
1SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

User's Guide
SPRUIJ2–April 2018

PRU Assembly Instruction User Guide

This document describes the assembly language instructions for the PRU subsystem included in the
OMAP-L1x8/C674m/AM18xx/AM335x/AM437x/AM57xx/66AK2Gx devices.

Contents
1 Instruction Set Syntax Terminology ....................................................................................... 2
2 Instruction Set ................................................................................................................ 2
3 Appendix A: PRU Core Revision ......................................................................................... 48

List of Tables

1 Instruction Set Syntax Terminology ....................................................................................... 2
2 Instruction Descriptions ..................................................................................................... 3
3 PRU Core Revision Comparison ......................................................................................... 48

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Instruction Set Syntax Terminology www.ti.com

2 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

1 Instruction Set Syntax Terminology
Table 1 provides the terminology needed to understand the syntax for the instruction set.

Table 1. Instruction Set Syntax Terminology

PARAMETER MEANING EXAMPLES
REG, REG1, REG2, ... Any register field from 8 to 32 bits r0, r1.w0, r3.b2

Rn, Rn1, Rn2, ... Any 32 bit register field (r0 through r31) r0, r1
Rn.tx Any 1 bit register field (x denotes the bit position) r0.t23, r1.b2.t5

Rn.bx Specifies a byte field that must be b0, b1, b2, or b3 – denoting
r0.b0, r0.b1, r0.b2, and r0.b3, respectively. b0, b1

Rn.wx
Specifies a two-byte (word) field that must be w0, w1, or w2 -

denoting r0.w0, r0.w1, and r0.w2, respectively. w0 spans bytes
0 and 1; w1 spans bytes 1 and 2; w2 spans bytes 2 and 3.

w0, w1

Cn, Cn1, Cn2, ... Any 32 bit constant table entry (c0 through c31) c0,c1

LABEL
Any valid label, specified with or without parenthesis. An
immediate value denoting an instruction address is also

acceptable.
loop1, (loop1), 0x0000

IM(n)

An immediate value from 0 to n. In clpru immediate values
should be specified without a leading hash \"\#\". In pasm, the

leading \"\#\" is accepted, but optional. Immediate values,
labels, and register addresses are all acceptable.

#23, 0b0110, 0xF2, 2+2, &r3.w2

OP(n) The union of REG and IM(n) r0, r1.w0, #0x7F, 1<<3, loop1, &r1.w0

For example, the following is the definition for the ADD instruction:
ADD REG1, REG2, OP(255)

This means that the first and second parameters can be any register field from 8 to 32 bits. The third
parameter can be any register field from 8 to 32 bits, or an immediate value from 0 to 255. Thus, the
following are all legal ADD instructions:

ADD R1, R1, #0x25 // r1 += 37
ADD r1, r1, 0x25 // r1 += 37
ADD r3, r1, r2 // r3 = r1 + r2
ADD r1.b0, r1.b0, 0b100 // r1.b0 += 4
ADD r2, r1.w0, 1<<3 // r2 = r1.w0 + 8

2 Instruction Set

2.1 Arithmetic and Logical
All operations are 32 bits wide (with a 33-bit result in the case of arithmetic). The source values are zero
extended prior to the operation. If the destination is too small to accept the result, the result is truncated.
On arithmetic operations, the first bit to the left of the destination width becomes the carry value. Thus, if
the destination register is an 8-bit field, bit 8 of the result becomes the carry. For 16- and 32-bit
destinations, bit 16 and bit 32 are used as the carry bit, respectively.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Instruction Set

3SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Table 2. Instruction Descriptions
Title ...................................................................................................................................... Page

Unsigned Integer Add (ADD) —Performs 32-bit add on two 32-bit zero extended source values. .......................... 5
Unsigned Integer Add with Carry (ADC) —Performs 32-bit add on two 32-bit zero extended source values, plus a

stored carry bit. ................................................................................................................. 6
Unsigned Integer Subtract (SUB) —Performs 32-bit subtract on two 32-bit zero extended source values. ............... 7
Unsigned Integer Subtract with Carry (SUC) —Performs 32-bit subtract on two 32-bit zero extended source values

with carry (borrow) .............................................................................................................. 8
Reverse Unsigned Integer Subtract (RSB) —Performs 32-bit subtract on two 32-bit zero extended source values.

Source values reversed. ....................................................................................................... 9
Reverse Unsigned Integer Subtract with Carry (RSC) —Performs 32-bit subtract on two 32-bit zero extended

source values with carry (borrow). Source values reversed.............................................................. 10
Logical Shift Left (LSL) —Performs 32-bit shift left of the zero extended source value....................................... 11
Logical Shift Right (LSR) —Performs 32-bit shift right of the zero extended source value................................... 12
Bitwise AND (AND) —Performs 32-bit logical AND on two 32-bit zero extended source values. ........................... 13
Bitwise OR (OR) —Performs 32-bit logical OR on two 32-bit zero extended source values. ................................ 14
Bitwise Exclusive OR (XOR) —Performs 32-bit logical XOR on two 32-bit zero extended source values. ............... 15
Bitwise NOT (NOT) —Performs 32-bit logical NOT on the 32-bit zero extended source value. ............................. 16
Copy Minimum (MIN) —Compares two 32-bit zero extended source values and copies the minimum value to the

destination register. ........................................................................................................... 17
Copy Maximum (MAX) —Compares two 32-bit zero extended source values and copies the maximum value to the

destination register. ........................................................................................................... 18
Clear Bit (CLR) —Clears the specified bit in the source and copies the result to the destination. Various calling

formats are supported. ........................................................................................................ 19
Set Bit (SET) —Sets the specified bit in the source and copies the result to the destination. Various calling formats

are supported. NOTE: Whenever R31 is selected as the source operand to a SET, the resulting source bits
will be NULL, and not reflect the current input event flags that are normally obtained by reading R31. ........... 20

Register Field Scan (SCAN) —The SCAN instruction scans the register file for a particular value. It includes a
configurable field width and stride. The width of the field to match can be set to 1, 2, or 4 bytes. The span
between fields in bytes is programmable from 1 to 4 bytes. (Having a stride independent of width allows the
programmer to scan for non-byte values on byte boundaries. For example, scan for "7F03" on a byte by byte
basis). This instruction is deprecated and not available on all PRU cores. NOTE: This instruction is only
supported in the pasm assembler. .......................................................................................... 21

Left-Most Bit Detect (LMBD) —Scans REG2 from its left-most bit for a bit value matching bit 0 of OP(255), and
writes the bit number in REG1 (writes 32 to REG1 if the bit is not found). ............................................ 22

Copy Value (MOV) —The MOV instruction moves the value from REG2, zero extends it, and stores it into REG1. The
instruction is a pseudo op, and is coded with the instruction AND REG1, REG2, REG2. To load an immediate
value into a register, see the LDI instruction. .............................................................................. 24

Load Immediate (LDI) —The LDI instruction moves the value from IM(65535), zero extends it, and stores it into
REG1. .......................................................................................................................... 25

Move Register File Indirect (MVIx) —The MVIx instruction family moves an 8-bit, 16-bit, or 32-bit value from the
source to the destination. The size of the value is determined by the exact instruction used; MVIB, MVIW,
and MVID, for 8-bit, 16-bit, and 32-bit values, respectively. The source, destination, or both must be a
register pointer. There is an option for auto-increment and auto-decrement on register pointers. These
instructions are only supported for core revisions V2 and later. ........................................................ 26

Load Byte Burst (LBBO) —The LBBO instruction is used to read a block of data from memory into the register file.
The memory address to read from is specified by a 32-bit register (Rn2), using an optional offset. The
destination in the register file can be specified as a direct register, or indirectly through a register pointer.
NOTE: In the pasm assembler, either the traditional direct register syntax or the more recent register address
offset syntax can be used for the first parameter. ........................................................................ 27

Store Byte Burst (SBBO) —The SBBO instruction is used to write a block of data from the register file into memory.
The memory address to write to is specified by a 32-bit register (Rn2), using an optional offset. The source in
the register file can be specified as a direct register, or indirectly through a register pointer. NOTE: In the
pasm assembler, either the traditional direct register syntax or the more recent register address offset syntax
can be used for the first parameter. ........................................................................................ 28

Load Byte Burst with Constant Table Offset (LBCO) —The LBCO instruction is used to read a block of data from
memory into the register file. The memory address to read from is specified by a 32-bit constant register
(Cn2), using an optional offset from an immediate or register value. The destination in the register file is

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Instruction Set www.ti.com

4 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Table 2. Instruction Descriptions (continued)
specified as a direct register. NOTE: In the pasm assembler, either the traditional direct register syntax or the
more recent register address offset syntax can be used for the first parameter. ..................................... 29

Store Byte Burst with Constant Table Offset (SBCO) —The SBCO instruction is used to write a block of data from
the register file into memory. The memory address to write to is specified by a 32-bit constant register (Cn2),
using an optional offset from an immediate or register value. The source in the register file is specified as a
direct register. NOTE: In the pasm assembler either the traditional direct register syntax or the more recent
register address offset syntax can be used for the first parameter. .................................................... 30

Clear Register Space (ZERO) —This pseudo-op is used to clear space in the register file (set to zero). ................. 31
Register Transfer In, Out, and Exchange (XIN, XOUT, XCHG) —These XFR pseudo-ops use the XFR wide transfer

bus to read in a range of bytes into the register file, write out a range of bytes from the register file, or
exchange the range of bytes to/from the register file. CAUTION: exchange (XCHG) is apparently not
supported. Based on some quick tests on an AM335x it seems to behave like XIN. ................................ 32

Unconditional Jump (JMP) —Unconditional jump to a 16-bit instruction address, specified by register or immediate
value. ........................................................................................................................... 33

Unconditional Jump and Link (JAL) —Unconditional jump to a 16-bit instruction address, specified by register or
immediate value. The address following the JAL instruction is stored into REG1, so that REG1 can later be
used as a "return" address. .................................................................................................. 34

Quick Branch if Greater Than (QBGT) —Jumps if the value of OP(255) is greater than REG1. .......................... 35
Quick Branch if Greater Than or Equal (QBGE) —Jumps if the value of OP(255) is greater than or equal to REG1. . 36
Quick Branch if Less Than (QBLT) —Jumps if the value of OP(255) is less than REG1. .................................. 37
Quick Branch if Less Than or Equal (QBLE) —Jumps if the value of OP(255) is less than or equal to REG1. ......... 38
Quick Branch if Equal (QBEQ) —Jumps if the value of OP(255) is equal to REG1. ......................................... 39
Quick Branch if Not Equal (QBNE) —Jumps if the value of OP(255) is NOT equal to REG1. ............................. 40
Quick Branch Always (QBA) —Jump always. This is similar to the JMP instruction, only QBA uses an address offset

and thus can be relocated in memory. ..................................................................................... 41
Quick Branch if Bit is Set (QBBS) —Jumps if the bit OP(31) is set in REG1. ................................................ 42
Quick Branch if Bit is Clear (QBBC) —Jumps if the bit OP(31) is clear in REG1. ........................................... 43
Wait until Bit Set (WBS) —The WBS instruction is a pseudo op that uses the QBBC instruction. It is used to poll on

a status bit, spinning until the bit is set. In this case, REG1 is almost certainly R31, else this instruction could
lead to an infinite loop. ....................................................................................................... 44

Wait until Bit Clear (WBC) —The WBC instruction is a pseudo op that uses the QBBS instruction. It is used to poll
on a status bit, spinning until the bit is clear. In this case, REG1 is almost certainly R31, else this instruction
could lead to an infinite loop. ................................................................................................ 45

Halt Operation (HALT) —The HALT instruction disables the PRU. This instruction is used to implement software
breakpoints in a debugger. The PRU program counter remains at its current location (the location of the
HALT). When the PRU is re-enabled, the instruction is re-fetched from instruction memory. ...................... 46

Sleep Operation (SLP) —The SLP instruction will sleep the PRU, causing it to disable its clock. This instruction can
specify either a permanent sleep or a "wake on event". When the wake on event option is set to "1", the PRU
will wake on any event that is enabled in the PRU Wakeup Enable register. Otherwise, the core can only be
woken by manually clearing the SLEEPING bit of the core's CTRL register, or by resetting the PRU core.
When profiling stall cycles, note that due to clock gating only one stall cycle will normally be recorded for any
amount of sleep. However, accessing the core's control registers while it is sleeping will briefly reenable its
clock, resulting in additional stall cycles being recorded. ................................................................ 47

Hardware Loop Assist (LOOP) —Defines a hardware-assisted loop operation. The loop is non-interruptible (LOOP).
The loop operation works by detecting when the instruction pointer would normal hit the instruction at the
designated target label, and instead decrementing a loop counter and jumping back to the instruction
immediately following the loop instruction. ................................................................................. 48

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Instruction Set

5SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Unsigned Integer Add (ADD) Performs 32-bit add on two 32-bit zero extended source values.

Syntax ADD REG1, REG2, OP(255)

Operation REG1 = REG2 + OP(255)
carry = (( REG2 + OP(255) ) >> bitwidth(REG1)) & 1

Example add r3, r1, r2
add r3, r1.b0, r2.w2
add r3, r3, 10

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Instruction Set www.ti.com

6 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Unsigned Integer Add with Carry (ADC) Performs 32-bit add on two 32-bit zero extended source
values, plus a stored carry bit.

Definition ADC REG1, REG2, OP(255)

Operation REG1 = REG2 + OP(255) + carry
carry = (( REG2 + OP(255) + carry) >> bitwidth(REG1)) & 1

Example adc r3, r1, r2
adc r3, r1.b0, r2.w2
adc r3, r3, 10

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Instruction Set

7SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Unsigned Integer Subtract (SUB) Performs 32-bit subtract on two 32-bit zero extended source values.

Definition SUB REG1, REG2, OP(255)

Operation REG1 = REG2 + OP(255)
carry = (( REG2 + OP(255) ) >> bitwidth(REG1)) & 1

Example sub r3, r1, r2
sub r3, r1.b0, r2.w2
sub r3, r3, 10

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Instruction Set www.ti.com

8 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Unsigned Integer Subtract with Carry (SUC) Performs 32-bit subtract on two 32-bit zero extended
source values with carry (borrow)

Definition SUC REG1, REG2, OP(255)

Operation REG1 = REG2 + OP(255) - carry
carry = (( REG2 + OP(255) - carry ) >> bitwidth(REG1)) & 1

Example suc r3, r1, r2
suc r3, r1.b0, r2.w2
suc r3, r3, 10

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Instruction Set

9SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Reverse Unsigned Integer Subtract (RSB) Performs 32-bit subtract on two 32-bit zero extended
source values. Source values reversed.

Definition RSB REG1, REG2, or OP(255)

Operation REG1 = OP(255) - REG2
carry = (( OP(255) - REG2 ) >> bitwidth(REG1)) & 1

Example rsb r3, r1, r2
rsb r3, r1.b0, r2.w2
rsb r3, r3, 10

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Instruction Set www.ti.com

10 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Reverse Unsigned Integer Subtract with Carry (RSC) Performs 32-bit subtract on two 32-bit zero
extended source values with carry (borrow). Source values reversed.

Definition RSC REG1, REG2, or OP(255)

Operation REG1 = OP(255) - REG2 - carry
carry = (( OP(255) - REG2 - carry ) >> bitwidth(REG1)) & 1

Example rsc r3, r1, r2
rsc r3, r1.b0, r2.w2
rsc r3, r3, 10

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Instruction Set

11SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Logical Shift Left (LSL) Performs 32-bit shift left of the zero extended source value.

Definition LSL REG1, REG2, OP(31)

Operation REG1 = REG2 << ( OP(31) & 0x1f )

Example lsl r3, r3, 2
lsl r3, r3, r1.b0
lsl r3, r3.b0, 10

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Instruction Set www.ti.com

12 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Logical Shift Right (LSR) Performs 32-bit shift right of the zero extended source value.

Definition LSR REG1, REG2, OP(31)

Operation REG1 = REG2 >> ( OP(31) & 0x1f )

Example lsr r3, r3, 2
lsr r3, r3, r1.b0
lsr r3, r3.b0, 10

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Instruction Set

13SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Bitwise AND (AND) Performs 32-bit logical AND on two 32-bit zero extended source values.

Definition AND REG1, REG2, OP(255)

Operation REG1 = REG2 & OP(255)

Example and r3, r1, r2
and r3, r1.b0, r2.w2
and r3.b0, r3.b0, ~(1<<3) // Clear bit 3

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Instruction Set www.ti.com

14 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Bitwise OR (OR) Performs 32-bit logical OR on two 32-bit zero extended source values.

Definition OR REG1, REG2, OP(255)

Operation REG1 = REG2 | OP(255)

Example or r3, r1, r2
or r3, r1.b0, r2.w2
or r3.b0, r3.b0, (1<<3) // Set bit 3

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Instruction Set

15SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Bitwise Exclusive OR (XOR) Performs 32-bit logical XOR on two 32-bit zero extended source values.

Definition XOR REG1, REG2, OP(255)

Operation REG1 = REG2 ^ OP(255)

Example xor r3, r1, r2
xor r3, r1.b0, r2.w2
xor r3.b0, r3.b0, (1<<3) // Toggle bit 3

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Instruction Set www.ti.com

16 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Bitwise NOT (NOT) Performs 32-bit logical NOT on the 32-bit zero extended source value.

Definition NOT REG1, REG2

Operation REG1 = ~REG2

Example not r3, r3
not r1.w0, r1.b0

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Instruction Set

17SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Copy Minimum (MIN) Compares two 32-bit zero extended source values and copies the minimum
value to the destination register.

Definition MIN REG1, REG2, OP(255)

Operation if( OP(255) > REG2 )
REG1 = REG2;

else
REG1 = OP(255);

Example min r3, r1, r2
min r1.w2, r1.b0, 127

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Instruction Set www.ti.com

18 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Copy Maximum (MAX) Compares two 32-bit zero extended source values and copies the maximum
value to the destination register.

Definition MAX REG1, REG2, OP(255)

Operation if( OP(255) > REG2 )
REG1 = OP(255);

else
REG1 = REG2;

Example max r3, r1, r2
max r1.w2, r1.b0, 127

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Instruction Set

19SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Clear Bit (CLR) Clears the specified bit in the source and copies the result to the destination.
Various calling formats are supported.

Format 1

Definition CLR REG1, REG2, OP(31)

Operation REG1 = REG2 & ~( 1 << (OP(31) & 0x1f) )

Example clr r3, r1, r2 // r3 = r1 & ~(1<<r2)
clr r1.b1, r1.b0, 5 // r1.b1 = r1.b0 & ~(1<<5)

Format 2 (same source and destination)

NOTE: This format is only supported in the pasm assembler.

Definition CLR REG1, OP(31)

Operation REG1 = REG1 & ~( 1 << (OP(31) & 0x1f) )

Example clr r3, r1 // r3 = r3 & ~(1<<r1)
clr r1.b1, 5 // r1.b1 = r1.b1 & ~(1<<5)

Format 3 (source abbreviated)

Definition CLR REG1, Rn.tx

Operation REG1 = Rn & ~(1<<x)

Example clr r3, r1.t2 // r3 = r1 & ~(1<<2)
clr r1.b1, r1.b0.t5 // r1.b1 = r1.b0 & ~(1<<5)

Format 4 (same source and destination – abbreviated)

NOTE: This format is only supported in the pasm assembler.

Definition CLR Rn.tx

Operation REG1 = Rn & ~(1<<x)

Example clr r3, t2 // r3 = r3 & ~(1<<2)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Instruction Set www.ti.com

20 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Set Bit (SET) Sets the specified bit in the source and copies the result to the destination.
Various calling formats are supported. NOTE: Whenever R31 is selected as the
source operand to a SET, the resulting source bits will be NULL, and not reflect
the current input event flags that are normally obtained by reading R31.

Format 1

Definition SET REG1, REG2, OP(31)

Operation REG1 = REG2 | ( 1 << (OP(31) & 0x1f) )

Example set r3, r1, r2 // r3 = r1 | (1<<r2)
set r1.b1, r1.b0, 5 // r1.b1 = r1.b0 | (1<<5)

Format 2 (same source and destination)

NOTE: This format is only supported in the pasm assembler.

Definition SET REG1, OP(31)

Operation REG1 = REG1 | ( 1 << (OP(31) & 0x1f) )

Example set r3, r1 // r3 = r3 | (1<<r1)
set r1.b1, 5 // r1.b1 = r1.b1 | 1<<5)

Format 3 (source abbreviated)

Definition SET REG1, Rn.tx

Operation REG1 = Rn | (1<<x)

Example set r3, r1.t2 // r3 = r1 | (1<<2)
set r1.b1, r1.b0.t5 // r1.b1 = r1.b0 | (1<<5)

Format 4 (same source and destination – abbreviated)

NOTE: This format is only supported in the pasm assembler.

Definition SET Rn.tx

Operation REG1 = Rn | (1<<x)

Example set r3.t2 // r3 = r3 | (1<<2)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Instruction Set

21SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Register Field Scan (SCAN) The SCAN instruction scans the register file for a particular value. It
includes a configurable field width and stride. The width of the field to match can
be set to 1, 2, or 4 bytes. The span between fields in bytes is programmable from 1
to 4 bytes. (Having a stride independent of width allows the programmer to scan
for non-byte values on byte boundaries. For example, scan for "7F03" on a byte by
byte basis). This instruction is deprecated and not available on all PRU cores.
NOTE: This instruction is only supported in the pasm assembler.

Definition SCAN Rn, OP(255)

Operation The register "Rn" serves as both the source and results register. It is coded as
follows:

Rn.b0 Byte offset from the start of the register file to begin the scan (see section 3.3 for
details on register addressing)

Rn.b1 Number of fields to scan
Rn.b2 Byte width of field to scan for (1, 2, 4)
Rn.b3 Byte stride of consecutive fields (1 to 4)

The instruction scans for the value specified in OP(255). On completion, the Rn register
holds the results of the scan. It is coded as follows:

Rn.b0 Byte offset from R0.b0 to the matching field (or 0xFF if no match)
Rn.b1 Number of fields left to scan (including the matched field if any)
Rn.b2 Not altered
Rn.b3 Not altered

To continue a scan after a match, the programmer can write:
ADD R1.w0, R1.w0, #0xFF01 // Inc byte offset, dec count
SCAN R1, OP(255)

Example Scan the register file for the sequence "0x7F 0x03" starting at R2.b1 and extending for
18 bytes. Do not assume the sequence is word-aligned.

LDI R1.w0, 0x7F | 0x03<<8 // 0x7F 0x03 in little endian
LDI R30.w2, 2 | 1<<8 // Field width of 2, stride of 1
LDI R30.w0, &r2.b1 | 18<<8 // Start at R2.b1, scan 18 bytes
SCAN R30, R1.w0 // Scan for byte sequence
QBEQ NOT_FOUND, R30.b1, 0 // Jump if sequence not found

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Instruction Set www.ti.com

22 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Left-Most Bit Detect (LMBD) Scans REG2 from its left-most bit for a bit value matching bit 0 of
OP(255), and writes the bit number in REG1 (writes 32 to REG1 if the bit is not
found).

Definition LMBD REG1, REG2, OP(255)

Operation for( i=(bitwidth(REG2)-1); i>=0; i-- )
if( !((( REG2>>i) ^ OP(255))&1) )

break;
if( i<0 )

REG1 = 32;
else

REG1 = i;

Example lmbd r3, r1, r2
lmbd r3, r1, 1
lmbd r3.b3, r3.w0, 0

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Instruction Set

23SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

2.2 Register Load and Store

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Instruction Set www.ti.com

24 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Copy Value (MOV) The MOV instruction moves the value from REG2, zero extends it, and stores it
into REG1. The instruction is a pseudo op, and is coded with the instruction AND
REG1, REG2, REG2. To load an immediate value into a register, see the LDI
instruction.

Definition MOV REG1, REG2

Operation REG1 = REG2

Example mov r3, r1
mov r3, r1.b0 // Zero extend r1.b0 into r3

The pasm assembler supports MOV REG1, OP(65535). Examples of this form are:
mov r1, 10 // Move 10 into r1
mov r1, #10 // Move 10 into r1
mov r1, 0b10 + 020/2 // Move 10 into r1
mov r30.b0, &r2 // Move the offset of r2 into r30.b0

NOTE: This instruction is not supported in the clpru assembler.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Instruction Set

25SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Load Immediate (LDI) The LDI instruction moves the value from IM(65535), zero extends it, and stores
it into REG1.

Definition LDI REG1, IM(65535)

Operation REG1 = IM(65535)

Example ldi r1, 10 // Load 10 into r1
ldi r1, 0b10 + 020/2 // Load 10 into r1
ldi r30.b0, &r2 // Load the offset of r2 into r30.b0

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Instruction Set www.ti.com

26 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Move Register File Indirect (MVIx) The MVIx instruction family moves an 8-bit, 16-bit, or 32-bit value
from the source to the destination. The size of the value is determined by the
exact instruction used; MVIB, MVIW, and MVID, for 8-bit, 16-bit, and 32-bit values,
respectively. The source, destination, or both must be a register pointer. There is
an option for auto-increment and auto-decrement on register pointers. These
instructions are only supported for core revisions V2 and later.

Definition MVIB [*][--]REG1[++], [*][--]REG2[++]
MVIW [*][--]REG1[++], [*][--]REG2[++]
MVID [*][--]REG1[++], [*][--]REG2[++]

Operation
• Either the source or destination must be a register pointer restricted to r1.b0, r1.b1,

r1.b2, or r1.b3
• Register pointers are byte offsets into the register file
• Auto increment and decrement operations are done by the byte width of the

operation
– Increments are post-increment; incremented after the register offset is used
– Decrements are pre-decrement; decremented before the register offset is used

• When the source or destination registers are not expressed as register pointers, the
size of the data read or written is determined by the field width of the register. If the
data transfer size is less than the width of the destination, the data is zero extended.
Size conversion occurs after indirect reads, and before indirect writes.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Instruction Set

27SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Load Byte Burst (LBBO) The LBBO instruction is used to read a block of data from memory into the
register file. The memory address to read from is specified by a 32-bit register
(Rn2), using an optional offset. The destination in the register file can be specified
as a direct register, or indirectly through a register pointer. NOTE: In the pasm
assembler, either the traditional direct register syntax or the more recent register
address offset syntax can be used for the first parameter.

Format 1 (immediate count)

Definition LBBO &REG1, Rn2, OP(255), IM(124)

Operation memcpy( offset(REG1), Rn2+OP(255), IM(124) );

Example lbbo &r2, r1, 5, 8 // Copy 8 bytes into r2/r3 from the
// memory address r1+5

Format 2 (register count)

Definition LBBO &REG1, Rn2, OP(255), bn

Operation memcpy( offset(REG1), Rn2+OP(255), bn );

Example lbbo &r3, r1, r2.w0, b0 // Copy "r0.b0" bytes into r3 from the
// memory address r1+r2.w0

NOTE: For Format 2, do not use a byte count of 0 provided in R0.bn. It could
cause the PRU to hang.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Instruction Set www.ti.com

28 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Store Byte Burst (SBBO) The SBBO instruction is used to write a block of data from the register file
into memory. The memory address to write to is specified by a 32-bit register
(Rn2), using an optional offset. The source in the register file can be specified as a
direct register, or indirectly through a register pointer. NOTE: In the pasm
assembler, either the traditional direct register syntax or the more recent register
address offset syntax can be used for the first parameter.

Format 1 (immediate count)

Definition SBBO &REG1, Rn2, OP(255), IM(124)

Operation memcpy( Rn2+OP(255), offset(REG1), IM(124) );

Example sbbo &r2, r1, 5, 8 // Copy 8 bytes from r2/r3 to the
// memory address r1+5

Format 2 (register count)

Definition SBBO &REG1, Rn2, OP(255), bn

Operation memcpy( Rn2+OP(255), offset(REG1), bn );

Example sbbo &r3, r1, r2.w0, b0 // Copy "r0.b0" bytes from r3 to the
// memory address r1+r2.w0

NOTE: For Format 2, do not use a byte count of 0 provided in R0.bn. It could
cause the PRU to hang.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Instruction Set

29SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Load Byte Burst with Constant Table Offset (LBCO) The LBCO instruction is used to read a block
of data from memory into the register file. The memory address to read from is
specified by a 32-bit constant register (Cn2), using an optional offset from an
immediate or register value. The destination in the register file is specified as a
direct register. NOTE: In the pasm assembler, either the traditional direct register
syntax or the more recent register address offset syntax can be used for the first
parameter.

Format 1 (immediate count)

Definition LBCO &REG1, Cn2, OP(255), IM(124)

Operation memcpy( offset(REG1), Cn2+OP(255), IM(124) );

Example lbco &r2, c1, 5, 8 // Copy 8 bytes into r2/r3 from the
// memory address c1+5

Format 2 (register count)

Definition LBCO &REG1, Cn2, OP(255), bn

Operation memcpy( offset(REG1), Cn2+OP(255), bn );

Example lbco &r3, c1, r2.w0, b0 // Copy "r0.b0" bytes into r3 from the
// memory address c1+r2.w0

NOTE: For Format 2, do not use a byte count of 0 provided in R0.bn. It could
cause the PRU to hang.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Instruction Set www.ti.com

30 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Store Byte Burst with Constant Table Offset (SBCO) The SBCO instruction is used to write a block
of data from the register file into memory. The memory address to write to is
specified by a 32-bit constant register (Cn2), using an optional offset from an
immediate or register value. The source in the register file is specified as a direct
register. NOTE: In the pasm assembler either the traditional direct register syntax
or the more recent register address offset syntax can be used for the first
parameter.

Format 1 (immediate count)

Definition SBCO &REG1, Cn2, OP(255), IM(124)

Operation memcpy( Cn2+OP(255), offset(REG1), IM(124) );

Example sbco &r2, c1, 5, 8 // Copy 8 bytes from r2/r3 to the
// memory address c1+5

Format 2 (register count)

Definition SBCO &REG1, Cn2, OP(255), bn

Operation memcpy( Cn2+OP(255), offset(REG1), bn );

Example sbco &r3, c1, r2.w0, b0 // Copy "r0.b0" bytes from r3 to the
// memory address c1+r2.w0

NOTE: For Format 2, do not use a byte count of 0 provided in R0.bn. It could
cause the PRU to hang.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Instruction Set

31SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Clear Register Space (ZERO) This pseudo-op is used to clear space in the register file (set to zero).

Definition ZERO IM(123), IM(124)
ZERO &REG1, IM(124)

Operation The register file data starting at offset IM(123) (or &REG1) with a length of
IM(124) is cleared to zero.

Example zero 0, 8 // Set R0 and R1 to zero
zero &r0, 8 // Set R0 and R1 to zero

// Set all elements in myStruct zero
zero &myStruct, SIZE(myStruct)

This pseudo-op generates the necessary LDI instructions to clear the specified register
range to zero. The instructions generated are optimized based on the starting register
alignment and length.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Instruction Set www.ti.com

32 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Register Transfer In, Out, and Exchange (XIN, XOUT, XCHG) These XFR pseudo-ops use the XFR
wide transfer bus to read in a range of bytes into the register file, write out a range
of bytes from the register file, or exchange the range of bytes to/from the register
file. CAUTION: exchange (XCHG) is apparently not supported. Based on some
quick tests on an AM335x it seems to behave like XIN.

Definition XIN IM(253), REG, IM(124)
XIN IM(253), REG, bn
XOUT IM(253), REG, IM(124)
XOUT IM(253), REG, bn
XCHG IM(253), REG, IM(124)
XCHG IM(253), REG, bn

Operation On XIN, the register file data starting at the register REG with a length of
IM(124) is read in from the parallel XFR interface from the hardware device with
the device id specified in IM(253).

On XOUT, the register file data starting at the register REG with a length of
IM(124) is written out to the parallel XFR interface to the hardware device with
the device id specified in IM(253).

On XCHG, the register file data starting at the register REG with a length of
IM(124) is exchanged on the parallel XFR interface between the register file and
the hardware device with the device id specified in IM(253).

Example XIN XID_SCRATCH, R2, 8 // Read 8 bytes from scratch to R2:R3
XOUT XID_SCRATCH, R2, b2 // Write ‘b2’ byte to scratch starting at R2
XCHG XID_SCRATCH, R2, 8 // Exchange the values of R2:R3 with 8 bytes

// from scratch
XIN XID_PKTFIFO, R6, 24 // Read 24 bytes from the "Packet FIFO"

// info R6:R7:R8:R9

Transfer Bus Hardware Connection: The transfer bus coming out of the PRU consists of
124 bytes of data and a sufficient number of control lines to control the transfer. Any
given transfer consists of a direction (in or out of the PRU), a peripheral ID, a starting
byte offset, and a length. These can be represented in hardware as register and byte
enable signals as needed for a proper implementation (which is beyond the scope of this
description).

How the bus transfer is used is entirely up to the peripherals that connect to it. The
number of registers that are implemented on the peripheral and how they align to the
PRU register file is determined by the peripheral connection. For example, the system
below connects PRU registers R1::R3 to "peripheral A" registers A0::A2, and connects
PRU registers R2::R4 to "peripheral B" registers B0::B2.

2.3 Control Flow

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Instruction Set

33SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Unconditional Jump (JMP) Unconditional jump to a 16-bit instruction address, specified by register or
immediate value.

Definition JMP OP(65535)

Operation PRU Instruction Pointer = OP(65535)

Example jmp r2.w0 // Jump to the address stored in r2.w0
jmp myLabel // Jump to the supplied code label

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Instruction Set www.ti.com

34 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Unconditional Jump and Link (JAL) Unconditional jump to a 16-bit instruction address, specified by
register or immediate value. The address following the JAL instruction is stored
into REG1, so that REG1 can later be used as a "return" address.

Definition JAL REG1, OP(65535)

Operation REG1 = Current PRU Instruction Pointer + 1
PRU Instruction Pointer = OP(65535)

Example jal r2.w2, r2.w0 // Jump to the address stored in r2.w0
// put return location in r2.w2

jal r30.w0, myLabel // Jump to the supplied code label and
// put the return location in r30.w0

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Instruction Set

35SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Quick Branch if Greater Than (QBGT) Jumps if the value of OP(255) is greater than REG1.

Definition QBGT LABEL, REG1, OP(255)

Operation Branch to LABEL if OP(255) > REG1

Example qbge myLabel, r2.w0, 5 // Branch if 5 > r2.w0
qbge myLabel, r3, r4 // Branch if r4 > r3

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Instruction Set www.ti.com

36 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Quick Branch if Greater Than or Equal (QBGE) Jumps if the value of OP(255) is greater than or
equal to REG1.

Definition QBGE LABEL, REG1, OP(255)

Operation Branch to LABEL if OP(255) >= REG1

Example qbgt myLabel, r2.w0, 5 // Branch if 5 >= r2.w0
qbgt myLabel, r3, r4 // Branch if r4 >= r3

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Instruction Set

37SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Quick Branch if Less Than (QBLT) Jumps if the value of OP(255) is less than REG1.

Definition QBLT LABEL, REG1, OP(255)

Operation Branch to LABEL if OP(255) < REG1

Example qblt myLabel, r2.w0, 5 // Branch if 5 < r2.w0
qblt myLabel, r3, r4 // Branch if r4 < r3

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Instruction Set www.ti.com

38 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Quick Branch if Less Than or Equal (QBLE) Jumps if the value of OP(255) is less than or equal to
REG1.

Definition QBLE LABEL, REG1, OP(255)

Operation Branch to LABEL if OP(255) <= REG1

Example qble myLabel, r2.w0, 5 // Branch if 5 <= r2.w0
qble myLabel, r3, r4 // Branch if r4 <= r3

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Instruction Set

39SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Quick Branch if Equal (QBEQ) Jumps if the value of OP(255) is equal to REG1.

Definition QBEQ LABEL, REG1, OP(255)

Operation Branch to LABEL if OP(255) == REG1

Example qbeq myLabel, r2.w0, 5 // Branch if r2.w0==5
qbeq myLabel, r3, r4 // Branch if r4==r3

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Instruction Set www.ti.com

40 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Quick Branch if Not Equal (QBNE) Jumps if the value of OP(255) is NOT equal to REG1.

Definition QBNE LABEL, REG1, OP(255)

Operation Branch to LABEL if OP(255) != REG1

Example qbne myLabel, r2.w0, 5 // Branch if r2.w0!=5
qbne myLabel, r3, r4 // Branch if r4!=r3

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Instruction Set

41SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Quick Branch Always (QBA) Jump always. This is similar to the JMP instruction, only QBA uses an
address offset and thus can be relocated in memory.

Definition QBA LABEL

Operation Branch to LABEL

Example qba myLabel // Branch

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Instruction Set www.ti.com

42 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Quick Branch if Bit is Set (QBBS) Jumps if the bit OP(31) is set in REG1.

Format 1

Definition QBBS LABEL, REG1, OP(31)

Operation Branch to LABEL if( REG1 & ( 1 << (OP(31) & 0x1f) ) )

Example qbbs myLabel r3, r1 // Branch if( r3&(1<<r1) )
qbbs myLabel, r1.b1, 5 // Branch if( r1.b1 & 1<<5 )

Format 2

Definition QBBS LABEL, Rn.tx

Operation Branch to LABEL if( Rn & Rn.tx )

Example qbbs myLabel, r1.b1.t5 // Branch if( r1.b1 & 1<<5 )
qbbs myLabel, r0.t0 // Branch if bit 0 in R0 is set

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Instruction Set

43SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Quick Branch if Bit is Clear (QBBC) Jumps if the bit OP(31) is clear in REG1.

Format 1

Definition QBBC LABEL, REG1, OP(31)

Operation Branch to LABEL if( !(REG1 & ( 1 << (OP(31) & 0x1f) )) )

Example qbbc myLabel r3, r1 // Branch if( !(r3&(1<<r1)) )
qbbc myLabel, r1.b1, 5 // Branch if( !(r1.b1 & 1<<5) )

Format 2

Definition QBBC LABEL, Rn.tx

Operation Branch to LABEL if( !(Rn & Rn.tx) )

Example qbbc myLabel, r1.b1.t5 // Branch if( !(r1.b1 & 1<<5) )
qbbc myLabel, r0.t0 // Branch if bit 0 in R0 is clear

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Instruction Set www.ti.com

44 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Wait until Bit Set (WBS) The WBS instruction is a pseudo op that uses the QBBC instruction. It is
used to poll on a status bit, spinning until the bit is set. In this case, REG1 is
almost certainly R31, else this instruction could lead to an infinite loop.

Format 1

Definition WBS REG1, OP(31)

Operation QBBC $, REG1, OP(31)

Example wbs r31, r1 // Spin here while ( !(r31&(1<<r1)) )
wbs r31.b1, 5 // Spin here while ( !(r31.b1 & 1<<5) )

Format 2

Definition WBS Rn.tx

Operation QBBC $, Rn.tx

Example wbs r31.b1.t5 // Spin here while ( !(r31.b1 & 1<<5) )
wbs r31.t0 // Spin here while bit 0 in R31 is clear

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Instruction Set

45SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Wait until Bit Clear (WBC) The WBC instruction is a pseudo op that uses the QBBS instruction. It is
used to poll on a status bit, spinning until the bit is clear. In this case, REG1 is
almost certainly R31, else this instruction could lead to an infinite loop.

Format 1

Definition WBC REG1, OP(31)

Operation QBBS $, REG1, OP(31)

Example wbc r31, r1 // Spin here while ( r31&(1<<r1) )
wbc r31.b1, 5 // Spin here while ( r31.b1 & 1<<5 )

Format 2

Definition WBC Rn.tx

Operation QBBS $, Rn.tx

Example wbc r31.b1.t5 // Spin here while ( r31.b1 & 1<<5 )
wbc r31.t0 // Spin here while bit 0 in R31 is set

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Instruction Set www.ti.com

46 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Halt Operation (HALT) The HALT instruction disables the PRU. This instruction is used to implement
software breakpoints in a debugger. The PRU program counter remains at its
current location (the location of the HALT). When the PRU is re-enabled, the
instruction is re-fetched from instruction memory.

Definition HALT

Operation Disable PRU

Example halt

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Instruction Set

47SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Sleep Operation (SLP) The SLP instruction will sleep the PRU, causing it to disable its clock. This
instruction can specify either a permanent sleep or a "wake on event". When the
wake on event option is set to "1", the PRU will wake on any event that is enabled
in the PRU Wakeup Enable register. Otherwise, the core can only be woken by
manually clearing the SLEEPING bit of the core's CTRL register, or by resetting
the PRU core. When profiling stall cycles, note that due to clock gating only one
stall cycle will normally be recorded for any amount of sleep. However, accessing
the core's control registers while it is sleeping will briefly reenable its clock,
resulting in additional stall cycles being recorded.

Definition SLP IM(1)

Operation Sleep the PRU with optional "wake on event" flag.

Example SLP 0 // Sleep without wake events
SLP 1 // Sleep until wake event set

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


Appendix A: PRU Core Revision www.ti.com

48 SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Hardware Loop Assist (LOOP) Defines a hardware-assisted loop operation. The loop is non-
interruptible (LOOP). The loop operation works by detecting when the instruction
pointer would normal hit the instruction at the designated target label, and instead
decrementing a loop counter and jumping back to the instruction immediately
following the loop instruction.

Definition LOOP LABEL, OP(256)

Operation LoopCounter = OP(256)
LoopTop = $+1
While (LoopCounter>0)
{

If (InstructionPointer==LABEL)
{

LoopCounter--;
InstructionPointer = LoopTop;

}
}

Example 1 loop EndLoop, 5 // Peform the loop 5 times
mvi r2, *r1.b0 // Get value
xor r2, r2, r3 // Change value
mvi *r1.b0++, r1 // Save value
EndLoop:

Example 2 mvi r2, *r1.b0++ // Get the number of elements
loop EndLoop, r2 // Peform the loop for each element
mvi r2, *r1.b0 // Get value
call ProcessValue // It is legal to jump outside the loop
mvi *r1.b0++, r1 // Save value
EndLoop:

NOTE: When the loop count is set from a register, only the 16 LS bits are used
(regardless of the field size). If this 16-bit value is zero, the instruction
jumps directly to the end of loop.

3 Appendix A: PRU Core Revision
There are two main PRU Core Revisions that have been implemented on TI devices. Table 3 summarizes
the difference between the supported assembly set for each revision. Though some of these functions are
supported by a particular core revision, there may be additional hardware dependencies that are not
implemented on a given device.

In general, core revision 1 has the largest common instruction set, and thus when uncertain about the
target core or when binary support for multiple core revisions is needed, assemble with the –V1 option.
Code written for a revision 1 core can execute on later cores by avoiding the SCAN instruction, but
assembling for later cores increases the efficiency of some instructions.

Table 3. PRU Core Revision Comparison

Assembler Instruction V1 V3
LFC / STC – –

SCAN Yes –
MVI Pseudo Op (limited) Yes
SLP Yes (adds trailing NOP) Yes

ZERO Pseudo Op (multi-cycle) Yes
FILL – Yes

XIN / XOUT – Yes
LOOP / ILOOP – Yes

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


www.ti.com Appendix A: PRU Core Revision

49SPRUIJ2–April 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

PRU Assembly Instruction User Guide

Table 3. PRU Core Revision Comparison (continued)
Assembler Instruction V1 V3

NOPn – Yes

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ2


IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	PRU Assembly Instruction User Guide
	1 Instruction Set Syntax Terminology
	2 Instruction Set
	2.1 Arithmetic and Logical
	2.2 Register Load and Store
	2.3 Control Flow

	3 Appendix A: PRU Core Revision

	Important Notice

