Current Feedback Amplifiers -1

TIPL 2011

TI Precision Labs: High-Speed Operational Amplifiers

Prepared and Presented by Samir Cherian

No Change in Basic Op-amp Concepts!

- CFB is still in a negativefeedback loop
- Virtual-ground concept still holds and $V_{IN+} = V_{IN-}$

VFB: Voltage-Feedback Amplifier

CFB: Current-Feedback Amplifier

Benefits of Current Feedback Amplifiers

• No constant gain bandwidth product relationship like in VFBs.

	Ideal VFB	Ideal CFB
Gain = 1 V/V	100 MHz	100 MHz
Gain = 10 V/V	10 MHz	100 MHz

• The CFB architecture can achieve much higher slew rates relative to VFBs.

Slew Rate = $V_{PEAK} \cdot 2\pi \cdot f_{MAX}$

where f_{MAX} is the amplifiers full-power bandwidth

VFB: Bandwidth Depends on Gain

CFB: Bandwidth Independent of Gain

CFB: Bandwidth versus Gain and R_F

CFB: Bandwidth versus Gain and R_F (Cont.)

Feedback Transimpedance =($R_F + R_i \times NoiseGain$)

THS3091 Small-Signal Frequency Response versus R_F

OPA691 Recommended Gain vs. R_F

Estimating f_{-3dB} from Z_{OL} curve

Effect of Input and Feedback Capacitance

Effect of Non-Ideal R_F and C_F

Thanks for your time and please

take the quiz!

Current Feedback Amplifiers -1

Exercises

TI Precision Labs: High-Speed Operational Amplifiers

Prepared and Presented by Samir Cherian

Current Feedback Amplifier – Quiz 1

(1) A CFB datasheet recommends a feedback resistance, $R_F = 800\Omega$, when configured in a gain of 2 and $R_F = 700\Omega$, when configured in a gain of 4. What is the inverting input impedance, R_i of the amplifier?

- a) 25Ω
- b) 50Ω
- c) No sufficient information provided
- d) None of the above

(2) A CFB datasheet recommends a feedback resistance, $R_F = 800\Omega$, when configured in a gain of 2. What is the recommended R_F when configured in a gain of -1?

- a) Value of R_i is needed in order to answer this
- b) 700Ω
- c) 800Ω
- d) None of the above

(3) The Z_{OL} curve of a CFB is shown below. If the recommended R_F = 900 Ω when configured in a gain of 4 and the inverting input impedance, $R_i = 25\Omega$, what is the closed loop bandwidth of the amplifier in a gain of 4?

- a) 1 MHz
- b) 3.16 MHz
- c) 2 MHz
- d) 10 MHz

(4) In the previous example, what is the phase-margin of the amplifier when

configured in a gain of 4? ($R_F = 900\Omega$, $R_i = 25\Omega$)

- a) 45°
- b) 90°
- c) 135°
- d) 180°

- (5) The previous example was modified to have a 2nd Z_{OL} pole at 3.16MHz as shown below. What is the new phase margin?
 - a) 45°
 - b) 67.5°
 - c) 0°
 - d) 90°

Z_{OL} vs. Frequency

Answers

(1) A CFB datasheet recommends a feedback resistance, $R_F = 800\Omega$, when configured in a gain of 2 and $R_F = 700\Omega$, when configured in a gain of 4. What is the inverting input impedance, R_i of the amplifier?

b) 50Ω

<u>Answer:</u> In order to maintain a constant feedback transimpedance, (R_F+ R_i×Noise

```
Gain),
```

```
800\Omega + R_i \times 2 = 700\Omega + R_i \times 4
```

```
\Rightarrow 2 \times R_i = 100\Omega
```

 $\Rightarrow R_i = 50\Omega$

(2) A CFB datasheet recommends a feedback resistance, $R_F = 800\Omega$, when configured in a gain of 2. What is the recommended R_F when configured in a gain of -1?

c) 800Ω

Answer: An inverting gain of -1 corresponds to noninverting gain of 2. Hence the

feedback resistance RF will stay the same.

(3) The Z_{OL} curve of a CFB is shown below. If the recommended R_F= 900 Ω when configured in a gain of 4 and the inverting input impedance, R_i = 25 Ω , what is the closed loop bandwidth of the amplifier in a gain of 4?

a) 1 MHz

Answer: The feedback

transimpedance is $900\Omega + 25\Omega \times 4 =$

1000 Ω , which corresponds to a

gain of 60dB. A straight line curve

at 60dB intersect the Z_{OL} curve at 1

MHz as shown here.

Z_{OL} vs. Frequency

(4) In the previous example, what is the phase-margin of the amplifier when configured in a gain of 4? (R_F = 900 Ω , R_i = 25 Ω) b) 90°

Answer: The dominant pole of the

amplifier at 10kHz contributes a

total phase shift of 90° by 100KHz

assuming straight line ideal Bode

theory. The crossover occurs at

1MHz and since this is a 1-pole

system the phase margin is 180°-

 $90^{\circ} = 90^{\circ}$

(5) The previous example was modified to have a $2^{nd} Z_{OL}$ pole at 3.16MHz as shown below. What is the new phase margin?

b) 67.5°

Answer: From the graph 3.16MHz corresponds to a Z_{OI} of 50dB while crossover occurs at 60dB. We know the phase changes at 45°/decade starting one decade before the pole frequency or 316kHz. The phase margin is thus 180° - 90° (dom. Pole) – $22.5^{\circ}(\frac{1}{2} \text{ decade from } 2^{nd} \text{ pole}) = 67.5^{\circ}$

Z_{OL} vs. Frequency

