Active Filter Design Made Easy With WEBENCH® Active Filter Designer

Custom Active Filter Designs Including Spice Simulation

1

WEBENCH[®] Active Filter Designer: Active Filter Designs Within Minutes!

1. Select a Filter Type

2. Design Frequency response

Accessing Filter Designer

ti.com/webenchfilters

3

Step by Step:

NEW Filter Designer Requirements page

	FILTER	DESIGNER RE		IENTS						
3A	/µP HotSwap Sir	nple Switcher	Filters	Clocks	Interface	Lo	ad Swite	b DDR Power	Sequencers	Amp
Lowpass Highpass Bandpass Bandstop										
		Specifica		Graph						
	 Search Filter Specify Filter 				0			0		
	Gain (A) 💿 dB 🤇) viv		0.00						
	-3dB Frequency (f3dB) *			1000	Hz		A -	1 aup 1		
	* This frequency is u	used as fp for Ch	nebyshev	/ calculati	ons. 🔞		-			
	Max Passband Ripp	le (Rp) 👔		1	dB		tude	$\langle \rangle$		
	Stopband Frequency (fs)			5000	Hz		lagni	Asb		
	Stopband Attenuation	on (Asb)		-45	dB		-	t		
		Additional Specs	(Optiona			Frequency	f3dB fs			
		Supply Voltage					01 1511 5			
	• Dual Supply) Single Supply	+/-5	Ac	ivanced	View 🕐	Start Filter Desigr	· · · ·		

TEXAS INSTRUMENTS

Changes to specifications

NEW Visualizer page

INDIKUWENTS

6

Filter Design adjust gain values

Closed Loop Frequency Response, Sine Wave Response,

Everything old is new

- Is live today
- Big changes in Filter Type (page 1)
- Bigger changes in Visualizer (page 2)

• ti.com/filterdesigner

Hands-on Exercise

Design Problem:	Goals:
Customer would like a bandstop filter at 1000kHz with the following constraints: Type: Bandstop Center Frequency: 1kHz Gain: 1 Passband Bandwith: 1kHz Stopband Attenuation: -45 dB Stopband Bandwidth: 100Hz Dual Supply: +/- 5V Filter transfer function: Linear phase .05deg, 6th order	Generate a filter What is the output ripple of a 1V input sine wave at 1kHz? How can this be improved?

Hands On Problems

- Go to hands on problem set for Signal Chain
- Work the problems from the following:
- Active Filter Designer
 - 10kHz Low Pass Filter
 - Optimize Low Pass Filter
 - Anti-aliasing filter

Active Filter Design Made Easy With WEBENCH[®] Active Filter Designer

Custom Active Filter Designs Including Spice Simulation

13

Common Filter Applications

Common Filter Applications

Mixed-Signal Filter Applications

15

Lowpass, Highpass, Bandpass, and Bandstop Filters

- A lowpass filter the bandwidth is equal to DC to f_c
- A highpass filter has a single stop-band DC to f_c , and pass-band $f > f_c$
- A bandpass filter has one pass-band, between two cutoff frequencies f_L and $f_u > f_L$, and two stop-bands $0 < f < f_L$ and $f > f_u$. The bandwidth = $f_u f_L$
- A bandstop (band-reject) filter is one with a stop-band $f_L < f < f_u$ and two passbands $0 < f < f_L$ and $f > f_u$

Adopted from: Introduction to Filter Theory - by David E. Johnson

1-kHz Lowpass filter gain vs. frequency

1-kHz highpass filter gain vs. frequency

1-kHz bandpass filter gain vs. frequency

1-kHz bandstop, or band-reject filter gain vs. frequency

INSTRUMENTS

Filter Order

Gain vs. frequency behavior for different lowpass filter orders

Filter Order

2nd-order lowpass, highpass and bandpass gain vs. frequency slopes

Why Active Filters?

A comparison of a 1kHz passive and active 2nd-order, lowpass filter

-180 + 10

100

- Inductor size, weight and cost for low frequency filters may be prohibitive
- Inductor magnetic coupling considerations
- · Active filter size is small and low in cost
- R and C values are easily scaled in active filters

1k

10k

Frequency (Hz)

100k

Popular Active Filter Topologies

2^{nd-}order Active filter topologies used by WEBENCH Active Filter Designer

Sallen-Key, VCVS Non-inverting amplifier topology Infinite Gain, Multiple-Feedback Inverting amplifier topology

Component type for each filter topology

Pass	Z1	Z2	Z3	Z4	Z5
Low	R1	R2	C3	C4	na
High	C1	C2	R3	R4	na

Pass	Z1	Z2	Z3	Z4	Z5
Low	R1	C2	R3	R4	C5
High	C1	R2	C3	C4	R5
Band	R1	R2	C3	C4	R5

Filter Responses

Response Considerations

- Amplitude vs. frequency
- Phase vs. frequency
- Step and impulse response characteristics

Filter Reponses

Common active lowpass filters - amplitude vs. frequency

Filter Reponses

Common active lowpass filters – other responses

Specify Filter Requirements

View / Select Filter Response

TEXAS INSTRUMENTS

Design Summary: Modify your Design

INSTRUMENTS

Closed Loop Frequency Response, Sine Wave Response,

Click to Run Sim Select Sim Type **Step Response** (한국어 | Русский Язык | Português | Deutsch 🛛 Welcome jeff.perry@ti.com My Designs/Properts 日本語|資体中文|繁鬱中文| Back Visualizer Schematic Sim Export Print Share Desig New FILTER DESIGNER SIMULATION 5455 Sim Types Simulation List Summarv Step 1 n Typ Closed Loop Freq Respo Closed Loop Freq Response Step 2 Start New Simulation Interactive Waveform Streaming Waveforms Sine Wave Response Ready. Zoom-in: Click and drag downward; Zoom-out: Click and drag u Waveform Controls <u>۽</u> FIT 0.6 Sh Step Response 20 100 ±*″ 0 -20 -100 (degrees) C2_81 C2_82 1.000 (qB) 2.0004 -200 4 4 ut_STAGE_1 vout Gain sim: -300 R1_82 sim: C1_81 C1_82 A1 .5 A1 3 Se -400 -80 -100 -500 Past simulation simId=4 Design Version Show Latest Design Version -120 -600 Past Simulations Active eSim Start New Simulation -140 -700 1e1 1e3 1e5 1e7 1e2 1e4 1e6 1e8 phase simId= 4 Closed Loop Freq Response : 2014-11-06 23:18 Status = Success gain Frequency (Hz) Messages eSim Report Download .cir file STAGE 1 ALL

Hands-on Exercise

Design Problem:	Goals:
Design a low pass filter with fast falling after the cut-off frequency.	Optimize the amplifier bandwidths to be as low as possible.
Filter Low pass Gain = 20 V/V -3db = 5000 Hz Stop band frequency = 25000 Hz Stop band attenuation = - 45 dB Chebyshev – allowable ripple <= 0.5 dB	

Filter Designer Landing Page (http://ti.com/filterdesigner)

TI Home > WEBENCH® Design Center > WEBENCH® Filter Designer

WEBENCH® Filter Designer

Active Filter Designs Within Minutes!

Active filters are vital in modern electronics; every data acquisition system needs them for bandwidth limiting signals before analog-to-digital converters as anti-aliasing filters, or after digital-to-analog converters as anti-imaging filters. Instrumentation relies on them for accurate signal measurements. Active filters are used for cutoff frequencies that range from sub-1Hz to 10MHz, where passive filter designs would require prohibitively large component values and sizes. Their design and verification can be tedious and time-consuming.

The WEBENCH Filter Designer lets you design, optimize, and simulate complete multi-stage active filter solutions withi minutes. Create optimized filter designs using a selection of TI operational amplifiers and passive components from TI's vendor partners.

SELECT from low-pass, high-pass, band-pass, and band-stop filter types. Specify performance constraints for attenuation, group delay, and step response. Choose from a variety of filter responses such as Chebyshev, Butterworth, Bessel, transitional Gaussian to 6dB, transitional Gaussian to 12dB, linear phase 0.05°, linear phase 0.005°. Determine the filter response best suited for your design by optimizing for pulse response. settling time. lowest

Optimizer Knob

Modify Constraints

Texas Instruments

Refine Results

View/Optimize Filter Response Solutions

Optimization Graph

39

Charts

40

Select a Filter Response

_	Solutions										
Solutions	Solutions: (7 found)										
Select	Filter Response	Color	Order	Max Q	Att (dB)	Passband Ripple (dB)	Group Delay (usec)	Group Delay Flatness (usec)	Settling Time (usec)	Step Response Overshoot (%)	
Select Chebyshev			4	2.435	-59.99	0.199	10.258	5.119	52.800	12.92	
Select	Select Butterworth		5	1.62	-69.69	3.25e-4	6.895	0.457	41.200	12.77	
Select	Select G ssian_6dB		5	2.26	-63.56	0.569	5.852	0.168	29.999	1.78	
Select	Select Linear_use_005		6	1.69	-63.27	0.456	5.795	0.027	16.700	0.42	
SelectLinearPha05BlaSelectGaClick 'Select' to sSelectGaSelectthat row		Black	6	2.2	-66.29	0.327	6.068	0.249	22.399	1.05	
		the filter	6	2.44	-64.95	0.387	5.886	0.148	21.899	0.84	
		d order in ow	7	1.13	-61.37	0.467	5.869	2.07e-5	14.400	0.49	

Design Summary: Filter Topology Configuration

Update Gain/Topology per stage

Filter Stage Schematic: View Component Values

Filter Stage: Bill of Materials

45

Select Alternate Part

Select Alternate Part

				_/	FILTER ARCHITE	CT ALTERNATE PAR	RTS						
Alternate Parts - Charts	-	Summary information for selected Component C1:											
Filter by Manufacturer: Select All 🛛 🗸	Manuf		Part Number	Сар	ESR	V	DC	Price	Qty Avail	Foot Print			
Update X Axis Update Y Axis				(F)	(Ohm)	(V)						
Cap I 🗸 Footprint (mm2)	Yageo /	America	CC0805KRX7R9BB102	1n	0		50	\$0.01	> 10	13			
40 -	LIMITS						C (F)						
36	Upperb	Upperbound 1.1n											
22	Lowert	bound					900p						
32 -	Target					în							
28	-					Select an alternate part for Component C1:							
8 24	Edit	Мари	Part Number	Сар	ESR	VDC	Price	Qty Avail	Foot Print	Height	Power Dis		
tprint 💭				(F)	(Ohm)	(V)							
20	Sel	Yageo America	CC0805KRX7R9BB102	1n	0	50	\$0.01	> 10	13	2.1	0		
N 16	Select	JuRata	GRM216R71E102KA01D	1n	0	25	\$0.01	0	13	2.1	0		
12 -	Select	MuRata	GRM1555C1H102JA01D	1n	0	50	\$0.01	> 10	8	0.45	0		
000	Select	MuRata	GRM033R71C102KA01D	1n	0	16	\$0.01	0	6	0.3	0		
8	Select	Kemet	C0603C102J5GACTU	1n	0	50	\$0.01	> 10	10	0.45	0		
4 -	Select	Kemet	C0603C102J5RACTU	1n	0	50	\$0.01	> 10	10	0.45	0		
0 -	Select	MuRata	GRM1885C1H102JA01D	1n	0	50	\$0.01	> 10	10	0.45	0		
0 2e-10 4e-10 6e-10 8e-10 1e-9	.2e-9 Select	MuRata	GRM188R72A102KA01D	1n	0	100	\$0.01	> 10	10	0.45	0		
Cap	Select	MuRata	GRM155R60J102KA01D	1n	0	6.3	\$0.01	0	8	0.45	0		
	Select	MuRata	GRM155R61A102KA01D	1n	0	10	\$0.01	0	8	0.45	0		
	, Cance	Reset All											

-46

Design Summary: Modify your Design

INSTRUMENTS

Optimization Knob

Filter Topology Specification

Tweak Design

Notate and Share

_				Design ID
	C	urrent Design: #926	*	
Name:	Lowpa	ss, Sallen Key, Chebys	hev 0.2 dB	
Notes:				
Sav	ve Nam	e & Notes		
	Ŷ	our Complete Design		
Produc	t Folde	er View My O	rders	Share Design
	\geq	Share this design		
		Copy this Design		
•				£

Closed Loop Frequency Response, Sine Wave Response, Step

54

Export to External Simulator

3) Schematic opens in Tina or Altium (Altium requires v14 and TI plug in)

Design Report

