# Various Applications for Voltage-Tracking LDO

### **Mixed Signal Automotive**

-- Automotive Value Line

System & App EngJason Liu (jason-liu@ti.com)Product Mktg Mgr.Allie Zhang (Allie-zhang@ti.com)System & App & Mktg Mgr.Jason Yan (jason-yan@ti.com)





# What is Voltage-Tracking Power Supply?

Off-board sensors exist everywhere in Automotive

For example: Discrete Voltage-Tracking Solution in HVAC





# What is Voltage-Tracking LDO?



### Tracking LDO is mainly used for off-board sensors power supply

- Many automotive sensors are off-board. There are long cables between sensors and main board, which leads to high potential risk of been short to ground or short to battery if cable is broken.
- Voltage-Tracking LDO TPS7B425x-Q1 implements full protections, includes over current protection, input reverse polarity protection and off-board protections
- If the cable is broken and it is short to ground or battery, the voltage-tracking LDO will protect the itself and the previous power stage from damage.



# Voltage-Tracking LDO vs. Discrete Tracking Solution



Op-AMP. Transistor, Diode, Resistors

TPS7B4250-Q1, TPS7B4254-Q1 and TPS7B4253-Q1

### Voltage-Tracking LDO Advantages:

- Much Better Tracking Accuracy, ±4mV (TPS7B4254/3-Q1) and ±5mV TPS7B4250-Q1 under all conditions ٠
- Much Lower Quiescent Current (~60uA) and Dropout Voltage ٠
- Integrated Short to GND, Short to Battery, and Reverse current Protection ٠
- BOM Cost Saving and PCB Space Saving .



# **MSA AVL Voltage-Tracking LDO Products**

|                           | TPS7B4250-Q1          | TPS7B4254-Q1             | TPS7B4253-Q1                                       |
|---------------------------|-----------------------|--------------------------|----------------------------------------------------|
| VIN                       | 4 to 40V (-20 to 45V) | 4 to 40V (-40 to 45V)    | 4 to 40V (-40 to 45V)                              |
| VOUT                      | 1.5 to 18V            | 2 to 40V                 | 1.5 to 40V                                         |
| IOUT                      | 50mA                  | 150mA                    | 300mA                                              |
| Voltage-Tracking Accuracy | ±5mV                  | ±4mV                     | ±4mV                                               |
| Load Regulation (max)     | 4mV                   | 4mV                      | 4mV                                                |
| Line Regulation (max)     | 3mV                   | 4mV                      | 4mV                                                |
| Dropout Voltage (max)     | 1V @ 50mA             | 260mV @ 100A             | 520mV @ 200A                                       |
| Output Cap                | 1uF to 50uF           | 10uF to 500uF            | 10uF to 500uF                                      |
| Output Cap ESR            | <20Ω                  | <20Ω                     | <20Ω                                               |
| Protections               | RP, RC, SC, TSD       | RP, RC, SC, TSD          | RP, RC, SC, TSD                                    |
| Package                   | SOT23-5               | SO PowerPAD™-8           | HTSSOP-20, SO PowerPAD™-8                          |
| Comments                  | Small package         | Good thermal performance | Separate EN pin to provide flexibility (HTSSOP-20) |

Protections:

RP = Reverse Polarity, RC = Reverse Current, SC = Short Circuit (to battery/ground), TSD = Thermal Shutdown



### TPS7B4250-Q1 – 50mA 40-V Voltage-Tracking LDO

#### Features

- AEC-Q100 Qualified for automotive applications
- -20 to 45-V Wide Input-Voltage Range
- Output Voltage Range: 1.5 to 18 V
- 50-mA Output Current Capability
- Ultra-Low Output Tracking Tolerance, ±5 mV
- 150-mV Low Dropout Voltage when IOUT = 10mA
- Low Quiescent Current (IQ):
  - ➢ 40 µA (Typical) at Light Loads
- Extremely Wide ESR Range to use Ceramic Capacitor
  - Stable With 1- to 50-µF Output Capacitance
  - $\succ$  ESR 1 m $\Omega$  to 20  $\Omega$
- **Reverse Polarity Protection**
- Current-Limit and Thermal-Shutdown Protection
- Output Short-Circuit Proof to Ground and Supply
- SOT23-5

#### Benefits

- Ultra-low tracking tolerance to support high precision data acquisition for off-board sensors
- Full protection to power off-board loads to increase system reliability
- Low quiescent current in both Shutdown mode and Light load mode
- Wide ESR and Capacitance Range to lower the system cost for C<sub>OUT</sub> Selection



### Applications Off-board Sensor Power Supply High Precision Voltage Tracking

#### **Kev Parameter Overview**

| 4 ~ 40   | V                                    |
|----------|--------------------------------------|
| 45       | V                                    |
| 1.5 ~ 18 | V                                    |
| 50       | mA                                   |
| ±5       | mV                                   |
|          | 4 ~ 40<br>45<br>1.5 ~ 18<br>50<br>±5 |



# TPS7B4254-Q1 – 150mA 40-V Voltage-Tracking LDO

#### Features

- AEC-Q100 Qualified for automotive applications
- -40 to 45-V Wide Input-Voltage Range
- Output Voltage Range: 2 to 40 V
- 150-mA Output Current Capability
- Ultra-Low Output Tracking Tolerance, ±4 mV
- 160-mV Low Dropout Voltage when IOUT = 100mA
- Low Quiescent Current (IQ):
  - > < 4 µA when ADJ = LOW
  - ➢ 60 µA (Typical) at Light Loads
- Extremely Wide ESR Range to use Ceramic Capacitor
  - Stable With 10- to 500-µF Output Capacitance
  - > ESR 1 m $\Omega$  to 20  $\Omega$
- Reverse Polarity Protection
- Current-Limit and Thermal-Shutdown Protection
- Output Short-Circuit Proof to Ground and Supply
- Inductive Clamp at OUT Pin
- SO PowerPAD<sup>™</sup>-8

#### **Benefits**

- Ultra-low tracking tolerance to support high precision data acquisition for off-board sensors
- Full protection to power off-board loads to increase system reliability
- Low quiescent current in both Shutdown mode and Light load mode
- Wide ESR and Capacitance Range to lower the system cost for C<sub>OUT</sub> Selection



| Applications                     | Key Parameter Overview            |        |    |
|----------------------------------|-----------------------------------|--------|----|
| Off-board Sensor Power Supply    | Input Voltage Range               | 4 ~ 40 | V  |
|                                  | Load Dump                         | 45     | V  |
| High Precision Voltage Tracking  | Output Voltage Range              | 2 ~ 40 | V  |
| Power Switch for Off-board Loads | Output max. Current               | 150    | mA |
|                                  | Output Voltage Tracking Tolerance | ±4     | mV |



# TPS7B4253-Q1 – 300mA 40-V Voltage-Tracking LDO

#### **Features**

- AEC-Q100 Qualified for automotive applications
- -40 to 45-V Wide Input-Voltage Range
- Output Voltage Range
  - > 1.5 to 40 V (HTSSOP)
  - > 2 to 40 V (SO PowerPAD™)
- 300-mA Output Current Capability
- Ultra-Low Output Tracking Tolerance, ±4 mV
- 320-mV Low Dropout Voltage when IOUT = 200mA
- Separate Pins for Enable and Tracking Inputs (HTSSOP only)
- Low Quiescent Current (IQ):
  - > < 4 µA when EN/ADJ = LOW
  - > 60 µA (Typical) at Light Loads
- Extremely Wide ESR Range to use Ceramic Capacitor
  - Stable With 10- to 500-µF Output Capacitance
  - ESR 1 mΩ to 20 Ω
- Reverse Polarity Protection
- Current-Limit and Thermal-Shutdown Protection
- Output Short-Circuit Proof to Ground and Supply
- Inductive Clamp at OUT Pin
- SO PowerPAD™-8, HTSSOP-20

### Applications

- Off-board Sensor Power Supply
- High Precision Voltage Tracking
- Power Switch for Off-board Loads

#### Benefits

- Ultra-low tracking tolerance to support high precision data acquisition for off-board sensors
- Full protection to power off-board loads to increase system reliability
- Low quiescent current in both Shutdown mode and Light load mode
- Wide ESR and Capacitance Range to lower the system cost for C<sub>OUT</sub> Selection



### Key Parameter Overview

|                      | Input Voltage Range               | 4 ~ 40   | V  |
|----------------------|-----------------------------------|----------|----|
|                      | Load Dump                         | 45       | V  |
| Output Voltage Range |                                   | 1.5 ~ 40 | V  |
|                      | Output max. Current               | 300      | mA |
| _                    | Output Voltage Tracking Tolerance | ±4       | mV |
|                      |                                   |          |    |



# **Voltage-Tracking LDO Applications: General LDO**



 \* FB pin is connected to OUT internally, this mode not available for TPS7B4250-Q1



### **Voltage-Tracking LDO Applications: LDO Parallel Connection**



 $I_{OUT,MAX} = 300mA \times 2 = 600mA$ 

Maximum current difference between two channels:

$$\Delta I = \frac{\Delta V}{R} = \frac{\pm 4mV}{0.2\Omega} = \pm 20mV$$

### 40-V LDO Parallel Circuitry Reference Design

- > Output current up to 900mA
- 4- to 40-V wide input-voltage range
- Stable with wide range of output capacitor
- Linear power solution to relieve EMC/EMI concerns
- Good thermal performance under large load conditions

• View reference design now





## **Voltage-Tracking LDO Applications: High Accuracy LDO**





# **Voltage-Tracking LDO Applications: High Side Switch**



 $V_{IN}$  = 14 V, EN/ADJ = 0 or 5 V, 100 mA load at the output



### **Voltage-Tracking LDO Applications: VOUT Linear Adjusting**

