
Introduction to  
Processor SDK RTOS Part 2 

SoC (System on Chip) Drivers 



Agenda 
• Drivers Overview 
• Chip Support Library (CSL) Layer 
• Low Level Driver (LLD) Layer 
• OS Abstraction Layer (OSAL) 
• Board Library 
• Secondary Boot Loader (SBL) 
• Board Diagnostics  

 



SoC Driver Interfaces 

Application Code 

CSL Register Layer 

Peripheral Device Driver 
Device-Specific 

Peripheral 
Information 

RTOS 

Bare 
Metal 

O
SA

L OSAL 
API 

Driver-exposed 
API 



SoC Drivers & Operating System 

• TI-RTOS exposes 
the physical 
drivers to the 
applications. 

• Linux does not. 

TI-RTOS 

Hardware Drivers 
(SoC and Platform) 

LINUX 

Standard API 



CSL Layer 

Introduction to Processor SDK RTOS Part 2 



LLD Structure & Chip Support Library (CSL) 
• Low Level Drivers 

(LLD) hide the 
details of CSL 
from the 
application. 

• Some IP and 
peripherals do 
not have LLD. The 
application uses 
CSL directly. 

• Some LLD can 
access the 
hardware directly 
(and not via CSL). 

Application Layer 

Hardware Drivers (SoC and Platform) 

Hardware 

LLD Layer 

CSL Functions Layer 

CSL #define Layer 



Chip Support Library (CSL) Overview 
• (Almost) All peripherals are 

controlled by Memory Mapped 
Registers (MMR). 

• The MMR may have different 
addresses for different (future) SOCs. 

• The CSL has two layers: 
―The first layer assigns a standard 

name to MMR. 
―The second layer is a set of 

functions to manipulate these 
registers. 

• The application or LLD needs only to 
know the API of the CSL functions. 

CSL Software 

CSL Functions Layer 

CSL #define Registers Name 

Application LLD 

Hardware Registers 



CSL Registers #define 

• The MMR address depends on the SoC family.  
• The include file and SoC-specific CSL support 

files are located in a directory like the one 
shown: 
processor_sdk_rtos_09_13\pdk_am57xx_1_0_0\packages\ti\csl 

• SoC-specific CSL support files are located in one 
of the src directories (see next slide). 



CSL Registers #define 
SoC-dependent 

 
Each SoC has a src directory 
that contains all of the 
SoC-specific CSL files. 



Example cslr_soc_ipu_baseaddress.h 
C:\ti\processor_sdk_rtos_09_13\pdk_am57xx_1_0_0\packages\ti\csl\soc\am572x\src  

Gives the location of the IPU interrupt registers’ block. 



Interrupt Interface Functions: 
CSL_cpIntAux.h 



Interrupt Interface Structures & Constant: 
CSL_cpInt.h 



LLD Layer 

Introduction to Processor SDK RTOS Part 2 



Understanding the LLD 

• LLDs are hardware drivers that talk directly or via CSL 
to the hardware registers.  

• LLDs are used to abstract hardware implementation 
(or CSL) details from the user. 

• The Real-Time Software Component (RTSC) system 
enforces a fixed structure. All LLDs are RTSC-
compatible, but not dependent on RTSC. 

• Most (but not all) LLD code and pre-build libraries  are 
located in the pdk (platform development kit) 
directory. 



Core-dependent  LLD in pdk Directory 
(SoC-dependent)  

processor_sdk_rtos_335_version      pdk_am57xx_version      packages       ti        drv 

gpio 

i2c 

Icss_emac 

mmcsd 

pcie 

pruss 

spi 

uart 



The top level directory includes:  
• Sub-directories 
• Files that are visible to the application 
• XDC files that help with XDC building 

(auto-building) projects using 
configuration file 
 
 

Example Directory Structure: GPIO (1) 



• build contains make files to build the 
generic libraries. 

• docs contains all user documentation: 
– Software manifests (licensing, export control, 

etc.) 
– Release notes 
– The Doxygen subdirectory contains a 

collection of  linked HTML documentation 
files that are generated from the code. 

– Module-specific documents 

• example contains code that support 
the example projects. 

Example Directory Structure: GPIO (2) 



Example Directory Structure: GPIO (3) 

• lib contains libraries for different cores. 
• package contains files that are used 

during the XDC building of the module 
• src contains the SOC-independent 

source and include files.  
• soc contains the SOC-dependent source 

and include files. 
• test contains files that are part of the 

example test. 
 



Example GPIO Include File: gpio.h  

The include file gpio.h has all the external 
information needed by the application: 
• #define of all values that may be needed by 

application in order to use GPIO 
• Defines all structures that may be used by the 

application 
• Defines the APIs for all the functions 



gpio.h Functions API  



Developing Application Using LLD Code 

• Get a resource (open, create). 
• Configure the resource. 

– Understand the structure of the parameters of the configuration 
function (example to follow) 

• If there are dependencies, configure dependencies. 
• Use in run time. 

– Refer to the Processor SDK examples to understand what 
needs to be done. 



API Flow for Generic LLD: UART (1/2) 

For UART, the UART_soc.c file sets 
the RX and TX pin for 

communication. 

UART_init() 
From directory: 
pdk_am57xx_1_0_0\packages\ti\d
rv\uart\src 

UART_Params_init() 
From directory: 
pdk_am57xx_1_0_0\packages\ti\d
rv\uart\src 

Configure the board specific 
interface parameters from the SOC 

directory. 

Use init function to create an 
handle for the instance of the LLD. 

Configure the parameters of the 
LLD 



API Flow for Generic LLD: UART (2/2) 

UART_open(instance,param) 
Open the handle for the UART 
instance 
 

UART_read(UART_handle handle, 
void *buffer, size_t size) 
UART_write(UART_handle handle, 
void *buffer, size_t size) 

UART_close(UART_handle handle) 

Open an instance of the LLD and 
make it ready to start working. 

Run-time functions: 
Read, Write 

Close the LLD instance. 



Building the LLD Library 
Each LLD for each SOC and each core has a makefile 
that builds the LLD library. 
 
 
 
 
 
In the makefile, use –g and no optimization to 
debug driver code and use optimization for 
production build.  



Operating System Abstraction 
Layer (OSAL) 
Introduction to Processor SDK RTOS Part 2 

25 



• When a driver requires an operating system utility, 
OSAL provides a standard interface to any OS. 

• Operating system can be TI-RTOS or any generic OS 
… or even bare metal. 

OSAL: Makes Driver OS-independent 

RTOS 

Bare Metal 

O
SA

L 

Drivers 

APIs 

Peripheral 
Variants/ 
Versions 

SoC 

OS Abstraction 
API 



OSAL: Makes Driver OS-independent (2/2) 

 

• OSAL is a starting point for 
projects that use a different 
operating system.   

• Examples of utilities: 
– Interrupt Handling 
– Semaphore Handling 



Board Library 

Introduction to Processor SDK RTOS Part 2 



Board Library 

 
• The Board Library is a thin utility  layer on top of  

CSL: 
– Provides uniform APIs  for configuration of all 

supported boards. 
– Assists the user to quickly write portable 

applications for the supported boards. 
– Provides a standard interface to basic board 

configuration values like Pinmux, clocking, 
DDR features, PLL, etc. 

• Once Board_Init() is complete, the application 
can verify basic console STDIO and I2C 
interfaces within the board. 



Boot Support: 
Secondary Boot Loader (SBL) 
Introduction to Processor SDK RTOS Part 2 



Secondary Boot Loader (SBL) 

 
• SBL includes tools and utilities to 

support multi-core deployment of 
applications from boot. 

• It also provides SoC-dependent 
functions to initialize the SOC and 
perform slave core boot-up 
functions.  



Diagnostics 

Introduction to Processor SDK RTOS Part 2 



 Diagnostics Software 

 
Diagnostics application: 
• Used to test EVM (Evaluation 

Module) or any customer board 
hardware for manufacturing and 
component defects  

• Can be loaded and executed over 
JTAG or run directly from an SD 
card in system boot 



 Diagnostics Software: More Info 
Diagnostics application: 
• Instructions on how to build the 

diagnostics code are in a SoC 
wiki: http://ap-fpdsp-
swapps.dal.design.ti.com/index.p
hp/Processor_SDK_RTOS_Softwa
re_Developer_Guide#Board_Libr
ary_and_Diagnostic_Examples 
 

• Instructions on how to connect a 
board to CCS and run diagnostics 
are in a SoC wiki like this one (for 
AM572X): http://ap-fpdsp-
swapps.dal.design.ti.com/index.p
hp/GSG:_AM572x_General_Purp
ose_EVM_Hardware_Setup 

 

User Interface 

http://ap-fpdsp-swapps.dal.design.ti.com/index.php/Processor_SDK_RTOS_Software_Developer_Guide
http://ap-fpdsp-swapps.dal.design.ti.com/index.php/Processor_SDK_RTOS_Software_Developer_Guide
http://ap-fpdsp-swapps.dal.design.ti.com/index.php/Processor_SDK_RTOS_Software_Developer_Guide
http://ap-fpdsp-swapps.dal.design.ti.com/index.php/Processor_SDK_RTOS_Software_Developer_Guide
http://ap-fpdsp-swapps.dal.design.ti.com/index.php/Processor_SDK_RTOS_Software_Developer_Guide
http://ap-fpdsp-swapps.dal.design.ti.com/index.php/GSG:_AM572x_General_Purpose_EVM_Hardware_Setup
http://ap-fpdsp-swapps.dal.design.ti.com/index.php/GSG:_AM572x_General_Purpose_EVM_Hardware_Setup
http://ap-fpdsp-swapps.dal.design.ti.com/index.php/GSG:_AM572x_General_Purpose_EVM_Hardware_Setup
http://ap-fpdsp-swapps.dal.design.ti.com/index.php/GSG:_AM572x_General_Purpose_EVM_Hardware_Setup


For More Information 
• Processor SDK RTOS Getting Started Guide 
• Processor SDK Training Series 
• Additional training: 

– TI-RTOS Kernel Workshop 
– Processor SDK RTOS Overview P1 

• For questions regarding topics covered in this 
training, visit the Sitara Processor support 
forum at the TI E2E Community website. 

http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Getting_Started_Guide
http://training.ti.com/processor-sdk-training-series
http://processors.wiki.ti.com/index.php/Introduction_to_the_TI-RTOS_Kernel_Workshop
http://processors.wiki.ti.com/index.php/Introduction_to_the_TI-RTOS_Kernel_Workshop
https://training.ti.com/introduction-processor-sdk-rtos-part-1
http://e2e.ti.com/support/arm/sitara_arm/f/791

	Introduction to �Processor SDK RTOS Part 2
	Agenda
	SoC Driver Interfaces
	SoC Drivers & Operating System
	CSL Layer
	LLD Structure & Chip Support Library (CSL)
	Chip Support Library (CSL) Overview
	CSL Registers #define
	CSL Registers #define�SoC-dependent
	Example cslr_soc_ipu_baseaddress.h�C:\ti\processor_sdk_rtos_09_13\pdk_am57xx_1_0_0\packages\ti\csl\soc\am572x\src 
	Interrupt Interface Functions: CSL_cpIntAux.h
	Interrupt Interface Structures & Constant: CSL_cpInt.h
	LLD Layer
	Understanding the LLD
	Slide Number 15
	Example Directory Structure: GPIO (1)
	Example Directory Structure: GPIO (2)
	Example Directory Structure: GPIO (3)
	Example GPIO Include File: gpio.h 
	gpio.h Functions API 
	Developing Application Using LLD Code
	API Flow for Generic LLD: UART (1/2)
	API Flow for Generic LLD: UART (2/2)
	Building the LLD Library
	Operating System Abstraction�Layer (OSAL)
	OSAL: Makes Driver OS-independent
	OSAL: Makes Driver OS-independent (2/2)
	Board Library
	Board Library
	Boot Support:�Secondary Boot Loader (SBL)
	Secondary Boot Loader (SBL)
	Diagnostics
	 Diagnostics Software
	 Diagnostics Software: More Info
	For More Information

