
Customizing the Yocto-Based Linux
Distribution for Production

Components of a Linux distribution
• Toolchain (gcc)
• Libraries (glibc, etc.)
• Bootloader (grub, u-boot, etc.)
• Kernel
• File system

– Console utilities
– Window system
– Etc.

Why choose Yocto?
• Cross compiling
• Toolchain flexibility (e.g. armv5fp)
• Scalability
• Licensing controls
• Accountability (precise knowledge of what’s in the distribution)

3

TI Information – Selective Disclosure

Yocto Overview
• Yocto Project
• Poky (rhymes with “hockey”)
• Arago
• Recipes
• Layers
• bitbake

• Packages
• Package Groups

Simplified Yocto Build Overview

5

Package1 Package1 Package1 Package1 Recipe

meta-<layer>

. . .

Package1 Package1 Package1 Package1 Recipe

meta-<layer>

bitbake

. . .

gcc

toolchain
make

git

autoconf

u-boot

kernel

file
system

Target

wget

What’s in a recipe?
• Source code URL
• Git branch and commit ID
• Build dependencies
• Run-time dependencies
• License
• Configuration commands
• Compilation commands
• Installation commands

6

TI Information – Selective Disclosure

Mapping of Proc SDK Linux to Yocto Branches

Processor SDK Linux Yocto Branch

3.x 2.1 (Krogoth)

4.x 2.2 (Morty)

2.3 (Pyro)

5.x 2.4 (Rocko)

2.5 (Sumo)

2.6 (Thud)

7

TI Information – Selective Disclosure

Building Processor SDK Linux

Customizing the Yocto-Based Linux Distribution for Production

Instructions

9

TI Information – Selective Disclosure

http://processors.wiki.ti.com/index.php/Processor_SDK_Building_The_SDK

http://processors.wiki.ti.com/index.php/Processor_SDK_Building_The_SDK
http://processors.wiki.ti.com/index.php/Processor_SDK_Building_The_SDK

Build requirements
• Linux host machine

– 64 bit Linux required
– Native Linux machine strongly recommended!

• 16GB RAM, up to 200GB for a fully compiled file system
• Ubuntu 16.04 (64-bit) recommended

Proxy configuration
Pay attention to:
• git
• ssh
• wget
• apt

• Useful tips here:

– https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy
– http://processors.wiki.ti.com/index.php/Linux_Host_Configuration_-

_Ubuntu#Working_with_Proxies

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy
http://processors.wiki.ti.com/index.php/Linux_Host_Configuration_-_Ubuntu#Working_with_Proxies
http://processors.wiki.ti.com/index.php/Linux_Host_Configuration_-_Ubuntu#Working_with_Proxies

• -k option to speed things up!
– Continues building packages if errors occur
– Try re-running bitbake on Fetch failure before jumping into full debug mode (simple connectivity issues are common)

• Today TI_MIRROR must be added to conf/local.conf (Processor Wiki page)

• dpkg-reconfigure dash is required [strange environment errors otherwise]

• Configure threading and processor cores for best performance
– BB_NUMBER_THREADS, PARALLEL_MAKE in conf/local.conf

• Currently need nearly 200GB to build Processor Linux SDK from latest snapshot!

• bitbake commands generally require the MACHINE environment variable

• List available targets
– MACHINE=am57xx-evm bitbake-layers show-recipes “*-image-*”

• assumes all images have “image” in their name
– Recommend building Yocto-builtin target core-image-minimal as a first step

• Smaller and has everything necessary to boot an EVM to a Linux prompt

• Debugging build issues (examples?)
• Where is the full output image?
• Where are the intermediate builds?

Bird’s-eye view
├── build
│ ├── arago-tmp-external-linaro-toolchain
│ │ ├── work
│ │ ├── deploy
│ ├── conf
│ │ ├── bblayers.conf
│ │ ├── local.conf
├── configs
├── downloads
├── oe-layertool-setup.sh
└── sources

Build output

Build configuration (layers, file locations, etc.)

Project source downloads

Recipes (meta-dirs)

Deploying images to SD card (or NFS…)
• Built binaries: build/arago-tmp-external-linaro-toolchain/deploy/images/<platform>
• Assuming SD card has two partitions: boot (FAT32), rootfs (EXT4)

– Copy MLO, u-boot.img to boot partition
– Untar filesystem to rootfs partition

• sudo tar xf <filesystem target>.tar.xz –C /media/user/rootfs

Create a Custom Layer

Customizing the Yocto-Based Linux Distribution for Production

What is a layer?
• Collection of related recipes
• Typically named meta-something
• Typically exists as a git repo (i.e. ownership implied)
• Hierarchical (upper layer modifies lower layer with bbappend)

Create a new layer
• Create a new layer directory structure in sources/

sources/

|- meta-custom

| |- licenses

| |- recipes

| layer.conf

| README

• Edit layer.conf with boilerplate fields:
 BBPATH .= ":${LAYERDIR}"

 BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \

 ${LAYERDIR}/recipes-*/*/*.bbappend"

 BBFILE_COLLECTIONS += "meta-custom"

 BBFILE_PATTERN_meta-custom = "^${LAYERDIR}/"

 BBFILE_PRIORITY_meta-custom = "5"

 LAYERVERSION_meta-custom = "1"

Note: set BBFILE_PRIORITY to
appropriate hierarchy level

Enable a new layer
• Edit build/conf/bblayers.conf to include new layer:

BBLAYERS += " \
…
<path to sdk>/sources/meta-custom \
"

• Confirm layer is recognized:
$ MACHINE=<mach> bitbake-layers show-layers

layer path priority

…

meta-custom <path-to-sdk>/sources/meta-custom 16

19

TI Information – Selective Disclosure

Why do you want to create a new layer?
• Store recipes for your own software projects
• Consolidate patches/modifications to other people’s recipes
• Create your own images

Add/Subtract a Package

Customizing the Yocto-Based Linux Distribution for Production

Recipe basics – predefined variables

22

TI Information – Selective Disclosure

• my-recipe_1.0.bb

• PN – package name

• PV – package version

• P – package name and version
P = “${PN}-${PV}”

PN PV

• Example
– hello-world_1.0.bb

• PN = “hello-world”
• PV = “1.0”
• P = “hello-world-1.0”

Integrating proprietary elements overview
• Recipe generation tools (recipetool, devtool)
• Required project file structure for BitBake
• Verifying recipe structure
• Adding element to filesystem image

Recipe generation tools
• Automates the process of creating a recipe

• Generate a starting point for a recipe
– Specify Git URL (SRC_URI)

24

TI Information – Selective Disclosure

Restrict package to specific machine(s)
• By default, package will be built for all machines

– Package found in build/$TOOLCHAIN/deploy/ipk/all

25

TI Information – Selective Disclosure

Append package to an image(s)
• Packages added to the image in layer.conf

– E.g.: sources/meta-custom/conf/layer.conf
– Include package in all images: IMAGE_INSTALL += " hello-world"
– Selectively include package:

26

TI Information – Selective Disclosure

Modifying an Existing Recipe

Customizing the Yocto-Based Linux Distribution for Production

Common Reasons for Recipe Modification
• Update build options
• Change installation directory
• Source code patches

28

TI Information – Selective Disclosure

.bbappend
• Example recipe

– meta-somelayer/recipes-example/do-something_x.y.bb

• Appended version

– meta-custom/recipes-example/do-something_x.y.bbappend

Source audit and licensing

Customizing the Yocto-Based Linux Distribution for Production

Yocto/ OpenEmbedded licensing overview
• Yocto/ OE licensing features and framework
• Audit and enforcement of usable licenses
• Workarounds for packages with incompatible licenses
• Software manifest

Yocto/ OE licensing features and framework
• License file tracking – ensure changes to project license do not go unnoticed
• All packages must specify the following in their recipe:

– License (e.g.: MIT, GPLv2, GPLv3, etc)
– License file
– License file checksum

• Restrict package licenses incompatible with business model
• Whitelist packages with restricted licenses

https://www.yoctoproject.org/docs/2.4.1/ref-manual/ref-manual.html#licenses

https://www.yoctoproject.org/docs/2.4.1/ref-manual/ref-manual.html#licenses
https://www.yoctoproject.org/docs/2.4.1/ref-manual/ref-manual.html#licenses
https://www.yoctoproject.org/docs/2.4.1/ref-manual/ref-manual.html#licenses
https://www.yoctoproject.org/docs/2.4.1/ref-manual/ref-manual.html#licenses
https://www.yoctoproject.org/docs/2.4.1/ref-manual/ref-manual.html#licenses

Where to configure licensing
• Each package bitbake recipe requires the following license variable definitions:

– LICENSE

– LIC_FILES_CHKSUM

– recipetool/ devtool will populate these fields automatically

• Global license configuration is handled in build/conf/local.conf
– Restrictions, whitelisting

Restricting licenses
• If GPLv3 is not compatible with a business model, consider building a filesystem

“bottoms-up” (i.e. adding to a minimal image) rather than a “tops-down”
approach (i.e. removing packages as dependency errors come up)

• License restrictions are applied on a global scale
– In build/conf/local.conf: INCOMPATIBLE_LICENSE = "GPLv3"

• Packages with incompatible license dependencies will be broken
– Finding packagegroup definitions can be time consuming at first. To speed things

up, rename the recipe’s folder. Bitbake will output an error describing which
packagegroup has unmet RDEPENDS. With the package and packagegroup
names, removing the dependency looks like this:

In meta-custom/layer.conf:
RDEPENDS_packagegroup-arago-base-tisdk_remove = “ cifs-utils"

RDEPENDS_packagegroup-arago-test_remove = " perf"

Final notes on removing GPLv3 components
• Becoming much more difficult to build an up-to-date, fully functional distribution/

filesystem without GPLv3 components in the Linux world
• Removing GPLv3 will may mean taking tradeoffs in features, or require

investment .
• meta-gplv2 contains packages with older GPLv2 versions that are either

unmaintained or do not enjoy frequent updates due to limited community
resources and may contain unpatched security vulnerabilities.

• Ultimately it is a business decision, however it bears repeating eliminating
GPLv3 is not an easy task

35

TI Information – Selective Disclosure

Whitelisting components
• Whitelist components with restricted license

– In build/conf/local.conf:
LICENSE_FLAGS_WHITELIST = "commercial"

36

TI Information – Selective Disclosure

Software manifest files
• Yocto generates a license manifest for all image packages

– Major feature for embedded Linux products!

• Found here when the image completes:

build/$TOOLCHAIN/deploy/licenses/$TARGET-$MACHINE-$TIMESTAMP/license.manifest
PACKAGE NAME: alsa-conf

PACKAGE VERSION: 1.1.2

RECIPE NAME: alsa-lib

LICENSE: LGPLv2.1 & GPLv2+

37

TI Information – Selective Disclosure

Example variables:
$TOOLCHAIN: arago-tmp-external-linaro-toolchain
$TARGET: arago-base-tisdk-image
$MACHINE: am335x-evm

For more information
• For questions regarding topics covered in this training, visit the support forums

at the TI E2E Community website.

http://e2e.ti.com/

TI Information – Selective Disclosure

	Customizing the Yocto-Based Linux Distribution for Production
	Components of a Linux distribution
	Why choose Yocto?
	Yocto Overview
	Simplified Yocto Build Overview
	What’s in a recipe?
	Mapping of Proc SDK Linux to Yocto Branches
	Building Processor SDK Linux
	Instructions
	Build requirements
	Proxy configuration
	Slide Number 12
	Slide Number 13
	Bird’s-eye view
	Deploying images to SD card (or NFS…)
	Create a Custom Layer
	What is a layer?
	Create a new layer
	Enable a new layer
	Why do you want to create a new layer?
	Add/Subtract a Package
	Recipe basics – predefined variables
	Integrating proprietary elements overview
	Recipe generation tools
	Restrict package to specific machine(s)
	Append package to an image(s)
	Modifying an Existing Recipe
	Common Reasons for Recipe Modification
	.bbappend
	Source audit and licensing
	Yocto/ OpenEmbedded licensing overview
	Yocto/ OE licensing features and framework
	Where to configure licensing
	Restricting licenses
	Final notes on removing GPLv3 components
	Whitelisting components
	Software manifest files
	For more information
	Slide Number 39

