Location of prebuilt binaries for OOB demo images and sd-card image:
<SDK INSTALL DIR>\demos\oob\<SOC_EVM>\sd_card_img

Reference: Processor_SDK_RTOS_Creating_a_SD_Card_with_Windows

 Processor_SDK_RTOS_create_SD_card_script for Linux

Presenter
Presentation Notes
Slide 24 : Creating SD Card To Boot SDK Demos

Before we look at the demonstration application in the Processor SDK RTOS, let us look at a script included in the SDK, that allows users to create an SD card to boot and run this application on the processor without requiring CCS and an emulator to bring up the application.

The script is a linux based script and can be located under SDK INSTALL DIR bin folder. The script formats, partitions and loads the boot images to the SD card.
The script is a generic script that can be used to create SD card images for any application but the script defaults to use the SDK demonstration to create a bootable SD card.

The procedure used by the script in linux can also be done in Windows using a windows utility called Win32 Disk Imager.

Both the linux and the windows based steps are archived in the wiki links provided on the slide.

After you build the SDK, the Processor SDK RTOS Out of box(or out of box) demonstration can be booted using an SD card image located in SDK_INSTALL_DIR\demos\oob\evmAM572x\sd_card_img.

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Creating_a_SD_Card_with_Windows
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_create_SD_card_script
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_create_SD_card_script
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_create_SD_card_script

Processor SDK Demonstration: Image Processing Demo
• TI RTOS kernel based OOB demo demonstrates :

– Booting from SD card using SBL,
– UART, SD/MMC drivers
– IPC messaging between ARM and DSP
– IMGLIB functionality

• Application flow:
– ARM reads the input image from SD card.
– ARM partitions image across DSP cores.
– ARM sends messages to DSP cores via IPC MessageQ.
– DSP cores process partitioned images concurrently using

IMGLIB edge detection functions.
– DSP stores resulting image in DDR and notifies ARM cores.
– ARM writes the resulting image into the SD card.

• Demo supports UART console logs and user input.

Input image

Output image

Presenter
Presentation Notes
Slide 27: Processor SDK demonstration Image Processing demo

In this slide we discuss the Image Processing demonstration which is the out of box demonstration on Processor SDK RTOS. This demo exists only on the ARM +DSP platforms supported by Processor SDK RTOS.

The demonstration showcases ARM leveraging the processing power of the DSPs in order to create an edge image of an input image that is stored on the SD card. The demonstration boots from an SD card and leverages UART driver to provide a demo control console and SD driver to read and write images from the FAT file system on SD card which is also used as the mass storage for this application. The demo uses Inter processor communication APIs for messaging between the ARM and the DSP. The core image processing functions from IMGLIB are run on the DSP or DSPs depending on user input and your platform.

The SD boot image of the demonstrations boots up on the ARM core and starts the application that read the input image from the SD card. The ARM application then partitions the image data based on inputs from the user from the UART console. It then stores the partioned image data into shared memory and uses IPC MessageQ protocol to initiate processing on the DSPs. The DSP cores independently but concurrently, use IMGLIB kernels to process the edges in the image using Sobel algorithm and stores the output images back to the shared memory and notifies the ARM cores. The ARM then combines the results and stores the output image bacl on the SD card and notifies the user that the processing was completed.

Application Development Using
Processor SDK RTOS

Processor SDK RTOS: Develop

Start

Run

Setup

Port

Customize

Develop

Presenter
Presentation Notes
Slide 28: Processor SDK RTOS Develop

In the previous section, we looked at running some of the example and demo software in Processor SDK RTOS to validate that the hardware and the software are working as expected. In this section, we dive deeper into the source code and look at what you need to know about developing software with Processor SDK RTOS software components.

Done !!

Processor SDK RTOS: Develop (Source Reference)

Boot RTOS O/S, Start UART, Network, USB

Link to UART LLD source to enable console output

Link to EMAC LLD, NIMU and NDK source location in package

Link to USB LLD location in package

IPC code to enable slave cores.

Adding filesystem support to the application

Booting an application

Presenter
Presentation Notes
Slide 29: Processor SDK RTOS Develop Source Reference.

In the section of the training, we will look at adding UART, USB and network functionality in your application by looking at the relevant header files and libraries that are required to enable them in you application. We also look at execution flow of these drivers to understand the implementation and configuration options of these drivers. After covering the peripheral driver, we will look at adding filesystem support to your applications which is required to read and write files from Mass storage devices like MMC/SD, USB, etc. We then look at how to boot an multi-core application on your SoC using the secondary bootloader and boot utilities included in the release. We will conclude this section by looking at some Inter processor communication(or IPC) software examples and provide pointers to integrate IPC software in the application..

Done!!

Processor SDK RTOS:
Enabling UART

ti/drv/uart/UART_stdio.h
board.h
board_cfg.h

ti.board.aXX
ti.drv.uart.aXX

Where XX indicates target CPU

main(){
Board_initCfg boardCfg;
 boardCfg = BOARD_INIT_UART_STDIO;

Board_init(boardCfg);
UART_printf(“ Text to output ");
}

API Header Files:

Sample Source Code:

Libraries to Link:

Wiki Link:
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_UART

Presenter
Presentation Notes
Slide 30 : Processor SDK RTOS – Enabling UART

The first low level driver in the Processor SDK that we will take a look at is the UART driver. In the code shown in the slide we use the driver to provide console output from the cores while executing an application in order to get user input or to provide a log of the progress of the application code.

While we talk through the details of the driver, we recommend that you refer back to the driver examples that you have imported in CCS in the previous section to follow the instructions in these slides.

In order to include the UART driver input structures and API definitions into you application code, you need to include the UART_stdio header from the driver from the location PDK_INSTALL_DIR\packages. In order to initialize the default driver instant, you can simply leverage the code in the board library by including the board library header files board.h and board_cfg.

From the main application you can invoke the board library initialization by passing the BOARD_INIT_UART_STDIO macro to the board configuration variable and invoke the Board_init function from your main function.

To use the driver, you need to link into the board library and the UART library that have been specified in the Libraries section of the slide.

The flow chart on the right of the slide provides the full UART driver execution flow and all the APIs available in the driver. We have already seen the usecase of the driver when it is used for console output, now let us look the the execution flow when the driver is not used for console outputs.

Incase the driver is not being used for console out message, replace the UART_stdio.h file with UART.h file in the driver. The board initialization call is still required in the application but must also include setting up of the clocks and pinmux corresponding to the UART instance in use.

In order to initialize the driver you need to first populate the UART_config and the UART_HwAttr structure that is provided in the UART_soc.c file for your specific SoC in the driver and invoke the UART_init and UART_Params_init call to initialize the UART instance. This is a one time configuration.

After the initialization is complete, you can call into the UART_open API, at which point the UART driver is ready for data transfer on specific instance.
You can then choose to call in the driver in polling mode or interupt mode using the UART_read/UART_write APIS which are interrupt based while UART_Polling_read /UART_polling_write APIs invoke the writer in polling mode.

You can close the UART driver instance using UART_close APIs.

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_UART

Processor SDK RTOS: Enabling USB Device
USB device implementation in PDK Sequence of APIs used to enable USB device

API header file:
usb_drv.h
usbdmsc.h

Libraries to link:
ti.board.aXX
ti.drv.usb.aXX

Where XX indicates target CPU

Wiki Link:
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_USB

Presenter
Presentation Notes
Slide 31:Processor SDK RTOS: Enabling USB Device

We now take a look at enabling USB in device mode from your application. In order to enable USB device mode driver, include the header files corresponding to the USB driver usb_drv.h. In this mode typically the target acts like a USB thumb drive and allows the host to read and write from its memory so it acts like a mass storage device. Hence make sure to include the header files corresponding the USB device mode mass storage operation usbdmsc.h and the header file that allows users to populate the USB configuration parameters usb_msc_structs.h

In case where you need to access a RAM disk from you application, you need to add the Mass storage disk access functions provided in usbdmscglue.c file and link into the PDK RAM disk library.

Next similar to the UART driver, users need to populate usb_params structure

Now that you have included all the required header files, you need to link into the driver and the board library for the SoC that you are using. The required libraries are the ti.board.aXX and the ti.drv.usb.aXX driver library.

The Flow chart on the left of the slide shows the API flow, users need to invoke from their application to configure, open and use the USB device driver.
First of users can start by populating the vendor and device information in the tUSBMSCDevice structure in the file usb_msc_structs.c and initialize the usb_params that is required to open the driver instance. Refer to the USB device example for sample implementation. The example populates the vendor string as “Texas instruments”, product string as “Mass storage device” and a dummy serial number string “12345678” and data interface string as “Bulk Data Interface” which will be used by the host during device ennumeration.

To see how the usb_params are populated, refer to the taskFxn function in dev_usb_main.c, the parameters configure the driver for device mode, specifiy the device instance and specifies the USB class used by the application which in our example is mass storage. As required by all drivers, users need to setup the system and module clocks, pinmux and other board initializations before setting up the driver instance.

Users will then open the driver instance by invoking USB_open API that will provide a handle for this instance of the driver. After the USB_open() is called, the driver expects the application code to sets up USB interrupts with the interrupt. Then the application has to call the USB LLD USB_irqConfig() API which enables USB module’s interrupts. In device mode, both USB core and USB misc interrupts are used.

After these steps, application code will wait in a loop for USB enumeration to be done on the host and will start USB transfer through the provided USB driver read/write APIs.

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_USB

Processor SDK RTOS: Enabling USB Host
Sequence of APIs used to enable USB host

USB Host Mode example implementation in PDK

API header file:
usb_drv.h
usbhmsc.h

Libraries to link:
ti.board.aXX
ti.drv.usb.aXX

Where XX indicates target CPU

Wiki Link:
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_USB

Presenter
Presentation Notes
Slide 32 : Processor SDK RTOS: Enabling USB Host
Similarly, the USB driver can also be configured for host mode operation.

The setup of the USB host mode driver is similar to the device mode operation but it doesn`t require application to setup the MSC device vendor ID and device info as it will read these parameters from the USB mass storage device in the process of enumeration.

For the USB host mode setup, we start of with including the USB host mode driver library usblib.h and usbhost.h and the USB mass storage support library usbmsc.h and usbhmsc.h and link in the board and the USB driver library. Incase, of a FATFS setup on the USB mass storage, users need to link to the FATFS LLD which we will discuss in subsequent slides and include the fatfs_port_usbmsc.c file that acts as the glue between the FATFS driver and the USB driver.

From the application code, users start off by initializing the usb_params structure we discussed in the device mode operation except this time the usb driver instance will be configured for host mode. The will open the instance of the USB driver with the USB open function and register the USB interrupts using the USB_irqConfig function. In host mode, the USB host MSC only uses USB core interrupts. Refer to the TaskFxn function in the USB host example that we imported into CCS.

After this the application using the USB host interface is expected to USBMSCDriverOpen to open the driver instance and register a mass storage call back function which then notifies the application of USB events. After the driver instance has been opened the application needs to wait on the mass storage device to enumerate. In order to complete the enumeration process, the host controller driver also requires that the application periodically call the USBHCDMain() function. Once the USB is enumerated the application us disk access functions to access files on the mass storage device connected to the USB host.

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_USB

Processor SDK RTOS: Enabling Networking

NIMU/EMAC header files:

Libraries to link:

ti/transport/ndk/nimu/nimu_eth.h

ti.transport.ndk.nimu.aXX
ti.ndk.config.<NDKModule>

Where XX indicates target CPU

NDK header files:
ti/ndk/inc/netmain.h
ti/ndk/inc/stkmain.h

NDK Software Architecture

Wiki Link: http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_NDK

Presenter
Presentation Notes
Slide 33: Processor SDK RTOS – Enabling Networking

Moving on from the USB driver development, we move into the next important driver in the Processor SDK that enables Networking on the SoC.

The Networking component in the Processor SDK consists of multiple components, the block diagram on the right shows the Network software architecture. Let us look at it from the top down view. The network software is designed to be used with the Network development kit(NDK) which we will take a look at in the next slide. The NDK provides the protocol stack that is necessary to communicate over a network. The NDK itself does not include any platform or device specific software. The NDK interfaces with the low level driver through a well-defined transport interface known as Network Interface Management UNIT(NIMU). NIMU provides an interface between the stack and the device drivers through which the stack can talk to multiple instances of a single or various device drivers concurrently.

There are 2 implementation of the NDK transport component(NIMU) in the PDK as shown in the figure one for the CPSW Ethernet driver and one for the EMAC implementation on the industrial communications Subsystem.

Remove This from the slide: discusses only developing using the the cpsw implementation of the NIMU transport layer. All of the NIMU and CPSW driver APIs and macros can be included in the application by including the cpsw_nimu_eth.h, cpsw_impl.h and nimu_eth header files from the transport layer provided by the PDK.

In addition to this you need to include the master include file from ndk, netmain.h which brings in the header files for network control, highlevel protocol stack and other network tool headers for the application. One additional file that you may need to include is the sttkmain.h file that allows the NDK software to interact with lower level modules.

To enable networking, applications typically need to link to the NIMU transport library in the PDK and also to the NDK higher level module that it needs to use in the application. Where the module could be TCP/IP , Telenet or DHCP like network protocol.

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_NDK

Network Development Kit (NDK)
• NDK is a set of libraries + example code that initialize/configure/operate the hardware (EMAC) &

perform all of the TCP/IP functionality through a set of “socket” programming APIs(e.g. socket, bind,
send, recv, etc.)

• Provides a seamless interface to the physical layer (EMAC/PHY)

• HTTP
• TFTP
• Telnet
• DHCP

• Sockets Programming Services
• Internal stack functions
• Configures stack/services
 and configures the EMAC

App

NDK/EMAC

Physical

NDK Model
• PPP
• DNS
• PPPoE
• many others

What does the user touch?
• Configuration
Do you know all of the details
of what is going on underneath?
• No

• NIMU example in PDK…

Would you like an example to
play with?

App

Transport
Network

Data
Physical

TCP/IP Model

Presenter
Presentation Notes
Slide 34: Network Development Kit (NDK)
Following up from the next slide, we take a look at the Networking protocol stack in the Processor SDK RTOS.

The Network Development Kit (NDK) is a collection of libraries that can be used for development of network enabled RTOS applications on TI processors. It contains example code that showcases several capabilities across a range of network enabled applications. It contains functions to initialize, configure and operate networking hardware and perform TCP IP functionality using socket programming APIs. It allows for rapid prototyping of network and packet processing applications, or to add network connectivity to existing applications for communications, configuration, and control.

As shown in the graphic in the slide, The NDK uses a layered approach similar to the TCP/IP model. As is shown, the App and physical layers are still present and the NDK model contains the transport, network and data layers. The NDK provides an IPv6 and IPv4 compliant TCP/IP stack working with the TI-RTOS Kernel real-time operating system. Its primary focus is on providing the core Layer 3 and Layer 4 stack services along with additional higher-level network applications such as HTTP server and DHCP. NIMU provides an interface between the stack and the device drivers which allows NDK to seamlessly interface with the Physical layer.

Let us look at some common questions with this software stack

Animation1
While using NDK what does user need to touch.
Animation2
NDK requires configuration of services such as HTTP, telnet, DHCP, etc. along with supporting the standard sockets programming APIs

Animation3
Do you need to know all of the details of what is going on underneath?
Animation 4
Nope. Developers are expected to look up supported APIs and use them or, simply modify an existing working example to enable networking services.

Would you like to an example to play with ?
Look at the NIMU example project that we have imported in CCS while enabling Networking as a starting point.

Network Stack (NDK) System Overview

System Overview of NDK Example

BIOS configuration file for NDK example:
 Global Initializations
var Global = xdc.useModule('ti.ndk.config.Global');

Network layer modules:
var Ip = xdc.useModule('ti.ndk.config.Ip');

Transport layer modules:
var Tcp = xdc.useModule('ti.ndk.config.Tcp');
var Udp = xdc.useModule('ti.ndk.config.Udp');

Application layer modules:
var Telnet = xdc.useModule('ti.ndk.config.Telnet');

NDK Transport device driver(specific to device)
var Nimu = xdc.loadPackage('ti.transport.ndk.nimu');

Wiki Link: http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_NDK

Presenter
Presentation Notes
Slide 35: Network Stack (NDK) System Overview
The graphic on the slide shows the system overview of the services provided by the NDK in different layers of the TCP IP model. As soon as you add a NDK module to your RTOS configuration script, CCS recognizes the module and shows you the entire NDK Core stack when the configuration file is opened using a XGCONF Editor in CCS. In the NDK Core stack if you select the SYSTEM overview tab, you will see all the services as show in the slide.

You can click on each of the blocks in the tool in order to add an instance of the service to your application. The tool also allows user to configure the parameters for each of the module from the GUI interface. The interface adds the configuration options in text to the BIOS configuration script.

In case you don’t plan to use the GUI interface, then you can add each of the modules using the syntax provided on the slide

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_NDK

Processor SDK RTOS: FATFS Filesystem Support

36

FATFS module driver enables device interface with FAT file system
compatible device via the MMCSD, USB, etc

Header files:
ti/drv/FATFS/FATFS.h
ti/drv/FATFS/ff.h

Libraries to link:
ti.fs.fatfs.aXX

XX indicates the target CPU

Examples:
$(PDK_INSTALL_PATH)/packages/exampleProjects/FATFS_Console
_<SOC>_Evm_armExampleProject

Wiki Link:
http://processors.wiki.ti.com/index.
php/Processor_SDK_RTOS_FATFS

Presenter
Presentation Notes
Slide 36: Processor SDK RTOS: FATFS Filesystem Support

In order to support FAT filesystem on mass storage devices like MMCSD, USB, etc, the platform software in processor SDK provides a FATFS module which provides an interface to configure a driver for FAT file system compatible devices It configures FATFS for disk operations driver disk Initialize, disk read, disk write.

Since the FATFS driver is dependent on configuration of the mass storage driver like USB or SD/MMC, we assume that the board level initialization and the driver for those peripherals have already being initialized. To add FATFS filesystem driver, you need to include 2 FATFS drivers FATFS.h and ff.h and link into the ti.fs.fatfs.aXX libraries corresponding to the core on which you are running the application. For example, please refer to the FATFS example FATFS_Console_<SOC>_EVM_armExampleProject that can be created using the pdkProjectCreate script and imported in CCS.

The graphic on the slide demonstrates the application code flow required to enable the FATFS driver. Refer to the pdk example that you imported in CCS tot flow through the steps to configure the driver. As required by all applications, the code needs to initialize the clocks, pinmux using Board library. Users can populate the FATFS_config structure that is required to initialize the driver instance and associate the FATFS driver with a certain mass storage peripheral like USB or MMC. After initializing the structure, user can create a handle to all instances of the FATFS driver using the FATFS_init function. Users can modify the default parameters of the FATFS driver by calling into the FATFS_param_init function with the modified parameters or choose to use the default values used in the driver. Once the parameters are initialized, users can open an instance of the driver with the modified parameters using the FATFS_open call to the driver library. At this instance, the users have opened an instance of FATFS driver that is associated with the mass storage device with a user specified parameter set and is ready to read and write files from the FAT filesystem on the mass storage device using standard file IO APIs.

Once the functionality is not required by the application, it can choose to close the driver instance using FATFS as can be seen in the example.

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_FATFS
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_FATFS

Processor SDK RTOS: Bootloader
SBL functions:
• Sets up the PLL clock, pinmux
• Powers on the I/O Peripherals,

initializes the DDR
• Loads the application image from

memory device into DDR
• Brings the slave cores out of reset

…

Slave_Core_0

Slave_Core_1

Slave_Core_2

OCMC_RAM RBL

Wiki Link:
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Boot

Presenter
Presentation Notes
Slide 37: Processor SDK RTOS Bootloader

In the next three slides, we look at various components in Processor SDK that enable booting an multi-core application on heterogeneous Sitara devices. Not all of the details apply to the AM335x and AM437x single core ARM devices, which can boot directly from an ROM bootloader software that is burnt in the L2ROM on those device.

The Processor SDK RTOS recommends booting multi-core applications using a secondary bootloader referred to as SBL. The source of the SBL is provide in the PDK package in the boot folder of the packages. The boot execution flow while using the SBL component is shown in the slide. The ROM bootloader is the first software that runs on the SoC on power-on-reset, the software reads the SYSBOOT switch settings latched in the boot configuration registers aand configures the boot media and the corresponding clocks needed to read the image from the boot media. The bootloader then load the SBL image from the boot media into the device On chip OCMC RAM. The SBL application then sets up the SoC PLLs clocks, PIN Mux configuration and external DDR memory. The SBL application then proceeds to read the multi-core application image from the boot media, parse and loads it into DDR memory and will then wakes up secondary cores from reset and populates their boot addresses for them to start executing application code associated with that core.

Pre-built version of the SBL is provided in the SDK and needs to be used in conjunction with the multi-core application image. The SDK demonstrations and diagnostics application utilizes this booting scheme to load and run applications from an SD card on non-volatile memory on the boards.

Processor SDK RTOS also provides secondary boot loader for AM335x and AM437x devices but that is limited to provide additonal flexibility to enable features that are not supported in the bootloader and not for booting multi-core application images.

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Boot

Bootloader: Multicore Application Image Creation
AM57xImageGen script for creation of bootable multi-core:

Location: $(PDK_INSTALL_DIR)/packages/ti/boot/sbl/tools/scripts
Step 1: Set BIN_PATH variable in environment for output.
Step 2: Set path to ARM , DSP and M4 binaries:

• App_MPU_CPU0: Path to location of A15 MPU application .out
• App_IPU1_CPU0: Path to location of M4 core 1 application .out
• App_DSP1: Path to location of DSP core 1 application .out

Step 3: Run the script to create app.out

Tools used for image generation:
• Convert ELF Images of application binary to rprc format.

 out2rprc.exe <App_In_name(elf or coff)> <App_out_name>

• Multi-core image generator:

 MulticoreImageGen.exe <ENDIAN> <Dev Id> <App out file> <Core Id 1> <RPRC in file for Core Id 1>
 [<Core Id n> <RPRC in file for Core Id n> ...]

Presenter
Presentation Notes
Slide 38 : Bootloader: Multicore application Image creation.

In this slide we discuss tools and scripts that are provided in Processor SDK RTOS for creation of the Multi-core Image. the SBL tools are located in PDK package under packages/ti/boot/sbl/tools/.

We first start with the AM57xImageGen script in folder. The script assumes that you have already built the application binaries for all the cores. Users can start off by setting a BIN_PATH variable in the environment where the output mulit-core image needs to be generated. Once you have that path variable set, you need to manually add the path to the A15, C66 and M4 binaries in the script to the App_MPU_CPU, App_DSP and App_IPU_CPU variables in the script corresponding to each of the cores. You are now ready to run the script to generate the combined boot image for the SoC.

If you the script, you will notice that the script first runs the application ELF images through a out2rprc tool that converts it to an RPRC format recognized by the SBL and then combines the rprc images into a single image using Multi-core image generator using predefined core IDs.

The image generated can now be booted from a flash media or off a SD card along with the SBL binary.

Bootloader: Boot Media-Specific Details
SD/MMC boot:

1. Create a primary FAT partition on MMC/SD card (FAT32 format with sector size 512).
2. Rename the SBL image as MLO (RBL requirement)and copy to the SD card.
3. Rename the Application multicore image file as “app” and copy to the SD card.
4. Copy the MLO and application to the bootable SD card.
NOTE: SD card formatting tool is not included in SDK.

For other boot media-specific details:

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Boot

Presenter
Presentation Notes
Slide 39 Bootloader: boot Media specific details.

Let us look at a couple of boot modes currently supported in Processor SDK RTOS and discuss details of the implementation.
SD/MMC boot is a popular boot mode on the Sitara family of devices. The ROM bootloader on the device can boot from SD cards which are FAT formatted so users need to create a FAT partition on the SD card with sector size of 512. The ROM bootloader also expects the boot image on the SD card to be named MLO so rename the SBL binary to MLO and copy it to the SD card and copy over the multi-core image that you want to boot from the SD card and rename it to app. You should now be able to boot the image from the SD card by setting SD boot on your platform.

Removed :
The next boot mode that we will take a look at is the QSPI boot that is supported on the industrial development kit.
In the boot design for QSPI boot of multi-core application image, the SBL is expected to be loaded at the location 0x0000 or the based of the QSPI flash memory device and the application image needs to be flashed at the offset 0x8000 on the device. In this boot mode, users need to copy the SBL to the SD card and rename the image to boot as expected by the flash writer provided in the SDK. The .config used to load the images at the offsets also needs to be copied to the SD card. The SDK provides a flash writer which can then be used to flash the SBL and application image tto the flash memory on the device.
Users can then set the boot pins on the board to QSPI boot to boot the application.

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Boot

Processor SDK RTOS: IPC Examples

CCS RTOS ROV Viewer for IPC Hello Example
SOC IPC examples path:
IPC_DIR\examples\<SOC>_bios_elf

List of Examples:

MessageQ: Send round-trip
message from client to server and
back

Ping: Send a message between all
cores in the system

NotifyPeer: Use notify to
communicate to a peer processor

Hello Example: Send one-way
messages from writer to reader

 Wiki: http://processors.wiki.ti.com/index.php/Running_IPC_Examples_on_DRA7xx/AM572x
IPC User Guide: http://processors.wiki.ti.com/index.php/IPC_Users_Guide

Presenter
Presentation Notes
Slide 40 : In the last slide in the development section, let us take a look at how you can jump start your IPC development using examples included in the SDK.

Inter-Processor Communication (IPC) provides a processor-agnostic API which can be used for communication between processors in a multi-processor environment (inter-core) and also communication to other threads on same processor (inter-process). The API supports message passing, streams, and linked lists.

Covering IPC in details is outside the scope of this training so we recommend that you take a look at the resources provided in the slide to better understand the concepts and modules included in IPC. In order to provide a good starting point for your development the IPC component contains examples for all supported platforms.

IPC examples for AM572x canbe found under IPC_DIR/examples/DRA7xx_bios_elf. You will notice that the IPC component is supported across various Oses and so it can also be used in a ARM Linux +BIOS environment on slave cores.

The examples include sample code that demonstrate sending round trip messages using MessageQ module, sending ping messsages between cores, using Notify module to communicate between master and slave core using software and hardware interrupts and simple hello world example that shows a one way writer to reader setup in the multi-core environment.

The wiki link provides setup wise instructions to run these BIOS examples from the CCS environment.

http://processors.wiki.ti.com/index.php/Running_IPC_Examples_on_DRA7xx/AM572x
http://processors.wiki.ti.com/index.php/IPC_Users_Guide

Application Development Using
Processor SDK RTOS

Processor SDK RTOS: Port

Start

Run

Setup

Port

Customize

Develop

Presenter
Presentation Notes
Slide 41: Processor SDK RTOS :Port

Now that we have taken a look at developing code using different Processor SDK RTOS components, let us move on to look at a very important step in development cycle of an user application: Porting from TI evaluation platform to Custom User hardware.

In this section, we will look at key components in the SDK that contain board specific functions that will are required to be migrated while porting software to user platform.

Done!!

Processor SDK RTOS: Port

May be used “as is” or customer can
implement value-add modifications
Needs to be modified or replaced
with customer version

No modifications required

CSL

TI Board

Network
Dev Kit

Demo Application

TI Application on TI
Evaluation Platform

IPC LLD

EDMA,
Etc

Tools
(UIA)

CSL

Custom Board

TI Application on
Customer Platform

IPC LLD

Network
Dev Kit

EDMA,
Etc

Tools
(UIA)

Demo Application

Platform Migration

Presenter
Presentation Notes
Slide 42: Processor SDK RTOS Port

Typically after prototyping a significant portion of application using TI EVMs, users need to migrate their software from TI EVM to Custom platform for creation of their final product. This is a pretty significant step as the software needs to account for new underlying board level components and configurations. During the porting process, Application developers need to customize their software based on the product requirements.

First animation

Second animation.

In this section we take a look at a significant feature of the Processor SDK RTOS of simplifying the porting process by consolidating all hardware specific software into a single software component called the board library. Modifying the board library is the only major step required while porting the software to the custom platfrom. The board library in Processor SDK RTOS ensures that Users can continue to use their software with minimal changes to the TI provided SDK software. application level changes are limited as all of the high level drivers and application relies on this board library for hardware configuration. This feature enables quick migration of user application to custom platform and reduces the time to market for user products.

 Done!!

Processor SDK RTOS: Functional View
Components that will definitely need modification

Components that may need modification

Presenter
Presentation Notes
Processor SDK RTOS Functional view:

The slide shows functional View of the platform development kit (PDK) in Processor SDK RTOS. The diagram organizes the components based on its reliance on other components in the software and its linkage to the underlying hardware.

Animation 1

 All components marked with the Red dotted box around it are the components that need to be modified while migrating to the custom platform.

Animation 2
The components marked with yellow dotted box may or may not need source code modification based on the whether the peripheral instant used on the custom board matches the TI EVM or not.

The register and functional CSL builds on top of the register definitions on the SoC. This component remains unchanged on custom platform as both TI EVM and custom platforms use the same SoC. The Device LLD drivers are built on top of the functional and register level CSL and relies on the board library to provide board specific initialization and configurations and will remain unchanged while moving to the custom platform. OSAL, the OS abstraction layer is an implementation that allows user to use the CSL and Low level driver with or without an OS and remains unchanged in the software migration process.

The board library contains all functions to configure the hardware platform that is built using the SoC in question. It contains initialization functions for configuring the device clocks, pin multiplexing and configuring board specific component like PMIC, PHY, flash and DDR setup. This component is the only major components in the SDK that needs to be modified to match the changes to the hardware while migrating to custom hardware.

The Board diagnostics is sample test code to validate the hardware functions, and is a very useful tool to bring up a custom platform. The unit tests in diagnostics are bare metal code that relies on Low level drivers and board library so it may require some modification based on changes in board level components used on the custom platform.

The sample applications build on top of the CSL and the low level drivers and also relies on the board library to initialize and configure the hardware. The drivers provide flexibility to user to configure the driver setup including changing peripheral instance and modes from the application hence may require changes if the board uses different instance of the peripheral and if the application requires a peripheral mode that is not supported on the TI EVM.

The secondary bootloader component in the SDK is a generic implementation of the secondary bootloader which uses the board library to initialize those clocks and peripherals that are not initialized by the ROM bootloader while booting and implements a boot scheme that relies on pre-defined memory map of the device memory and that of the flash media used for booting so we do anticipate some changes to the components based on memory map of the custom app and the limitations enforced by custom board design.

Board Library: Configuration Options

See Custom Board Addition in the RTOS Software Developer Guide:
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Board_Support

See Application Integration for AM5x in the RTOS Software Developer Guide:
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Board_Support

API Header file:
“ti/board/board.h”

Library to link:
ti.board.aXX

Example code:
//Setting up for pinmux and uart
Board_STATUS ret;
Board_initCfg boardCfg;
boardCfg = BOARD_INIT_MODULE_CLOCK |
 BOARD_INIT_PINMUX_CONFIG |
 BOARD_INIT_UART_STDIO;
ret = Board_init(boardCfg);

Presenter
Presentation Notes

Slide 44: Board Library : configuration Options

Let us now look closely at the board library component in Processor SDK RTOS that consolidates all the board level initialization and also at all option available to users to selectively configure different board level components.

The graphic on the slide shows the typical initialization sequence used in the board library when users use pass the BOARD_INIT_ALL parameter to the board initialization funtion. The BOARD_unlockMMR unlock the MMR LOCK registers in the CONTROL Module that allows users to configure device boot configuration, clock, pinmux registers. This is followed by the initializing the system clocks using Board_PLLinit and specific module clocks using the BOARD_moduleCLockinit. The board library then sets up the device PIN multiplexing registers and the IO delays using the Board pinmux Config function. The library proceeds to configure the device external memory using board_DDR3init and disables the watch dog timer to prevent the chip from reseting and initializes the default UART port on the board to print console messages using application logging functions.

Board library also provides the flexibilty of configuring individual components separately instead of invoking the Board_init function using the Umbrella MACRO to intialize all components. For more information on the implementation refer to the links in the slide.

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Board_Support
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Board_Support

Board Library: Modifying Source for Custom Platform

PinMux

Clocking

DDR configuration

• PinMux
• Clocking
• DDR configuration
• IO configuration
• External components
• Board initialization

IO configuration

External components

Board Initialization

Presenter
Presentation Notes
Slide 45: Board Library Modifying source for Custom platform.

The Slide list all the board level configurations and maps it to board library source files which need to be changed while porting software to a custom platform. For specificity, we will look at the AM572x EVM files in the board library

First animation:
BoardPadDelay.h , boardPadDelayDevice.c, boardPadDelayInit.c and BoardPadTune.h are source files associated with Initializing the device Pin Multiplexing.

Second animation:
evmAM572x_pll and evmAM572x_clock are source files that are used to configure the device System clocks and the module specific clocks.

Third Animation:
evmAM572x_ddr.c contains the functions to configure the external memory. The functions include setting up AC timings, Phy configuration and hardware leveling.

Fourth animation:
The board_cfg.h file in the inslude folder contains macros that are used to define the instance of the peripheral that has been utilized on the hardware platform.

Fifth animation:
The device folder in the board library contains definitions of all external board components used on the board like non-volatile flash memory devices, ethernet phy etc.

Sixth animation:
The evmAM572x.c is the file that brings all the board level initialization together by organizing all the initialization functions in the recommended sequence and also by including the control code to initialize individual components.

Processor SDK RTOS: Modifying Board PinMux Settings

Pinmux Utility Download: http://www.ti.com/tool/PINMUXTOOL
AM57xx Sitara IO Configuration Requirements : http://www.ti.com/lit/an/sprac44/sprac44.pdf

Presenter
Presentation Notes
Check with Paul about the post processing steps required to configure the pinmux.

Slide 46: Processor SDK RTOS Modify Board Pin Mux Settings.

Now that we have looked at the board configuration options, let us look at all of the individual components and explore customization of the parameters in each of the categories in more detail. We start off with modifying the Pin Mux settings in the board library. TI provides a Pin Multiplexing utility tool which can be downloaded from the link provided on the slide. After configuring the Pin configuration based on your application requirements the tool generates the header and source files boardDelay.h, boardPaddelayDevice.c, boardDelayInit.c and BoardDelayTune.h which can be added to the board library.

Animation1

The Board_PinMuxConfig function will apply the settings defined by the files created by the PinMux tool. Also, ensure that you change the IO instance in the board_cfg.h to match the configuration used in the PinMux settings

Note: Even if the pin Map generation has been automated using the tool, there are some manual post processing steps to place the pinMux data in the OCMC RAM that are underlined in the wiki article on the slide.

http://www.ti.com/tool/PINMUXTOOL
http://www.ti.com/lit/an/sprac44/sprac44.pdf

Board Library: Clock Tree Tool to Simulate SoC Clocks
• Interactive Clock Tree Tool (CTT) for

configuration:
– Helps with visualization of the device clock

tree
– Allows users to customize clock tree as per

specific use-case

• The CTT GUI is composed of 5 sub-views:
– Main View
– Thumbnail View
– Controller View
– Register View
– Trace View

• Allows users to save register settings
that can then be used to configure the
software.

Clock Tree Tool Download: http://www.ti.com/tool/CLOCKTREETOOL

Presenter
Presentation Notes
Slide 46: Processor SDK RTOS Clocking Tree tool to simulate the SoC clocks.

In order to modify the device clocks, TI provides a interactive clock tree configuration tool that helps visualize the device clock tree and helps users modify the dividers and multipliers in the DPLL registers to modify system clock settings. The tool allows for customizing the clocks to user specific use-case. The GUI provides main device tree view, controller view and register view that allows for easy translation of device tree settings to register settings that can be used in the board library. After configuring the device clocks, you can save the register settings that can then be used to configure the PLL and clock configuration functions in the board library.

We recommend that users first create a GEL file using the clock settings obtained from clock tree tool and test the settings over an emulator before modifying the board library.

The clock tree tool can bee downloaded from the link provided in the slide

http://www.ti.com/tool/CLOCKTREETOOL

DDR Configuration Tools

Refer to the AM57x EMIF Tools application note: http://www.ti.com/lit/an/sprac36/sprac36.pdf

Presenter
Presentation Notes
Slide 47: DDR configuration Tools for AM57xx

In order to modify the external DDR memory configurations in the board library, TI provides DDR configuration tool which is a spread sheet that allows users to compute the DDR clock settings, DDR AC timings register values , the DDR PHY configuration register and Hardware leveling settings by entering values from the DDR chip used on the custom platform. The calculated DDR setting values can be used to configure the Board_DDRConfig settings in the board library.

Similar to the Clock settings, we recommend testing the DDR settings by creating a GEL with the calculated settings and running a DDR read write test to confirm the settings.

Please contact TI in order to obtain EVM specific DDR configuration tool, if you don`t see a download link from Hardware user guide of the SoC you are using in your design.

http://www.ti.com/lit/an/sprac36/sprac36.pdf

Diagnostics: Tests to Bring up Custom Hardware
• Software to verify the functionality of on-board peripherals and

external interfaces of each board.

• Constitute of ARM based bare metal (non-OS) code designed to
validate TI EVM hardware

• Tests can be adapted to test new boards and/or peripherals.

• Validation suite utilizes:
– board library for hardware configuration
– UART drivers for standard output
– relevant peripheral drivers for which the test are designed.

• Tests can be manually executed over an emulator or can be run
off a SD card.

Wiki Link: http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_DIAG

Presenter
Presentation Notes
Slide 49: Diagnostics :Tests to bring up custom hardware.

In addition to board library that contains hardware platform specific functions, the board package provides the diagnostics package that contains a set of test applications that aid in verifying the on-board peripheral functionality and board component connectivity. Each of the test are ARM based bare-metal tests that are used to validate feature of the EVM hardware. These tests can be modified to bring up software on a custom hardware. The test are an excellent tool to validate the changes to the board library that we discussed in the last 5 slides and also to tests that the peripheral drivers in the platform library on the custom board.

The test can be manually loaded over a emulator or can be run in an automated manner by booting the diagnostic tests by running them off a SD card.
For instructions to build and run the diagnostics package, please refer to the wiki link provided in the slide.

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_DIAG

Diagnostics: Tests in the Board Package
Common tests:
• UART: Testing UART standard IO by sending/receiving characters at 115.2k

baud

• GPIO LEDs: Flash the LEDs connected to GPIO on board

• I2C LEDs: Flash the LEDs connected to I2C on board

• EEPROM: Read/write to eeprom connected to I2C

• DDR read/write: Writes and reads back bits in the DDR memory

• MCSPI: Similar to QSPI, multichannel SPI also reads/writes to connected
memory

For complete list of diagnostics for your SoC, refer to:

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_DIAG

Presenter
Presentation Notes
Slide 49: List of Diagnostics Tests in the board packages.

The Slide provides a list of tests included in the Board package for the AM57xx platforms. The tests include UART standard IO tests for sending and receiving characters from the host at a baud rate of 115200 bps, GPIO tests that flash LED and turn a small haptic motor on and off, I2C tests to read and write from an EEPROM and controlling the board voltage by reading and writing to values to PMIC on the board. McSPI or QSPI based tests to test on board serial flash memory devices, LCD touch screen tests, DCAN loop back tests and DDR memory read write test to test external memory interface.

Note that all the tests mentioned in the slide may not apply to your TI evaluation platform so check the wiki link for supported platforms.

we intend to grow the list of diagnostic tests in subsequent releases of the Processor SDK RTOS in order to provide comprehensive coverage of all the peripherals to help bring up custom hardware components on boards.

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_DIAG

Application Development Using
Processor SDK RTOS

Processor SDK RTOS: Customize

Start

Run

Setup

Port

Customize

Develop

Presenter
Presentation Notes
Slide 51: Processor SDK RTOS Customize

In previous couple of sections, we deep dived into application development and porting of the software from TI evaluation platform to your custom application platfrom. In this section we take a look at applications that require complete system integration and deal with topics of partitioning resources between cores integrating Interprocessor software to communicate between cores and enabling algorithms on slave cores.

Done !!

Processor SDK RTOS: Application Customization

Develop and run custom application

Start with the example template of Image Processing demo

Add ARM or DSP algorithms, processing, tasks code

Customize and Run

Presenter
Presentation Notes
Slide 52: Processor SDK RTOS Application Customization.

We start off with an existing application template tthat shows good system integration and look at adding more functionality and features to the example. We also look at leveraging resources available on a multi-core SoC like AM572x by adding processing tasks on the slave DSP cores and we conclude the section by discussing some advanced topics of system integration like partitioning memory between cores and changing default interrupt routing in drivers and looking at various resources available for debugging an RTOS application.

Done!!

Example Application Template: Image Processing Demo
• Typical RTOS Application development starts from an existing template.

• CCS provide SYS BIOS application template with typical or minimal configurations.

Example application template for training:
processor_sdk_rtos_am57xx_2_xx_xx_xx\demos\image_processing

Steps for building a custom application:
– Include header files for all drivers and OS dependencies
– Configure the BIOS configuration file to link to required driver libraries.
– Creation of task for adding application functionality.
– Porting and optimizing IPC configuration for communication with slave cores.
– Add algorithm for processing.

Presenter
Presentation Notes
Slide 53 : Example Application

As a template for this training let us take a look at the source code of the demonstration that we ran in the Run section of this training.

Typically most RTOS application starts of from an existing template. So even when we created a SYSBIOS example, we choose to work of an existing template in CCS. As it enables the minimum services required in SYSBIOS to run your application in this environment. So if your application requires, running code on slave cores while controlling the peripherals from the ARM core, you can leverage the image processing demo code as an excellent starting point.

The source for the demonstration is located in the demos folder of the base Processor SDK RTOS folder. We start off by taking a look at how the source code has been setup on the ARM to leverage device drivers and co-relate it to our learning from development section of this training. We then proceed to take a look at how to add new tasks to the code by utilizing CCS based SYSBIOS tools, we then proceed to look at IPC development to setup communication between ARM master core and the slave DSP cores and look at DSP code where we can add more processing algorithms to offload compute intensive tasks from the ARM to the DSP.

Application Development: Includes and Initialization
Include required header files:

NOTE: Slide does not include SYSBIOS and XDC-related includes.

Board initialization:

Add headers for other drivers here.

Create application tasks and custom
algorithms here.

Presenter
Presentation Notes
Slide53: Application Development Includes and Initialization

The first file that we take a look at is main_fatfs_console.c file that integrates all the device driver specific code and setups the ARM core to recognize files on the FATFS in the MMC/SD.

The file starts off by including all the CSL and driver header files required by the Application. In this case the application relies on the MMCSD, UART drivers and use FATFS on the MMC/SD to read the input file and store the output file to the SD card. The application follows the steps that we discussed in develop section to include the header files corresponding to those drivers. In order to extend the functionality of the application you can add the headers of other drivers that you want to include in the same order.

Also as we discussed in the Port section every application relied on the board library to initialized the required module clocks. In the case of the Image processing demo the code is either loaded on the device using the SBL or over an emulator so we don`t need to initialize all the board level functions as the SBL has already setup the System clocks so the code limits the initialization to module clock and pinmux setup. Once the board has been initialized you can add your application tasks in the main function. We will take a closer look at how to create a new task in SYSBIOS in the next slide.

Application Development: Create Tasks to Add Features

Add function gpio_test to the application source.

Presenter
Presentation Notes
Slide 54: Application Development: Create Tasks To Add Features

There are multiple ways to add a new task to an existing application. The first one is to add configuration to the application configuration file .cfg using RTSC module syntax. If you are not familiar with this syntax, SYSBIOS defines Task_create APIs that allows users to create tasks at runtime from their application.

The approach that we see in this slide is the simplest one that allows a users to use a graphical interface integrated in CCS called XGCONF. In order to obtain this view import the project into CCS and right click on the configuration file .cfg in your project and select open with XGCONF. This will give you a list of all the module in SYSBIOS as shown on the right side of the slide.

To create a new task, right click on Task and right click to create a new Task, this will bring up the tab as shown in left hand side of the slide. The Tab allows you to configure the task handle, task name and the stack size and the priority of the task in your application. When you populate these parameters, the XGCONF Editor adds the relevant text to the configuration file to add the task to your application. You can then populate the processing associated with the task by creating the function associated with the task in your application code. For eg in this slide we associated the gpio_test fucntion to the task with handle echo. So we can add the GPIO code in the function gpio_test in the application to add GPIO functionality to the application.

Application Development: Modifying Configuration Script

IPC libraries:

OSAL libraries for TI RTOS:

SoC platform and board libraries to link:

Driver libraries to link:

Add other drivers to link here.

Add other IPC modules here.

Change default SYSBIOS settings here.

Wiki Link: http://processors.wiki.ti.com/index.php/IPC_Users_Guide/Porting_IPC

Presenter
Presentation Notes
Application Development: Modifying Configuration Script.

Once you add all of the relevant code to your application, you need to ensure that your configuration script links into all the relevant module libraries, board libraries and uses the correct memory map to generate the application binary.

The Slide shows all the libraries that the Image processing demo uses and then points out places where you can add more modules to your application.
The libraries on the left hand side of the slide are the board and the driver libraries that application uses. You can link into these libraries uisng the method we discussed in the development section. You can continue to add more driver libraries using the same syntax that has been shown in the driver libraries.

In addition to those the application links into the inter-processor communication software to use the Shared Region and MessageQ modules of the software so it also links into those module libraries. The configuration file should already have all of the sysbios services that you require in your application but if there are any services that need to be customized or haven`t been included you can add the code to the configuration files.

Most IPC modules are portable without any customization but we recommend you do refer to the wiki link in the slide to check the IPC modules that may require modifications while running on custom platforms.

http://processors.wiki.ti.com/index.php/IPC_Users_Guide/Porting_IPC

Application Development: Customize And Run
•Driver instance and interrupt configuration
•Memory configuration
•Debugging

Presenter
Presentation Notes
Application Development Customize and Run.

Continuing down the path of application customization, we take a look at some of the issue that a system integrator needs to deal with while stitching an application together on a multi-core application processor like AM572x. In the second half of the customization section, we look at how to change the driver instance and interrupt configuration in the driver settings and how to partition the device memory between cores based on the application memory map and finally look at how to setup SYSBIOS code for debugging an application using various tools and utilities included in CCS.

Application Development: Customize Driver Instance
<Module>_soc.c binds driver with Default Driver Attributes on the board.
Hardware attributes includes base address, interrupt number, etc.
Module behavior can be configured statically … or dynamically during runtime.

For Static configuration:

Dynamic Runtime Configuration

NOTE: The example shown refers to an ARM application.

Presenter
Presentation Notes
Use global config structure.

Slide 58 Application development: Customize Driver Instance.

Most drivers contain a soc folder which contains the file <modulename>_soc.c which contains the default driver attributes for a specific board using the SoC.

The hardware attributes contain the register base address for the module to configure the peripheral, the interrupt number,etc. system integrator can choose to modify this configuration in 2 ways. They can either change the default setting used in the hwattributes of the driver or choose to modify it from application.

The slide shows how the interrupt associated with GPIO port1 instance is changed statically in the driver library and dynamically from the application. After modify the hw attributes statically , users need tot rebuild the driver for the change to take effect while by changing the parameters, you don`t need to work about rebuilding the SDK provided driver.

Define Application Memory Map
SoC memory requires partitioning to allow all cores to have their own memory space and
also to set up shared memory regions for cores.

Example: Application Memory Map

 Memory Segment Start Address Length Comments

OCMC_SBL 0x40300000 112KB SBL reserved L3

OCMC_0 0x4031C000 400KB Shared L3 section 1

OCMC_1 0x40400000 1MB Shared L3 section 2

OCMC_2 0x40500000 1MB Shared L3 section 3

DDR3_Shared1 0x80000000 50MB Shared DDR region

DDR3_MPU 0x83200000 50MB ARM code/data

DDR3_DSP 0x86400000 50MB DSP code/data

DDR3_M4 0x89600000 50MB M4 code/data

Presenter
Presentation Notes
Slide 59 :Define application memory map.

The application code for the master core and the slave core builds independently so the compiler doesn`t have the visibility to detect overlapping memory sections used by each of the core. Hence it is very important for application developers to define an application memory map that defines code/data regions of the shared memory that are reserved for use by each of the cores and also define shared data regions which can be used by cores to send control message or exchange data.

The Slide provides an example memory map of an application on a multi-core processor which marks memory regions reserved for ARM ,DSP and M4 cores in DDR. The memory map also has shared regions and regions reserved by SDK components like SBL that will come into play while booting the application.

OCMC_1, OCMC_2, DDR3_shared is shared by all the cores while DDR_MPU, DDR3_DSP and DDR3_M4 are reserved for the code and data specific to those cores and the OCMC_SBL region is marked out as reserved by the secondary bootloader so that you can plan ahead of time while using that region.

Creating Custom RTSC Platform For BIOS Applications

60

• RTSC Wizard part of CCS allows BIOS users to
create custom configurations for given Soc

• The tool can be located on Debug View under
Tools -> RTSC Tools -> Platform -> New

Platform Definition in BIOS: $BIOS_INSTALL_DIR\packages\ti\platforms\<PlatformName>

Presenter
Presentation Notes
Slide 60 :Creating custom RTSC platform for BIOS Applications.

Now that we have a memory map defined for the application, let us look at how to setup the platform in SYSBIOS for implementing this memory map. The default platform definition for an SoC can be located in BIOS package under packages/ti/platforms/<platformname> for example evmAM572x. If you open the Platfomr.xdc file in that folder, you will notice that there is a unified platform definition for all cores and a memory map defined for the platform that allocates 16MB to Host and the DSP cores and 8MB to each of the M4 cores. One simple hack to modify the platform definition for your custom platform would be to modify the memory reserved for each core in that platform definition file.

If you don`t want to modify the memory in the platform definition to preserve the platform definition for the TI EVM. You can use the RTSC Platform creation tool described in the slide. The tool helps create custom platform definition for each core on the EVM based on your application memory map. Let us quickly walk through this process for the A15 core on AM572x and then will create similar definitions for DSP and M4 on the platform. Unlike the platform definition in SYSBIOS, this automated tool doesn`t allow us to create a single platform definition for all cores so we need to go through this process for each core.

In CCS debug view, under Tools Menu locate RTSC tools and select Platform and New to bring up the tool.

Animation1 Populate the Package Name. this is your cusstom board name . You can choose to leave the Repository to default which is the bios\packages\ti\platforms\ where the other EVMs a re defined.

Animation2
Animation 3
Select the device family as cortex A15 and select the device as DRA7xx as shown in the slide.

Click next to go to the device page.
Animation 4

Set the clock setting to your application requirement or if you want to use the default, you can choose to import the setting from exisiting device defintion.
Animation5

The tool auto populates the onchip memory sections, you can choose to delete or edit the section definitions.
Animation6

You can now add sections in the external Memory section based on the application memory map
Animation 7

and associate the code, data and stack memory for that particular code.
Animation 8

Animation11 and 12
Similarly you can create the platform definition for the C66x DSP as well as the M4.

After you have created the platform definitions, you can use these custom platform definitions in the SYSBIOS projects associated with the 3 cores to ensure that there are no memory conflicts in your application.

Debugging SYSBIOS Applications
• SYSBIOS and IPC generate a highly optimized, minimally debug-able custom SYS/BIOS

library that will link to your application.

• Building Debug-able SYSBIOS library in configuration file for your application:
var BIOS = xdc.useModule('ti.sysbios.BIOS');
BIOS.libType = BIOS.LibType_Debug; // build custom BIOS library.

BIOS.customCCOpts = BIOS.customCCOpts.replace("-o3", "-o0"); //change optimization level

BIOS.customCCOpts = BIOS.customCCOpts.replace("--opt_for_speed=2", ""); // For ARM only

• All PDK prebuilt libraries are built to support single-stepping into drivers and board
libraries.

• In addition to single-stepping, ROV tools, RTOS analyzer and System Analyzer tools in CCS
can be used to view logs, task execution logs, and benchmark applications.

Presenter
Presentation Notes
Slide 60: Debugging SYSBIOS Application.

In order to debug applications, we may sometimes need to reduce the compiler optimization options and generate complete symbol map. Module Libraries in SYSBIOS and IPC are highly optimized for code size and performance and contains reduced debugable symbols that prevent users from single stepping into these libraries. In order change the build configurations, you can add the script show in the slide and force SYSBIOS modules to use the compiler options you require to debug the code. The code shows generation of a debug library with reduced optimization but you can also choose to generate libraries that contain full symbol so that you can single step into every library in your application.

The PDK libraries are more debug friendly as they are optimized for performance but not for code size which allows them to support single steeping into drivers.

In addition to single stepping, you can implement application logging by using non-intrusive system_printfs that RTOS analyzer. ROV tools and SYStem analyzer tools that are integrated in CCS allows user to get a system perspective by providing task execution log and graphical view.

http://rtsc.eclipse.org/docs-tip/RTSC_Object_Viewer
http://rtsc.eclipse.org/docs-tip/Real-Time_Analysis_Tools
http://processors.wiki.ti.com/index.php/How_is_SYS/BIOS_related_to_System_Analyzer?

For More Information
Processor SDK Downloads:
AM335x AM437x AM572x

C667x C665x 66AK2Ex 66AK2Gx 66AK2Hx 66AK2Lx

Software Documentation:
Processor_SDK_RTOS_Software_Developer_Guide

Hardware Wikis:
AM335x EVM AM437x EVM AM572x EVM

C6678 EVM C6657 EVM 66AK2Ex EVM 66AK2Gx EVM 66AK2Hx EVM 66AK2Lx EVM

Tools and Utilities:
PINMUX Utility Clocking Tree Utility DDR Timing & Hardware Leveling PRU_ICSS

TI RTOS Trainings:
TI RTOS Workshop Processor_SDK RTOS Overview

Presenter
Presentation Notes
Provide Generic list of reference links that don`t need to change from release to release.

http://www.ti.com/tool/processor-sdk-am335x
http://www.ti.com/tool/processor-sdk-am437x
http://www.ti.com/tool/processor-sdk-am572x
http://www.ti.com/tool/PROCESSOR-SDK-C667x
http://www.ti.com/tool/PROCESSOR-SDK-C665x
http://www.ti.com/tool/PROCESSOR-SDK-K2E
http://www.ti.com/tool/PROCESSOR-SDK-K2G
http://www.ti.com/tool/PROCESSOR-SDK-K2H
http://www.ti.com/tool/PROCESSOR-SDK-K2L
http://ap-fpdsp-swapps.dal.design.ti.com/index.php/Processor_SDK_RTOS_Software_Developer_Guide
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Software_Developer_Guide
http://www.ti.com/tool/tmdxevm3358
http://www.ti.com/tool/tmdxevm437x
http://www.ti.com/tool/tmdsevm572x
http://www.ti.com/tool/TMDSEVM6678
http://www.ti.com/tool/TMDSEVM6657
http://www.ti.com/tool/xevmk2ex
http://www.ti.com/tool/evmk2g
http://www.ti.com/tool/evmk2h
http://www.ti.com/tool/xevmk2lx
http://www.ti.com/tool/PINMUXTOOL
http://www.ti.com/tool/PINMUXTOOL
http://www.ti.com/tool/CLOCKTREETOOL
http://processors.wiki.ti.com/index.php/AM437x_DDR_Configuration_and_Programming_Guide
http://processors.wiki.ti.com/index.php/PRU-ICSS
http://ap-fpdsp-swapps.dal.design.ti.com/index.php/Processor_SDK_RTOS_Software_Developer_Guide
http://processors.wiki.ti.com/index.php/Introduction_to_the_TI-RTOS_Kernel_Workshop
https://training.ti.com/processor-sdk-overview

	Application Development Using �Processor SDK RTOS
	Processor SDK RTOS: Software Stack
	Processor SDK RTOS: Maximize Software Reuse
	Processor SDK RTOS: Typical Development Flow
	Processor SDK RTOS: Setup
	Processor SDK RTOS: AM572x GP EVM
	Removing the Processor Module from the LCD
	Processor SDK RTOS: AM572x GP EVM Setup
	CAUTION: EVM Power Up/Down Sequence�(AM572x EVM Only)
	Processor SDK RTOS: Software Setup
	Processor SDK RTOS: CCSv6 Product Discovery
	Processor SDK RTOS: CCSv6 Target Configuration
	Processor SDK RTOS: Start
	Processor SDK RTOS: Start
	Processor SDK RTOS: Bare Metal Hello World Example
	Processor SDK RTOS: SYSBIOS Hello World Example
	Set Up Build Environment to Build PDK Components
	Script to Create Unit Tests for Device Drivers
	Processor SDK RTOS: Set Up GPIO LED Example
	Processor SDK RTOS: Set Up UART
	Processor SDK RTOS: Set Up USB Device
	Processor SDK RTOS: Set Up USB HOST (MSC)
	Processor SDK RTOS: Set Up Networking
	CSL Examples
	Processor SDK RTOS: Run
	Creating SD Card to Boot SDK Demos
	Processor SDK Demonstration: Image Processing Demo
	Processor SDK RTOS: Develop
	Processor SDK RTOS: Develop (Source Reference)
	Processor SDK RTOS:�Enabling UART
	Processor SDK RTOS: Enabling USB Device
	Processor SDK RTOS: Enabling USB Host
	Processor SDK RTOS: Enabling Networking
	Network Development Kit (NDK)
	Network Stack (NDK) System Overview
	Processor SDK RTOS: FATFS Filesystem Support
	Processor SDK RTOS: Bootloader
	Bootloader: Multicore Application Image Creation
	Bootloader: Boot Media-Specific Details
	Processor SDK RTOS: IPC Examples
	Processor SDK RTOS: Port
	Processor SDK RTOS: Port
	Processor SDK RTOS: Functional View
	Board Library: Configuration Options
	Board Library: Modifying Source for Custom Platform
	Processor SDK RTOS: Modifying Board PinMux Settings
	Board Library: Clock Tree Tool to Simulate SoC Clocks
	DDR Configuration Tools
	Diagnostics: Tests to Bring up Custom Hardware
	Diagnostics: Tests in the Board Package
	Processor SDK RTOS: Customize
	Processor SDK RTOS: Application Customization
	Example Application Template: Image Processing Demo
	Application Development: Includes and Initialization
	Application Development: Create Tasks to Add Features
	Application Development: Modifying Configuration Script
	Application Development: Customize And Run
	Application Development: Customize Driver Instance
	Define Application Memory Map
	Creating Custom RTSC Platform For BIOS Applications
	Debugging SYSBIOS Applications
	For More Information

