
Debugging Applications that use TI-RTOS Technical Overview

Todd Mullanix

TI-RTOS Apps Manager

1

Agenda

• 30 Second Advertisement

• Stack Overflow

• Device Exception

• Memory Mismanagement

• Debugging Lab (separate PPT)

3

Pre-work: Please familiarize yourself with the following information prior to this training:

- CCS

- TI-RTOS

30 Second Advertisement

4

Since we know there a number of customers that will not want to use an RTOS for various

reasons. Here’s some key point to remember:

• TI-RTOS is developed and supported by TI: If you write your own little scheduler, you have to write it, maintain it, port

it if you move to a new device, etc. Is your job to deliver a smaller scheduler or a real product on time?

• Includes Power Management: For the low power devices, TI has power management included in TI-RTOS. Look at

the device’s power management…it is hard. Do you really want to deliver a power manager (and power aware drivers)

or a real product on time?

• Portable: Want to move to another device? Hope you factored this in when you wrote their own little scheduler and

drivers.

• Scalable: Want to add system-level functionality into the application? Hope you factored this in when you wrote their

own little scheduler and drivers.

• Don’t want to learn an RTOS: TI-RTOS’s kernel has “standard” OS components: Tasks, interrupts, semaphore,

queues, etc. It also supports POSIX (also called Pthreads).

• Overhead: Yes, TI-RTOS takes space. So does your little scheduler. What is the threshold (other than “smaller”)? For

the smallest CC1310 device (32KB flash), TI-RTOS can be set-up to only use ~3KB (~6KB with full Power

Management) of the flash and this still includes almost all the kernel’s functionality. Note: CC13xx/CC26xx has the

kernel’s .text in ROM.

• Debugging Facilities: Hey this is a good lead-in…

Stacks Overflow

5

Stacks are used to place information like local data storage, return state, parameter passing, etc. Stacks

grow as more subroutines are called. Finding a “good” value for the stack size is important. If you make it

too large, you waste memory. Worse though is if you make it too small…

Here’s code executing and let’s see what the stack might look
like before the calling writeBlock() in updateDisplay().

void getInput(int foo, int bar)

{

 …

 retVal = updateDisplay(buffer, BASE_X, BASE_Y);

int updateDisplay(char *bitmap, int x, int y)

{

 …

 writeBlock(&bitmap[i], xoffset, yoffset);

int writeBlock(char *block int x, int y)

{

 char tempBuf[256];

What’s going to happen when tempBuf is placed onto the stack?

Locals of getInput()

Return Address

Parameters for

getInput()

Locals of

updateDisplay ()

Parameters for

updateDisplay()

Return Address

Stack Pointer

Stack Size

512 bytes

Parameters for

writeBlock()

Return Address

Locals for writeBlock()

Stacks in TI-RTOS

6

With TI-RTOS there are two different types of stacks

System Stack: Hardware Interrupts (Hwi) and Software Interrupts (Swi) use a single system stack. The

size of this stack is configurable via the .cfg file (with IAR, you set it in the linker file).

Program.stack = 768;

Or graphically

Task Stack: Each Task has it’s own stack. The size of this stack is specified when you create a task.

Peak Usage of Stacks in TI-RTOS

7

The kernel will initialize the stacks with 0xBE values if the initStackFlags are set to true in the .cfg file

(the default is true).
var Task = xdc.useModule('ti.sysbios.knl.Task');

var halHwi = xdc.useModule('ti.sysbios.hal.Hwi');

Task.initStackFlag = true;

halHwi.initStackFlag = true;

If you set these to false, you save ~140 bytes of code and booting is slightly faster.

If you use true, you can get the peak usage in RTOS Object Viewer (ROV) in CCS and IAR.

Caveat: when opened, these ROV tabs slow down single stepping in the debugger.

Runtime Checking of Stacks in TI-RTOS

8

The kernel will perform runtime checks if desired.

var Task = xdc.useModule('ti.sysbios.knl.Task');

var halHwi = xdc.useModule('ti.sysbios.hal.Hwi');

Task.checkStackFlag = true;

halHwi.checkStackFlag = true;

If you set these to false, you save ~290 bytes of code.

If you use true:

- Whenever there a task context switch, the kernel will check the stack peaks of the

new and old tasks to make sure it is still 0xBE. If it is not, an error* is raised.

- If the Idle task executes, it will call the “ti_sysbios_hal_Hwi_checkStack” function to

make sure the system stack is ok. If the stack is blown, an error* is raised.

* Refer to the xdc.runtime.Error module for details on how to plug in an Error handler.

Stacks: Recommendations

9

For new development, it’s recommended you enable both the initialization of the stack and

the runtime checking.

Task.initStackFlag = true;

halHwi.initStackFlag = true;

Task.checkStackFlag = true;

halHwi.checkStackFlag = true;

Once you have the application to a stable point, you can then turn them off if you are tight

on space or need to squeeze out a tiny bit more performance. If these are not a concern,

you can leave them enabled and plug in an Error* handler that can act accordingly if the

stacks are blown (e.g. dump memory to be analyzed later and restart the device).

* Refer to the xdc.runtime.Error module for details on how to plug in an Error handler.

Additional Techniques to Size Stacks

10

Hardware Watchpoints: HW watchpoints in CCS are great for seeing what caused the stack

peak. You can run the application and determine the stack peak with ROV.

If you look at the memory, you can see the peak

Then simply set a HW Watchpoint for a write to

that address.

Restart the application. It will be hit quickly (since you have stack initialization turned on). The

next time you hit the breakpoint, you can look at the call stack to see what caused the peak.

Please note: the quality of the call task trace is dependent on the device, the symbols compiler

options you have enabled/disabled, and compiler toolchain.

Additional Techniques to Size Stacks

11

Call_graph: Call_graph analyzes stacks based on a .out file (i.e. statically determined as

opposed to runtime). This can be useful in trying to find places that use a large amount of stack

space. Here is a write-up: http://processors.wiki.ti.com/index.php/Code_Generation_Tools_XML_Processing_Scripts

The call_graph tool does not work through function pointers and assembly that is not

instrumented for it. For example, below shows UART_write being 8 bytes, where in reality it is

more since it calls UARTMSP432_write via a function pointer.

http://processors.wiki.ti.com/index.php/Code_Generation_Tools_XML_Processing_Scripts
http://processors.wiki.ti.com/index.php/Code_Generation_Tools_XML_Processing_Scripts

Additional Techniques to Catch Stack Overflow

12

Memory Protection Unit (MPU) Module

There is a MPU module in the TI-RTOS kernel for selected ARM Cortex-A and Cortex-M devices.

You can have a small region (e.g. 32 bytes) at the top of the stack where its attributes are no-

access. If the stack grows into the protected region an exception occurs.

MPU protected block

“no access”

Task Stack

Stack Grows

Exceptions

13

What is an exception?

Really short-story…not a good thing!

Short-story…a condition that the device cannot handle. For example, bus

error, executing an unknown instruction, etc.

TI-RTOS supports exception handling for the ARM and C64+ devices.

For this presentation, we are going to focus on the exception handling for

the MCU (M3, M4, M4F) devices.

Exceptions

14

We are going to look at what happens when the following code is executed on the EK-
TM4C1294XL board. Note: line 68 in the heartBeatFxn() is going to cause an exception!

When an exception occurs, the device jumps to the exception handler. TI-RTOS allows

different types of handlers for exceptions to be plugged in:

• User supplied Handler

• TI-RTOS Spin loop Handler

• TI-RTOS “Minimal” Exception Decoding Handler

• TI-RTOS Enhanced Exception Decoding Handler

The next slides will show how to select which exception handler to use and its benefits.

Exceptions: User Supplied Handler

15

User Supplied: If you want to be master of your domain and supply the exception handler yourself, you

can set the following and your handler is called (instead of going into the spin-loop).
var m3Hwi = xdc.useModule('ti.sysbios.family.arm.m3.Hwi');

m3Hwi.excHandlerFunc = "&myExceptionHandler";

Here is some pseudo-code for the user supplied handler
Void myExceptionHandler(UInt *excStack, UInt lr)

{

 // do stuff like write RAM to flash, flash LEDS, phone home, etc.

 // reset device

Benefits

- You’re in charge.

- You still know you have an exception from ROV but no reliable decoding

Exceptions: TI-RTOS Spin Loop Handler

16

TI-RTOS Spin Loop Handler: You can configure TI-RTOS to use a spin-loop handler instead
var m3Hwi = xdc.useModule('ti.sysbios.family.arm.m3.Hwi');

m3Hwi.excHandlerFunc = null;

Benefits

• Smallest footprint for the handlers

• You still know you have an exception from ROV but no reliable decoding.

• If you halt the target, you will be in the spin-loop

Exceptions: TI-RTOS Minimal Exception Decoding Handler

17

TI-RTOS Minimal Exception Decoding Handler: If you disable the enhanced exception handling and use the TI-RTOS

minimal handler instead.
var m3Hwi = xdc.useModule('ti.sysbios.family.arm.m3.Hwi');

m3Hwi.enableException = false; //true for enhanced

Benefits

• ROV decodes the exception and give a back trace. Note the “heartBeatFxn” name, file name and line number!

• The CCS Console will have some information

(if application is configured to output to CCS Console).

• You can set excHookFunc to execute before decoding.

• However, slightly larger footprint when compared to the spin-loop (~400 bytes more).

Please note, the quality of the back trace is dependent on the device, the

symbols compiler options you have enabled/disabled, and compiler toolchain.

Exceptions: TI-RTOS Enhanced Exception Decoding Handler

18

TI-RTOS Enhanced Exception Decoding Handler: If you accept the default configuration (shown

below), you get the TI-RTOS enhanced exception decoder.
var m3Hwi = xdc.useModule('ti.sysbios.family.arm.m3.Hwi');

m3Hwi.enableException = true;

Benefits

• ROV decodes the exception and gives a back trace.

• The CCS Console will have the decoded exception

(if application is configured to output to CCS Console).

• You can set excHookFunc to execute before decoding.
(refer to the Additional Details slide at the end for more details)

• However, ~3K larger footprint when compared to the “minimal”

Exceptions: Handlers Summary

19

You have several options with TI-RTOS for handling exceptions

• User supplied Handler

• TI-RTOS Spin loop Handler

• TI-RTOS “Minimal” Exception Decoding Handler

• TI-RTOS Enhanced Exception Decoding Handler

More Exception Information…

excHookFunc: For the enhanced and minimal TI-RTOS decoding exception handlers, you

can plug in a function that will be called during the handling of the exception. This gives you

an opportunity to perform any needed actions. Refer to the ti.sysbios.family.arm.M3.Hwi

module for more details.

More Exception Details: There is more information about exceptions here:

http://processors.wiki.ti.com/index.php/SYS/BIOS_FAQs#4_Exception_Dump_Decoding_U

sing_the_CCS_Register_View

20

http://processors.wiki.ti.com/index.php/SYS/BIOS_FAQs#4_Exception_Dump_Decoding_Using_the_CCS_Register_View
http://processors.wiki.ti.com/index.php/SYS/BIOS_FAQs#4_Exception_Dump_Decoding_Using_the_CCS_Register_View

Memory Allocation

21

Doing dynamic memory allocation in an embedded device has its risks. TI-RTOS offers a

way to easily add a smart heap on top of the system/default heap. This heap is called

HeapTrack. It helps with the following areas

- Over-writing the end of allocated buffers

- Freeing the same block twice

- Memory leaks

- Sizing the heap

To enable HeapTrack, simply set the

following in the .cfg file:

BIOS.heapTrackEnabled = true;

Or graphically

Memory Allocation: HeapTrack Details

22

For every memory allocation from the system heap, HeapTrack adds this small

structure at the end of the allocated block.

 struct Tracker {

 UInt32 scribble; // = 0xa5a5a5a5 when in use

 Queue_Elem queElem; // next and prev pointers

 SizeT size;

 UInt32 tick;

 Task_Handle taskHandle;

 }

Note: this may require you to slightly increase the size of your system heap since

a little extra memory is used for every allocated block.

This structure is analyzed both during via ROV and runtime execution…

Memory Allocation: HeapTrack ROV

23

HeapTrack in ROV displays all the allocated blocks by the task that allocated the blocks and by the heap.

Here are the things that HeapTrack in ROV helps find

Writing past the block: If the block has a corrupted scribble word, it is denoted with red. Note: the

runtime check only happens when freeing the block. ROV shows it when it is still allocated.

Memory Leak: By looking at the timestamp and Task owner, you generally can spot memory leaks

pretty easily.

Peaks: You can see the high-watermark for the heap also (both with and without the Tracker struct).

Memory Allocation: HeapTrack Runtime

24

When the allocated block is freed, the following two checks are done if kernel asserts are enabled.

- Double free: In free, an assert checks to see that you are not trying to free a free block.

- Writing past the block: In the free, an assert check makes sure the scribble word is valid. If you

accidently write past the end of the block, the scribble gets corrupted.

HeapTrack has a two APIs that can be called by the application to output (via System_printf) the

allocated blocks.

Void HeapTrack_printHeap(HeapTrack_Object *obj);

Void HeapTrack_printTask(Task_Handle task);

Here is an example of the HeapTrack_printTask output. The task has allocated two blocks of size 64 and
32. The application has overwritten the scribble word (on purpose). This is shown in the output.

Memory Allocation: Recommendations

25

You can quickly enable HeapTrack and run your application. Then using ROV and/or

runtime checks you can quickly find

- Over-writing the end of allocated buffers

- Freeing the same block twice

- Memory leaks

- Sizing the heap properly

After the problem is fixed, simply turn HeapTrack off to minimize the slight performance and

size impact.

Recommendation Summary

So…something weird is going on with your application. Here are some easy steps to do…

1. Check System and Task stack peaks in ROV or “Scan for Errors…”: A quick and

easy way to see if there are any issues detected is select “BIOS->Scan for errors…” in

ROV. Stack overflows will show up here as well as Hwi and Task.

2. Turn on TI-RTOS “Minimal” or “Enhanced” Exception Handling.

3. Enable HeapTrack if you have a dynamic allocation.

26

Resources

• www.ti.com Web Page:

– www.ti.com/tool/ti-rtos

• e2e Forum - TI-RTOS Forum:

– http://e2e.ti.com/support/embedded/tirtos/default.aspx

• Additional Training & Support Resources

– Main Product Page: http://processors.wiki.ti.com/index.php/TI-RTOS

– TI-RTOS online training: https://training.ti.com/ti-rtos-workshop-series

– Support direct link (includes Apps projects, extended release notes, FAQ, training,

etc.) http://processors.wiki.ti.com/index.php/TI-RTOS_Support

• Download page:

– http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html

27

http://www.ti.com/
http://www.ti.com/tool/ti-rtos
http://www.ti.com/tool/ti-rtos
http://www.ti.com/tool/ti-rtos
http://e2e.ti.com/support/embedded/tirtos/default.aspx
http://e2e.ti.com/support/embedded/tirtos/default.aspx
http://processors.wiki.ti.com/index.php/TI-RTOS
http://processors.wiki.ti.com/index.php/TI-RTOS
http://processors.wiki.ti.com/index.php/TI-RTOS
http://processors.wiki.ti.com/index.php/TI-RTOS
https://training.ti.com/ti-rtos-workshop-series
https://training.ti.com/ti-rtos-workshop-series
https://training.ti.com/ti-rtos-workshop-series
https://training.ti.com/ti-rtos-workshop-series
https://training.ti.com/ti-rtos-workshop-series
https://training.ti.com/ti-rtos-workshop-series
https://training.ti.com/ti-rtos-workshop-series
https://training.ti.com/ti-rtos-workshop-series
https://training.ti.com/ti-rtos-workshop-series
http://processors.wiki.ti.com/index.php/TI-RTOS_Support
http://processors.wiki.ti.com/index.php/TI-RTOS_Support
http://processors.wiki.ti.com/index.php/TI-RTOS_Support
http://processors.wiki.ti.com/index.php/TI-RTOS_Support
http://processors.wiki.ti.com/index.php/TI-RTOS_Support
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html

Thank you

28

Debugging Applications that use TI-RTOS Technical Lab

Todd Mullanix

TI-RTOS Apps Manager

1

TI Information – Selective Disclosure

Lab Introduction
Goal

Use the techniques learned in the Debugging Applications that use TI-RTOS Technical Overview to solve

common programming errors in an application.

Reminder: we learned about

- Stack overflows

- Exceptions

- Memory Mismanagement

Setup

The lab is based on the MSP-EXP432P401R Launchpad.

You need the following software which is included on the thumb drives (or zip file). Please copy to pieces

that you need into c:\FAESummit.

• CCS 6.1.2 (make sure you installed support for MSP432)

• TI-RTOS for MSP43x v2.16.00.08 (http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html)

• Exported CCS Console Projects

2

http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html

Application
The application is more of a starter project. It has a simple

console via the UART and has support for the two buttons.

Here’s the console options

Button0: increments a counter

Button1: prints out how many time Button0

 was pushed.

Note: System_printf and printf output is routed

to the UART.

3

Lab 1: Terminal Session

1a. Open Window’s “Device Manager” and find which port is the UART.

1b. Open your favorite terminal window. “Terminal” is in CCS. Open “View->Other…” and

find “Terminal”.

4

Lab 1: Terminal Session

1c. Select “Settings” in the Terminal Session (if using Terminal)

1d. Configure the “Connection Type” to be “Serial”

 and select the port specified in the Device Manager

 (you may have to type in the string).

Note: We’ve seen issues with the MSP432 UART with Window drivers.

If the port cannot be opened, close CCS and unplug the Launchpad. Plug the

Launchpad back in and start CCS. Reload the application and start terminal again.

5

Lab Problem
There are three problems with this application. All the three subtle problems are in main.c. Play

around with the console commands and buttons on the board to see if you can find and fix them.

The following projects are supplied for users:

- debugExample_withBugs: Debugging is turned off. This project appears to work fine…?

- debugExample_withBugs_debugEnabled: Same as above, but with the debugging topics we

talked about enabled (at the bottom of the .cfg file).

- debugExample_withBugs_working: Bugs fixed and debugging disabled.

6

Importing zipped projects into Desktop CCS

Project->Import CCS Projects…

7

Lab: What’s wrong?
Import the debugExample_withBugs project (see the previous slide for help). Build

and run the example on the MSP-EXP432P401R launchpad. See if you can

determine any problems before halting and doing the following techniques we’ve

learned.

1. Check System and Task stack peaks in ROV or “Scan for Errors…”: A quick and easy

way to see if there are any issues detected is select “BIOS->Scan for errors…” in ROV.

Stack overflows will show up here as well as Hwi and Task.

2. Turn on TI-RTOS “Minimal” or “Enhanced” Exception Handling.

3. Enable HeapTrack if you have a dynamic allocation.

Big hint: the debugging options we learned are disabled in the bottom of the .cfg file, so it might

be useful to enable them (or you can import the debugExample_withBugs_debugEnabled

project as a short-cut to enabling them).

Can you find and fix the 3 bugs in main.c now? The next slides have

the answers…
8

Answers: Bug #1…Stack too small
If we halt the target and “Scan for Errors…” in ROV->BIOS, we see a strange message

about the task stack

Let’s enable stack initialization and checking in the .cfg file and then rebuild/reload/run.
Task.initStackFlag = true;

Task.checkStackFlag = true;

halHwi.initStackFlag = true;

halHwi.checkStackFlag = true;

Now when we run it and look, we see the Task stack overflow (also shows in Task->Detailed

in ROV).

Let’s bump it up to 1024 and rebuild/reload/run.
 #define TASKSTACKSIZE 1024

When we are done, we could shrink this down to better number.

9

Answers: Bug #2…Memory Leak
If you restarted (r) the console and happened to look at the memory usage…

it is going down! Something is leaking! Let’s turn on HeapTrack (rebuild/reload/run).

 var HeapTrack = xdc.useModule('ti.sysbios.heaps.HeapTrack');

 BIOS.heapTrackEnabled = true;

Before the first clock tick, we allocated a block of 0x28 (40D). After ~8.2, ~10.0, etc.

seconds we have the same size again. We are only using malloc, so that has an

8 byte overhead. So we are looking for a size of 32 bytes in the console app.

After looking at simpleConsole() function we see that the comment/check was wrong!

 /* simpleConsole returns 0 if the buffer needs to be freed */

 rc = simpleConsole(consoleBuffer, CONSOLEBUFFERSIZE);

 if (rc == 0) {

 free(buffer);

 }

10

Answers: Bug #3…Overflowing Buffer
Try pushing button0 10 times or more and then button1 to print the count. Look the console task’s

memory allocation in HeapTrack.

There is an overflow. With a little searching and maybe looking at the memory browser, we see that we

did give enough space for string + two digits + two ‘\n’ in counterStr in main(), but forgot the string

terminate character (‘\0’). Reminder: strlen does not include the ‘\0’ character in the returned count.

/*

 * Allocate buffer for gpioButtonFxn1.

 * Get the size of the string + 2 (for two digits) + 2 (for '\n' chars).

 */

 countStr = malloc(strlen(PUSH_STR) + 4);

11

