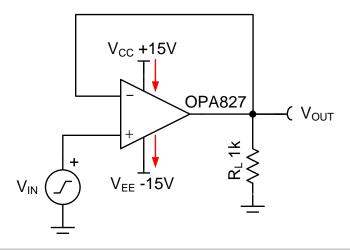
Power and Temperature

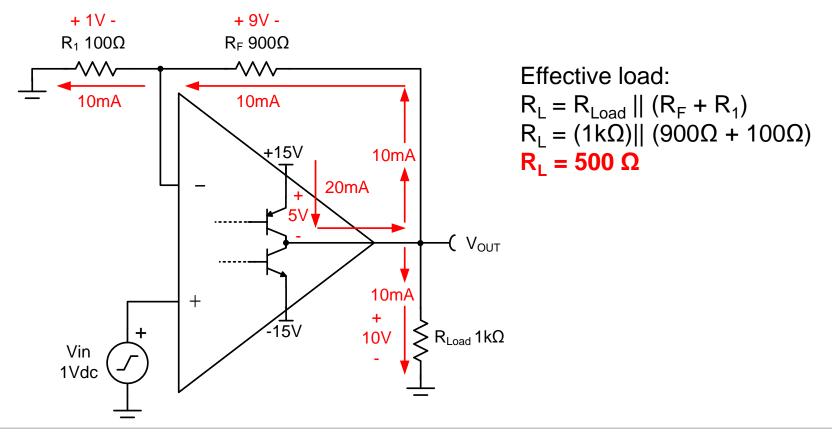
TIPL 1160 TI Precision Labs – Op Amps


Presented by Ian Williams

Prepared by Art Kay, Ian Williams and Miro Oljaca

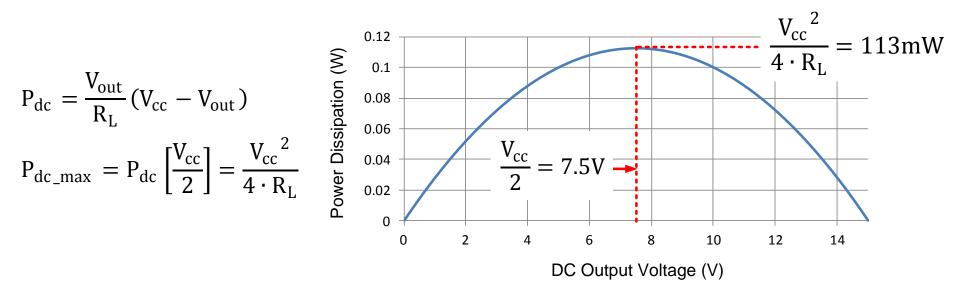
Power Dissipation – Quiescent Current

		OPA827AI			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
POWER SUPPLY					
Specified Voltage V _S		±4		±18	V
Quiescent Current I _Q (per amplifier)	I _{OUT} = 0A		4.8	5.2	mA
Over Temperature				6	mA



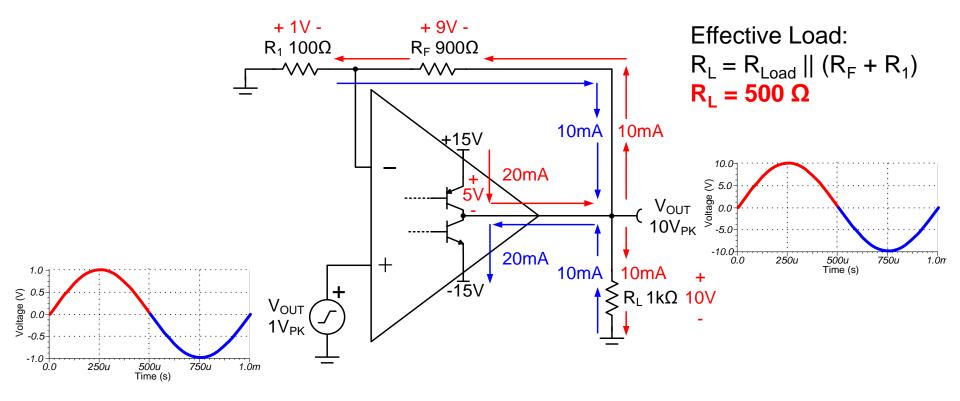
 $P_{Q} = \text{quiescent power} = I_{Q} * V_{S}$ $I_{Q} = \text{quiescent current}$ $V_{S} = \text{total supply voltage}$ $V_{S} = V_{CC} - V_{EE} = (15) - (-15V) = 30V$

Example: worst case over temperature $P_Q = I_Q \cdot V_S = (6mA)(30V) = 180mW$



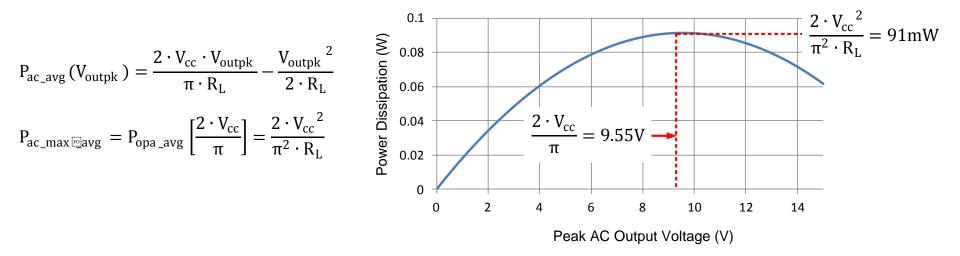
Power Dissipation – DC Load

Maximum DC Power Dissipation

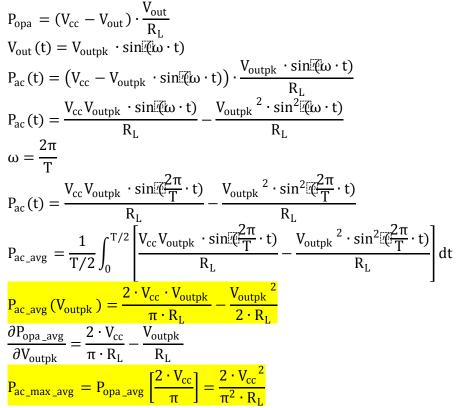

Derivation of DC Maximum Power Transfer

$$\begin{split} P_{opa} &= (V_{cc} - V_{out}) \cdot \frac{V_{out}}{R_L} \\ P_{opa} (V_{out}) &= \frac{V_{out} \cdot V_{cc}}{R_L} - \frac{V_{out}^2}{R_L} \\ \frac{\partial P_{opa}}{\partial V_{out}} &= \frac{V_{cc} - 2 \cdot V_{out}}{R_L} = 0 \\ V_{out} &= \frac{V_{cc}}{2} \qquad \text{when} \qquad \frac{\partial P_{opa}}{\partial V_{out}} = 0 \\ P_{dc_max} &= P_{opa} (\frac{V_{cc}}{2}) = \frac{V_{cc}^2}{4 \cdot R_L} \end{split}$$

- (1) Power dissipated in op amp
- (2) Dc output voltage
- (3) Take the partial derivative. Set to zero and solve for maxima.
- (4) Solve (3) for value of Vout that yields maximum power
- (5) Substitute (4) into (2) to determine maximum dc power in Op Amp

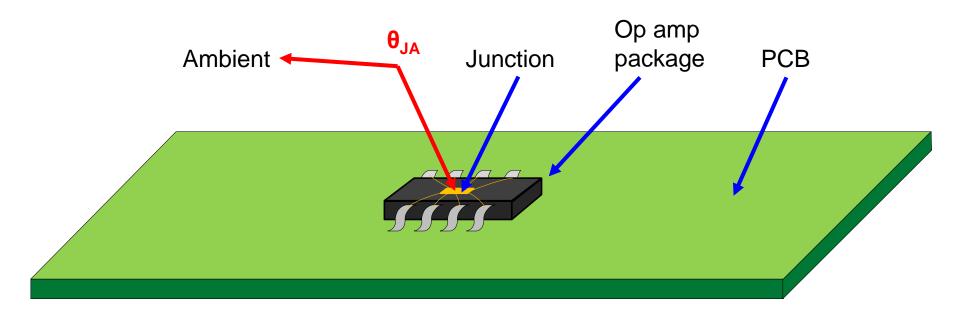


Power Dissipation at AC



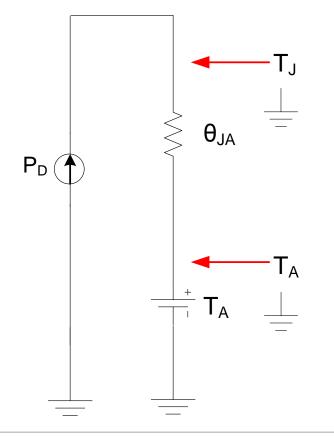
Maximum Average AC Power Dissipation

Derivation of AC Maximum Power Transfer



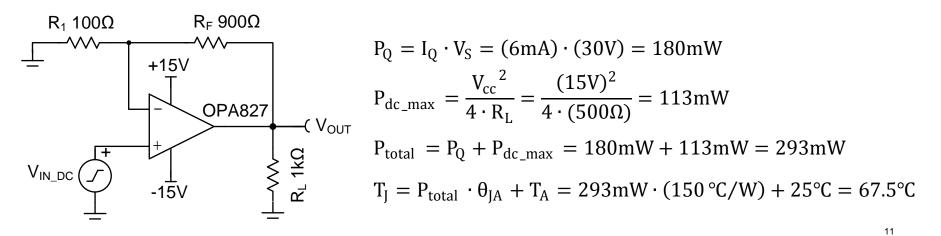
- (1) Power dissipated in op amp
- (2) ac sinusoidal wave out
- (3) Substitute (2) into (1)
- (4) Power dissipated in op amp as a function of time
- (5) Angular frequency as a function of period
- (6) Substitute (5) into (4)
- (7) Find the average power
- (8) Average power as a function of peak output voltage
- (9) Take the partial derivative to find maxima. Set to zero and solve for maxima.
- (10) Maximum power and the peak output voltage where max power occurs

Derivation courtesy of Miro Oljaca


Thermal Device Model – No Heat Sink

θ_{JA} includes the effects of the package and PCB!

Analogous Electrical Model – No Heat Sink

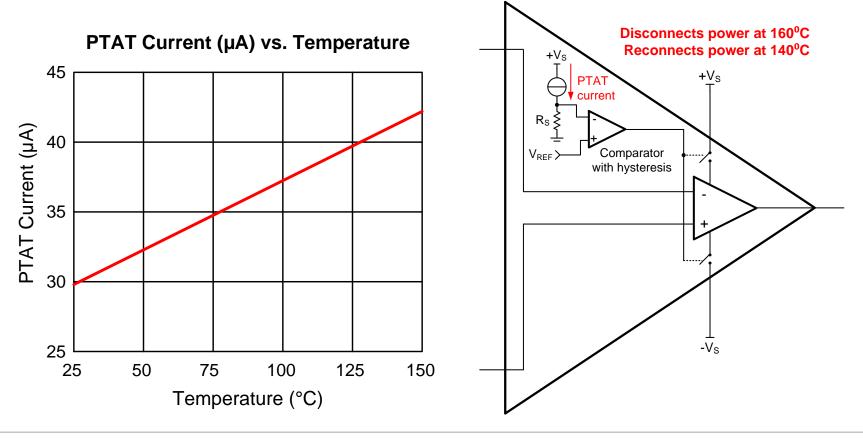


- $\mathbf{T}_{\mathsf{J}} = (\mathbf{P}_{\mathsf{D}}^* \boldsymbol{\Theta}_{\mathsf{J}\mathsf{A}}) + \mathbf{T}_{\mathsf{A}}$
- $T \rightarrow voltage$
- $\theta \rightarrow \text{resistance}$
- $P \rightarrow current$

Temperature Rise – Maximum DC Load

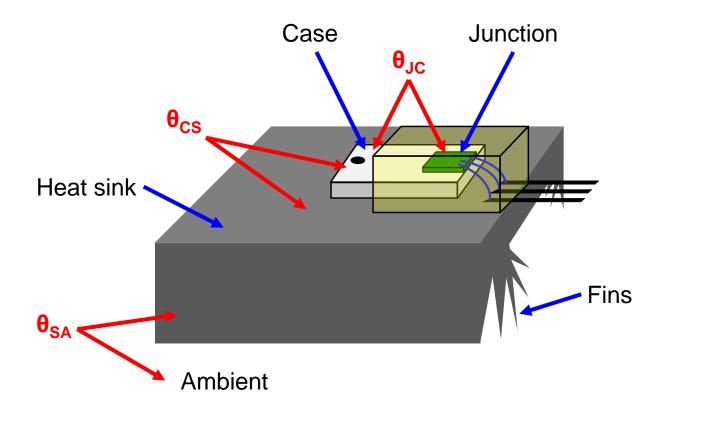
			OPA827AI			
PARAMETER		CONDITIONS	MIN	TYP	MAX	UNIT
TEMPERATURE RANGE						
Specified Range	T _A		-40		+125	°C
Operating Range	T _A		-55		+150	°C
Thermal Resistance	θ _{JA}					
SO-8, MSOP-8				150		°C/W

🤴 Texas Instruments

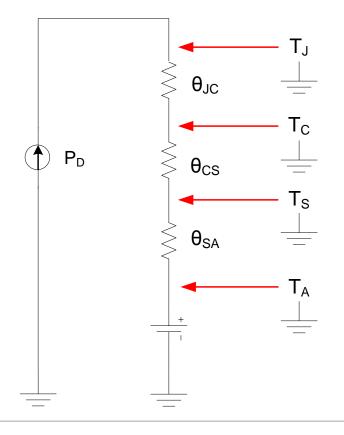

Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted).

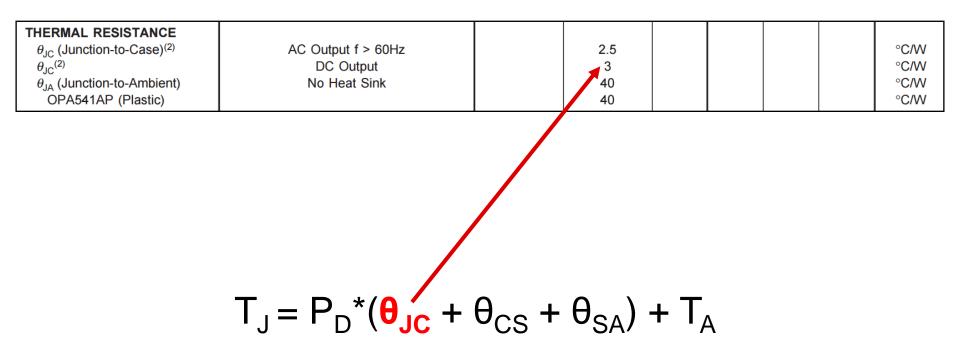
PARAMETER			VALUE	UNIT
Supply Voltage	tage $V_{\rm S} = (V+) - (V-)$		40	V
Input Voltage ⁽²⁾		(V−) − 0.5 to (V+) + 0.5	V	
Input Current ⁽²⁾			±10	mA
Differential Input Voltage		±V _S	V	
Output Short-Circuit ⁽³⁾		Continuous		
Operating Temperature T _A		–55 to +150	°C	
Storage Temperature T _A		–65 to +150	°C	
Junction Temperature T _J		+150	°C	
ESD Ratings	Human Body Model (HBM)		4000	V
	Charged Device Model (CDM)		1000	V



Thermal Protection

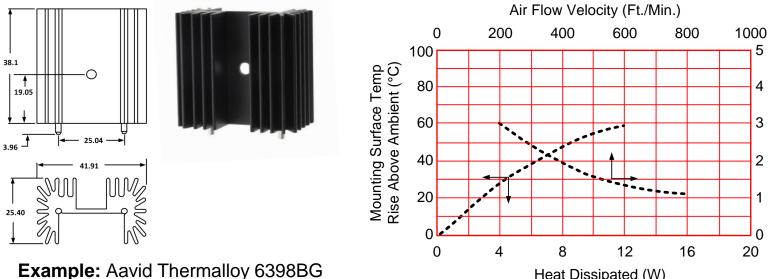


Thermal Model – Device with Heat Sink


Analogous Electrical Model – Device with Heat Sink

- $\mathbf{T}_{\mathsf{J}} = \mathbf{P}_{\mathsf{D}}^{*}(\boldsymbol{\theta}_{\mathsf{JC}} + \boldsymbol{\theta}_{\mathsf{CS}} + \boldsymbol{\theta}_{\mathsf{SA}}) + \mathbf{T}_{\mathsf{A}}$
- P_D = total power dissipation
- T_J = junction temperature
- T_{C} = case temperature
- T_{S} = heat sink temperature
- T_A = ambient temperature

Thermal Resistance – O_{JC} (Junction to Case)



Thermal Resistance – Θ_{CS} (Case to Sink)

Typical Interface Resistances for Various Mounting Methods with a TO-220 (interface area = 1 in^2): Thermal Joint Compound only (0.001 thick) $\theta = 0.056^{\circ}$ C/W Mica (0.005) and Joint Compound (0.002) $\theta = 0.44 \text{ °C/W}$ Series 177 Beryllium Oxide Wafers (0.062) $\theta = 0.13 \text{ °C/W}$ And joint Compound (0.002) DeltaPad[™] 173-9 (0.009) $\theta = 0.50 \text{ °C/W}$ Dry Mounting (0.001 assumed) $\theta = 1.2 \text{ °C/W}$ $T_{II} = P_{D}^{*}(\theta_{IIC} + \theta_{CS}^{\prime} + \theta_{SA}) + T_{A}$

Thermal Resistance – Θ_{SA} (Sink to Ambient)

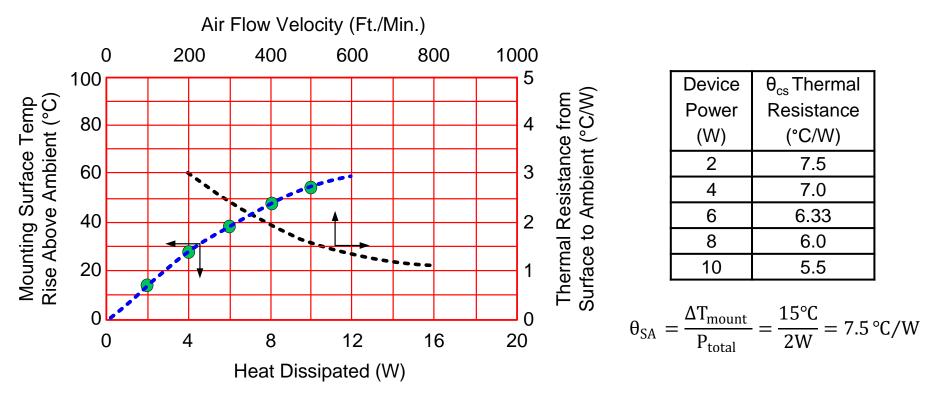
Heat Dissipated (W)

 $T_{I} = P_{D}^{*}(\theta_{IC} + \theta_{CS} + \theta_{SA}) + T_{A}$

5

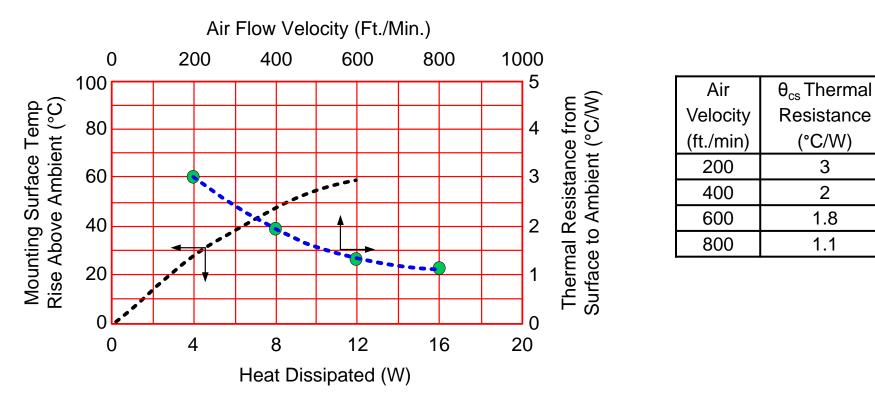
3

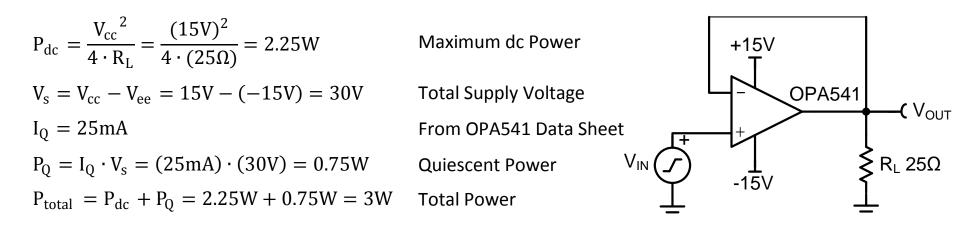
2

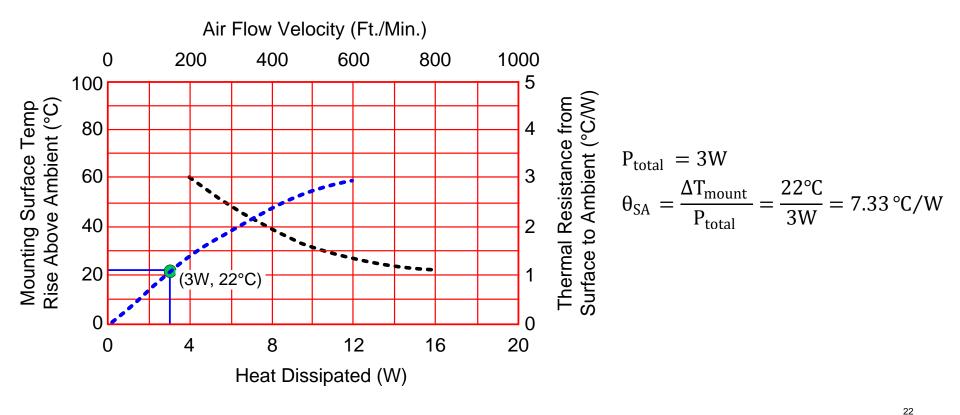

0

Surface to Ambient (°C/W)

Thermal Resistance from


Thermal Resistance in Natural Convection*

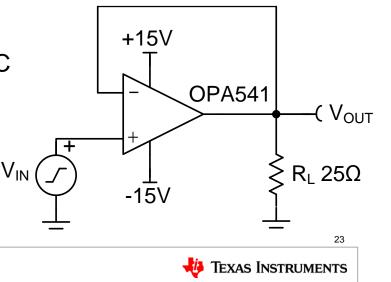

Thermal Resistance in Forced Airflow


Example – Calculate Total Power

		OPA541AM/AP			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY Power Supply Voltage, ±V _S Current, Quiescent	Specified Temperature Range	±10	±30 20	±35 25	V mA

Example – Calculate θ_{SA} for Given Power

🦊 Texas Instruments


Example – Calculate Junction Temperature

 $\theta_{JC} = 3^{\circ}C/W$ from OPA541 data sheet (TO-220) $\theta_{CS} = 0.44^{\circ}C/W$ (Mica and joint compound) $\theta_{SA} = 7.33^{\circ}C/W$ (Heat sink specification at 3W) $T_A = 25^{\circ}C$ $P_D = 3W$

$$T_{J} = P_{D}^{*}(\theta_{JC} + \theta_{CS} + \theta_{SA}) + T_{A}$$

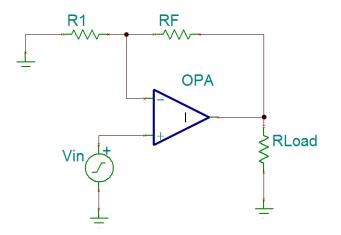
$$T_{J} = (3W)^{*}(3^{\circ}C/W + 0.44^{\circ}C/W + 7.33^{\circ}C/W) + 25^{\circ}C$$

$$T_{J} = 57.3^{\circ}C$$

Thanks for your time! Please try the quiz.

Power and Temperature

Multiple Choice Quiz TI Precision Labs – Op Amps


1. What is junction temperature?

- a. The highest operating temperature of the die of an electronic device.
- b. The recommended operating temperature of an electronic device.
- c. The typical operating temperature of the case of an electronic device.
- d. The temperature where the die starts separating from the package.

2. What is thermal resistance?

- a. Resistance of a device over temperature.
- b. A property that describes how resistant a device is to thermal damage.
- c. A property that describes how a material accepts changes in heat.
- d. A property that describes how a material resists heat flow.

3. How do you calculate effective resistive load of the amplifier above?

- a. $R_L = R_{Load}$
- b. $R_L = R_{Load} || R_1$
- c. $R_L = R_{Load}/(R_F + R_1)$
- d. $R_L = R_{Load} || (R_F + R_1)$

4. What is quiescent current (lq)?

- a. Maximum current draw of the device.
- b. Minimum current draw when a device is powered with a load current.
- c. Typical current draw when a device is powered with no load current.
- d. Maximum current draw when a device is powered with no load current.
- e. Current where the device is the quietest.

5. When is DC power dissipation at its maximum?

- a. When the output voltage is equal to V+.
- b. When output voltage is equal to mid-supply
- c. When the load is drawing the most current.
- d. When the inputs of the op amp are shorted to ground.

- 6. A high thermal resistance is preferable in a package.
- a. True
- b. False

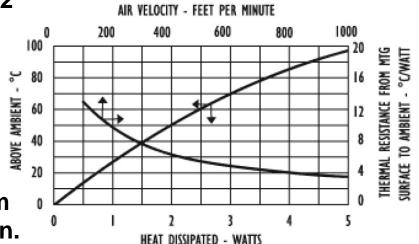
7. In the analogous electrical model of a thermodynamic system how do temperature, thermal resistance and power act?

- a. T \rightarrow Current, $\theta \rightarrow$ resistance, P \rightarrow Voltage source
- b. T \rightarrow Voltage, $\theta \rightarrow$ resistance, P \rightarrow Current source
- c. T \rightarrow Inductance, $\theta \rightarrow$ Capacitance, P \rightarrow Power
- d. T \rightarrow resistance, $\theta \rightarrow$ Current, P \rightarrow Capacitance

8. What is the difference between the specified temperature range and the operating temperature range?

- a. Within the specified temperature the device will work as specified in the data sheet. In the operating range the device will operate, but possibly out of spec.
- b. Within the operating temperature the device will work as specified in the data sheet. In the specified range the device will operate will enhanced performance.
- c. The specified temperature is the range of temperatures the device was tested on the datasheet. The operating temperature is what the customer operates the device at.
- d. Within the operating temperature the device will work as specified in the data sheet. In the specified range the device will operate, but possibly out of spec.

9. Thermal protection can protect against


- a. Heating from the ambient environment
- b. Heating from other components
- c. Self heating of the device
- d. Self heating of the device while the ambient temperature is above the absolute maximum

10. What thermal resistances are included in the thermal model of a device with a heat sink?

a.
$$\theta_{JC}$$
, θ_{CS} , θ_{SA}
b. θ_{JA} , θ_{CS} , θ_{SA}
c. θ_{JA} , θ_{SA}
d. θ_{JA} , θ_{JC} , θ_{CS} , θ_{SA}

- 11. What is the thermal resistance (θ_{SA}) from heatsink to ambient with a device power of 2 Watts.
- a. 12.5°C/Watt
- b. 25°C/Watt
- c. 10°C/Watt
- d. 5°C/Watt
- 12. What is the thermal resistance (θ_{CS}) from heatsink to case with an airflow of 800 ft/min.
- a. 20°C/Watt
- b. 4°C/Watt
- c. 5°C/Watt
- d. 15°C/Watt

13. When a device is operating outside of this range, it becomes damaged.

- a. Specified temperature
- b. Absolute maximum operating temperature range
- c. Absolute maximum specified temperature range
- d. Characterization temperature

*14. What is a PTAT current?

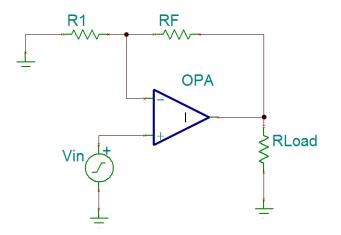
- a. Current induced when the device is below the specified temperature range.
- b. Proportional to absolute temperature current which is a current used in the protection circuit of a device to cut power to the device to prevent damage.
- c. Power thermal amperage threshold current which is the power which creates an amperage at a certain thermal threshold.

*15. Which of the following mounting methods has the lowest interface resistance?

- a. Series 177 Beryllium Oxide Wafers (and thermal joint compound (0.002)
- b. Thermal Joint Compound only (0.001 thick)
- c. DeltaPad[™] 173-9 (0.009)
- d. Dry Mounting (0.001 assumed)

Power and Temperature

Multiple Choice Quiz: Solutions TI Precision Labs – Op Amps



- 1. What is junction temperature?
- a. The highest operating temperature of the die of an electronic device.
- b. The recommended operating temperature of an electronic device.
- c. The typical operating temperature of the case of an electronic device.
- d. The temperature where the die starts separating from the package.

2. What is thermal resistance?

- a. Resistance of a device over temperature.
- b. A property that describes how resistant a device is to thermal damage.
- c. A property that describes how a material cools.
- d. A property that describes how a material resists heat flow.

3. How do you calculate effective resistive load of the amplifier above?

- a. $R_L = R_{Load}$
- b. $R_L = R_{Load} || R_1$
- c. $R_L = R_{Load} / (R_F + R_1)$
- d. $R_L = R_{Load} || (R_F + R_1)$

4. What is quiescent current (Iq)?

- a. Maximum current draw of the device.
- b. Minimum current draw when a device is powered with a load current.
- c. Typical current draw when a device is powered with no load current.
- d. Maximum current draw when a device is powered with no load current.
- e. Current where the device is the quietest.

5. When is DC power dissipation at its maximum?

- a. When the output voltage is equal to V+.
- b. When output voltage is equal to mid-supply
- c. When the load is drawing the most current.
- d. When the inputs of the op amp are shorted to ground.

- 6. A high thermal resistance is preferable in a package.
- a. True

b. False

7. In the analogous electrical model of a thermodynamic system how do temperature, thermal resistance and power act?

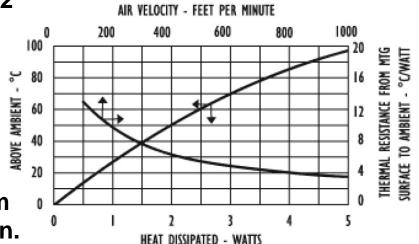
- a. T \rightarrow Current, $\theta \rightarrow$ resistance, P \rightarrow Voltage source
- b. T \rightarrow Voltage, $\theta \rightarrow$ resistance, P \rightarrow Current source
- c. T \rightarrow Inductance, $\theta \rightarrow$ Capacitance, P \rightarrow Power
- d. T \rightarrow resistance, $\theta \rightarrow$ Current, P \rightarrow Capacitance

8. What is the difference between the specified temperature range and the operating temperature range?

- a. Within the specified temperature the device will work as specified in the data sheet. In the operating range the device will operate, but possibly out of spec.
- b. Within the operating temperature the device will work as specified in the data sheet. In the specified range the device will operate will enhanced performance.
- c. The specified temperature is the range of temperatures the device was tested on the datasheet. The operating temperature is what the customer operates the device at.
- d. Within the operating temperature the device will work as specified in the data sheet. In the specified range the device will operate, but possibly out of spec.

9. Thermal protection can protect against

- a. Heating from the ambient environment
- b. Heating from other components
- c. Self heating of the device
- d. Self heating of the device while the ambient temperature is above the absolute maximum


10. What thermal resistances are included in the thermal model of a device with a heat sink?

a.
$$\theta_{JC}$$
, θ_{CS} , θ_{SA}
b. θ_{JA} , θ_{CS} , θ_{SA}
c. θ_{JA} , θ_{SA}
d. θ_{JA} , θ_{JC} , θ_{CS} , θ_{SA}

🜵 Texas Instruments

17

- 11. What is the thermal resistance (θ_{SA}) from heatsink to ambient with a device power of 2 Watts.
- a. 12.5°C/Watt
- b. 25°C/Watt
- c. 10°C/Watt
- d. 5°C/Watt
- 12. What is the thermal resistance (θ_{CS}) from heatsink to case with an airflow of 800 ft/min.
- a. 20°C/Watt
- b. 4°C/Watt
- c. 5°C/Watt
- d. 15°C/Watt

13. When a device is operating outside of this range, it becomes damaged.

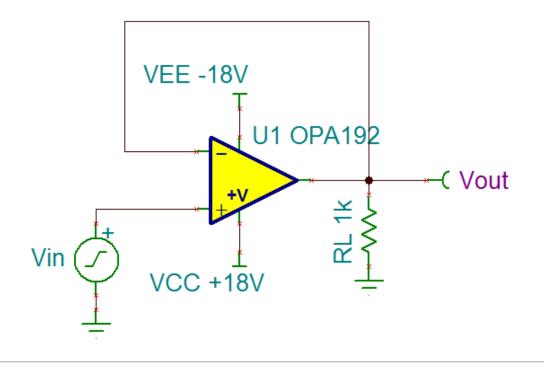
- a. Specified temperature
- b. Absolute maximum operating temperature range
- c. Absolute maximum specified temperature range
- d. Characterization temperature

*14. What is a PTAT current?

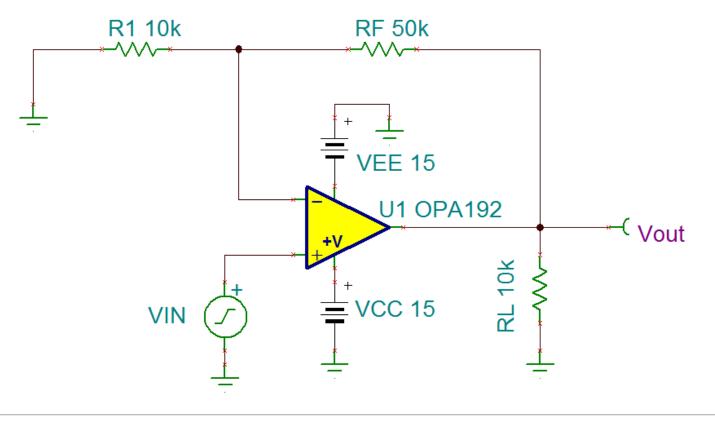
- a. Current induced when the device is below the specified temperature range.
- b. Proportional to absolute temperature current which is a current used in the protection circuit of a device to cut power to the device to prevent damage.
- c. Power thermal amperage threshold current which is the power which creates an amperage at a certain thermal threshold.

*15. Which of the following mounting methods has the lowest interface resistance?

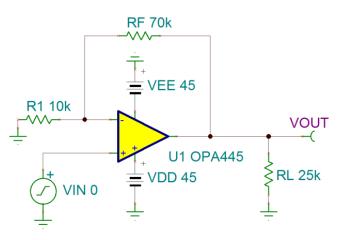
- a. Series 177 Beryllium Oxide Wafers (and thermal joint compound (0.002)
- b. Thermal Joint Compound only (0.001 thick)
- c. DeltaPad[™] 173-9 (0.009)
- d. Dry Mounting (0.001 assumed)


Power and Temperature

Exercises TI Precision Labs – Op Amps


1. Calculate the maximum DC power dissipation for this circuit.

L	1	1	1					
POW	POWER SUPPLY							
	Quiescent current per	I ₀ = 0 A	1 1	.2				
۱ _Q	amplifier	$T_{A} = -40^{\circ}$ C to +125°C, $I_{O} = 0$ A	1	.5 mA				

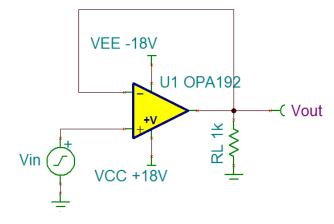

2. Calculate the maximum average AC power dissipation for this circuit assuming a sinusoidal input and a resistive load.

3a. Calculate the maximum DC power dissipation for this circuit.

		OPA445BM		OPA445AP, AU, ADDA				
PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
POWER SUPPLY								
Specified Operating Range V _S			±40			*		V
Operating Voltage Range		±10		±45	*		*	V
Quiescent Current IQ	I _O = 0		±4.2	±4.7		*	*	mA

3b. Calculate the junction temperature at maximum DC power dissipation for the SO-8 package if the ambient temperature is 25°C and no heat sink is used. Is this within specified temperature limits?

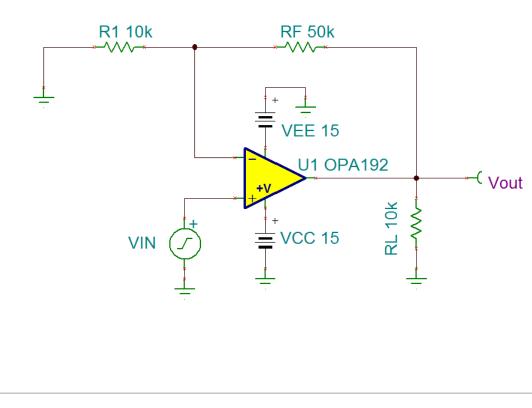
		OPA445BM			OPA445AP, AU, ADDA			
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	UNITS
TEMPERATURE RANGE								
Specification Range		-25		+85	*		*	°C
Operating Range		-55	İ	+125	*	İ	*	°C
Storage Range		-65	İ	+125	-55	İ	+125	°C
Thermal Resistance,								
Junction-to-Ambient $ heta_{JA}$								
TO-99			200					°C/W
DIP-8		ĺ	ĺ	ĺ	ĺ	100	ĺ	°C/W
SO-8 Surface-Mount		İ	ĺ	ĺ	İ	150	ĺ	°C/W


Power and Temperature

Solutions TI Precision Labs – Op Amps

1. Calculate the maximum DC power dissipation for this circuit.

L			1	1			
POWER SUPPLY							
	Quiescent current per	I ₀ = 0 A	1 1.2				
' Q	amplifier	$T_A = -40^{\circ}$ C to +125°C, $I_O = 0$ A	1.5	mA			


$$V_{\rm S} = V_{\rm CC} - V_{\rm EE} = (18V) - (-18V) = 36V$$

 $P_{\rm Q} = I_{\rm Q} \cdot V_{\rm S} = (1.5 \text{mA})(36V) = 54 \text{mW}$

$$P_{dc_max} = \frac{(V_{cc})^2}{4*R_L} = \frac{(18V)^2}{4*1k\Omega} = 81mW$$

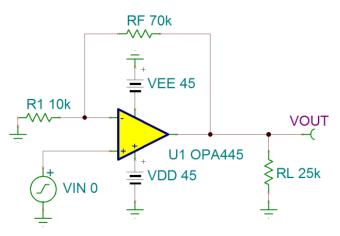
 $P_{total} = P_{dc_{max}} + P_{Q} = 81mw + 54mW = 135mW$

2. Calculate the maximum average AC power dissipation for this circuit assuming a sinusoidal input and a resistive load.

Effective Load:

$$\begin{aligned} R_{L} &= R_{Load} || (R_{F} + R_{1}) \\ R_{L} &= 10 k\Omega || (50 k\Omega + 10 k\Omega) \\ R_{L} &= 8.57 k\Omega \end{aligned}$$

Maximum Average AC Power:


$$P_{ac_max_avg} = \frac{2 * (V_{cc})^2}{\pi^2 * R_L}$$
$$P_{ac_max_avg} = \frac{2 * 15^2}{\pi^2 * 8.57 k\Omega}$$
$$P_{ac_max_avg} = 5.32 mW$$

🔱 Texas Instruments

8

3a. Calculate the maximum DC power dissipation for this circuit.

		OPA445BM			OPA445AP, AU, ADDA			
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	UNITS
POWER SUPPLY			İ					
Specified Operating Range Vs			±40			*		V
Operating Voltage Range		±10		±45	*		*	V
Quiescent Current	I _O = 0		±4.2	±4.7		*	*	mA

$$V_{S} = V_{CC} - V_{EE} = (45V) - (-45V) = 90V$$

$$R_{L} = R_{Load} ||(R_{F} + R_{1}) = 25k\Omega||(70k\Omega + 10k\Omega) = 19k\Omega$$

$$P_{Q} = I_{Q} \cdot V_{S} = (4.7mA)(90V) = 423mW$$

$$P_{dc_{max}} = \frac{(V_{cc})^{2}}{4*R_{L}} = \frac{(45V)^{2}}{4*19k\Omega} = 26.6mW$$

$$P_{total} = P_{dc_{max}} + P_{Q} = 26.6mW + 423mW = 449.6mW$$

9

3b. Calculate the junction temperature at maximum DC power dissipation for the SO-8 package if the ambient temperature is 25°C and no heat sink is used. Is this within specified temperature limits?

		OPA445BM			OPA445AP, AU, ADDA			
PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
TEMPERATURE RANGE								ſ
Specification Range		-25		+85	*		*	°C
Operating Range		-55		+125	*		*	°C
Storage Range		-65		+125	-55		+125	°C
Thermal Resistance,								
Junction-to-Ambient								
ТО-99			200					°C/W
DIP-8						100		°C/W
SO-8 Surface-Mount						150		°C/W
$\Theta_{JA} = 150^{\circ}C/W$								
	$T_{A} = 25$	°C						
$P_{total} = 449.6 \text{mW}$								
$T_{J} = P_{total} * \Theta_{JA} + T_{A} = 449.6 \text{mW} * 150^{\circ}\text{C/W} + 25^{\circ}\text{C}$								
$T_{J} = 92.4^{\circ}C$								

Not within the specified range (-25°C - 85°C), but within the operating range! 10

