TI Designs: TIDA-01540

采用具有内置死区时间插入功能的栅极驱动器的三相逆变器参考设计

说明

此参考设计可为增强型隔离式 10kW 三相逆变器降低系统成本并支持紧凑型设计。此设计在单个封装和自举配置中使用双栅极驱动器来为栅极驱动电源产生浮动电压，从而实现较低的系统成本和紧凑的外形尺寸。双栅极驱动器 UCC21520 具有可由电阻器选项进行配置的内置死区时间插入功能。由于输入 PWM 信号的重叠，这种独特的死区时间插入功能可为三相逆变器提供击穿保护。此设计通过防止过载、短路、接地故障、直流总线欠压和过压以及 IGBT 模块硬件过热问题来提高系统的可靠性。

资源

<table>
<thead>
<tr>
<th>链接</th>
<th>文件夹</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIDA-01540</td>
<td>设计文件夹</td>
</tr>
<tr>
<td>UCC21520</td>
<td>产品文件夹</td>
</tr>
<tr>
<td>AMC1301</td>
<td>产品文件夹</td>
</tr>
<tr>
<td>AMC1311</td>
<td>产品文件夹</td>
</tr>
<tr>
<td>OPA320</td>
<td>产品文件夹</td>
</tr>
<tr>
<td>TLC372</td>
<td>产品文件夹</td>
</tr>
<tr>
<td>TLV1117</td>
<td>产品文件夹</td>
</tr>
<tr>
<td>TLV704</td>
<td>产品文件夹</td>
</tr>
<tr>
<td>REF2033</td>
<td>产品文件夹</td>
</tr>
<tr>
<td>TL431B</td>
<td>产品文件夹</td>
</tr>
<tr>
<td>SN74LVC1G10</td>
<td>产品文件夹</td>
</tr>
<tr>
<td>TIDA-00366</td>
<td>工具文件夹</td>
</tr>
</tbody>
</table>

特性

- 增强型隔离式逆变器，适合额定功率高达 10kW 的 200V-690V 交流驱动器
- 增强型隔离式半桥栅极驱动器具有出色的传播延迟匹配功能，可缩短死区时间（更低的失真和更低的功耗）
- 当 PWM 输入信号重叠时，集成式互锁、死区时间和插入功能可保护 IGBT（可编程死区时间）
- STO 和失效防护措施可应对初级侧逻辑故障，还可使用禁用信号同时关闭向 IGBT 提供的高侧和低侧栅极驱动器输出，因此具有更高的可靠性
- UCC21520 具有高 CMTI (100kV/µs)，因此可提供高频键性，能够应对开关瞬变
- UCC21520 可抑制输入脉冲和噪声瞬变（小于 5ns），从而避免 IGBT 发生误导通或关断

应用

- 交流逆变器和变频驱动器
- 伺服 CNC 和机器人
- 三相 UPS
- 光伏逆变器

咨询我们的 E2E™ 专家
1 System Description

Insulated gate bipolar transistors (IGBTs) are mostly used in three-phase inverters that have numerous applications like variable-frequency drives that control the speed of AC motors, uninterruptible power supply, solar inverters, and other similar inverter applications. IGBTs have advantages such as high input impedance as the gate is insulated, a rapid response ability, good thermal stability, simple driving circuit, good ability to withstand high voltage, snubber-less operation, and controllability of switching behavior to provide reliable short-circuit protection. The IGBT is a voltage-controlled device, which gives it the ability to turn on and off very quickly.

图 1 shows atypical application of a three-phase inverter using six isolated gate drivers. Note that each phase uses a high-side and a low-side IGBT switch to apply positive and negative high-voltage DC pulses to the motor coils in an alternating mode. The output voltage to the motor is controlled by pulse width modulation (PWM). The output voltage is an average of the peak or maximum voltage and the amount of time the transistor is turned on or off.

Apart from isolated gate-drivers for IGBTs, the three-phase inverters include DC bus voltage sensing, inverter current sensing, and IGBT protection (like overtemperature, overload, ground fault, and so on). There are many end applications such as HVAC, solar pumps, and appliances where cost is major concern without compromising the performance. High-end three-phase inverters use sigma-delta (ΣΔ) modulators for current sensing, which also ask for using expensive controllers with built-in SINC filters. Using an isolated amplifier enables interfacing with low-cost M4-core MCU or TI’s Piccolo™ with a built-in SAR analog-to-digital converter (ADC). The overload protection can be implemented in external hardware, which reduces software complexity. The isolated gate drivers need different supplies for both high-side and low-side gate drivers. Instead of using expensive isolated supplies for powering the gate drivers, using a bootstrap power supply reduces BOM cost on the power supply and also reduces the board space.
This reference design is based on the hardware of the TIDA-00366 design. The system design theory and test results relating to the power stage and current sensing are described in the design guide *Reference Design for Reinforced Isolation Three-Phase Inverter With Current, Voltage, and Temp Protection*.

This reference design details a gate driver circuit for a three-phase inverter. The gate drive circuit comprises of three UCC21520 devices, which are dual IGBT gate drivers. The UCC21520 has many features to design a reliable three phase inverter.

The UCC21520 has a built-in dead-time insertion feature, which can insert a dead time into a complementary PWM for a half-bridge even if the PWMS overlap. The PWM overlap can be due to noise, damage of the connectors, wires connecting between the controller and gate diver, or a false PWM output. This feature is useful considering drives are trending to a more compact form factor. This new size can cause the PWM signals to have spacing and routing inside the drive if they are placed next to noise generators like high frequency signals, switching nodes, and so on. The simplest way to protect against IGBT shoot-through in this situation is to have interlock and dead band insertion.

The low propagation delay of the UCC21520 between the input and output contribute to reducing the deadband distortion in an inverter. In the reference design of the three-phase IGBT inverter, the deadband time is the sum of the time required for one IGBT to turn off and the other IGBT to turn on and the propagation delay. The low propagation delay allows the designer to use the minimum dead time possible for an IGBT module and reduce the related distortion in the current waveform.

The UCC21520 also has the single enable pin to disable the top and bottom IGBT, which can be used to implement safe torque of features in a motor drive.

1.1 Key System Specifications

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SPECIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC-Link input voltage</td>
<td>400 V to 1200 V</td>
</tr>
<tr>
<td>Gate driver supply voltage</td>
<td>16 V for low-side IGBT gate driver, 15 V (bootstrapped) for high-side IGBT gate driver</td>
</tr>
<tr>
<td>IGBT power module</td>
<td>Voltage rating: 1200 V, current rating: 50 A or more</td>
</tr>
<tr>
<td>Rated power capacity</td>
<td>10 kW</td>
</tr>
<tr>
<td>Inverter switching frequency</td>
<td>4 kHz (minimum) to 16 kHz; adjustable through software</td>
</tr>
<tr>
<td>Isolation</td>
<td>Reinforced (IEC 61800-5)</td>
</tr>
<tr>
<td>Gate drive</td>
<td>Unipolar 0 to 16 V, built-in PWM interlock and programable dead time insertion from 0 to 5 µs, input pulse rejection < 5 ns</td>
</tr>
<tr>
<td>Microcontroller</td>
<td>TMS320F28379D</td>
</tr>
<tr>
<td>Operating ambient temperature</td>
<td>–25°C to +85°C</td>
</tr>
<tr>
<td>Motor</td>
<td>Three-phase 400-V AC induction motor (ACIM)</td>
</tr>
<tr>
<td>Power supply specification for MCU</td>
<td>3.3 V ± 5%</td>
</tr>
<tr>
<td>Feedbacks</td>
<td>Current sensing (±50 A), DC-Link bus voltage sensing (0 to 1026 V), IGBT module temperature sensing Interface for an external 3.3-V MCU with 3.3-V unipolar output input</td>
</tr>
<tr>
<td>Protections</td>
<td>Overload, overvoltage, undervoltage, ground fault, overtemperature</td>
</tr>
<tr>
<td>PCB</td>
<td>160 × 156 mm, four layers, 2-oz copper</td>
</tr>
</tbody>
</table>
2 System Overview

图 2 shows the system level block diagram for this reference design.

This reference design implements a three-phase inverter rated up to 10 kW. As shown in 图 2, the design uses three reinforced, isolated, dual IGBT gate drivers (UCC21520) to drive six IGBTs. The IGBTs are integrated into a module along with a temperature sensor (NTC). The IGBTs inside the module are configured in half-bridge configurations. Each half-bridge is driven by two IGBT gate drivers—top (high-side) and bottom (low-side). The design is interfaced with TI’s Piccolo LaunchPad™, LAUNCHXL-F28379D, through two 20-pin connectors. The complementary PWM signals are generated from the LaunchPad. The three mid-points of IGBT half-bridges are connected. The board is designed to operate up to 1200-V DC for the inverter DC bus voltage.

Accurate phase current sensing with three-phase brushless motors is critical for motor drive performance, efficiency, and protection. This design uses in-phase current sensing using three 5-mΩ shunts and three reinforced isolated amplifiers (AMC1301). The benefits of using in-phase current sensing are:
1. Constant motor current flowing through the shunt, independent of IGBT switching
2. Easy detection of terminal-to-terminal short and terminal-to-GND short

The voltage generated across the shunt is amplified using the reinforced isolated amplifier AMC1301. The output of the AMC1301 is signal conditioned and converted to a single-ended signal using the OPA320. Outputs of all the three channels are fed into a microcontroller (MCU).
The inverter protects against overload, short circuit, ground fault, DC bus undervoltage and overvoltage, and IGBT module overtemperature. The DC bus voltage is dropped down using the resistor divider and fed to the AMC1311 for sensing. The under- and overvoltage are programmed in the MCU using the sensed signal. Similarly, the signal from NTC (integrated into IGBT module) is sensed using the AMC1311, and the sensed signal is fed to the MCU for over-temperature protection. The overload, short-circuit, and ground fault protections are implemented using comparators TLC372, which use the current sensed from the three shunts.

The board is powered through two external power supplies: one 16 V and the other 5 V. The low-side IGBT gate drivers are powered using 16 V, and high-side IGBT gate drivers are powered using a bootstrapped supply generated from 16 V. The MCU, op amps, and comparators are powered using 3.3 V generated from a 5-V supply using the TLV1117 (3.3 V). The design uses the TLV704 (3.3 V), TL431B, and REF2033 to generate other rails and references on the board.

Lower system cost is achieved by using the isolated amplifiers (AMC1301 and AMC1311) to measure motor current, DC-link voltage, and NTC voltage. The signals are interfaced with an internal ADC of the MCU. The system cost is also reduced by using a bootstrap power supply configuration for IGBT gate drivers.

2.1 **Highlighted Products**

2.1.1 **UCC21520**

The UCC21520 is an isolated dual-channel gate driver with a 4-A source and 6-A sink peak current. This device is designed to drive power MOSFETs, IGBTs, and SiC MOSFETs up to 5 MHz with best-in-class propagation delay and pulse-width distortion. The input side is isolated from the two output drivers by a 5.7-kV_{RMS} reinforced isolation barrier with a minimum of 100-V/ns common-mode transient immunity (CMTI). Internal functional isolation between the two secondary-side drivers allows a working voltage of up to 1500-V DC. A disable pin shuts down both outputs simultaneously when it is set high and allows normal operation when left floating or grounded. The device accepts VDD supply voltages up to 25 V. A wide input VCCI range from 3 V to 18 V makes the driver suitable for interfacing with both analog and digital controllers.

- Operating temperature range: –40 to +125°C
- Switching parameters:
 - 9-ns typical propagation delay
 - 10-ns minimum pulse width
 - 5-ns maximum delay matching
 - 5-ns maximum pulse-width distortion
- CMTI greater than 100 V/ns
- Programmable overlap and dead time
- Rejects input pulses and noise transients shorter than 5 ns
2.1.2 AMC1311

The AMC1311 device is a precision, high-impedance input isolated amplifier with an output separated from the input circuitry by an isolation barrier that is highly resistant to magnetic interference. This barrier is certified to provide reinforced galvanic isolation of up to 7 kV\textsubscript{PEAK} according to VDE V 0884-11 and UL1577. Used in conjunction with isolated power supplies, this device prevents noise currents on a high common-mode voltage line from entering the local ground and interfering with or damaging sensitive circuitry. The high-impedance input of the AMC1311 device is optimized to connect to high-voltage resistive divider circuits or other voltage signal sources with high output resistance. The excellent performance of the device supports accurate voltage or temperature sensing and control in closed-loop systems. The integrated common-mode overvoltage and missing high-side supply voltage detection features of the AMC1311 device simplify system-level design and diagnostics.

- 2-V input voltage range optimized for isolated voltage measurement
- Low offset error and drift: ±1.6 mV at 25°C, ± 21 µV/°C
- Fixed gain: 1
- Very low gain error and drift: ±0.3% at 25°C, ± 60 ppm/°C
- Very low nonlinearity and drift: 0.05%, 1 ppm/°C

2.1.3 AMC1301

The AMC1301 is a precision isolation amplifier with an output separated from the input circuitry by an isolation barrier that is highly resistant to magnetic interference. The input of the AMC1301 is optimized to connect directly to shunt resistors or other low voltage level signal sources. The excellent performance of the device supports accurate current control, resulting in system-level power saving and, especially in motor control applications, lower torque ripple.

- ±250-mV input voltage range optimized for current measurement using shunt resistors
- Low offset error and drift: ±200 µV at 25°C, ± 3 µV/°C
- Fixed gain: 8.2
- Very low gain error and drift: ±0.3% at 25°C, ± 50 ppm/°C
- Very low nonlinearity and drift: 0.03%, 1 ppm/°C

2.1.4 OPA320

The OPA320 is precision, low-power, single-supply op amp optimized for very low noise. Operated from a voltage range from 1.8 V to 5.5 V, this device is well-suited for driving ADCs. With a typical offset voltage of 40 µV and very low drift overtemperature (1.5 µV/°C typical), this op amp is very well suited for applications like control loop and current sensing in motor control.

2.1.5 TLC372 (Q-Version)

The TLC372 consists of two independent voltage comparators, each designed to operate from a single power supply (3-V to 16-V range). The outputs are open-drain configurations and can be connected to achieve positive-logic wired-AND relationships. The TLC372Q is characterized to operate from –40°C to +125°C. The typical response time of comparators for the switching is 200 ns.
2.1.6 TLV1117 (I-Version)

The TLV1117 device is a positive low-dropout voltage regulator designed to provide up to 800 mA of output current. The internal circuitry is designed to operate down to 1-V input-to-output differential. Dropout voltage is specified at a maximum of 1.3 V at 800 mA, decreasing at lower load currents. With excellent line and load regulations, the device is available in multiple packages and works for a temperature range from −40°C to +125°C.
2.1.7 TLV704

The TLV704 is a 3.3-V LDO with ultra-low quiescent current and operates over a wide operating input voltage of 2.5 V to 24 V. The device is an excellent choice for industrial applications that undergo large line transients. The TLV704 is available in a 3-mm × 3-mm SOT23-5 package, which is ideal for cost-effective board manufacturing.

2.1.8 REF2033

The REF2033 offers excellent temperature drift (8 ppm/°C, max) and initial accuracy (0.05%) on both the \(V_{\text{REF}} \) and \(V_{\text{BIAS}} \) outputs while operating at a quiescent current less than 430 \(\mu \text{A} \). In addition, the \(V_{\text{REF}} \) and \(V_{\text{BIAS}} \) outputs track each other with a precision of 6 ppm/°C (max) across the temperature range of −40°C to +85°C. All these features increase the precision of the signal chain and decrease board space, while reducing the cost of the system as compared to a discrete solution. An extremely low dropout voltage of 10 mV allows this device to operate from very low input voltages.

2.1.8.1 TL431B (Q-Version)

The TL431 is a three-terminal adjustable shunt regulator with specified thermal stability over temperature ranges. The output voltage can be set to any value between \(V_{\text{REF}} \) (approximately 2.5 V) and 36 V with two external resistors. Active output circuitry provides a very sharp turnon characteristic, making these devices excellent replacements for Zener diodes in many applications. The "B-grade" version comes with initial tolerances (at 25°C) of 0.5% and TL431BQ devices are characterized for operation from −40°C to +125°C.

2.1.8.2 SN74LVC1G10

The SN74LVC1G10 performs the Boolean function \(Y = \overline{(A \times B \times C)} \) or \(Y = \overline{A} + \overline{B} + \overline{C} \) in positive logic. With a supply range from 1.65 V to 5.5 V and availability in multiple packages. This NAND gate is characterized to operate from −40°C to +125°C.

2.2 System Design Theory

This reference design is based on the hardware of the TIDA-00366 design. The information on the IGBT inverter, IGBT gate driver, onboard power supply, and fault protection feature are given in the design guide Reference Design for Reinforced Isolation Three-Phase Inverter With Current, Voltage, and Temp Protection.

注: This reference design is designed for a three-phase inverter, but 节 2.2.1 explains the circuits and components for one channel (U-Phase) only. The same explanation is applicable to other two channels (V-Phase and W-Phase).
2.2.1 Isolated IGBT Gate Driver

A three-phase inverter application uses six power switches (IGBTs in this case). To drive these switches, six totally independent gate drivers are required. Also, with a high-voltage operation, it is necessary to have enough isolation between primary and secondary side of the gate driver. The UCC21520 is an isolated dual-channel gate driver with a 4-A source and a 6-A sink peak current. The device drives power MOSFETs, IGBTs, and SiC MOSFETs up to 5 MHz with best-in-class propagation delay and pulse width distortion. The input side is isolated from the two output drivers by a 5.7-kV\textsubscript{RMS} reinforced isolation barrier with a minimum of 100-V/ns CMTI. Internal functional isolation between the two secondary-side drivers allows a working voltage of up to 1500-V DC. 图 3 shows the internal structure of the UCC21520 gate driver.

![Functional Block Diagram of UCC21520](image)

图 3. Functional Block Diagram of UCC21520

This driver can be configured as two low-side drivers, two high-side drivers, or a half-bridge driver with programmable dead time (DT). A disable pin shuts down both outputs simultaneously when it is set high and allows normal operation when left floating or grounded. As a fail-safe measure, primary-side logic failures force both outputs low. The device accepts VDD supply voltages up to 25 V. A wide-input VCCI range from 3 V to 18 V makes the driver suitable for interfacing with both analog and digital controllers. All the supply voltage pins have undervoltage lockout (UVLO) protection. With all these advanced features, the UCC21520 enables high efficiency, high power density, and robustness in a wide variety of power applications.
图 4 shows the circuit for the UCC21520 and associated components implemented for half-bridge configuration for a three-phase inverter.

2.2.1.1 Control Supply for Primary Side

VCCI pins (Pin 3 and Pin 8) are supplied with 3.3 V generated using the TLV1117 (3.3 V) (as explained in节2.1.6). C57 (4.7 µF) and C68 (0.1 µF) are used as local decoupling capacitors for VCCI pins.

2.2.1.2 Dead Time Control

The UCC21520 has a programmable dead time function using DT pin. Tying DT to VCCI allows the outputs to overlap. Leaving DT floating sets the dead time to < 15 ns. Placing a 500-Ω to 500-kΩ resistor between DT and GND adjusts dead time according to公式1.

$$ DT \text{ (in ns)} = 10 \times RD\text{ (in kΩ)} \quad (1) $$

A 130-kΩ resistor is connected between DT pin and GND pin, which sets the dead time to 1.3 µs as per公式1. Select this resistor for a 1% tolerance to prevent any drift in the dead time. For this reference design, the dead time is controlled by the UCC21520 to ensure that there is always a minimum deadband. This deadband is useful in case a proper deadband is missing in the input PWM signal. C113 is a 2.2-nF capacitor used for filtering noise at the DT pin.

2.2.1.3 DISABLE Signal for Gate Drivers

The DISBALE pin is used to disable the gate drivers. The pin disables both driver outputs if asserted high and enables if set low or left open. This pin is pulled low internally if left open or floating. Tie this pin to ground if it is not used to achieve better noise immunity. For this reference design, the DISABLE pin is generated using a three-input NAND gate.
2.2.1.4 Supply for Low-Side Gate Drivers

The low-side gate drivers for all three channels are powered using 16V_GPS, which is supplied externally from connector J4 as shown in 图 5. VDDB is secondary-side power for driver B. It is supplied with 16V_GPS and locally decoupled to VSSB using low ESR and ESL capacitors C72 (0.1 μF) and C73 (4.7 μF), which are located as close to the device as possible. VSSB is ground for the secondary-side driver B and a ground reference for the secondary-side B channel.

![Gate Driver Power Supply](image)

Copyright © 2017, Texas Instruments Incorporated

图 5. Gate Driver Power Supply

2.2.1.5 Bootstrap Power Supply for High-Side Gate Drivers

One of the most widely used methods to supply power to the high-side drive circuitry of a gate driver is the bootstrap power supply. The bootstrap power supply consists of a bootstrap diode and a bootstrap capacitor (with an optional series resistor). This method has the advantage of being both simple and low cost. The maximum voltage that the bootstrap capacitor (V_{BS}) can reach is dependent on the elements of the bootstrap circuit. Consider the voltage drop across R_{BOOT}, V_{F} of the bootstrap diode, and the drop across the low-side switch (VCE(ON) or VFP, depending on the direction of current flow through the switch).

2.2.1.6 Selection of Bootstrap Capacitor (C_{BOOT})

The bootstrap capacitor must be sized to have more than enough energy to drive the gate of the IGBT high without depleting the bootstrap capacitor more than 10% and the AMC1301 used for current sensing. A good guideline is to size C_{BOOT} to be at least 10 times as large as the equivalent IGBT gate capacitance (Cg) and capacitance required to supply the AMC1301 with constant current for one PWM period. Calculate Cg based on the voltage driving the high-side gate of the IGBT (V_{GE}) and the gate charge of the IGBT (Qg). V_{GE} is approximately the bias voltage supplied to VDD after subtracting the forward voltage drop of the bootstrap diode D12 (V_{DBOOT}). In this design example, the estimated V_{GE} is approximately 15 V, as 公式 2 shows.

\[
V_{GE} \approx VDD - V_{DBOOT} = 16V - 1V = 15V
\]

(2)

The IGBT module in this reference design has a specified Qg of 0.47 μC. The equivalent gate capacitance of the IGBT can be calculated as 公式 3 shows.

\[
Cg = Qg V_{GE} = (0.47 \mu C) 15 = 0.0313 \mu F
\]

(3)

The bootstrap capacitor also has to supply the AMC1301 on the high-voltage side with a maximum of 6.5 mA. Considering the lowest PWM frequency that needs to be supported is 4 kHz, this implies the bootstrap capacitor must hold this charge for one PWM period (that is, ¼ kHz = 250 μs). The total charge consumed is 250 μs × 6.5 mA = 1.625 μC. At 15 V, the capacitance required to store this charge is calculated using 公式 4:

\[
Ca = Qa / V_{GE} = (1.625 \mu C) 15 = 0.1083 \mu F
\]

(4)

After estimating the value for Cg, C_{BOOT} must be sized to at least 10 times larger than Cg, as 公式 5 shows.

\[
C_{BOOT} \geq 10 \times (Cg + Ca) = 10 \times (0.0313 \mu F + 0.1083) = 1.396 \mu F
\]

(5)
This reference design uses a parallel combination of 0.47-µF and 2.2-µF capacitors.

2.2.1.7 Selection of Bootstrap Diode

The voltage that the bootstrap diode encounters is the same as the full DC bus voltage (in this case, a maximum of 1200-V DC). The bootstrap diode voltage rating must be greater than the DC bus rail voltage. The bootstrap diode must be a fast recovery diode to minimize the recovery charge and thereby the charge that feeds from the bootstrap capacitor to the 16-V supply. The diode must be able to carry a pulsed peak current of 11.28 A (as per \(P_{\text{DBOOT}}\)). However, the average current is much smaller and depends on the switching frequency and the gate charge requirement of the high-side IGBT. This reference design uses a 1300-V, 1-A, fast recovery diode BYG23T-M3.

The bootstrap diode power dissipation \(P_{\text{DBOOT}}\) can be estimated based on the switching frequency, diode forward voltage drop, and the switching frequency of the PWM signal \(f_{\text{SW}}\). In this reference design, the switching frequency has been set to 16 kHz. \(P_{\text{DBOOT}}\) calculates the estimated power loss for the bootstrap diode.

\[
P_{\text{DBOOT}} = \frac{1}{2} \times Q_g \times f_s \times V_{\text{DBOOT}} = \frac{1}{2} \times 0.47 \, \mu C \times 16 \, \text{kHz} \times 1 \text{V} = 3.76 \, \text{mW}
\]
(6)

2.2.1.8 Selection of Current Limiting Resistor for Bootstrap Diode

Considering that having a 1.5-V \((p-p)\) ripple on the bootstrap capacitor, the charge on the 0.47-µF and 2.2-µF capacitors is:

\[
Q = C \times V = (0.47 \, \mu + 2.2 \, \mu) \times 1.5 = 4 \, \mu \text{C}
\]

(7)

For a capacitor charging period of 5 µs, the same charge is also represented as

\[
Q = 4 \, \mu \text{C} = I_{\text{CH}} \times 5 \, \mu \text{s}
\]

(8)

This gives \(I_{\text{CH}} = 0.8 \, \text{A}\).

With a voltage drop across diode being 1 V, the \(R_{\text{BOOT}}\) is calculated as:

\[R_{\text{BOOT}} = \frac{V_{\text{DBOOT}}}{I_{\text{CH}}} = 10.8 = 1.25 \, \Omega
\]

(9)

This reference design uses a \(R_{\text{BOOT}}\) value of 1.33 Ω.

With \(R_{\text{BOOT}} = 1.33 \, \Omega\), the bootstrap diode current is calculated as

\[
I_{\text{DBOOT}} (p_k) = (V_{\text{DD}} - V_{\text{DBOOT}}) R_{\text{BOOT}} = (16 - 1) \times 1.33 = 11.28 \, \text{A}
\]

(10)

The power dissipation capability of the bootstrap resistor is important. The bootstrap resistor must be able to withstand the short period of high power dissipation during the initial charging sequence of the bootstrap capacitor.

2.2.1.9 Gate Resistors

The gate current and the appropriate power of the voltage supply depend on the operating frequency, bias control voltages, and total gate charge. The total gate charge is published in IGBT data sheets, depending on gate control voltage. The gate charge necessary for switching is very important to establish the switching performance of the IGBT. The lower the charge, the lower the gate drive current needed for a given switching time. The gate current can be controlled using an external gate resistor between driver output and gate of the IGBT. The value of the gate resistor determines the peak charge and discharge currents. The most classical way to influence the switching behavior of an IGBT is by selecting the gate resistors. The gate resistors can be different for the on and off switching process. In such cases, the turnon gate resistor is denominated with \(R_{\text{Gon}}\) and for turning off with \(R_{\text{Goff}}\) as shown in 图 6. The effective values of gate resistors become:
Depending on the gate resistor, both the voltage gradient (dv/dt) as well as the current gradient (di/dt) are modified. The higher the resistance of R_{Gon}, the softer the switching of the IGBT (and correspondingly, the turnover of the free-wheeling diode). As a consequence, however, the turnon losses of the IGBT increase (and the recovery losses of free-wheeling diode decrease).

For this reference design, $R_{\text{Gon}} = 16.5 \Omega$ and $R_{\text{Goff}} = 0 \Omega$.

With the internal gate resistance of 4 Ω, the gate currents are calculated as:

- Source current = $16 \, \text{V} / (16.5 + 4) \, \Omega = 780 \, \text{mA}$
- Sink current = $16 \, \text{V} / 4 \, \Omega \approx 4 \, \text{A}$ (considering zero on-resistance of diode)

Another important point to highlight is that [4] shows 10-kΩ resistors across the gate and emitter terminals of the IGBTs. These resistors are a safety precaution and are placed across these nodes to ensure that the IGBTs are not turned on if the UCC21520 device is not in place or not properly soldered on the circuit board.

2.2.1.10 Power Dissipation in Gate Driver

This section explains the calculation power dissipated in the gate driver related to this reference design. For more information on the power loss, see [UCC21520 4-A, 6-A, 5.7-kV RMS Isolated Dual-Channel Gate Driver](http://www-s.ti.com/sc/techlit/TIDUDJ9).

\[
P_{\text{GDQ}} = V_{\text{VCCI}} \times I_{\text{VCCI}} + V_{\text{VDDA}} \times I_{\text{DDA}} + V_{\text{VDBB}} \times I_{\text{DBB}}
\]

(11)

Where

- V_{VCCI} and I_{VCCI} are the low-voltage sides bias voltage and quiescent current, 5 V and 2.5 mA respectively
- V_{VDDA} and V_{DDB} are gate drive supply voltage for top and bottom gate drivers, which is 16 V
- I_{DDA} and I_{DDB} are the quiescent current taken from the gate drive power supply
- P_{GDQ} is calculated to be 60.5 mW

The power dissipation due to switching of the gate driver is given in [公式 12]:

\[
P_{\text{GSW}} = 2 \times V_{\text{DD}} \times Q_{\text{G}} \times f_{\text{SW}}
\]

(12)

Where
• **V_{DD}** is gate drive supply voltage of 16 V
• **Q_g** is the IGBT gate charge, which is 0.47 µF
• **f_{SW}** is the PWM switching frequency of 16 kHz

P_{GSW} is calculated to be 240.64 mW

The power dissipation in gate driver due to this switching is given in 公式 13:

$$P_{GDO} = P_{GSW} \times (R_{OH} || R_{NMOSRHO} || R_{NMOS} + R_{ON} + R_{GFETEMPL} || R_{OFF} || R_{ON} + R_{GFETEMPL})$$ \hspace{1cm} (13)

Where

• **R_{OH}**, **R_{NMOS}**, and **R_{OL}** is from the UCC21520 data sheet; values are 5 Ω, 1.47 Ω, and 0.55 Ω, respectively
• **R_{ON}** is the turnon gate resistance which is 16.5 Ω
• **R_{OFF}** is the turnoff gate resistance which is 0 for TIDA-01540
• **$R_{GFETEMPL}$** is the IGBT internal resistance, which is 4Ω
• **P_{GDO}** is calculated to be 41.72 mW

The total power dissipation is $P_G = P_{GDO} + P_{GSW} = 102.22$ mW. Considering the UCC21520 has a junction to ambient thermal resistance of $R_{ΘJA} = 11.1°C/W$, the temperature rise due to this is calculated as $R_{ΘJA} \times P_G = 102.22$ mW × 11.1°C/W = 1.13°C.

2.2.2 Connectors to Connect C2000™ Piccolo™ LaunchPad™

表 2 shows the pinout for C2000 Piccolo LaunchPad. The highlighted pins are used for connecting the reference design board.

表 2. C2000™ LaunchPad™ Pinout

<table>
<thead>
<tr>
<th>SIGNAL NAME ON TIDA-01540</th>
<th>MUX VALUE</th>
<th>J1 PIN</th>
<th>J3 PIN</th>
<th>MUX VALUE</th>
<th>SIGNAL NAME ON TIDA-01540</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>ALT FUNCTION</td>
</tr>
<tr>
<td>3.3V</td>
<td>1</td>
<td>1</td>
<td>5V</td>
<td>2</td>
<td>GND</td>
</tr>
<tr>
<td>GPIO32</td>
<td>2</td>
<td>2</td>
<td>GND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCIRXDB</td>
<td>GPIO19</td>
<td>3</td>
<td>3</td>
<td>ADCIN14</td>
<td>CMPIN4P</td>
</tr>
<tr>
<td>SCITXDB</td>
<td>GPIO18</td>
<td>4</td>
<td>4</td>
<td>ADCINC1</td>
<td>CMPIN5N</td>
</tr>
<tr>
<td>GPIO67</td>
<td>5</td>
<td>5</td>
<td>ADCINC3</td>
<td>CMPIN7N</td>
<td></td>
</tr>
<tr>
<td>GPIO111</td>
<td>6</td>
<td>6</td>
<td>ADCIN4</td>
<td>CMPIN3N</td>
<td></td>
</tr>
<tr>
<td>SCCLKA</td>
<td>GPIO60</td>
<td>7</td>
<td>7</td>
<td>ADCINC2</td>
<td>CMPIN6P</td>
</tr>
<tr>
<td>GPIO22</td>
<td>8</td>
<td>8</td>
<td>ADCIN2</td>
<td>CMPIN6P</td>
<td></td>
</tr>
<tr>
<td>SCLA</td>
<td>GPIO105</td>
<td>9</td>
<td>9</td>
<td>ADCIN2A</td>
<td>CMPIN1P</td>
</tr>
<tr>
<td>SDAA</td>
<td>GPIO104</td>
<td>10</td>
<td>10</td>
<td>ADCINA0</td>
<td>DACOUTA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIGNAL NAME ON TIDA-01540</th>
<th>MUX VALUE</th>
<th>J4 PIN</th>
<th>J2 PIN</th>
<th>MUX VALUE</th>
<th>SIGNAL NAME ON TIDA-01540</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>PWM_U_T</td>
<td>EPWM1A</td>
<td>GPIO0</td>
<td>1</td>
<td>1</td>
<td>GND</td>
</tr>
<tr>
<td>PWM_U_B</td>
<td>EPWM1B</td>
<td>GPIO1</td>
<td>2</td>
<td>2</td>
<td>GPIO61</td>
</tr>
<tr>
<td>PWM_V_T</td>
<td>EPWM2A</td>
<td>GPIO2</td>
<td>3</td>
<td>3</td>
<td>GPIO123</td>
</tr>
<tr>
<td>PWM_V_B</td>
<td>EPWM2B</td>
<td>GPIO3</td>
<td>4</td>
<td>4</td>
<td>GPIO122</td>
</tr>
<tr>
<td>PWM_W_T</td>
<td>EPWM3A</td>
<td>GPIO4</td>
<td>5</td>
<td>5</td>
<td>RST</td>
</tr>
<tr>
<td>PWM_W_B</td>
<td>EPWM3B</td>
<td>GPIO5</td>
<td>6</td>
<td>6</td>
<td>GPIO58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRIP</td>
</tr>
</tbody>
</table>
表 2. C2000™ LaunchPad™ Pinout (continued)

<table>
<thead>
<tr>
<th>SIGNAL NAME ON TIDA-01540</th>
<th>MUX VALUE</th>
<th>J1 PIN</th>
<th>J3 PIN</th>
<th>MUX VALUE</th>
<th>SIGNAL NAME ON TIDA-01540</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X 2 1 0</td>
<td></td>
<td></td>
<td>0 ALT FUNCTION 2 X</td>
<td></td>
</tr>
<tr>
<td>OUTPUTXB AR1</td>
<td>GPIO24</td>
<td>7</td>
<td>7</td>
<td>GPIO59</td>
<td>SPISOMIA</td>
</tr>
<tr>
<td>OUTPUTXB AR7</td>
<td>GPIO16</td>
<td>8</td>
<td>8</td>
<td>GPIO124</td>
<td>SD1_D2</td>
</tr>
<tr>
<td>DAC1/ GPIO20</td>
<td>GPIO125</td>
<td>9</td>
<td>9</td>
<td>SD1_C2</td>
<td></td>
</tr>
<tr>
<td>DAC2/ GPIO21</td>
<td>GPIO29</td>
<td>10</td>
<td>10</td>
<td>OUTPUTXB AR6</td>
<td></td>
</tr>
</tbody>
</table>

On reference design board, two 20-pin connectors are used to connect with the C2000 LaunchPad as shown in 图 7. The PWM signals for inverter are generated using the LAUNCHXL-F28027 board. The PWM signals generated from the MCU are filtered using an RC filter with values of R = 10 Ω and C = 10 pF. This filter corresponds to a cutoff frequency of 159 MHz and an RC time delay of 1 ns. GND_FAULT and OVERLOAD signals are generated from the respective comparators connected to the MCU on GPIOs and also connected to a three-input NAND gate as explained in 节 2.2.1.3 to generate the DISABLE signal for gate drivers. The TRIP signal is generated from the MCU in case the user wants to interrupt the PWM signals or if the GND_FAULT and OVERLOAD signals need to be latched.

图 7. 20-Pin Connector to Connect With Connectors J1 and J3 on LAUNCHXL-F28379D

The 3.3-V supply generated using the TLV1117 is provided as a supply to the LaunchPad as shown in 图 8. The supply can also power the MCU from an external 5 V by populating onboard components R7, C10, and C11. The sensed signals I_U, I_V, I_W, V_DC, and MODULE_TEMP are connected to ADC input pins after the RC filtering (for aliasing). 1V65_REF and 3V3_REF are also provided to ADCs for any ratiometric measurements.
图 8. 20-Pin Connector to Connect With Connectors J4 and J2 on LAUNCHXL-F28379D
3 Hardware, Testing Requirements, and Test Results

3.1 Hardware

This section explains the top and bottom views of the PCB for this reference design. This section also explains the power supply requirement and connectors used to connect the external world.

3.1.1 TIDA-01541 PCB Overview

图 9 shows the top view of the PCB. The three phases (U, V, and W) have current sensing circuit and dual channel gate drivers as highlighted in the figure.

图 10 shows the bottom view of the PCB. The IGBT module is mounted on the bottom layer so that the heat sink can be connected to it as required by the output power levels.
3.1.2 Connector

表 3 shows the connectors used on the reference design PCB and their purposes.

表 3. Connectors

<table>
<thead>
<tr>
<th>CONNECTOR</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>SV_VIN power supply to power MCU, op amps, low-side of AMC1301, low-side of AMC1311, and comparators</td>
</tr>
<tr>
<td>J2</td>
<td>To connect to J1–J5 of LAUNCHXL-F28379D</td>
</tr>
<tr>
<td>J3</td>
<td>To connect to J6–J2 of LAUNCHXL-F28379D</td>
</tr>
<tr>
<td>J4</td>
<td>16-V GD_Supply to power low-side gate drivers</td>
</tr>
<tr>
<td>J5</td>
<td>To supply external isolated 16 V for U-Phase low-side gate driver if bootstrap configuration is not used</td>
</tr>
<tr>
<td>J6</td>
<td>To supply external isolated 16 V for V-Phase low-side gate driver if bootstrap configuration is not used</td>
</tr>
<tr>
<td>J7</td>
<td>To supply external isolated 16 V for W-Phase low-side gate driver if bootstrap configuration is not used</td>
</tr>
<tr>
<td>J13</td>
<td>VDC input</td>
</tr>
<tr>
<td>J14</td>
<td>Output for connecting to motor</td>
</tr>
</tbody>
</table>
3.2 Testing and Results

3.2.1 Test Setup

The following subsections provide descriptions and pictures of the test setup. 表 4 lists the key test equipment used in the subsequent tests.

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>TEST EQUIPMENT PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2000 F28379D LaunchPad</td>
<td>Texas Instruments LAUNCHXL-F28379D</td>
</tr>
<tr>
<td>Adjustable power supply</td>
<td>Keithley 2230G-30-1 (two power supplies are used to ensure isolation between 16-V and 5-V rails)</td>
</tr>
<tr>
<td>High-voltage power supply</td>
<td>Keysight N5751A (300 V and 2.5 A)</td>
</tr>
<tr>
<td>Load motor</td>
<td>ACIM, three-phase AC, 415 V (L-N, delta connected), 8.4 A_{rms} (max), 3.7-kW rated, 50 Hz, 1460 RPM</td>
</tr>
<tr>
<td>Oscilloscope</td>
<td>Tektronix MSO2024B</td>
</tr>
<tr>
<td>Oscilloscope</td>
<td>Tektronix MDO3024</td>
</tr>
<tr>
<td>High-voltage differential probes</td>
<td>Tektronix THDP0200</td>
</tr>
<tr>
<td>Low-voltage probes</td>
<td>Tektronix TPP0200</td>
</tr>
</tbody>
</table>

图 11 shows the test setup used. The board is powered from three power supplies: 0 V to 1000 V for the DC-Link, 16 V for the power supply of the gate drive, and 5 V for the low-voltage side bias. The C2000 LaunchPad is powered from 3.3-V power supply. The 1000-V power supply and the power supply of the gate drive are isolated from each other and also isolated from the 3.3-V and 5-V power supply.

![Diagram](image-url)
3.2.2 Test Results

This section shows the test results relating to the DC-Link accuracy, current and voltage sensing histogram, step response of the AMC1301, and short-circuit response time.

3.2.2.1 Thermal Image

图 12 is the thermal image of the board. For this test, the board is supplied with 3.3 V to the LaunchPad and the 5-V power rail of this reference design, and the gate drive power supply is 16 V. However, the DC-Link turned off. All three half bridges of the inverter are driven with a complementary PWM of 50%. This PWM is required to generate the bootstrap power supply, which supplies the UCC2150 on the high-voltage side. Because the DC-Link is turned off, the thermal image captures temperatures due to the self-heating of the UCC21520 and not the power dissipation of the IGBT module. The temperature of the UCC21520 is 27.6°C, which is a temperature rise of 4.8°C from the ambient temperature of 22.8°C.

![UCC21520 Surface Temperature](image-url)
3.2.2.1.1 Propagation Delay of UCC21520

The propagation delay for the gate driver is obtained with the DC-Link disconnected. The half bridge of the inverter is driven with a complementary PWM of 50%. The motor is disconnected in this test. 图13 is an oscilloscope capture of the input PWM signal and output gate drive of the UCC21520. 图14 and 图15 are the propagation delays for the rising and falling edge for the gate signal of the top IGBT in the half bridge. Similarly, 图16 and 图17 are the propagation delays for the rising and falling edge for the gate signal of the bottom IGBT in the half bridge.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>PROPAGATION DELAY (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top IGBT gate driver rising edge propagation delay</td>
<td>30.44</td>
</tr>
<tr>
<td>Top IGBT gate driver rising edge propagation delay</td>
<td>29.64</td>
</tr>
<tr>
<td>Top IGBT gate driver rising edge propagation delay</td>
<td>20.84</td>
</tr>
<tr>
<td>Top IGBT gate driver rising edge propagation delay</td>
<td>24.84</td>
</tr>
</tbody>
</table>

图13. UCC21520 Half-Bridge Input and Output PWMs
图 14. Top IGBT Gate Driver Rising Edge Propagation Delay

图 15. Top IGBT Gate Driver Falling Edge Propagation Delay
The consequence of the propagation delay for a three-phase inverter is that the dead time between the top and bottom IGBT must be increased to accommodate the propagation delay time. The IGBT module on this reference design uses a dead time of 1.3 µs. The dead time must be adjusted by 60 ns (30 ns each for the top and bottom IGBT gate driver). The effect of the dead time is to increase the distortion on the current waveform. To demonstrate the effect of the dead band, an ACIM motor is connected and the inverter run in open loop at 10 Hz, The DC-Link is supplied with 600 V and a three-phase current of 1.5 A_{RMS} is injected into the motor.
图 18 shows one motor line current waveform with the dead time set to 1.3 µs. 图 19 shows is for a dead time of 1.8 µs, which would be the dead time if using an optocoupler-based gate driver with a propagation delay of 250 ns. Notice the waveform becomes more non-sinusoidal as the dead time increases.
3.2.2.1.2 **Deadband Insertion and Interlock**

The deadband and interlock feature of the UCC21520 are tested by driving the inverter with a complementary PWM of 50%; however, the PWM inputs to the UCC21520 are made to overlap by 2 µs. 图 20 is the oscilloscope capture of the input PWM signal and output gate drive signals of the UCC21520. 图 21 and 图 22 are the zoomed-in waveforms for the switch node turnon and at switch node turnoff. Notice when the input PWMs overlap the interlock is active, hence both IGBTs are kept off. In an off state period, the interlock is active. After the end of the overlap, a time period of 1.3 µs elapses before the IGBT is turned on. This period corresponds to the deadband insertion of 1.3 µs.

This test simulates an overlap to check the interlock and dead time insertion; however, the overlap could be due to an software fault, damage to the gate drive signal connectors, or an EFT condition picked up on the input PWM signal. Without the interlock feature, this overlap would have caused the top and bottom IGBTs of the gate driver to turn on and cause a shoot-through condition that would damage the inverter.
图 22. Dead Time Insertion for Overlapping PWMs for Switch Node Turnoff
3.2.2.1.3 **Bootstrap Power Supply Ripple**

图 23 和 图 24 分别展示了高压侧驱动器的 bootstrap 电源的电压和纹波。占空比为 90% 对应的 IGBT 在测试中被激活，占空比为 10% 的 IGBT 保持关闭。测试时，电机被断开。图 23 表明 bootstrap 电源电压和纹波在 DC-Link 电源被断开时进行测量。图 24 显示了 bootstrap 电源电压和纹波在 DC-Link 电源被加入 600 V 时的测量结果。

![Bootstrap Power Supply Voltage and Ripple With DC-Link at 0 V](image)

图 23. Bootstrap Power Supply Voltage and Ripple With DC-Link at 0 V

![Bootstrap Power Supply Voltage and Ripple With DC-Link at 600 V](image)

图 24. Bootstrap Power Supply Voltage and Ripple With DC-Link at 600 V
4 Design Files

4.1 Schematics
To download the schematics, see the design files at TIDA-01540.

4.2 Bill of Materials
To download the bill of materials (BOM), see the design files at TIDA-01540.

4.3 PCB Layout Recommendations
The hardware for this reference design is based on the TIDA-00366 design. For PCB layout recommendations, refer to Reference Design for Reinforced Isolation Three-Phase Inverter With Current, Voltage, and Temp Protection.

4.3.1 Layout Prints
To download the layer plots, see the design files at TIDA-01540.

4.4 Altium Project
To download the Altium project files, see the design files at TIDA-01540.

4.5 Gerber Files
To download the Gerber files, see the design files at TIDA-01540.

4.6 Assembly Drawings
To download the assembly drawings, see the design files at TIDA-01540.

5 Related Documentation
1. Texas Instruments, LAUNCHXL-F28379D Overview User’s Guide
2. Texas Instruments, TIDA-01541 High-Bandwidth Phase Current and DC-Link Voltage Sensing Reference Design for Three-Phase Inverters

5.1 商标
E2E, Piccolo, LaunchPad, C2000 are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

6 Terminology
PWM— Pulse width modulation
MCU— Microcontroller unit
IGBT— Insulated bipolar gate transistor
RPM— Rotation per minute
RMS— Root mean square
NTC— Negative temperature coefficient thermistor
About the Authors

NELSON ALEXANDER is a systems engineer at Texas Instruments, where he is responsible for developing subsystem design solutions for the Industrial Motor Drive segment. Nelson has been with TI since 2011, has been involved in designing embedded systems, and has experiences in microcontrollers, isolation, analog signal chains, and IGBT gate drivers. Nelson earned his bachelor of engineering in electrical and electronics engineering at MSRIT, Bangalore.

N. NAVANEETH KUMAR is a systems architect at Texas Instruments, where he is responsible for developing subsystem solutions for motor controls within Industrial Systems. N. Navaneeth brings to this role his extensive experience in power electronics, EMC, analog, and mixed signal designs. He has system-level product design experience in drives, solar inverters, UPS, and protection relays. N. Navaneeth earned his bachelor of electronics and communication engineering from Bharathiar University, India and his master of science in electronic product development from Bolton University, UK.
有关 TI 设计信息和资源的重要通知

德州仪器 (TI) 公司提供的技术、应用或其他设计建议、服务或信息，包括但不限于与评估模块有关的参考设计和材料（总称“TI 资源”），旨在帮助设计人员开发整合了 TI 产品的应用。如果您（个人，或如果是代表贵公司，则为贵公司）以任何方式下载、访问或使用了任何特定的 TI 资源，即表示贵方同意仅为该等目标，按照本通知的条款进行使用。

TI 所提供的 TI 资源，并未扩大或以其他方式修改 TI 对 TI 产品的公开适用的质保及质保免责声明；也未导致 TI 承担任何额外的义务或责任。TI 有权对 TI 资源进行纠正、增强、改进和其他修改。

您理解并同意，在设计应用时应自行实施独立的分析、评价和判断，且应全权负责并确保应用的安全性，以及您的应用（包括应用中使用的所有 TI 产品）应符合所有适用的法律法规及其他相关要求。您应您的应用声明，您具备制订和实施上述保障措施所需的一切必要专业知识，能够（1）预见故障的危险后果，（2）监视故障及其后果，以及（3）降低可能导致危险的故障几率并采取适当措施。您同意，在使用或分发包含 TI 产品的任何应用前，应彻底测试该等应用及该等应用所用 TI 产品的功能而设计。除特定 TI 资源的公开文档中明确列出的测试外，TI 未进行任何其他测试。

您有在为开发包含该等 TI 资源所列 TI 产品的应用时，才被授权使用、复制和修改任何相关单项 TI 资源。但并未经授予任何专利权、版权、屏蔽作品权或与使用 TI 产品或服务的任何整合、机器制作、流程相关的其他知识产权。涉及或参考了第三方产品或服务的信息不构成使用此类产品或服务的许可或与之相关的保证或认可。使用 TI 资源可能需要您向第三方获得对该等第三方专利或其他知识产权的许可。

TI 资源系“按原样”提供。TI 免除对 TI 资源及其使用作出所有其他明确或默认的保证或陈述，包括但不限于对准确性或完整性、产权保证、无屡发故障保证，以及适销性、适合特定用途和不侵犯任何第三方知识产权的任何默认保证。

TI 不负责任何申索，包括但不限于因组合产品所致或与之有关的申索，也不为您辩护或赔偿。即使该等产品组合已列于 TI 资源或其他地方。对因 TI 资源或其使用引起或与之有关的任何实际的、直接的、特殊的、附带的、间接的、惩罚性的、偶发的、从属或惩戒性损害赔偿，TI 概不负责。

您同意向 TI 及其代表全额赔偿因您不遵守本通知条款和条件而引起的任何损害、费用、损失和/或责任。

本通知适用于 TI 资源。另有其他条款适用于某些类型的材料、TI 产品和服务的使用和采购。这些条款包括但不限于应用于 TI 的半导体产品 (http://www.ti.com/sc/docs/stdterms.htm)、评估模块和样品 (http://www.ti.com/sc/docs/sampterms.htm) 的标准条款。

邮寄地址：上海市浦东新区世纪大道 1568 号中建大厦 32 楼，邮政编码：200122
Copyright © 2018 德州仪器半导体技术（上海）有限公司