
TMS320C5545/35/34/33/32 Ultra-Low Power DSP

Technical Reference Manual

Literature Number: SPRUH87H
August 2011–Revised April 2016

2 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Contents

Contents

Preface... 33
Revision History.. 34
1 System Control .. 35

1.1 Introduction.. 36
1.1.1 Block Diagram ... 37
1.1.2 Device Differences .. 39
1.1.3 CPU Core .. 40
1.1.4 FFT Hardware Accelerator (TMS320C5545/35 Only) ... 40
1.1.5 Power Management... 42
1.1.6 Peripherals ... 42

1.2 System Memory .. 42
1.2.1 Program/Data Memory Map ... 43
1.2.2 I/O Memory Map... 48

1.3 Device Clocking .. 49
1.3.1 Overview.. 49
1.3.2 Clock Domains... 50

1.4 System Clock Generator .. 51
1.4.1 Overview.. 51
1.4.2 Functional Description .. 52
1.4.3 Configuration... 54
1.4.4 Clock Generator Registers ... 58

1.5 Power Management.. 62
1.5.1 Overview.. 62
1.5.2 Power Domains.. 62
1.5.3 Clock Management ... 63
1.5.4 Static Power Management .. 75
1.5.5 Power Considerations .. 79
1.5.6 Power Configurations ... 84

1.6 Interrupts .. 88
1.6.1 IFR and IER Registers.. 89
1.6.2 Interrupt Timing .. 90
1.6.3 Timer Interrupt Aggregation Flag Register (TIAFR) [1C14h] .. 91
1.6.4 GPIO Interrupt Enable and Aggregation Flag Registers ... 91
1.6.5 DMA Interrupt Enable and Aggregation Flag Registers.. 91

1.7 System Configuration and Control ... 92
1.7.1 Overview.. 92
1.7.2 Device Identification... 92
1.7.3 Device Configuration.. 96
1.7.4 DMA Controller Configuration .. 105
1.7.5 Peripheral Reset ... 109
1.7.6 USB Byte Access (Not Available for TMS320C5532) .. 110

2 FFT Implementation on the TMS320C5545/35 DSP .. 112
2.1 Introduction .. 113
2.2 Basics of DFT and FFT .. 113

2.2.1 Radix-2 Decimation in Time Equations ... 113

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

3SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Contents

2.2.2 Radix-2 DIT Butterfly .. 114
2.2.3 Computational Complexity.. 115
2.2.4 FFT Graphs... 116

2.3 DSP Overview Including the FFT Accelerator .. 117
2.4 FFT Hardware Accelerator Description .. 119

2.4.1 Tightly-Coupled Hardware Accelerator ... 119
2.4.2 Hardware Butterfly, Double-Stage and Single-Stage Mode.. 119
2.4.3 Pipeline and Latency .. 119
2.4.4 Software Control ... 120
2.4.5 Twiddle Factors .. 120
2.4.6 Scaling .. 120

2.5 HWAFFT Software Interface .. 121
2.5.1 Data Types ... 121
2.5.2 HWAFFT Functions.. 121
2.5.3 Bit Reverse Function .. 124
2.5.4 Function Descriptions and ROM Locations... 127
2.5.5 Project Configuration for Calling Functions from ROM ... 127

2.6 Simple Example to Illustrate the Use of the FFT Accelerator... 128
2.6.1 1024-Point FFT, Scaling Disabled... 128
2.6.2 1024-Point IFFT, Scaling Disabled .. 129
2.6.3 Graphing FFT Results in CCS4.. 129

2.7 FFT Benchmarks.. 130
2.8 Computation of Large (Greater Than 1024-Point) FFTs... 132

2.8.1 Procedure for Computing Large FFTs .. 132
2.8.2 Twiddle Factor Computation ... 132
2.8.3 Bit-Reverse Separates Even and Odd Indexes.. 132
2.8.4 2048-point FFT Source Code .. 132

2.9 Appendix A Methods for Aligning the Bit-Reverse Destination Vector... 134
2.9.1 Statically Allocate Buffer at Beginning of Suitable RAM Block .. 134
2.9.2 Use the ALIGN Descriptor to Force log2(4 * N) Zeros in the Least Significant Bits 135
2.9.3 Use the DATA_ALIGN Pragma .. 135

3 Direct Memory Access (DMA) Controller.. 136
3.1 Introduction .. 137

3.1.1 Purpose of the DMA Controller .. 137
3.1.2 Key Features of the DMA Controller .. 137
3.1.3 Block Diagram of the DMA Controller... 138

3.2 DMA Controller Architecture... 139
3.2.1 Clock Control ... 139
3.2.2 Memory Map ... 140
3.2.3 DMA Channels ... 140
3.2.4 Channel Source and Destination Start Addresses .. 141
3.2.5 Updating Addresses in a Channel ... 142
3.2.6 Data Burst Capability .. 143
3.2.7 Synchronizing Channel Activity to DSP Peripheral Events... 143
3.2.8 Channel Auto-Initialization Capability ... 144
3.2.9 Ping-Pong DMA Mode .. 144
3.2.10 Monitoring Channel Activity ... 145
3.2.11 Latency in DMA Transfers ... 146
3.2.12 Reset Considerations .. 146
3.2.13 Initialization .. 147
3.2.14 Interrupt Support .. 148
3.2.15 Power Management .. 148
3.2.16 Emulation Considerations ... 148

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

4 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Contents

3.3 DMA Transfer Examples... 148
3.3.1 Block Move Example .. 148
3.3.2 Peripheral Servicing Example.. 149
3.3.3 Ping-Pong DMA Example... 151

3.4 Registers ... 153
3.4.1 Source Start Address Registers (DMACHmSSAL and DMACHmSSAU) 156
3.4.2 Destination Start Address Registers (DMACHmDSAL and DMACHmDSAU)........................... 157
3.4.3 Transfer Control Registers (DMACHmTCR1 and DMACHmTCR2) 158

4 Real-Time Clock (RTC) ... 161
4.1 Introduction .. 162

4.1.1 Purpose of the Peripheral... 162
4.1.2 Features... 162
4.1.3 Functional Block Diagram .. 163

4.2 Peripheral Architecture... 163
4.2.1 Clock Control ... 163
4.2.2 Signal Descriptions .. 163
4.2.3 RTC-Only Mode (TMS320C5535/34 Only) ... 164
4.2.4 Using the Real-Time Clock Time and Calendar Registers ... 164
4.2.5 Using the Real-Time Clock Time and Calendar Alarms .. 166
4.2.6 Real-Time Clock Interrupt Requests .. 167
4.2.7 Reset Considerations ... 170

4.3 Registers ... 171
4.3.1 Overview .. 171
4.3.2 RTC Registers.. 171

5 32-Bit Timer/Watchdog Timer ... 188
5.1 Introduction .. 189

5.1.1 Purpose of the Timers... 189
5.1.2 Features... 189
5.1.3 Functional Timer Block Diagram... 190

5.2 General-Purpose Timer .. 190
5.2.1 General-Purpose Timer Clock Control .. 190
5.2.2 Using the 32-bit General Purpose Timer ... 190

5.3 Watchdog Timer .. 192
5.3.1 Watchdog Timer Function .. 192
5.3.2 Watchdog Timer Operation... 192

5.4 Reset Considerations .. 193
5.5 Interrupt Support .. 193
5.6 Registers ... 194

5.6.1 WDKCKLK Register ... 195
5.6.2 WDKICK Register.. 195
5.6.3 WDSVLR Register .. 196
5.6.4 WDSVR Register .. 196
5.6.5 WDENLOK Register... 197
5.6.6 WDEN Register ... 197
5.6.7 WDPSLR Register ... 198
5.6.8 WDPS Register .. 198
5.6.9 TCR Register .. 199
5.6.10 TIMPRD1 Register ... 200
5.6.11 TIMPRD2 Register ... 200
5.6.12 TIMCNT1 Register ... 201
5.6.13 TIMCNT2 Register.. 201
5.6.14 TIAFR Register.. 202

6 Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller................................. 203

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

5SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Contents

6.1 Introduction .. 204
6.1.1 Purpose of the Peripheral... 204
6.1.2 Features... 204
6.1.3 Functional Block Diagram .. 204
6.1.4 Supported Use Case Statement ... 204
6.1.5 Industry Standard(s) Compliance Statement... 205

6.2 Peripheral Architecture... 205
6.2.1 Clock Control ... 207
6.2.2 Signal Descriptions .. 207
6.2.3 Pin Multiplexing .. 208
6.2.4 Protocol Descriptions.. 208
6.2.5 Data Flow in the Input/Output FIFO ... 209
6.2.6 Data Flow in the Data Registers (SDDRR and SDDXR) ... 211
6.2.7 FIFO Operation During Card Read Operation ... 212
6.2.8 FIFO Operation During Card Write Operation ... 213
6.2.9 Reset Considerations ... 215
6.2.10 Programming and Using the SD Controller ... 216
6.2.11 Interrupt Support .. 220
6.2.12 DMA Event Support .. 220
6.2.13 Emulation Considerations ... 220

6.3 Procedures for Common Operations... 221
6.3.1 Card Identification Operation ... 221
6.3.2 eMMC/SD Mode Single-Block Write Operation Using CPU.. 222
6.3.3 eMMC/SD Mode Single-Block Write Operation Using DMA ... 223
6.3.4 eMMC/SD Mode Single-Block Read Operation Using CPU ... 224
6.3.5 eMMC/SD Mode Single-Block Read Operation Using DMA ... 225
6.3.6 eMMC/SD Mode Multiple-Block Write Operation Using CPU.. 226
6.3.7 eMMC/SD Mode Multiple-Block Write Operation Using DMA ... 227
6.3.8 eMMC/SD Mode Multiple-Block Read Operation Using CPU.. 228
6.3.9 eMMC/SD Mode Multiple-Block Read Operation Using DMA ... 229
6.3.10 SD High Speed Mode .. 230
6.3.11 SDIO Card Function.. 230

6.4 Registers ... 231
6.4.1 SD Control Register (SDCTL).. 233
6.4.2 SD Memory Clock Control Register (SDCLK) ... 234
6.4.3 SD Status Register 0 (SDST0)... 235
6.4.4 SD Status Register 1 (SDST1)... 237
6.4.5 SD Interrupt Mask Register (SDIM) ... 238
6.4.6 SD Response Time-Out Register (SDTOR).. 239
6.4.7 SD Data Read Time-Out Register (SDTOD) ... 240
6.4.8 SD Block Length Register (SDBLEN) ... 240
6.4.9 SD Number of Blocks Register (SDNBLK) ... 241
6.4.10 SD Number of Blocks Counter Register (SDNBLC) ... 241
6.4.11 SD Data Receive Register (SDDRR1) and (SDDRR2) .. 242
6.4.12 SD Data Transmit Registers (SDDXR1) and (SDDXR2) .. 243
6.4.13 eMMC Command Registers (MMCSD1) and (MMCSD2) ... 244
6.4.14 SD Argument Registers (SDARG1) and (SDARG2) ... 246
6.4.15 SD Response Registers (SDRSP0-SDRSP7) .. 247
6.4.16 SD Data Response Register (SDDRSP) .. 249
6.4.17 SD Command Index Register (SDCIDX) .. 249
6.4.18 SDIO Control Register (SDIOCTL) ... 250
6.4.19 SDIO Status Register 0 (SDIOST0) .. 250
6.4.20 SDIO Interrupt Enable Register (SDIOIEN) ... 251

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

6 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Contents

6.4.21 SDIO Interrupt Status Register (SDIOIST) .. 251
6.4.22 SD FIFO Control Register (SDFIFOCTL).. 252

7 Universal Asynchronous Receiver/Transmitter (UART) ... 253
7.1 Introduction .. 254

7.1.1 Purpose of the Peripheral... 254
7.1.2 Features... 254
7.1.3 Functional Block Diagram .. 255
7.1.4 Industry Standard(s) Compliance Statement... 255

7.2 Peripheral Architecture... 257
7.2.1 Clock Generation and Control.. 257
7.2.2 Signal Descriptions .. 259
7.2.3 Pin Multiplexing .. 259
7.2.4 Protocol Description ... 259
7.2.5 Operation ... 260
7.2.6 Exception Processing ... 264
7.2.7 Reset Considerations ... 264
7.2.8 Initialization ... 265
7.2.9 Interrupt Support ... 265
7.2.10 DMA Event Support .. 266
7.2.11 Power Management .. 267
7.2.12 Emulation Considerations ... 267

7.3 Registers ... 268
7.3.1 RBR Register... 269
7.3.2 THR Register .. 270
7.3.3 IER Register ... 271
7.3.4 IIR Register ... 272
7.3.5 FCR Register ... 273
7.3.6 LCR Register ... 275
7.3.7 MCR Register .. 277
7.3.8 LSR Register ... 278
7.3.9 SCR Register... 280
7.3.10 DLL Register .. 281
7.3.11 DLH Register .. 281
7.3.12 PWREMU_MGMT Register ... 283

8 Serial Peripheral Interface (SPI) .. 284
8.1 Introduction .. 285

8.1.1 Purpose of the Peripheral... 285
8.1.2 Features... 285
8.1.3 Functional Block Diagram .. 285
8.1.4 Supported Use Case Statement ... 286
8.1.5 Industry Standard(s) Compliance Statement... 286

8.2 Serial Peripheral Interface Architecture.. 287
8.2.1 Clock Control ... 287
8.2.2 Signal Descriptions .. 288
8.2.3 Units of Data: Characters and Frames.. 288
8.2.4 Chip Select Control .. 288
8.2.5 Clock Polarity and Phase ... 288
8.2.6 Data Delay .. 290
8.2.7 Data Input and Output... 291
8.2.8 Loopback Mode .. 291
8.2.9 Monitoring SPI Activity .. 291
8.2.10 Slave Access .. 292
8.2.11 Reset Considerations .. 294

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

7SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Contents

8.2.12 Initialization .. 294
8.2.13 Interrupt Support .. 295
8.2.14 DMA Event Support .. 295
8.2.15 Power Management .. 295
8.2.16 Emulation Considerations ... 295

8.3 Interfacing the SPI to an SPI EEPROM ... 295
8.3.1 Operational Description ... 295
8.3.2 Hardware Interface .. 296
8.3.3 SW Configuration .. 296

8.4 SPI Registers.. 300
8.4.1 SPICDR Register .. 301
8.4.2 SPICCR Register .. 301
8.4.3 SPIDCR1 Register... 302
8.4.4 SPIDCR2 Register... 303
8.4.5 SPICMD1 Register .. 304
8.4.6 SPICMD2 Register .. 305
8.4.7 SPISTAT1 Register.. 306
8.4.8 SPISTAT2 Register.. 306
8.4.9 SPIDAT1 Register ... 307
8.4.10 SPIDAT2 Register .. 307

9 Inter-Integrated Circuit (I2C) Peripheral ... 308
9.1 Introduction .. 309

9.1.1 Purpose of the Peripheral... 309
9.1.2 Features... 309
9.1.3 Functional Block Diagram .. 310
9.1.4 Industry Standard(s) Compliance Statement... 310

9.2 Peripheral Architecture... 311
9.2.1 Bus Structure ... 311
9.2.2 Clock Generation .. 312
9.2.3 Clock Synchronization... 313
9.2.4 Signal Descriptions .. 313
9.2.5 START and STOP Conditions ... 314
9.2.6 Serial Data Formats ... 315
9.2.7 Operating Modes... 316
9.2.8 NACK Bit Generation.. 317
9.2.9 NACK Response ... 318
9.2.10 Arbitration .. 318
9.2.11 Reset Considerations .. 319
9.2.12 Initialization .. 319
9.2.13 Interrupt Support .. 321
9.2.14 DMA Events Generated by the I2C Peripheral ... 322
9.2.15 Power Management .. 322
9.2.16 Emulation Considerations ... 323

9.3 I2C Registers .. 324
9.3.1 ICOAR Register .. 324
9.3.2 ICIMR Register... 325
9.3.3 ICSTR Register .. 326
9.3.4 ICCLKL Register ... 329
9.3.5 ICCLKH Register... 329
9.3.6 ICCNT Register .. 330
9.3.7 ICDRR Register .. 330
9.3.8 ICSAR Register .. 331
9.3.9 ICDXR Register .. 331

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

8 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Contents

9.3.10 ICMDR Register .. 332
9.3.11 ICIVR Register .. 336
9.3.12 ICEMDR Register... 337
9.3.13 ICPSC Register ... 338
9.3.14 ICPID1 Register... 339
9.3.15 ICPID2 Register... 339

10 Inter-IC Sound (I2S) Bus .. 340
10.1 Introduction ... 341

10.1.1 Purpose of the Peripheral ... 341
10.1.2 Features.. 341
10.1.3 Functional Block Diagram ... 341
10.1.4 Industry Standard(s) Compliance... 342

10.2 Architecture .. 343
10.2.1 Clock Control .. 343
10.2.2 I2S Clock Generator.. 343
10.2.3 Signal and Pin Descriptions ... 344
10.2.4 Frame Clock Timing Requirement in Slave Mode.. 345
10.2.5 Protocol Description .. 347
10.2.6 I2S Data Transfer and Control Behavior... 349
10.2.7 I2S Data Transfer Latency... 350
10.2.8 Data Packing and Sign Extension Options .. 350
10.2.9 Reset Considerations .. 355
10.2.10 Interrupt Support .. 355
10.2.11 DMA Event Support... 356
10.2.12 Power Management .. 356
10.2.13 Emulation Considerations .. 356
10.2.14 Steps for I2S Configuration and I2S Interrupt Service Routine (ISR) 356

10.3 Registers ... 358
10.3.1 I2Sn Serializer Control Register (I2SSCTRL)... 360
10.3.2 I2Sn Sample Rate Generator Register (I2SSRATE)... 362
10.3.3 I2Sn Transmit Left Data 0 Register (I2STXLT0).. 363
10.3.4 I2Sn Transmit Left Data 1 Register (I2STXLT1).. 363
10.3.5 I2Sn Transmit Right Data 0 Register (I2STXRT0) ... 364
10.3.6 I2Sn Transmit Right Data 1 Register (I2STXRT1) ... 364
10.3.7 I2Sn Interrupt Flag Register (I2SINTFL)... 365
10.3.8 I2Sn Interrupt Mask Register (I2SINTMASK) ... 366
10.3.9 I2Sn Receive Left Data 0 Register (I2SRXLT0) .. 367
10.3.10 I2Sn Receive Left Data 1 Register (I2SRXLT1)... 367
10.3.11 I2Sn Receive Right Data 0 Register (I2SRXRT0) .. 368
10.3.12 I2Sn Receive Right Data 1 Register (I2SRXRT1) .. 368

11 Successive Approximation (SAR) Analog-to-Digital Converter (ADC)...................................... 369
11.1 Introduction .. 370

11.1.1 Purpose of the 10-bit SAR... 370
11.1.2 Features.. 370
11.1.3 Supported Use Case Statement .. 370
11.1.4 Industry Standard(s) Compliance Statement.. 370
11.1.5 Functional Block Diagram ... 371

11.2 SAR Architecture.. 372
11.2.1 SAR Clock Control.. 372
11.2.2 Memory Map .. 372
11.2.3 Signal Descriptions ... 372
11.2.4 Battery Measurement .. 372
11.2.5 Internal Voltage Measurement .. 373

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

9SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Contents

11.2.6 Volume Control... 373
11.2.7 Touch Screen Digitizing.. 374
11.2.8 Touch Screen : Pen Press Interrupts .. 376
11.2.9 General-Purpose Output... 376
11.2.10 Reset Considerations ... 377
11.2.11 A/D Conversion.. 377
11.2.12 Interrupt Support .. 377
11.2.13 Emulation Considerations .. 377
11.2.14 Conversion Example.. 377

11.3 SAR Registers... 379
11.3.1 SARCTRL Register... 380
11.3.2 SARDATA Register... 381
11.3.3 SARCLKCTRL Register.. 382
11.3.4 SARPINCTRL Register .. 383
11.3.5 SARGPOCTRL Register... 385

12 General-Purpose Input/Output (GPIO) ... 386
12.1 Introduction .. 387

12.1.1 Purpose of the Peripheral ... 387
12.1.2 Features.. 387
12.1.3 Industry Standard(s) Compliance Statement.. 387

12.2 Peripheral Architecture... 387
12.2.1 Clock Control .. 387
12.2.2 Signal Descriptions ... 387
12.2.3 GPIO Register Structure ... 388
12.2.4 Using a GPIO Signal as an Output... 388
12.2.5 Using a GPIO Signal as an Input ... 388
12.2.6 Reset Considerations .. 388
12.2.7 Interrupt Support .. 389

12.3 GPIO Registers ... 390
12.3.1 IODIR1 Direction Registers ... 391
12.3.2 IODIR2 Direction Registers.. 392
12.3.3 IOINDATA1 Registers.. 393
12.3.4 IOINDATA2 Registers ... 394
12.3.5 IOOUTDATA1 Registers... 395
12.3.6 IOOUTDATA2 Registers... 396
12.3.7 IOINTEDG1 Registers ... 397
12.3.8 IOINTEDG2 Registers ... 398
12.3.9 IOINTEN1 Registers.. 399
12.3.10 IOINTEN2 Registers .. 400
12.3.11 IOINTFLG1 Registers... 401
12.3.12 IOINTFLG2 Registers... 402

13 Universal Serial Bus (USB) Controller ... 403
13.1 Introduction .. 404

13.1.1 Purpose of the Peripheral ... 404
13.1.2 Features.. 404
13.1.3 Functional Block Diagram ... 405
13.1.4 Industry Standard(s) Compliance Statement.. 405

13.2 Architecture .. 405
13.2.1 Clock Control .. 405
13.2.2 Signal Descriptions ... 406
13.2.3 Memory Map .. 406
13.2.4 USB_DP/USB_DM Polarity Inversion .. 406
13.2.5 Indexed and Non-Indexed Registers ... 407

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

10 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Contents

13.2.6 USB PHY Initialization ... 407
13.2.7 Dynamic FIFO Sizing... 409
13.2.8 USB Controller Peripheral Mode Operation ... 409
13.2.9 Communications Port Programming Interface (CPPI) 4.1 DMA Overview for TMS320C5515 429
13.2.10 BYTEMODE Bits of the USB System Control Register .. 453
13.2.11 Reset Considerations ... 454
13.2.12 Interrupt Support .. 454
13.2.13 DMA Event Support... 454
13.2.14 Power Management .. 454

13.3 Registers ... 456
13.3.1 USB Controller Register Summary ... 456
13.3.2 Revision Identification Registers (REVID1 and REVID2) ... 464
13.3.3 Control Register (CTRLR) ... 465
13.3.4 Emulation Register (EMUR)... 466
13.3.5 Mode Registers (MODE1 and MODE2) ... 467
13.3.6 Auto Request Register (AUTOREQ) ... 469
13.3.7 Teardown Registers (TEARDOWN1 and TEARDOWN2)... 470
13.3.8 USB Interrupt Source Registers (INTSRCR1 and INTSRCR2)... 471
13.3.9 USB Interrupt Source Set Registers (INTSETR1 and INTSETR2)....................................... 472
13.3.10 USB Interrupt Source Clear Registers (INTCLRR1 and INTCLRR2) 473
13.3.11 USB Interrupt Mask Registers (INTMSKR1 and INTMSKR2)... 474
13.3.12 USB Interrupt Mask Set Registers (INTMSKSETR1 and INTMSKSETR2) 475
13.3.13 USB Interrupt Mask Clear Registers (INTMSKCLRR1 and INTMSKCLRR2)......................... 476
13.3.14 USB Interrupt Source Masked Registers (INTMASKEDR1 and INTMASKEDR2) 477
13.3.15 USB End of Interrupt Register (EOIR).. 478
13.3.16 USB Interrupt Vector Registers (INTVECTR1 and INTVECTR2)....................................... 478
13.3.17 Generic RNDIS EP1 Size Registers (GREP1SZR1 and GREP1SZR2) 479
13.3.18 Generic RNDIS EP2 Size Registers (GREP2SZR1 and GREP2SZR2) 480
13.3.19 Generic RNDIS EP3 Size Registers (GREP3SZR1 and GREP3SZR2) 481
13.3.20 Generic RNDIS EP4 Size Registers (GREP4SZR1 and GREP4SZR2) 482
13.3.21 Function Address Register (FADDR) ... 483
13.3.22 Power Management Register (POWER) ... 483
13.3.23 Interrupt Register for Endpoint 0 Plus Transmit Endpoints 1 to 4 (INTRTX) 484
13.3.24 Interrupt Register for Receive Endpoints 1 to 4 (INTRRX) .. 484
13.3.25 Interrupt Enable Register for INTRTX (INTRTXE) .. 485
13.3.26 Interrupt Enable Register for INTRRX (INTRRXE) ... 485
13.3.27 Interrupt Register for Common USB Interrupts (INTRUSB) ... 486
13.3.28 Interrupt Enable Register for INTRUSB (INTRUSBE).. 487
13.3.29 Frame Number Register (FRAME).. 487
13.3.30 Index Register for Selecting the Endpoint Status and Control Registers (INDEX) 488
13.3.31 Register to Enable the USB 2.0 Test Modes (TESTMODE) .. 488
13.3.32 Maximum Packet Size for Peripheral/Host Transmit Endpoint (TXMAXP) 489
13.3.33 Control Status Register for Peripheral Endpoint 0 (PERI_CSR0) 490
13.3.34 Control Status Register for Peripheral Transmit Endpoint (PERI_TXCSR) 491
13.3.35 Maximum Packet Size for Peripheral Receive Endpoint (RXMAXP)................................... 492
13.3.36 Control Status Register for Peripheral Receive Endpoint (PERI_RXCSR)............................ 493
13.3.37 Count 0 Register (COUNT0)... 494
13.3.38 Receive Count Register (RXCOUNT) .. 494
13.3.39 Configuration Data Register (CONFIGDATA) ... 495
13.3.40 Transmit and Receive FIFO Registers for Endpoint 0 (FIFO0R1 and FIFO0R2)..................... 496
13.3.41 Transmit and Receive FIFO Registers for Endpoint 1 (FIFO1R1 and FIFO1R2)..................... 497
13.3.42 Transmit and Receive FIFO Registers for Endpoint 2 (FIFO2R1 and FIFO2R2)..................... 498
13.3.43 Transmit and Receive FIFO Registers for Endpoint 3 (FIFO3R1 and FIFO3R2)..................... 499

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

11SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Contents

13.3.44 Transmit and Receive FIFO Registers for Endpoint 4 (FIFO4R1 and FIFO4R2)..................... 500
13.3.45 Device Control Register (DEVCTL) ... 501
13.3.46 Transmit Endpoint FIFO Size (TXFIFOSZ) .. 502
13.3.47 Receive Endpoint FIFO Size (RXFIFOSZ)... 502
13.3.48 Transmit Endpoint FIFO Address (TXFIFOADDR) ... 503
13.3.49 Hardware Version Register (HWVERS).. 503
13.3.50 Receive Endpoint FIFO Address (RXFIFOADDR) ... 504
13.3.51 CDMA Revision Identification Registers (DMAREVID1 and DMAREVID2) 504
13.3.52 CDMA Teardown Free Descriptor Queue Control Register (TDFDQ) 505
13.3.53 CDMA Emulation Control Register (DMAEMU) ... 505
13.3.54 CDMA Transmit Channel n Global Configuration Registers (TXGCR1[n] and TXGCR2[n]) 506
13.3.55 CDMA Receive Channel n Global Configuration Registers (RXGCR1[n] and RXGCR2[n]) 507
13.3.56 CDMA Receive Channel n Host Packet Configuration Registers A (RXHPCR1A[n] and

RXHPCR2A[n])... 509
13.3.57 CDMA Receive Channel n Host Packet Configuration Registers B (RXHPCR1B[n] and

RXHPCR2B[n])... 510
13.3.58 CDMA Scheduler Control Register (DMA_SCHED_CTRL1 and DMA_SCHED_CTRL2)........... 511
13.3.59 CDMA Scheduler Table Word n Registers (ENTRYLSW[n]-ENTRYMSW[n]) 512
13.3.60 Queue Manager Revision Identification Registers (QMGRREVID1 and QMGRREVID2) 513
13.3.61 Queue Manager Queue Diversion Registers (DIVERSION1 and DIVERSION2)..................... 514
13.3.62 Queue Manager Free Descriptor/Buffer Starvation Count Register 0 (FDBSC0) 515
13.3.63 Queue Manager Free Descriptor/Buffer Starvation Count Register 1 (FDBSC1) 515
13.3.64 Queue Manager Free Descriptor/Buffer Starvation Count Register 2 (FDBSC2) 516
13.3.65 Queue Manager Free Descriptor/Buffer Starvation Count Register 3 (FDBSC3) 516
13.3.66 Queue Manager Free Descriptor/Buffer Starvation Count Register 4 (FDBSC4) 517
13.3.67 Queue Manager Free Descriptor/Buffer Starvation Count Register 5 (FDBSC5) 517
13.3.68 Queue Manager Free Descriptor/Buffer Starvation Count Register 6 (FDBSC6) 518
13.3.69 Queue Manager Free Descriptor/Buffer Starvation Count Register 7 (FDBSC7) 518
13.3.70 Queue Manager Linking RAM Region 0 Base Address Registers (LRAM0BASE1 and

LRAM0BASE2)... 519
13.3.71 Queue Manager Linking RAM Region 0 Size Register (LRAM0SIZE) 520
13.3.72 Queue Manager Linking RAM Region 1 Base Address Registers (LRAM1BASE1 and

LRAM1BASE2)... 521
13.3.73 Queue Manager Queue Pending Register 0 (PEND0)... 522
13.3.74 Queue Manager Queue Pending Register 1 (PEND1)... 522
13.3.75 Queue Manager Queue Pending Register 2 (PEND2)... 523
13.3.76 Queue Manager Queue Pending Register 3 (PEND3)... 523
13.3.77 Queue Manager Queue Pending Register 4 (PEND4)... 524
13.3.78 Queue Manager Queue Pending Register 5 (PEND5)... 524
13.3.79 Queue Manager Memory Region R Base Address Registers (QMEMRBASE1[R] and

QMEMRBASE2[R]) .. 525
13.3.80 Queue Manager Memory Region R Control Registers (QMEMRCTRL1[R] and

QMEMRCTRL2[R]) .. 526
13.3.81 Queue Manager Queue N Control Register D (CTRL1D[N] and CTRL2D[N])........................ 527
13.3.82 Queue Manager Queue N Status Register A (QSTATA[N])... 528
13.3.83 Queue Manager Queue N Status Registers B (QSTAT1B[N] and QSTAT2B[N]) 528
13.3.84 Queue Manager Queue N Status Register C (QSTATC[N]) .. 529

14 Liquid Crystal Display Controller (LCDC)... 530
14.1 Introduction .. 531

14.1.1 Purpose of the Peripheral ... 531
14.1.2 Terminology Used in this Document ... 532
14.1.3 LCD External I/O Signals .. 532
14.1.4 LCD Interface Display Driver Details (LIDD) Controller.. 533
14.1.5 LIDD Controller Timing... 535

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

12 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Contents

14.1.6 DMA Engine ... 541
14.2 LCD Port Mapping ... 542
14.3 Registers ... 543

14.3.1 LCD Minor Revision Register (LCDREVMIN)... 544
14.3.2 LCD Major Revision Register (LCDREVMAJ) .. 544
14.3.3 LCD Control Register (LCDCR)... 545
14.3.4 LCD Status Register (LCDSR).. 546
14.3.5 LCD LIDD Control Register (LCDLIDDCR) ... 547
14.3.6 LCD LIDD CS0 and CS1 Configuration Register 0 (LCDLIDDCS0CONFIG0 and

LCDLIDDCS1CONFIG0).. 549
14.3.7 LCD LIDD CS0 and CS1 Configuration Register 1 (LCDLIDDCS0CONFIG1 and

LCDLIDDCS1CONFIG1).. 550
14.3.8 LCD LIDD CS0 and CS1 Address Read/Write Register (LCDLIDDCS0ADDR and

LCDLIDDCS1ADDR) .. 551
14.3.9 LCD LIDD CS0 and CS1 Data Read/Write Register (LCDLIDDCS0DATA and

LCDLIDDCS1DATA) .. 552
14.3.10 LCD DMA Control Register (LCDDMACR) .. 553
14.3.11 LCD DMA Frame Buffer 0 Base Address Register 0 (LCDDMAFB0BAR0)........................... 554
14.3.12 LCD DMA Frame Buffer 0 Base Address Register 1 (LCDDMAFB0BAR1)........................... 554
14.3.13 LCD DMA Frame Buffer 0 Ceiling Address Register 0 (LCDDMAFB0CAR0)......................... 555
14.3.14 LCD DMA Frame Buffer 0 Ceiling Address Register 1 (LCDDMAFB0CAR1)......................... 555
14.3.15 LCD DMA Frame Buffer 1 Base Address Register 0 (LCDDMAFB1BAR0)........................... 556
14.3.16 LCD DMA Frame Buffer 1 Base Address Register 1 (LCDDMAFB1BAR1)........................... 556
14.3.17 LCD DMA Frame Buffer 1 Ceiling Address Register 0 (LCDDMAFB1CAR0)......................... 557
14.3.18 LCD DMA Frame Buffer 1 Ceiling Address Register 1 (LCDDMAFB1CAR1)......................... 557

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

13SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

List of Figures

List of Figures
1-1. C5535/34/33/32 Functional Block Diagram ... 37
1-2. C5545 Functional Block Diagram .. 38
1-3. TMS320C5545/35 Memory Map ... 43
1-4. TMS320C5534 Memory Map ... 44
1-5. TMS320C5533 Memory Map ... 45
1-6. TMS320C5532 Memory Map ... 46
1-7. DSP Clocking Diagram ... 50
1-8. Clock Generator .. 52
1-9. CLKOUT Control Source Select Register (CCSSR) [1C24h] .. 53
1-10. Clock Generator Control Register 1 (CGCR1) [1C20h] ... 59
1-11. Clock Generator Control Register 2 (CGCR2) [1C21h] ... 59
1-12. Clock Generator Control Register 3 (CGCR3) [1C22h] ... 60
1-13. Clock Generator Control Register 4 (CGCR4) [1C23h] ... 60
1-14. Clock Configuration Register 2 (CCR2) [1C1Fh]... 60
1-15. Idle Configuration Register (ICR) [0001h]... 65
1-16. Idle Status Register (ISTR) [0002h].. 66
1-17. Peripheral Clock Gating Configuration Register 1 (PCGCR1) [1C02h] ... 68
1-18. Peripheral Clock Gating Configuration Register 2 (PCGCR2) [1C03h] ... 70
1-19. Peripheral Clock Stop Request/Acknowledge Register (CLKSTOP) [1C3Ah] 71
1-20. USB System Control Register (USBSCR) [1C32h] .. 73
1-21. RTC Power Management Register (RTCPMGT) [1930h]... 75
1-22. RTC Interrupt Flag Register (RTCINTFL) [1920h] ... 76
1-23. RAM Sleep Mode Control Register1 [1C28h] .. 77
1-24. RAM Sleep Mode Control Register2 [1C2Ah] .. 78
1-25. RAM Sleep Mode Control Register3 [1C2Bh] .. 78
1-26. RAM Sleep Mode Control Register4 [1C2Ch] .. 78
1-27. RAM Sleep Mode Control Register5 [1C2Dh] .. 78
1-28. LDO Control Register (LDOCNTL) [7004h] ... 81
1-29. IFR0 and IER0 Register ... 89
1-30. IFR1 and IER1 Register ... 90
1-31. Die ID Register 0 (DIEIDR0) [1C40h].. 93
1-32. Die ID Register 1 (DIEIDR1) [1C41h].. 93
1-33. Die ID Register 2 (DIEIDR2) [1C42h].. 93
1-34. Die ID Register 3 (DIEIDR3) [1C43h].. 94
1-35. Die ID Register 4 (DIEIDR4) [1C44h].. 94
1-36. Die ID Register 5 (DIEIDR5) [1C45h].. 94
1-37. Die ID Register 6 (DIEIDR6) [1C46h].. 95
1-38. Die ID Register 7 (DIEIDR7) [1C47h].. 95
1-39. External Bus Selection Register (EBSR) [1C00h] ... 96
1-40. LDO Control Register (LDOCNTL) [7004h] ... 98
1-41. LDO Control Register (LDOCNTL) [7004h] ... 100
1-42. Output Slew Rate Control Register (OSRCR) [1C16h] .. 101
1-43. Pulldown Inhibit Register 1 (PDINHIBR1) [1C17h] ... 102
1-44. Pulldown Inhibit Register 2 (PDINHIBR2) [1C18h] ... 103
1-45. Pulldown Inhibit Register 3 (PDINHIBR3) [1C19h] ... 104
1-46. DMA Interrupt Flag Register (DMAIFR) [1C30h] ... 107
1-47. DMA Interrupt Enable Register (DMAIER) [1C31h] .. 107

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

14 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

List of Figures

1-48. DMAn Channel Event Source Register 1 (DMAnCESR1) [1C1Ah, 1C1Ch, 1C36h, and 1C38h].............. 108
1-49. DMAn Channel Event Source Register 2 (DMAnCESR2) [1C1Bh, 1C1Dh, 1C37h, and 1C39h].............. 108
1-50. Peripheral Software Reset Counter Register (PSRCR) [1C04h] ... 109
1-51. Peripheral Reset Control Register (PRCR) [1C05h] ... 109
2-1. DIT Radix 2 Butterfly ... 114
2-2. DIT Radix 2 8-point FFT ... 115
2-3. Graphical FFT Computation ... 116
2-4. Block Diagram... 118
2-5. Bit Reversed Input Buffer .. 125
2-6. Graphing the Real Part of the FFT Result in CCS4.. 129
2-7. Graphing the Imaginary Part of the FFT Result in CCS4 ... 130
3-1. Conceptual Block Diagram of the DMA Controller ... 138
3-2. Clocking Diagram for the DMA Controller ... 139
3-3. Two-Part DMA Transfer.. 140
3-4. Registers for Controlling the Context of a Channel .. 141
3-5. Ping-Pong Mode for DMA Data Transfer .. 144
3-6. Block Move Example ... 149
3-7. Block Move Example DMA Configuration ... 149
3-8. Servicing Incoming I2C Data Example... 150
3-9. Servicing Incoming I2C Data Example DMA Configuration ... 150
3-10. Servicing Incoming UART Data Example ... 151
3-11. Servicing Incoming UART Data Example DMA Configuration.. 151
3-12. Servicing Incoming I2S Data Example in Ping-Pong DMA Mode .. 152
3-13. Servicing Incoming I2S Data Example DMA Configuration ... 152
3-14. Source Start Address Register - Lower Part (DMACHmSSAL) .. 156
3-15. Source Start Address Register - Upper Part (DMACHmSSAU) .. 156
3-16. Destination Start Address Register - Lower Part (DMACHmDSAL) ... 157
3-17. Destination Start Address Register - Upper Part (DMACHmDSAU) ... 157
3-18. Transfer Control Register 1 (DMACHmTCR1).. 158
3-19. Transfer Control Register 2 (DMACHmTCR2).. 158
4-1. Block Diagram... 163
4-2. RTC Interrupt and Wakeup Logic... 169
4-3. RTCINTEN Register.. 173
4-4. RTCUPDATE Register .. 173
4-5. RTCMIL Register ... 174
4-6. RTCMILA Register (RTCMILA) ... 174
4-7. RTCSEC Register .. 175
4-8. RTCSECA Register .. 175
4-9. RTCMIN Register ... 176
4-10. RTCMINA Register ... 176
4-11. RTCHOUR Register ... 177
4-12. RTCHOURA Register .. 177
4-13. RTCDAY Register .. 178
4-14. RTCDAYA Register... 178
4-15. RTCMONTH Register .. 179
4-16. RTCMONTHA Register .. 179
4-17. RTCYEAR Register .. 180
4-18. RTCYEARA Register... 180
4-19. RTCINTFL Register .. 181

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

15SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

List of Figures

4-20. RTCNOPWR Register.. 182
4-21. RTCINTREG Register.. 183
4-22. RTCDRIFT Register .. 184
4-23. RTCOSC Register .. 184
4-24. RTCPMGT Register .. 185
4-25. RTCSCR1 Register... 186
4-26. RTCSCR2 Register... 186
4-27. RTCSCR3 Register... 187
4-28. RTCSCR4 Register... 187
5-1. The Architecture and Operation of the Watchdog Timer .. 190
5-2. 32-Bit GP Timer With a 13-Bit Prescaler .. 190
5-3. Watchdog Kick Lock Register (WDKCKLK) ... 195
5-4. WDKICK Register... 195
5-5. Watchdog Start Value Lock Register (WDSVLR) .. 196
5-6. Watchdog Start Value Register (WDSVR) .. 196
5-7. Watchdog Enable Lock Register (WDENLOK) ... 197
5-8. Watchdog Enable Register (WDEN) ... 197
5-9. Watchdog Prescaler Lock Register (WDPSLR) .. 198
5-10. Watchdog Prescaler Register (WDPS) .. 198
5-11. Timer n Control Register (TCR)... 199
5-12. Timer n Period Register 1 (TIMPRD1) ... 200
5-13. Timer n Period Register 2 (TIMPRD2) ... 200
5-14. Timer n Counter Register 1 (TIMCNT1) ... 201
5-15. Timer n Counter Register (TIMCNT2).. 201
5-16. Timer Interrupt Aggregation Flag Register (TIAFR) .. 202
6-1. eMMC/SD Card Controller Block Diagram .. 205
6-2. MMC/SD Controller Interface Diagram... 206
6-3. eMMC Configuration and SD Configuration Diagram.. 206
6-4. eMMC/SD Controller Clocking Diagram ... 207
6-5. eMMC/SD Mode Write Sequence Timing Diagram .. 208
6-6. eMMC/SD Mode Read Sequence Timing Diagram .. 209
6-7. FIFO Operation Diagram .. 210
6-8. Little-Endian Access to SDDXR/SDDRR1 and 2 From the CPU or the DMA 211
6-9. Big-Endian Access to SDDXR/SDDRR1 and 2 From the CPU or the DMA 212
6-10. FIFO Operation During Card Read Diagram.. 214
6-11. FIFO Operation During Card Write Diagram .. 215
6-12. Card Identification (Native eMMC/SD Mode) ... 221
6-13. eMMC/SD Mode Single-Block Write Operation... 223
6-14. eMMC/SD Mode Single-Block Read Operation... 225
6-15. eMMC/SD Multiple-Block Write Operation .. 227
6-16. eMMC/SD Mode Multiple-Block Read Operation... 229
6-17. SD Control Register (SDCTL)... 233
6-18. SD Memory Clock Control Register (SDCLK) .. 234
6-19. SD Status Register 0 (SDST0).. 235
6-20. SD Status Register 1 (SDST1).. 237
6-21. SD Interrupt Mask Register (SDIM) .. 238
6-22. SD Response Time-Out Register (SDTOR)... 239
6-23. SD Data Read Time-Out Register (SDTOD) .. 240
6-24. SD Block Length Register (SDBLEN).. 240

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

16 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

List of Figures

6-25. SD Number of Blocks Register (SDNBLK) .. 241
6-26. SD Number of Blocks Counter Register (SDNBLC) ... 241
6-27. SD Data Receive Register (SDDRR1) ... 242
6-28. SD Data Receive Register (SDDRR2) ... 242
6-29. SD Data Transmit Register (SDDXR) .. 243
6-30. SD Data Transmit Register (SDDXR2) .. 243
6-31. eMMC Command Register 1 (MMCSD1).. 244
6-32. eMMC Command Register 2 (MMCSD2).. 245
6-33. Command Format .. 245
6-34. SD Data Transmit Register (SDARG1) .. 246
6-35. SD Data Transmit Register (SDARG2) .. 246
6-36. SD Response Register 0 (SDRSP0) ... 247
6-37. SD Response Register 1 (SDRSP1) ... 247
6-38. SD Response Register 2 (SDRSP2) ... 247
6-39. SD Response Register 3 (SDRSP3) ... 247
6-40. SD Response Register 4 (SDRSP4) ... 247
6-41. SD Response Register 5 (SDRSP5) ... 247
6-42. SD Response Register 6 (SDRSP6) ... 247
6-43. SD Response Register 7 (SDRSP7) ... 248
6-44. SD Data Response Register (SDDRSP) .. 249
6-45. SD Command Index Register (SDCIDX) .. 249
6-46. SDIO Control Register (SDIOCTL) ... 250
6-47. SDIO Status Register 0 (SDIOST0) .. 250
6-48. SDIO Interrupt Enable Register (SDIOIEN) ... 251
6-49. SDIO Interrupt Status Register (SDIOIST) .. 251
6-50. SD FIFO Control Register (SDFIFOCTL).. 252
7-1. UART Block Diagram... 256
7-2. UART Clock Generation Diagram .. 257
7-3. Relationship between Data Bit, BCLK, and UART Input Clock... 258
7-4. UART Example Protocol Formats .. 260
7-5. UART Interface Using Autoflow Diagram.. 263
7-6. Autoflow Functional Timing Waveforms for RTS ... 263
7-7. Autoflow Functional Timing Waveforms for CTS ... 264
7-8. UART Interrupt Request Enable Paths .. 266
7-9. Receiver Buffer Register... 269
7-10. Transmitter Holding Register .. 270
7-11. IER Register ... 271
7-12. Interrupt Identification Register ... 272
7-13. FIFO Control Register.. 273
7-14. Line Control Register (LCR)... 275
7-15. MCR Register ... 277
7-16. LSR Register .. 278
7-17. Scratch Register .. 280
7-18. Divisor LSB Latch... 281
7-19. Divisor MSB Latch .. 282
7-20. Power and Emulation Management Register ... 283
8-1. Serial Peripheral Interface (SPI) Block Diagram.. 285
8-2. Typical SPI Interface ... 286
8-3. Clocking Diagram for the SPI ... 287

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

17SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

List of Figures

8-4. SPI Mode 0 Transfer (CKPn = 0, CKPHn = 0).. 289
8-5. SPI Mode 1 Transfer (CKPn = 0, CKPHn = 1).. 289
8-6. SPI Mode 2 Transfer (CKPn = 1, CKPHn = 0).. 289
8-7. SPI Mode 3 Transfer (CKPn = 1, CKPHn = 1).. 290
8-8. Range of Programmable Data Delay... 290
8-9. Data Shift Process .. 291
8-10. Flow Diagram for SPI Read or Write ... 293
8-11. SPI Access .. 294
8-12. Hardware Interface ... 296
8-13. Clock Divider Register(SPICDR) ... 301
8-14. Clock Control Register (SPICCR) .. 301
8-15. Device Configuration Register 1 (SPIDCR1).. 302
8-16. Device Configuration Register 2 (SPIDCR2).. 303
8-17. Command Register 1 (SPICMD1) .. 304
8-18. Command Register 2 (SPICMD2) .. 305
8-19. Status Register 1 (SPISTAT1) .. 306
8-20. Status Register 2 (SPISTAT2) .. 306
8-21. Data Register 1 (SPIDAT1).. 307
8-22. Data Register 2 (SPIDAT2).. 307
9-1. I2C Peripheral Block Diagram... 310
9-2. Multiple I2C Modules Connected ... 311
9-3. Clocking Diagram for the I2C Peripheral .. 312
9-4. Synchronization of Two I2C Clock Generators ... 313
9-5. Bit Transfer on the I2C-Bus ... 314
9-6. I2C Peripheral START and STOP Conditions .. 314
9-7. I2C Peripheral Data Transfer.. 315
9-8. I2C Peripheral 7-Bit Addressing Format (FDF = 0, XA = 0 in ICMDR) .. 315
9-9. I2C Peripheral 10-Bit Addressing Format With Master-Transmitter Writing to Slave-Receiver (FDF = 0,

XA = 1 in ICMDR)... 316
9-10. I2C Peripheral Free Data Format (FDF = 1 in ICMDR).. 316
9-11. I2C Peripheral 7-Bit Addressing Format With Repeated START Condition (FDF = 0, XA = 0 in ICMDR) ... 316
9-12. Arbitration Procedure Between Two Master-Transmitters... 318
9-13. ICOAR Register ... 324
9-14. ICIMR Register.. 325
9-15. ICSTR Register ... 326
9-16. ICCLKL Register .. 329
9-17. ICCLKH Register.. 329
9-18. ICCNT Register ... 330
9-19. ICDRR Register ... 330
9-20. ICSAR Register ... 331
9-21. ICDXR Register ... 331
9-22. ICMDR Register... 332
9-23. Block Diagram Showing the Effects of the Digital Loopback Mode (DLB) Bit 335
9-24. ICIVR Register .. 336
9-25. ICEMDR Register... 337
9-26. ICPSC Register ... 338
9-27. ICPID1 Register... 339
9-28. ICPID2 Register... 339
10-1. Functional Block Diagram ... 342

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

18 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

List of Figures

10-2. Inter-IC Sound Clock Control Diagram... 343
10-3. Block Diagram of I2S Interface to Audio/Voice Band Codec ... 345
10-4. I2S Frame Clock Timing Constraint in Slave Mode .. 346
10-5. Typical Frame Clock Timing Specification... 346
10-6. Delaying I2S Frame Clock to Overcome Synchronization Problems .. 347
10-7. Timing Diagram for Left-Justified Mode with Inverse Frame-Sync Polarity and One-Bit Delay 348
10-8. Timing Diagram for I2S Mode... 348
10-9. Timing Diagram for I2S Mode with Inverse Bit-Clock Polarity .. 348
10-10. Timing Diagram for DSP Mode With One-Bit Delay ... 349
10-11. Example of Unpacked 12-Bit Data Receive ... 351
10-12. Example of Packed 12-Bit Data Receive .. 351
10-13. I2Sn Serializer Control Register (I2SSCTRL) ... 360
10-14. I2Sn Sample Rate Generator Register (I2SSRATE)... 362
10-15. I2Sn Transmit Left Data 0 Register (I2STXLT0).. 363
10-16. I2Sn Transmit Left Data 1 Register (I2STXLT1).. 363
10-17. I2Sn Transmit Right Data 0 Register (I2STXRT0) ... 364
10-18. I2Sn Transmit Right Data 1 Register (I2STXRT1) ... 364
10-19. I2Sn Interrupt Flag Register (I2SINTFL)... 365
10-20. I2Sn Interrupt Mask Register (I2SINTMASK) ... 366
10-21. I2Sn Receive Left Data 0 Register (I2SRXLT0) .. 367
10-22. I2Sn Receive Left Data 1 Register (I2SRXLT1) .. 367
10-23. I2Sn Receive Right Data 0 Register (I2SRXRT0) .. 368
10-24. I2Sn Receive Right Data 1 Register (I2SRXRT1) .. 368
11-1. SAR Converter .. 371
11-2. Battery Measurement .. 373
11-3. Voltage Measurement .. 373
11-4. Voltage Control.. 374
11-5. Y Position .. 375
11-6. X Position .. 375
11-7. Pen Interrupt... 376
11-8. SAR A/D Control Register (SARCTRL) .. 380
11-9. SAR A/D Data Register (SARDATA)... 381
11-10. SAR A/D Clock Control Register (SARCLKCTRL) ... 382
11-11. SAR A/D Reference and Pin Control Register (SARPINCTRL) .. 383
11-12. SAR A/D GPO Control Register (SARGPOCTRL) ... 385
12-1. IODIR1 Register .. 391
12-2. IODIR2 Register .. 392
12-3. IOINDATA1 Register ... 393
12-4. IOINDATA2 Register 2 .. 394
12-5. IOOUTDATA1 Register .. 395
12-6. GPIO Data Out Register 2 (IODATAOUT2) ... 396
12-7. IOINTEDG1 Register ... 397
12-8. IOINTEDG2 Register ... 398
12-9. IOINTEN1 Register ... 399
12-10. IOINTEN2 Register ... 400
12-11. IOINTFLG1 Register ... 401
12-12. IOINTFLG2 Register ... 402
13-1. Functional Block Diagram ... 405
13-2. USB Clocking Diagram... 405

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

19SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

List of Figures

13-3. USB System Control Register (USBSCR) [1C32h] .. 408
13-4. Interrupt Service Routine Flow Chart .. 410
13-5. CPU Actions at Transfer Phases ... 415
13-6. Sequence of Transfer .. 415
13-7. Service Endpoint 0 Flow Chart.. 417
13-8. IDLE Mode Flow Chart ... 418
13-9. TX Mode Flow Chart ... 419
13-10. RX Mode Flow Chart ... 420
13-11. USB Controller Block Diagram .. 429
13-12. Host Packet Descriptor Layout.. 432
13-13. Host Buffer Descriptor Layout... 435
13-14. Teardown Descriptor Layout .. 437
13-15. Relationship Between Memory Regions and Linking RAM ... 441
13-16. High-Level Transmit and Receive Data Transfer Example.. 445
13-17. Transmit Descriptors and Queue Status Configuration.. 447
13-18. Transmit USB Data Flow Example (Initialization) .. 448
13-19. Transmit USB Data Flow Example (Completion) ... 449
13-20. Receive Descriptors and Queue Status Configuration... 450
13-21. Receive USB Data Flow Example (Initialization) ... 451
13-22. Receive USB Data Flow Example (Completion).. 452
13-23. Revision Identification Register 1 (REVID1) .. 464
13-24. Revision Identification Register 2 (REVID2) .. 464
13-25. Control Register (CTRLR) ... 465
13-26. Emulation Register (EMUR) ... 466
13-27. Mode Register 1 (MODE1) .. 467
13-28. Mode Register 2 (MODE2) .. 467
13-29. Auto Request Register (AUTOREQ) ... 469
13-30. Teardown Register 1 (TEARDOWN1) ... 470
13-31. Teardown Register 2 (TEARDOWN2) ... 470
13-32. USB Interrupt Source Register 1 (INTSRCR1) ... 471
13-33. USB Interrupt Source Register 2 (INTSRCR2) ... 471
13-34. USB Interrupt Source Set Register 1 (INTSETR1) ... 472
13-35. USB Interrupt Source Set Register 2 (INTSETR2) ... 472
13-36. USB Interrupt Source Clear Register 1 (INTCLRR1) .. 473
13-37. USB Interrupt Source Clear Register 2 (INTCLRR2) .. 473
13-38. USB Interrupt Mask Register 1 (INTMSKR1) ... 474
13-39. USB Interrupt Mask Register 2 (INTMSKR2) ... 474
13-40. USB Interrupt Mask Set Register 1 (INTMSKSETR1) ... 475
13-41. USB Interrupt Mask Set Register 2 (INTMSKSETR2) ... 475
13-42. USB Interrupt Mask Clear Register 1 (INTMSKCLRR1)... 476
13-43. USB Interrupt Mask Clear Register 2 (INTMSKCLRR2)... 476
13-44. USB Interrupt Source Masked Register 1 (INTMASKEDR1) ... 477
13-45. USB Interrupt Source Masked Register 2 (INTMASKEDR2) ... 477
13-46. USB End of Interrupt Register (EOIR) ... 478
13-47. USB Interrupt Vector Register 1 (INTVECTR1) .. 478
13-48. USB Interrupt Vector Register 2 (INTVECTR2) .. 478
13-49. Generic RNDIS EP1 Size Register 1 (GREP1SZR1) .. 479
13-50. Generic RNDIS EP1 Size Register 2 (GREP1SZR2) .. 479
13-51. Generic RNDIS EP2 Size Register 1 (GREP2SZR1) .. 480

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

20 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

List of Figures

13-52. Generic RNDIS EP2 Size Register 2 (GREP2SZR2) .. 480
13-53. Generic RNDIS EP3 Size Register 1 (GREP3SZR1) .. 481
13-54. Generic RNDIS EP3 Size Register 2 (GREP3SZR2) .. 481
13-55. Generic RNDIS EP4 Size Register 1 (GREP4SZR1) .. 482
13-56. Generic RNDIS EP4 Size Register 2 (GREP4SZR2) .. 482
13-57. Function Address Register (FADDR) .. 483
13-58. Power Management Register (POWER) .. 483
13-59. Interrupt Register for Endpoint 0 Plus Tx Endpoints 1 to 4 (INTRTX) ... 484
13-60. Interrupt Register for Receive Endpoints 1 to 4 (INTRRX).. 484
13-61. Interrupt Enable Register for INTRTX (INTRTXE).. 485
13-62. Interrupt Enable Register for INTRRX (INTRRXE) ... 485
13-63. Interrupt Register for Common USB Interrupts (INTRUSB)... 486
13-64. Interrupt Enable Register for INTRUSB (INTRUSBE) ... 487
13-65. Frame Number Register (FRAME) ... 487
13-66. Index Register for Selecting the Endpoint Status and Control Registers (INDEX)............................... 488
13-67. Register to Enable the USB 2.0 Test Modes (TESTMODE) .. 488
13-68. Maximum Packet Size for Peripheral/Host Transmit Endpoint (TXMAXP).. 489
13-69. Control Status Register for Peripheral Endpoint 0 (PERI_CSR0) .. 490
13-70. Control Status Register for Peripheral Transmit Endpoint (PERI_TXCSR) 491
13-71. Maximum Packet Size for Peripheral Receive Endpoint (RXMAXP) .. 492
13-72. Control Status Register for Peripheral Receive Endpoint (PERI_RXCSR) 493
13-73. Count 0 Register (COUNT0) .. 494
13-74. Receive Count Register (RXCOUNT).. 494
13-75. Configuration Data Register (CONFIGDATA)... 495
13-76. Transmit and Receive FIFO Register 1 for Endpoint 0 (FIFO0R1) .. 496
13-77. Transmit and Receive FIFO Register 2 for Endpoint 0 (FIFO0R2) .. 496
13-78. Transmit and Receive FIFO Register 1 for Endpoint 1 (FIFO1R1) .. 497
13-79. Transmit and Receive FIFO Register 2 for Endpoint 1 (FIFO1R2) .. 497
13-80. Transmit and Receive FIFO Register 1 for Endpoint 2 (FIFO2R1) .. 498
13-81. Transmit and Receive FIFO Register 2 for Endpoint 2 (FIFO2R2) .. 498
13-82. Transmit and Receive FIFO Register 1 for Endpoint 3 (FIFO3R1) .. 499
13-83. Transmit and Receive FIFO Register 2 for Endpoint 3 (FIFO3R2) .. 499
13-84. Transmit and Receive FIFO Register 1 for Endpoint 4 (FIFO4R1) .. 500
13-85. Transmit and Receive FIFO Register 2 for Endpoint 4 (FIFO4R2) .. 500
13-86. Device Control Register (DEVCTL) .. 501
13-87. Transmit Endpoint FIFO Size (TXFIFOSZ).. 502
13-88. Receive Endpoint FIFO Size (RXFIFOSZ) .. 502
13-89. Transmit Endpoint FIFO Address (TXFIFOADDR) ... 503
13-90. Hardware Version Register (HWVERS) ... 503
13-91. Receive Endpoint FIFO Address (RXFIFOADDR) ... 504
13-92. CDMA Revision Identification Register 1 (DMAREVID1).. 504
13-93. CDMA Revision Identification Register 2 (DMAREVID2).. 504
13-94. CDMA Teardown Free Descriptor Queue Control Register (TDFDQ) ... 505
13-95. CDMA Emulation Control Register (DMAEMU)... 505
13-96. CDMA Transmit Channel n Global Configuration Register 1 (TXGCR1[n])....................................... 506
13-97. CDMA Transmit Channel n Global Configuration Register 2 (TXGCR2[n])....................................... 506
13-98. CDMA Receive Channel n Global Configuration Register 1 (RXGCR1[n]) 507
13-99. CDMA Receive Channel n Global Configuration Register 2 (RXGCR2[n]) 507
13-100. Receive Channel n Host Packet Configuration Register 1 A (RXHPCR1A[n]).................................. 509

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

21SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

List of Figures

13-101. Receive Channel n Host Packet Configuration Register 2 A (RXHPCR2A[n]).................................. 509
13-102. Receive Channel n Host Packet Configuration Register 1 B (RXHPCR1B[n]).................................. 510
13-103. Receive Channel n Host Packet Configuration Register 2 B (RXHPCR2B[n]).................................. 510
13-104. CDMA Scheduler Control Register 1 (DMA_SCHED_CTRL1).. 511
13-105. CDMA Scheduler Control Register 2 (DMA_SCHED_CTRL2).. 511
13-106. CDMA Scheduler Table Word n Registers (ENTRYLSW[n]) .. 512
13-107. CDMA Scheduler Table Word n Registers (ENTRYMSW[n]) ... 512
13-108. Queue Manager Revision Identification Register 1 (QMGRREVID1) .. 513
13-109. Queue Manager Revision Identification Register 2 (QMGRREVID2) .. 513
13-110. Queue Manager Queue Diversion Register 1 (DIVERSION1) .. 514
13-111. Queue Manager Queue Diversion Register 2 (DIVERSION2) .. 514
13-112. Queue Manager Free Descriptor/Buffer Starvation Count Register 0 (FDBSC0)............................... 515
13-113. Queue Manager Free Descriptor/Buffer Starvation Count Register 1 (FDBSC1)............................... 515
13-114. Queue Manager Free Descriptor/Buffer Starvation Count Register 2 (FDBSC2)............................... 516
13-115. Queue Manager Free Descriptor/Buffer Starvation Count Register 3 (FDBSC3)............................... 516
13-116. Queue Manager Free Descriptor/Buffer Starvation Count Register 4 (FDBSC4)............................... 517
13-117. Queue Manager Free Descriptor/Buffer Starvation Count Register 5 (FDBSC5)............................... 517
13-118. Queue Manager Free Descriptor/Buffer Starvation Count Register 6 (FDBSC6)............................... 518
13-119. Queue Manager Free Descriptor/Buffer Starvation Count Register 7 (FDBSC7)............................... 518
13-120. Queue Manager Linking RAM Region 0 Base Address Register 1 (LRAM0BASE1) 519
13-121. Queue Manager Linking RAM Region 0 Base Address Register 2 (LRAM0BASE2) 519
13-122. Queue Manager Linking RAM Region 0 Size Register (LRAM0SIZE) ... 520
13-123. Queue Manager Linking RAM Region 1 Base Address Register 1 (LRAM1BASE1) 521
13-124. Queue Manager Linking RAM Region 1 Base Address Register 2 (LRAM1BASE2) 521
13-125. Queue Manager Queue Pending Register 0 (PEND0) ... 522
13-126. Queue Manager Queue Pending Register 1 (PEND1) ... 522
13-127. Queue Manager Queue Pending Register 2 (PEND2) ... 523
13-128. Queue Manager Queue Pending Register 3 (PEND3) ... 523
13-129. Queue Manager Queue Pending Register 4 (PEND4) ... 524
13-130. Queue Manager Queue Pending Register 5 (PEND5) ... 524
13-131. Queue Manager Memory Region R Base Address Register 1 (QMEMRBASE1[R])........................... 525
13-132. Queue Manager Memory Region R Base Address Register 2 (QMEMRBASE2[R])........................... 525
13-133. Queue Manager Memory Region R Control Register 1 (QMEMRCTRL1[R]) 526
13-134. Queue Manager Memory Region R Control Register 2 (QMEMRCTRL2[R]) 526
13-135. Queue Manager Queue N Control Register 1 D (CTRL1D[N]).. 527
13-136. Queue Manager Queue N Control Register 2 D (CTRL2D[N]).. 527
13-137. Queue Manager Queue N Status Register A (QSTATA[N]) ... 528
13-138. Queue Manager Queue N Status Register 1 B (QSTAT1B[N]) ... 528
13-139. Queue Manager Queue N Status Register 2 B (QSTAT2B[N]) ... 528
13-140. Queue Manager Queue N Status Register C (QSTATC[N])... 529
14-1. LCD Controller .. 531
14-2. LIDD Mode HD44780 Write Timing Diagram ... 535
14-3. LIDD Mode HD44780 Read Timing Diagram ... 535
14-4. LIDD Mode 6800 Write Timing Diagram... 536
14-5. LIDD Mode 6800 Read Timing Diagram... 537
14-6. LIDD Mode 6800 Status Timing Diagram ... 538
14-7. LIDD Mode 8080 Write Timing Diagram... 539
14-8. LIDD Mode 8080 Read Timing Diagram... 540
14-9. LIDD Mode 8080 Status Timing Diagram ... 541

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

22 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

List of Figures

14-10. LCD Minor Revision Register (LCDREVMIN) ... 544
14-11. LCD Major Revision Register (LCDREVMAJ) .. 544
14-12. LCD Control Register (LCDCR)... 545
14-13. LCD Status Register (LCDSR) .. 546
14-14. LCD LIDD Control Register (LCDLIDDCR).. 547
14-15. LCD LIDD CS0 and CS1 Configuration Register 0 (LCDLIDDCS0CONFIG0 and LCDLIDDCS1CONFIG0) 549
14-16. LCD LIDD CS0 and CS1 Configuration Register 1 (LClidd_cs1_1DLIDDCS0CONFIG1 and

LCDLIDDCS1CONFIG1)... 550
14-17. LCD LIDD CS0 and CS1 Address Read/Write Register (LCDLIDDCS0ADDR and LCDLIDDCS1ADDR) ... 551
14-18. LCD LIDD CS0 and CS1 Data Read/Write Register (LCDLIDDCS0DATA and LCDLIDDCS1DATA) 552
14-19. LCD DMA Control Register (LCDDMACR) .. 553
14-20. LCD DMA Frame Buffer 0 Base Address Register 0 (LCDDMAFB0BAR0) 554
14-21. LCD DMA Frame Buffer 0 Base Address Register 1 (LCDDMAFB0BAR1) 554
14-22. LCD DMA Frame Buffer 0 Ceiling Address Register 0 (LCDDMAFB0CAR0) 555
14-23. LCD DMA Frame Buffer 0 Ceiling Address Register 1 (LCDDMAFB0CAR1) 555
14-24. LCD DMA Frame Buffer 1 Base Address Register 0 (LCDDMAFB1BAR0) 556
14-25. LCD DMA Frame Buffer 1 Base Address Register 1 (LCDDMAFB1BAR1) 556
14-26. LCD DMA Frame Buffer 1 Ceiling Address Register 0 (LCDDMAFB1CAR0) 557
14-27. LCD DMA Frame Buffer 1 Ceiling Address Register 1 (LCDDMAFB1CAR1) 557

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

23SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

List of Tables

List of Tables
1-1. Differences Between Devices .. 39
1-2. FFT Accelerator ROM Routines .. 41
1-3. DARAM Blocks ... 46
1-4. SARAM Blocks ... 47
1-5. SAROM Blocks ... 48
1-6. PLL Output Frequency Configuration.. 52
1-7. CLKOUT Control Source Select Register (CCSSR) Field Descriptions .. 53
1-8. Clock Generator Control Register Bits Used In BYPASS MODE.. 55
1-9. Output Frequency in Bypass Mode .. 55
1-10. Clock Generator Control Register Bits Used In PLL Mode ... 56
1-11. Examples of Selecting a PLL MODE Frequency, When CLK_SEL=L .. 56
1-12. Clock Generator Registers .. 58
1-13. Clock Generator Control Register 1 (CGCR1) Field Descriptions ... 59
1-14. Clock Generator Control Register 2 (CGCR2) Field Descriptions ... 59
1-15. Clock Generator Control Register 3 (CGCR3) Field Descriptions ... 60
1-16. Clock Generator Control Register 4 (CGCR4) Field Descriptions ... 60
1-17. Clock Configuration Register 2 (CCR2) Field Descriptions... 61
1-18. Power Management Features .. 62
1-19. DSP Power Domains .. 63
1-20. Idle Configuration Register (ICR) Field Descriptions .. 65
1-21. Idle Status Register (ISTR) Field Descriptions ... 66
1-22. CPU Clock Domain Idle Requirements.. 67
1-23. Peripheral Clock Gating Configuration Register 1 (PCGCR1) Field Descriptions 68
1-24. Peripheral Clock Gating Configuration Register 2 (PCGCR2) Field Descriptions 70
1-25. Peripheral Clock Stop Request/Acknowledge Register (CLKSTOP) Field Descriptions.......................... 71
1-26. USB System Control Register (USBSCR) Field Descriptions .. 73
1-27. RTC Power Management Register (RTCPMGT) Field Descriptions .. 75
1-28. RTC Interrupt Flag Register (RTCINTFL) Field Descriptions... 76
1-29. On-Chip Memory Standby Modes.. 77
1-30. LDOCNTL Register Bit Descriptions... 81
1-31. LDO Controls Matrix ... 81
1-32. Power Configurations .. 84
1-33. Interrupt Table .. 88
1-34. IFR0 and IER0 Register Description... 89
1-35. IFR1 and IER1 Register Description... 90
1-36. Die ID Registers .. 92
1-37. Die ID Register 0 (DIEIDR0) Field Descriptions ... 93
1-38. Die ID Register 1 (DIEIDR1) Field Descriptions ... 93
1-39. Die ID Register 2 (DIEIDR2) Field Descriptions ... 93
1-40. Die ID Register 3 (DIEIDR3) Field Descriptions ... 94
1-41. Die ID Register 4 (DIEIDR4) Field Descriptions ... 94
1-42. Die ID Register 5 (DIEIDR5) Field Descriptions ... 94
1-43. Die ID Register 6 (DIEIDR6) Field Descriptions ... 95
1-44. Die ID Register 7 (DIEIDR7) Field Descriptions ... 95
1-45. EBSR Register Bit Descriptions Field Descriptions.. 96
1-46. LDOCNTL Register Bit Descriptions... 98
1-47. LDO Controls Matrix ... 98

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

24 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

List of Tables

1-48. LDOCNTL Register Bit Descriptions ... 100
1-49. LDO Controls Matrix.. 100
1-50. Output Slew Rate Control Register (OSRCR) Field Descriptions .. 101
1-51. Pulldown Inhibit Register 1 (PDINHIBR1) Field Descriptions ... 102
1-52. Pulldown Inhibit Register 2 (PDINHIBR2) Field Descriptions ... 103
1-53. Pulldown Inhibit Register 3 (PDINHIBR3) Field Descriptions ... 104
1-54. Channel Synchronization Events for DMA Controllers... 106
1-55. System Registers Related to the DMA Controllers... 106
1-56. DMA Interrupt Flag Register (DMAIFR) Field Descriptions ... 107
1-57. DMA Interrupt Enable Register (DMAIER) Field Descriptions .. 107
1-58. DMAn Channel Event Source Register 1 (DMAnCESR1) Field Descriptions 108
1-59. DMAn Channel Event Source Register 2 (DMAnCESR2) Field Descriptions 108
1-60. Peripheral Software Reset Counter Register (PSRCR) Field Descriptions 109
1-61. Peripheral Reset Control Register (PRCR) Field Descriptions ... 110
1-62. Effect of USBSCR BYTEMODE Bits on USB Access ... 111
2-1. Computational Complexity of Direct DFT Computation versus Radix-2 FFT 115
2-2. Available HWAFFT Routines ... 127
2-3. FFT Performance on HWAFFT vs CPU (CVDD = 1.05 V, PLL = 50 MHz)... 130
2-4. FFT Performance on HWAFFT vs CPU (CVDD = 1.3 V, PLL = 100 MHz)... 131
3-1. DMA Controller Memory Map ... 140
3-2. Registers Used to Define the Start Addresses for a DMA Transfer.. 141
3-3. Destinations/Sources That Support DMA Bursting... 143
3-4. System Registers Related to the DMA Controllers .. 153
3-5. DMA Controller 0 (DMA0) Registers ... 153
3-6. DMA Controller 1 (DMA1) Registers ... 154
3-7. DMA Controller 2 (DMA2) Registers ... 154
3-8. DMA Controller 3 (DMA3) Registers ... 155
3-9. Source Start Address Register - Lower Part (DMACHmSSAL) Field Description 156
3-10. Source Start Address Register - Upper Part (DMACHmSSAU) Field Description 156
3-11. DMA Destination Start Address Register - Lower Part (DMACHmDSAL) Field Description.................... 157
3-12. DMA Destination Start Address Register - Upper Part (DMACHmDSAU) Field Description 157
3-13. Transfer Control Register 1 (DMACHmTCR1) Field Description ... 158
3-14. Transfer Control Register 2 (DMACHmTCR2) Field Descriptions ... 159
4-1. Time/Calendar Registers .. 165
4-2. Time and Calendar Alarm Data .. 166
4-3. Time/Calendar Alarm Settings .. 167
4-4. Periodic Interrupts .. 170
4-5. RTC Registers... 171
4-6. RTCINTEN Register Field Descriptions ... 173
4-7. RTCUPDATE Register Field Descriptions... 173
4-8. RTCMIL Register Field Descriptions ... 174
4-9. RTCMILA Register Field Descriptions ... 174
4-10. RTCSEC Register Field Descriptions .. 175
4-11. RTCSECA Register Field Descriptions .. 175
4-12. RTCMIN Register Field Descriptions... 176
4-13. RTCMINA Register Field Descriptions ... 176
4-14. RTCHOUR Register Field Descriptions.. 177
4-15. RTCHOURA Register Field Descriptions .. 177
4-16. RTCDAY Register Field Descriptions .. 178

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

25SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

List of Tables

4-17. RTCDAYA Register Field Descriptions .. 178
4-18. RTCMONTH Register Field Descriptions.. 179
4-19. RTCMONTHA Register Field Descriptions .. 179
4-20. RTCYEAR Register Field Descriptions .. 180
4-21. RTCYEARA Register Field Descriptions .. 180
4-22. RTCINTFL Register Field Descriptions .. 181
4-23. RTCNOPWR Register Field Descriptions ... 182
4-24. RTCINTREG Register Field Descriptions ... 183
4-25. RTCDRIFT Register Field Descriptions.. 184
4-26. RTCOSC Register Field Descriptions.. 184
4-27. RTCPMGT Register Field Descriptions.. 185
4-28. RTCSCR1 Register 1 Field Descriptions .. 186
4-29. RTCSCR2 Register Field Descriptions .. 186
4-30. RTCSCR3 Register Field Descriptions .. 187
4-31. RTCSCR4 Register Field Descriptions .. 187
5-1. Unlock Sequence for the Watchdog Lock Registers ... 193
5-2. Watchdog Timer Registers ... 194
5-3. General-Purpose Timer 0 Registers.. 194
5-4. General-Purpose Timer 1 Registers.. 194
5-5. General-Purpose Timer 2 Registers.. 194
5-6. Timer Interrupt Aggregation Register .. 195
5-7. WDKCKLK Register Field Descriptions.. 195
5-8. WDKICK Register Field Descriptions .. 195
5-9. WDSVLR Register Field Descriptions.. 196
5-10. WDSVR Register Field Descriptions ... 196
5-11. WDENLOK Register Field Descriptions ... 197
5-12. WDEN Register Field Descriptions ... 197
5-13. WDPSLR Register Field Descriptions.. 198
5-14. WDPS Register Field Descriptions ... 198
5-15. TCR Register Field Descriptions.. 199
5-16. TIMPRD1 Register Field Descriptions ... 200
5-17. TIMPRD2 Register Field Descriptions ... 200
5-18. TIMCNT1 Register Field Descriptions ... 201
5-19. TIMCNT2 Register Field Descriptions ... 201
5-20. TIAFR Register Field Descriptions ... 202
6-1. eMMC/SD Controller Pins Used in Each Mode... 207
6-2. eMMC/SD Mode Write Sequence .. 208
6-3. eMMC/SD Mode Read Sequence .. 209
6-4. Description of eMMC/SD Interrupt Requests ... 220
6-5. Embedded Multimedia Card/Secure Digital 0 (eMMC/SD0) Card Controller Registers 231
6-6. Embedded Multimedia Card/Secure Digital 1 (eMMC/SD1) Card Controller Registers 232
6-7. SD Control Register (SDCTL) Field Descriptions .. 233
6-8. SD Memory Clock Control Register (SDCLK) Field Descriptions .. 234
6-9. SD Status Register 0 (SDST0) Field Descriptions ... 235
6-10. SD Status Register 1 (SDST1) Field Descriptions ... 237
6-11. SD Interrupt Mask Register (SDIM) Field Descriptions .. 238
6-12. SD Response Time-Out Register (SDTOR) Field Descriptions .. 239
6-13. SD Data Read Time-Out Register (SDTOD) Field Descriptions ... 240
6-14. SD Block Length Register (SDBLEN) Field Descriptions ... 240

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

26 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

List of Tables

6-15. SD Number of Blocks Register (SDNBLK) Field Descriptions.. 241
6-16. SD Number of Blocks Counter Register (SDNBLC) Field Descriptions ... 241
6-17. SD Data Receive Register (SDDRR1) Field Descriptions... 242
6-18. SD Data Receive Register (SDDRR2) Field Descriptions... 242
6-19. SD Data Transmit Register (SDDXR) Field Descriptions.. 243
6-20. SD Data Transmit Register (SDDXR2) Field Descriptions .. 243
6-21. eMMC Command Register 1 (MMCSD1) Field Descriptions ... 244
6-22. eMMC Command Register 2 (MMCSD2) Field Descriptions ... 245
6-23. Command Format .. 245
6-24. SD Argument Register (SDARG1) Field Descriptions ... 246
6-25. SD Argument Register (SDARG2) Field Descriptions ... 246
6-26. R1, R3, R4, R5, or R6 Response (48 Bits).. 248
6-27. R2 Response (136 Bits) ... 248
6-28. SD Data Response Register (SDDRSP) Field Descriptions .. 249
6-29. SD Command Index Register (SDCIDX) Field Descriptions .. 249
6-30. SDIO Control Register (SDIOCTL) Field Descriptions... 250
6-31. SDIO Status Register 0 (SDIOST0) Field Descriptions.. 250
6-32. SDIO Interrupt Enable Register (SDIOIEN) Field Descriptions... 251
6-33. SDIO Interrupt Status Register (SDIOIST) Field Descriptions.. 251
6-34. SD FIFO Control Register (SDFIFOCTL) Field Descriptions ... 252
7-1. UART Supported Features/Characteristics by Instance ... 255
7-2. Baud Rate Examples for 50-MHz UART Input Clock .. 258
7-3. Baud Rate Examples for 60-MHz UART Input Clock .. 258
7-4. Baud Rate Examples for 100-MHz UART Input Clock... 259
7-5. UART Signal Descriptions ... 259
7-6. Character Time for Word Lengths .. 262
7-7. UART Interrupt Requests Descriptions .. 265
7-8. UART Registers... 268
7-9. RBR Register Field Descriptions ... 269
7-10. THR Register Field Descriptions.. 270
7-11. IER Register Field Descriptions... 271
7-12. IIR Register Field Descriptions.. 272
7-13. Interrupt Identification and Interrupt Clearing Information ... 273
7-14. FCR Register Field Descriptions.. 274
7-15. LCR Register Field Descriptions.. 275
7-16. Relationship Between ST, EPS, and PEN Bits in LCR .. 276
7-17. Number of STOP Bits Generated... 276
7-18. MCR Register Field Descriptions ... 277
7-19. LSR Register Field Descriptions .. 278
7-20. SCR Register Field Descriptions ... 280
7-21. DLL Register Field Descriptions .. 281
7-22. DLH Register Field Descriptions.. 282
7-23. PWREMU_MGMT Register Field Descriptions ... 283
8-1. Serial Peripheral Interface (SPI) Pins .. 288
8-2. Definition of SPI Modes .. 289
8-3. SPI Module Status Bits .. 291
8-4. SPI Registers.. 300
8-5. SPICDR Register Field Descriptions ... 301
8-6. SPICCR Register Field Descriptions ... 301

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

27SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

List of Tables

8-7. SPIDCR1 Register Field Descriptions ... 302
8-8. SPIDCR2 Register Field Descriptions ... 303
8-9. SPICMD1 Register Field Descriptions ... 304
8-10. SPICMD2 Register Field Descriptions ... 305
8-11. SPISTAT1 Register Field Descriptions .. 306
8-12. SPISTAT2 Register Field Descriptions .. 306
8-13. SPIDAT1 Register Field Descriptions .. 307
8-14. SPIDAT2 Register Field Descriptions .. 307
9-1. Operating Modes of the I2C Peripheral.. 317
9-2. Ways to Generate a NACK Bit .. 317
9-3. Descriptions of the I2C Interrupt Events ... 322
9-4. I2C Registers .. 324
9-5. ICOAR Register Field Descriptions... 324
9-6. ICIMR Register Field Descriptions ... 325
9-7. ICSTR Register Field Descriptions ... 326
9-8. ICCLKL Register Field Descriptions.. 329
9-9. ICCLKH Register Field Descriptions ... 329
9-10. ICCNT Register Field Descriptions ... 330
9-11. ICDRR Register Field Descriptions... 330
9-12. ICSAR Register Field Descriptions ... 331
9-13. ICDXR Register Field Descriptions... 331
9-14. ICMDR Register Field Descriptions .. 332
9-15. Master-Transmitter/Receiver Bus Activity Defined by RM, STT, and STP Bits 334
9-16. How the MST and FDF Bits Affect the Role of TRX Bit ... 335
9-17. ICIVR Register Field Descriptions .. 336
9-18. ICEMDR Register Field Descriptions .. 337
9-19. ICPSC Register Field Descriptions ... 338
9-20. ICPID1 Register Field Descriptions .. 339
9-21. ICPID2 Register Field Descriptions .. 339
10-1. I2S Signal Descriptions .. 345
10-2. Example of Sign Extension Behavior .. 352
10-3. PACK and Sign Extend Data Arrangement for 8-Bit Word Length... 352
10-4. PACK and Sign Extend Data Arrangement for 10-Bit Word Length ... 353
10-5. PACK and Sign Extend Data Arrangement for 12-Bit Word Length ... 353
10-6. PACK and Sign Extend Data Arrangement for 14-Bit Word Length ... 353
10-7. PACK and Sign Extend Data Arrangement for 16-Bit Word Length ... 354
10-8. PACK and Sign Extend Data Arrangement for 18-Bit Word Length ... 354
10-9. PACK and Sign Extend Data Arrangement for 20-Bit Word Length ... 354
10-10. PACK and Sign Extend Data Arrangement for 24-Bit Word Length ... 355
10-11. PACK and Sign Extend Data Arrangement for 32-Bit Word Length ... 355
10-12. DMA Access to I2S ... 356
10-13. I2S0 Register Mapping Summary .. 358
10-14. I2S1 Register Mapping Summary .. 358
10-15. I2S2 Register Mapping Summary .. 359
10-16. I2S3 Register Mapping Summary .. 359
10-17. I2Sn Serializer Control Register (I2SSCTRL) Field Descriptions... 360
10-18. I2Sn Sample Rate Generator Register (I2SSRATE) Field Descriptions .. 362
10-19. I2Sn Transmit Left Data 0 Register (I2STXLT0) Field Descriptions ... 363
10-20. I2Sn Transmit Left Data 1 Register (I2STXLT1) Field Descriptions ... 363

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

28 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

List of Tables

10-21. I2Sn Transmit Right Data 0 Register (I2STXRT0) Field Descriptions ... 364
10-22. I2Sn Transmit Right Data 1 Register (I2STXRT1) Field Descriptions ... 364
10-23. I2Sn Interrupt Flag Register (I2SINTFL) Field Descriptions .. 365
10-24. I2Sn Interrupt Mask Register (I2SINTMASK) Field Descriptions... 366
10-25. I2Sn Receive Left Data 0 Register (I2SRXLT0) Field Descriptions .. 367
10-26. I2Sn Receive Left Data 1 Register (I2SRXLT1) Field Descriptions .. 367
10-27. I2Sn Receive Right Data 0 Register (I2SRXRT0) Field Descriptions.. 368
10-28. I2Sn Receive Right Data 1 Register (I2SRXRT1) Field Descriptions.. 368
11-1. SAR Memory Map .. 372
11-2. SAR Registers... 379
11-3. SARCTRL Register Field Descriptions... 380
11-4. SARDATA Register Field Descriptions .. 381
11-5. SARCLKCTRL Register Field Descriptions ... 382
11-6. SARPINCTRL Register Field Descriptions .. 383
11-7. SARGPOCTRL Register Field Descriptions... 385
12-1. GPIO Registers ... 390
12-2. IODIR1 Register Bit Field Description.. 391
12-3. IODIR2 Register Bit Field Description.. 392
12-4. IOINDATA1 Register Bit Field Description .. 393
12-5. IOINDATA2 Register Bit Field Description .. 394
12-6. IOOUTDATA1 Register Bit Field Description ... 395
12-7. IOOUTDATA2 Register Bit Field Description ... 396
12-8. IOINTEDG1 Register Bit Field Description .. 397
12-9. IOINTEDG2 Register Bit Field Description .. 398
12-10. IOINTEN1 Register Bit Field Description .. 399
12-11. IOINTEN2 Register Bit Field Description .. 400
12-12. IOINTFLG1 Register Bit Field Description... 401
12-13. IOINTFLG2 Register Bit Field Description... 402
13-1. USB Terminal Functions ... 406
13-2. USB Controller Memory Map.. 406
13-3. USB System Control Register (USBSCR) Field Descriptions .. 408
13-4. PERI_TXCSR Register Bit Configuration for Bulk IN Transactions .. 422
13-5. PERI_RXCSR Register Bit Configuration for Bulk OUT Transactions... 423
13-6. PERI_TXCSR Register Bit Configuration for Isochronous IN Transactions 425
13-7. PERI_RXCSR Register Bit Configuration for Isochronous OUT Transactions 427
13-8. Host Packet Descriptor Word 0 (HPD Word 0) ... 432
13-9. Host Packet Descriptor Word 1 (HPD Word 1) ... 432
13-10. Host Packet Descriptor Word 2 (HPD Word 2) ... 433
13-11. Host Packet Descriptor Word 3 (HPD Word 3) ... 433
13-12. Host Packet Descriptor Word 4 (HPD Word 4) ... 433
13-13. Host Packet Descriptor Word 5 (HPD Word 5) ... 434
13-14. Host Packet Descriptor Word 6 (HPD Word 6) ... 434
13-15. Host Packet Descriptor Word 7 (HPD Word 7) ... 434
13-16. Host Buffer Descriptor Word 0 (HBD Word 0) .. 435
13-17. Host Buffer Descriptor Word 1 (HBD Word 1) .. 435
13-18. Host Buffer Descriptor Word 2 (HBD Word 2) .. 435
13-19. Host Buffer Descriptor Word 3 (HBD Word 3) .. 435
13-20. Host Buffer Descriptor Word 4 (HBD Word 4) .. 436
13-21. Host Buffer Descriptor Word 5 (HBD Word 5) .. 436

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

29SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

List of Tables

13-22. Host Buffer Descriptor Word 6 (HBD Word 6) .. 436
13-23. Host Buffer Descriptor Word 7 (HBD Word 7) .. 436
13-24. Teardown Descriptor Word 0.. 437
13-25. Teardown Descriptor Words 1-7 .. 437
13-26. Allocation of Queues ... 438
13-27. Interrupts Generated by the USB Controller .. 453
13-28. USB Interrupt Conditions .. 453
13-29. Effect of USBSCR BYTEMODE Bits on USB Access ... 454
13-30. LDO Pin Connections .. 455
13-31. Universal Serial Bus (USB) Registers.. 456
13-32. Common USB Register Layout ... 457
13-33. Common USB Registers... 457
13-34. USB Indexed Register Layout when Index Register Set to Select Endpoint 0 458
13-35. USB Indexed Register Layout when Index Register Set to Select Endpoint 1-4................................. 458
13-36. USB Indexed Registers .. 458
13-37. USB FIFO Registers.. 459
13-38. Dynamic FIFO Control Register Layout.. 459
13-39. Dynamic FIFO Control Registers ... 460
13-40. Control and Status Registers for Endpoints 0-4 .. 460
13-41. CPPI DMA (CMDA) Registers .. 461
13-42. Queue Manager (QMGR) Registers.. 462
13-43. Revision Identification Register 1 (REVID1) Field Descriptions .. 464
13-44. Revision Identification Register 2 (REVID2) Field Descriptions .. 464
13-45. Control Register (CTRLR) Field Descriptions ... 465
13-46. Emulation Register (EMUR) Field Descriptions... 466
13-47. Mode Register 1 (MODE1) Field Descriptions .. 467
13-48. Mode Register 2 (MODE2) Field Descriptions .. 467
13-49. Auto Request Register (AUTOREQ) Field Descriptions... 469
13-50. Teardown Register 1 (TEARDOWN1) Field Descriptions ... 470
13-51. Teardown Register 2 (TEARDOWN2) Field Descriptions ... 470
13-52. USB Interrupt Source Register 1 (INTSRCR1) Field Descriptions ... 471
13-53. USB Interrupt Source Register 2 (INTSRCR2) Field Descriptions ... 471
13-54. USB Interrupt Source Set Register 1 (INTSETR1) Field Descriptions... 472
13-55. USB Interrupt Source Set Register 2 (INTSETR2) Field Descriptions... 472
13-56. USB Interrupt Source Clear Register 1 (INTCLRR1) Field Descriptions .. 473
13-57. USB Interrupt Source Clear Register 2 (INTCLRR2) Field Descriptions .. 473
13-58. USB Interrupt Mask Register 1 (INTMSKR1) Field Descriptions ... 474
13-59. USB Interrupt Mask Register 2 (INTMSKR2) Field Descriptions ... 474
13-60. USB Interrupt Mask Set Register 1 (INTMSKSETR1) Field Descriptions... 475
13-61. USB Interrupt Mask Set Register 2 (INTMSKSETR2) Field Descriptions... 475
13-62. USB Interrupt Mask Clear Register 1 (INTMSKCLRR1) Field Descriptions 476
13-63. USB Interrupt Mask Clear Register 2 (INTMSKCLRR2) Field Descriptions 476
13-64. USB Interrupt Source Masked Register 1 (INTMASKEDR1) Field Descriptions 477
13-65. USB Interrupt Source Masked Register 2 (INTMASKEDR2) Field Descriptions 477
13-66. USB End of Interrupt Register (EOIR) Field Descriptions ... 478
13-67. USB Interrupt Vector Register 1 (INTVECTR1) Field Descriptions .. 478
13-68. USB Interrupt Vector Register 2 (INTVECTR2) Field Descriptions .. 478
13-69. Generic RNDIS EP1 Size Register 1 (GREP1SZR1) Field Descriptions.. 479
13-70. Generic RNDIS EP1 Size Register 2 (GREP1SZR2) Field Descriptions.. 479

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

30 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

List of Tables

13-71. Generic RNDIS EP2 Size Register 1 (GREP2SZR1) Field Descriptions.. 480
13-72. Generic RNDIS EP2 Size Register 2 (GREP2SZR2) Field Descriptions.. 480
13-73. Generic RNDIS EP3 Size Register 1 (GREP3SZR1) Field Descriptions.. 481
13-74. Generic RNDIS EP3 Size Register 2 (GREP3SZR2) Field Descriptions.. 481
13-75. Generic RNDIS EP4 Size Register 1 (GREP4SZR1) Field Descriptions.. 482
13-76. Generic RNDIS EP4 Size Register 2 (GREP4SZR2) Field Descriptions.. 482
13-77. Function Address Register (FADDR) Field Descriptions .. 483
13-78. Power Management Register (POWER) Field Descriptions .. 483
13-79. Interrupt Register for Endpoint 0 Plus Transmit Endpoints 1 to 4 (INTRTX) Field Descriptions 484
13-80. Interrupt Register for Receive Endpoints 1 to 4 (INTRRX) Field Descriptions 484
13-81. Interrupt Enable Register for INTRTX (INTRTXE) Field Descriptions ... 485
13-82. Interrupt Enable Register for INTRRX (INTRRXE) Field Descriptions... 485
13-83. Interrupt Register for Common USB Interrupts (INTRUSB) Field Descriptions 486
13-84. Interrupt Enable Register for INTRUSB (INTRUSBE) Field Descriptions ... 487
13-85. Frame Number Register (FRAME) Field Descriptions ... 487
13-86. Index Register for Selecting the Endpoint Status and Control Registers (INDEX) Field Descriptions 488
13-87. Register to Enable the USB 2.0 Test Modes (TESTMODE) Field Descriptions.................................. 488
13-88. Maximum Packet Size for Peripheral/Host Transmit Endpoint (TXMAXP) Field Descriptions 489
13-89. Control Status Register for Peripheral Endpoint 0 (PERI_CSR0) Field Descriptions............................ 490
13-90. Control Status Register for Peripheral Transmit Endpoint (PERI_TXCSR) Field Descriptions................. 491
13-91. Maximum Packet Size for Peripheral Receive Endpoint (RXMAXP) Field Descriptions 492
13-92. Control Status Register for Peripheral Receive Endpoint (PERI_RXCSR) Field Descriptions 493
13-93. Count 0 Register (COUNT0) Field Descriptions .. 494
13-94. Receive Count Register (RXCOUNT) Field Descriptions ... 494
13-95. Configuration Data Register (CONFIGDATA) Field Descriptions .. 495
13-96. Transmit and Receive FIFO Register 1 for Endpoint 0 (FIFO0R1) Field Descriptions 496
13-97. Transmit and Receive FIFO Register 2 for Endpoint 0 (FIFO0R2) Field Descriptions 496
13-98. Transmit and Receive FIFO Register 1 for Endpoint 1 (FIFO1R1) Field Descriptions 497
13-99. Transmit and Receive FIFO Register 2 for Endpoint 1 (FIFO1R2) Field Descriptions 497
13-100. Transmit and Receive FIFO Register 1 for Endpoint 2 (FIFO2R1) Field Descriptions......................... 498
13-101. Transmit and Receive FIFO Register 2 for Endpoint 2 (FIFO2R2) Field Descriptions......................... 498
13-102. Transmit and Receive FIFO Register 1 for Endpoint 3 (FIFO3R1) Field Descriptions......................... 499
13-103. Transmit and Receive FIFO Register 2 for Endpoint 3 (FIFO3R2) Field Descriptions......................... 499
13-104. Transmit and Receive FIFO Register 1 for Endpoint 4 (FIFO4R1) Field Descriptions......................... 500
13-105. Transmit and Receive FIFO Register 2 for Endpoint 4 (FIFO4R2) Field Descriptions......................... 500
13-106. Device Control Register (DEVCTL) Field Descriptions... 501
13-107. Transmit Endpoint FIFO Size (TXFIFOSZ) Field Descriptions .. 502
13-108. Receive Endpoint FIFO Size (RXFIFOSZ) Field Descriptions .. 502
13-109. Transmit Endpoint FIFO Address (TXFIFOADDR) Field Descriptions ... 503
13-110. Hardware Version Register (HWVERS) Field Descriptions.. 503
13-111. Receive Endpoint FIFO Address (RXFIFOADDR) Field Descriptions.. 504
13-112. CDMA Revision Identification Register 1 (DMAREVID1) Field Descriptions 504
13-113. CDMA Revision Identification Register 2 (DMAREVID2) Field Descriptions 504
13-114. CDMA Teardown Free Descriptor Queue Control Register (TDFDQ) Field Descriptions 505
13-115. CDMA Emulation Control Register (DMAEMU) Field Descriptions ... 505
13-116. CDMA Transmit Channel n Global Configuration Register 1 (TXGCR1[n]) Field Descriptions 506
13-117. CDMA Transmit Channel n Global Configuration Register 2 (TXGCR2[n]) Field Descriptions 506
13-118. CDMA Receive Channel n Global Configuration Register 1 (RXGCR1[n]) Field Descriptions 507
13-119. CDMA Receive Channel n Global Configuration Register 2 (RXGCR2[n]) Field Descriptions 507

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

31SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

List of Tables

13-120. Receive Channel n Host Packet Configuration Register 1 A (RXHPCR1A[n]) Field Descriptions 509
13-121. Receive Channel n Host Packet Configuration Register 2 A (RXHPCR2A[n]) Field Descriptions 509
13-122. Receive Channel n Host Packet Configuration Register 1 B (RXHPCR1B[n]) Field Descriptions 510
13-123. Receive Channel n Host Packet Configuration Register 2 B (RXHPCR2B[n]) Field Descriptions 510
13-124. CDMA Scheduler Control Register 1 (DMA_SCHED_CTRL1) Field Descriptions 511
13-125. CDMA Scheduler Control Register 2 (DMA_SCHED_CTRL2) Field Descriptions 511
13-126. CDMA Scheduler Table Word n Registers (ENTRYLSW[n]) Field Descriptions................................ 512
13-127. CDMA Scheduler Table Word n Registers (ENTRYMSW[n]) Field Descriptions 512
13-128. Queue Manager Revision Identification Register 1 (QMGRREVID1) Field Descriptions 513
13-129. Queue Manager Revision Identification Register 2 (QMGRREVID2) Field Descriptions 513
13-130. Queue Manager Queue Diversion Register 1 (DIVERSION1) Field Descriptions 514
13-131. Queue Manager Queue Diversion Register 2 (DIVERSION2 Field Descriptions 514
13-132. Queue Manager Free Descriptor/Buffer Starvation Count Register 0 (FDBSC0) Field Descriptions 515
13-133. Queue Manager Free Descriptor/Buffer Starvation Count Register 1 (FDBSC1) Field Descriptions 515
13-134. Queue Manager Free Descriptor/Buffer Starvation Count Register 2 (FDBSC2) Field Descriptions 516
13-135. Queue Manager Free Descriptor/Buffer Starvation Count Register 3 (FDBSC3) Field Descriptions 516
13-136. Queue Manager Free Descriptor/Buffer Starvation Count Register 4 (FDBSC4) Field Descriptions 517
13-137. Queue Manager Free Descriptor/Buffer Starvation Count Register 5 (FDBSC5) Field Descriptions 517
13-138. Queue Manager Free Descriptor/Buffer Starvation Count Register 6 (FDBSC6) Field Descriptions 518
13-139. Queue Manager Free Descriptor/Buffer Starvation Count Register 7 (FDBSC7) Field Descriptions 518
13-140. Queue Manager Linking RAM Region 0 Base Address Register 1 (LRAM0BASE1) Field Descriptions 519
13-141. Queue Manager Linking RAM Region 0 Base Address Register 2 (LRAM0BASE2) Field Descriptions 519
13-142. Queue Manager Linking RAM Region 0 Size Register (LRAM0SIZE) Field Descriptions..................... 520
13-143. Queue Manager Linking RAM Region 1 Base Address Register 1 (LRAM1BASE1) Field Descriptions 521
13-144. Queue Manager Linking RAM Region 1 Base Address Register (LRAM1BASE2) Field Descriptions 521
13-145. Queue Manager Queue Pending Register 0 (PEND0) Field Descriptions....................................... 522
13-146. Queue Manager Queue Pending Register 1 (PEND1) Field Descriptions....................................... 522
13-147. Queue Manager Queue Pending Register 2 (PEND2) Field Descriptions....................................... 523
13-148. Queue Manager Queue Pending Register 3 (PEND3) Field Descriptions....................................... 523
13-149. Queue Manager Queue Pending Register 4 (PEND4) Field Descriptions....................................... 524
13-150. Queue Manager Queue Pending Register 5 (PEND5) Field Descriptions....................................... 524
13-151. Queue Manager Memory Region R Base Address Register 1 (QMEMRBASE1[R]) Field Descriptions 525
13-152. Queue Manager Memory Region R Base Address Register 2 (QMEMRBASE2[R]) Field Descriptions 525
13-153. Queue Manager Memory Region R Control Register 1 (QMEMRCTRL1[R]) Field Descriptions............. 526
13-154. Queue Manager Memory Region R Control Register 2 (QMEMRCTRL2[R]) Field Descriptions............. 527
13-155. Queue Manager Queue N Control Register 1 D (CTRL1D[N]) Field Descriptions 527
13-156. Queue Manager Queue N Control Register 2 D (CTRL2D[N]) Field Descriptions 527
13-157. Queue Manager Queue N Status Register A (QSTATA[N]) Field Descriptions................................. 528
13-158. Queue Manager Queue N Status Register 1 B (QSTAT1B[N]) Field Descriptions............................. 528
13-159. Queue Manager Queue N Status Register 2 B (QSTAT2B[N]) Field Descriptions............................. 528
13-160. Queue Manager Queue N Status Register C (QSTATC[N]) Field Descriptions 529
14-1. LCD External I/O Signals .. 532
14-2. LIDD I/O Name Map.. 533
14-3. Register Configuration for DMA Engine Programming .. 541
14-4. LCD Controller (LCDC) Registers .. 543
14-5. LCD Minor Revision Register (LCDREVMIN) Field Descriptions... 544
14-6. LCD Major Revision Register (LCDREVMAJ) Field Descriptions .. 544
14-7. LCD Control Register (LCDCR) Field Descriptions .. 545
14-8. LCD Status Register (LCDSR) Field Descriptions.. 546

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com

32 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

List of Tables

14-9. LCD LIDD Control Register (LCDLIDDCR) Field Descriptions ... 547
14-10. LCD LIDD CS0 and CS1 Configuration Register 0 (LCDLIDDCS0CONFIG0 and

LCDLIDDCS1CONFIG0) Field Descriptions .. 549
14-11. LCD LIDD CS0 and CS1 Configuration Register 1 (LCDLIDDCS0CONFIG1 and

LCDLIDDCS1CONFIG1) Field Descriptions .. 550
14-12. LCD LIDD CS0 and CS1 Address Read/Write Register (LCDLIDDCS0ADDR and LCDLIDDCS1ADDR)

Field Descriptions... 551
14-13. LCD LIDD CS0 and CS1 Data Read/Write Register (LCDLIDDCS0DATA and LCDLIDDCS1DATA) Field

Descriptions ... 552
14-14. LCD DMA Control Register (LCDDMACR) Field Descriptions.. 553
14-15. LCD DMA Frame Buffer 0 Base Address Register 0 (LCDDMAFB0BAR0) Field Descriptions 554
14-16. LCD DMA Frame Buffer 0 Base Address Register 1 (LCDDMAFB0BAR1) Field Descriptions 554
14-17. LCD DMA Frame Buffer 0 Ceiling Address Register 0 (LCDDMAFB0CAR0) Field Descriptions.............. 555
14-18. LCD DMA Frame Buffer 0 Ceiling Address Register 1 (LCDDMAFB0CAR1) Field Descriptions.............. 555
14-19. LCD DMA Frame Buffer 1 Base Address Register 0 (LCDDMAFB1BAR0) Field Descriptions 556
14-20. LCD DMA Frame Buffer 1 Base Address Register 1 (LCDDMAFB1BAR1) Field Descriptions 556
14-21. LCD DMA Frame Buffer 1 Ceiling Address Register 0 (LCDDMAFB1CAR0) Field Descriptions.............. 557
14-22. LCD DMA Frame Buffer 1 Ceiling Address Register 1 (LCDDMAFB1CAR1) Field Descriptions.............. 557

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

33SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Read This First

Preface
SPRUH87H–August 2011–Revised April 2016

Read This First

TMS320C5000 is a trademark of Texas Instruments.
SD is a trademark of SanDisk.

About This Manual
This technical reference manual (TRM) details the integration, environment, functional description, and
programming models for each peripheral and subsystem in the device.

Notational Conventions
This document uses the following conventions.
• Hexadecimal numbers are shown with the suffix h. For example, the following number is 40

hexadecimal (decimal 64): 40h.
• Registers in this document are shown in figures and described in tables.

– Each register figure shows a rectangle divided into fields that represent the fields of the register.
Each field is labeled with its bit name, its beginning and ending bit numbers above, and its
read/write properties below. A legend explains the notation used for the properties.

– Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation From Texas Instruments
For a complete listing of related documentation and development-support tools for the ultra-low power
DSPs, visit the Texas Instruments website: www.ti.com.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H
http://www.ti.com

Revision History www.ti.com

34 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from G Revision (October 2015) to H Revision ... Page

• Removed 120 MHz from Table 1-1.. 39
• Added Note to Section 11.1.2 .. 370

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

35SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

Chapter 1
SPRUH87H–August 2011–Revised April 2016

System Control

This chapter provides an overview of the system control for the device.

Topic ... Page

1.1 Introduction... 36
1.2 System Memory ... 42
1.3 Device Clocking ... 49
1.4 System Clock Generator ... 51
1.5 Power Management .. 62
1.6 Interrupts .. 88
1.7 System Configuration and Control ... 92

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Introduction www.ti.com

36 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.1 Introduction
This digital-signal processor (DSP) contains a high-performance, low-power DSP to efficiently handle
tasks required by portable audio, wireless audio devices, industrial controls, software defined radio,
fingerprint biometrics, and medical applications. The DSP consists of the following primary components:
• A C55x CPU and associated memory
• FFT hardware accelerator (TMS320C5545/35 only)
• Four DMA controllers
• Power management module
• A set of I/O peripherals, including:

– I2S, I2C, SPI, UART, and Timers for all devices
– USB 2.0 for TMS320C5545/35/34/33
– 10-bit SAR ADC and LCD controller for TMS320C5545/35

For more information on these components, see the following documents:
• TMS320C55x 3.0 CPU Reference Guide (SWPU073).
• TMS320C55x v3.x CPU Algebraic Instruction Set Reference Guide (SWPU068E)
• TMS320C55x v3.x CPU Mnemonic Instruction Set Reference Guide (SWPU067E)
• TMS320C55x DSP Peripherals Overview Reference Guide (SPRU317)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H
http://www.ti.com/lit/pdf/SWPU073
http://www.ti.com/lit/pdf/SWPU068E
http://www.ti.com/lit/pdf/SWPU067E
http://www.ti.com/lit/pdf/SPRU317

PLL/Clock
Generator

Power
Management

Pin
Multiplexing

JTAG Interface

64KB DARAM

128KB ROM

Switched Central Resource (SCR)

Input
Clocks

C55x DSP CPU

DSP System

Peripherals

I S
(x4)

2

I C
2

SPI UART

Serial Interfaces

DMA
(x4)

Interconnect
Program/Data

Storage

eMMC/SD
SDHC
(x2)

No SARAMTMS320C5532

TMS320C5533

TMS320C5534

TMS320C5535

64KB SARAM

192KB SARAM

256KB SARAM

FFT Hardware
Accelerator

TMS320C5534

USB 2.0
PHY (HS)
[DEVICE]

Connectivity

TMS320C5533

Not Applicable
TMS320C5532

TMS320C5535

10-Bit
SAR
ADC

Application
Specific

LCD
Bridge

Display

GP Timer
(x2)RTC

GP Timer
or WD

System

USB_LDO

DSP_LDO

TMS320C5533

TMS320C5532

TMS320C5535/C5534

ANA_LDO

www.ti.com Introduction

37SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.1.1 Block Diagram
The C5535/34/33/32 block diagram is shown in Figure 1-1. The C5545 block diagram is shown in
Figure 1-2.

Figure 1-1. C5535/34/33/32 Functional Block Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

PLL/Clock
Generator

Power
Management

Pin
Multiplexing

JTAG Interface

64 KB DARAM

128 KB ROM

Switched Central Resource (SCR)

Input
Clocks

C55x DSP CPU

DSP System

Peripherals

I S
(x4)

2

I C
2

SPI UART

Serial Interfaces

DMA
(x4)

Interconnect
Program/Data

Storage

eMMC/SD
SDHC
(x2)

No SARAMTMS320C5532

TMS320C5533

TMS320C5534

TMS320C5545/35

64 KB SARAM

192 KB SARAM

256 KB SARAM

FFT Hardware
Accelerator

TMS320C5534

USB 2.0
PHY (HS)
[DEVICE]

Connectivity

TMS320C5533

Not Applicable
TMS320C5532

TMS320C5545/35

10-Bit
SAR
ADC

Application
Specific

LCD
Bridge

Display

GP Timer
(x2)RTC

GP Timer
or WD

System

USB_LDO

DSP_LDO

TMS320C5533

TMS320C5532

TMS320C5545/35/C5534

ANA_LDO

Introduction www.ti.com

38 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

Figure 1-2. C5545 Functional Block Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Introduction

39SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.1.2 Device Differences
The differences between the devices are listed in the following table.

(1) Certain features are unavailable if they require an unsupported LDO or pin. Example: RTC-only mode.
(2) √ — Supported
(3) - — Not supported

Table 1-1. Differences Between Devices

Device Digital Core Supply
Voltage (CVDD)

On-chip
DARAM

On-chip
SARAM

USB LCD
Interface

Tightly-
Coupled

FFT

SAR
ADC

LDOs (1) Pins (1)

1.05 V 1.3 V
Maximum CPU Speed ANA_

LDO
DSP_
LDO

USB_
LDO

WAKE
UP

RTC_
CLKOUT

XF

TMS320C5545A10 60 MHz 100 MHz 64KB 256KB √ (2) √ √ √ √ √ √ - (3) - -
TMS320C5535A05 50 MHz -

64KB 256KB √ √ √ √ √ √ √ √ √ √
TMS320C5535A10 50 MHz 100 MHz
TMS320C5534A05 50 MHz -

64KB 192KB √ - - - √ √ √ √ √ √
TMS320C5534A10 50 MHz 100 MHz
TMS320C5533A05 50 MHz -

64KB 64KB √ - - - √ - √ √ √ √
TMS320C5533A10 50 MHz 100 MHz
TMS320C5532A05 50 MHz -

64KB 0KB - - - - √ - - √ √ √
TMS320C5532A10 50 MHz 100 MHz

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Introduction www.ti.com

40 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.1.3 CPU Core
The C55x CPU is responsible for performing the digital signal processing tasks required by the
application. In addition, the CPU acts as the overall system controller, responsible for handling many
system functions such as system-level initialization, configuration, user interface, user command
execution, connectivity functions, and overall system control.

Tightly coupled to the CPU are the following components:
• DSP internal memories

– Dual-access RAM (DARAM)
– Single-access RAM (SARAM) (Not available for TMS320C5532)
– Read-only memory (ROM)

• FFT hardware accelerator (TMS320C5545/35 only)
• Ports and buses

The CPU also manages/controls all peripherals on the device. Refer to the device-specific data manual for
the full list of peripherals.

Figure 1-2 shows the functional block diagram of the DSP and how it connects to the rest of the device.
The DSP architecture uses the switched central resource (SCR) to transfer data within the system.

1.1.4 FFT Hardware Accelerator (TMS320C5545/35 Only)
The C55x CPU includes a tightly-coupled FFT hardware accelerator that communicates with the C55x
CPU through the use coprocessor instructions. For ease of use, the ROM has a set of C-callable routines
that use these coprocessor instructions to perform 8-, 16-, 32-, 64-, 128-, 256-, 512-, or 1024-point FFTs.
The main features of the FFT hardware accelerator are:
• Support for 8- to 1024-point (in powers of 2) real and complex-valued FFTs and IFFTs.
• An internal twiddle factor generator for optimal use of memory bandwidth and more efficient

programming.
• Basic and software-driven auto-scaling feature provides good precision vs cycle count trade-off.
• Single-stage and double-stage modes enabling computation of one or two stages in one pass, thus

handling odd power of two FFT widths.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Introduction

41SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.1.4.1 Using FFT Accelerator ROM Routines
The DSP includes C-callable routines in ROM to execute FFT and IFFT using the tightly coupled FFT
accelerator. The routines reside in the following address:

Table 1-2. FFT Accelerator ROM Routines

Address Name Description Calling Convention
00fefe9c hwafft br Vector bit-reversal void hwafft_br(Int32 *data, Int32 *data_br, Uint16

data_len);
00fefeb0 hwafft 8pts 8-pt FFT/IFFT Uint16 hwafft_8pts(Int32 *data,Int32 *scratch, Uint16

fft_flag, Uint16 scale_flag);
00feff9f hwafft 16pts 16-pt FFT/IFFT Uint16 hwafft_16pts(Int32 *data,Int32 *scratch, Uint16

fft_flag, Uint16 scale_flag);
00ff00f5 hwafft 32pts 32-pt FFT/IFFT Uint16 hwafft_32pts(Int32 *data,Int32 *scratch, Uint16

fft_flag, Uint16 scale_flag);
00ff03fe hwafft 64pts 64-pt FFT/iFFT Uint16 hwafft_64pts(Int32 *data,Int32 *scratch, Uint16

fft_flag, Uint16 scale_flag);
00ff0593 hwafft 128pts 128-pt FFT/IFFT Uint16 hwafft_128pts(Int32 *data,Int32 *scratch,

Uint16 fft_flag, Uint16 scale_flag);
00ff07a4 hwafft 256pts 256-pt FFT/IFFT Uint16 hwafft_256pts(Int32 *data,Int32 *scratch,

Uint16 fft_flag, Uint16 scale_flag);
00ff09a2 hwafft 512pts 512-pt FFT/iFFT Uint16 hwafft_512pts(Int32 *data,Int32 *scratch,

Uint16 fft_flag, Uint16 scale_flag);
00ff0c1c hwafft 1024pts 1024-pt FFT/IFFT Uint16 hwafft_1024pts(Int32 *data,Int32 *scratch,

Uint16 fft_flag, Uint16 scale_flag);

For the FFT routines, output data is dependent on the return value (T0). If return = 0 output data is in-
place, meaning the result will overwrite the input buffer. If return =1, output data is placed in the scratch
buffer. The 32-bit input and output data consists of 16-bit real and 16-bit imaginary data. If only real data is
used, the imaginary part can be zeroed. The Scale flag determines if the butterfly output is divided by 2 to
prevent overflow at the expense of resolution. For more information on using these routines, see
Chapter 2, FFT Implementation on the TMS320C5535 DSPs.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Introduction www.ti.com

42 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.1.5 Power Management
Integrated into the DSP are the following power management features:
• One low dropout LDO for:

– Analog portions of the device
– DSP PLL (VDDA_PLL)
– SAR
– Power management circuits (VDDA_ANA): ANA_LDO (all devices)

• One LDO for DSP core (CVDD): DSP_LDO (TMS320C5545/35/34 only)
• One LDO for USB core and PHY (USB_VDDA1P3): USB_LDO (not supported on TMS320C5532)
• Idle controller with several clock domains:

– CPU domain
– Clock generator domain
– Peripheral domain
– USB domain
– Real-time clock (RTC) domain

• Independent voltage and power domains
• LDOI (LDOs and Bandgap Power Supply)
• Analog POR, and PLL (VDDA_ANA and VDDA_PLL)
• Real-time clock core (CVDDRTC)

Note: CV DDRTC must always be powered by an external power source. None of the on-chip LDOs can
power CVDDRTC.

• Digital core (CVDD)
• USB core (USB_ VDD1P3 and USB_VDDA1P3)
• USB PHY and USB PLL (USB_VDDOSC, USB_VDDA3P3, and USB_VDDPLL)
• RTC I/O (DVDDRTC)
• Rest of the I/O (DVDDIO)

1.1.6 Peripherals
The DSP includes the following peripherals:
• Four direct memory access (DMA) controllers, each with four independent channels.
• Two serial busses each configurable to support one Embedded Multimedia Card (eMMC) / Secure

Digital (SD/SDHC/SDIO) controller, one inter-IC sound bus (I2S) interface with GPIO, or a full GPIO
interface.

• One inter-integrated circuit (I2C) multi-master and slave interface with 7-bit and 10-bit addressing
modes.

• Three 32-bit timers with 16-bit prescaler; one timer supports watchdog functionality.
• A USB 2.0 slave.
• One real-time clock (RTC) with associated low power mode.

1.2 System Memory
The DSP supports a unified memory map (program code sections and data sections can be mixed and
interleaved within the entire memory space) composed of on-chip memory. The on-chip memory consists
of 128KB of ROM and up to 320KB of RAM.
• TMS320C5545/35 consists of 320KB of RAM.
• TMS320C5534 consists of 256KB of RAM.
• TMS320C5533 consists of 128KB of RAM.
• TMS320C5532 consists of 64KB of RAM.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

0001 0000h

64K Minus 192 bytesDARAM
(C)

0009 0000h

SARAM 256KB

0100 0000h

050E 0000h

Unmapped (if MPNMC=1)
128KB of ROM (if MPNMC=0)

BLOCK SIZE

DMA/USB/LCD

BYTE ADDRESS (A)

ROM
(if MPNMC=0)

Reserved
(if MPNMC=1)

MEMORY BLOCKS

0001 00C0h

MMR (Reserved)
(B)

Reserved

050F FFFFh

000000h

010000h

FE0000h

CPU BYTE

ADDRESS(A)

0000C0h

050000h

FFFFFFh

www.ti.com System Memory

43SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

Separate from the program and data space, the DSP also includes a 64K-byte I/O space for peripheral
registers.

1.2.1 Program/Data Memory Map
The on-chip, dual-access RAM allows two accesses to a given block during the same cycle. The device
has 8 blocks of 8K-bytes of dual-access RAM.

The on-chip, single-access RAM allows one access to a given block per cycle.
• TMS320C5545/35 has 32 blocks of 8K-bytes of single-access RAM
• TMS320C5534 has 24 blocks of 8K-bytes of single-access RAM
• TMS320C5533 has 8 blocks of 8K-bytes of single-access RAM
• Single-access RAM is not available on TMS320C5532.

Attempts to perform two accesses in a cycle to single-access memory will cause one access to stall until
the next cycle. An access is defined as either a read or write operation. For the most efficient use of DSP
processing power (MIPS), it is important to pay attention to the memory blocks that are being
simultaneously accessed by the code and data operations.

The DSP memory is accessible by different master modules within the DSP, including the device CPU, the
four DMA controllers, and the USB. The DSP memory map as seen by these modules is illustrated in
Figure 1-3 through Figure 1-6.

Figure 1-3. TMS320C5545/35 Memory Map

A Address shown represents the first byte address in each block.
B The first 192 bytes are reserved for memory-mapped registers (MMRs).
C The USB and LCD controllers do not have access to DARAM.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

0001 0000h

64K Minus 192 BytesDARAM
(C)

0009 0000h

SARAM 192K Bytes

000C 0000h

Unmapped (if MPNMC=1)
128K Bytes ROM (if MPNMC=0)

BLOCK SIZE

DMA/USB

BYTE ADDRESS(A)

ROM
(if MPNMC=0)

Reserved
f MPNMC=1)(i

MEMORY BLOCKS

0001 00C0h

MMR (Reserved)
(B)

Reserved

050F FFFFh

000000h

010000h

CPU BYTE

ADDRESS(A)

0000C0h

040000h

FFFFFFh

F 0000hE 050E 0000h

System Memory www.ti.com

44 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

Figure 1-4. TMS320C5534 Memory Map

A Address shown represents the first byte address in each block.
B The first 192 bytes are reserved for memory-mapped registers (MMRs).
C The USB and LCD controllers do not have access to DARAM.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

0001 0000h

64K Minus 192 BytesDARAM
(C)

0009 0000h

SARAM 64K Bytes

000A 0000h

Unmapped (if MPNMC=1)
128K Bytes ROM (if MPNMC=0)

BLOCK SIZE

DMA/USB

BYTE ADDRESS(A)

ROM
(if MPNMC=0)

Reserved
f MPNMC=1)(i

MEMORY BLOCKS

0001 00C0h

MMR (Reserved)
(B)

Reserved

050F FFFFh

000000h

010000h

CPU BYTE

ADDRESS(A)

0000C0h

020000h

FFFFFFh

050E 0000hF 0000hE

www.ti.com System Memory

45SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

Figure 1-5. TMS320C5533 Memory Map

A Address shown represents the first byte address in each block.
B The first 192 bytes are reserved for memory-mapped registers (MMRs).
C The USB controller does not have access to DARAM.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

0001 0000h

64K Minus 192 BytesDARAM

0009 0000h

Unmapped (if MPNMC=1)
128K Bytes ROM (if MPNMC=0)

BLOCK SIZE

DMA

BYTE ADDRESS(A)

ROM
(if MPNMC=0)

Reserved
f MPNMC=1)(i

MEMORY BLOCKS

0001 00C0h

MMR (Reserved)
(B)

Reserved

050F FFFFh

000000h

010000h

CPU BYTE

ADDRESS(A)

0000C0h

FFFFFFh

050E 0000hF 0000hE

System Memory www.ti.com

46 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

Figure 1-6. TMS320C5532 Memory Map

A Address shown represents the first byte address in each block.
B The first 192 bytes are reserved for memory-mapped registers (MMRs).

1.2.1.1 On-Chip Dual-Access RAM (DARAM)
The DARAM is located in the CPU byte address range 00 00C0h - 00 FFFFh and is composed of eight
blocks of 4K words each (see Table 1-3). Each DARAM block can perform two accesses per cycle (two
reads, two writes, or a read and a write). DARAM can be accessed by the internal program, data, and
DMA buses.

As shown in Table 1-3, the DMA controllers access DARAM at an address offset 0001_0000h from the
CPU memory byte address space.

(1) First 192 bytes are reserved for memory-mapped registers (MMRs).

Table 1-3. DARAM Blocks

Memory Block CPU Byte Address Range DMA/USB Controller Byte Address Range
DARAM 0 (1) 00 00C0h - 00 1FFFh 0001 00C0h - 0001 1FFFh
DARAM 1 00 2000h - 00 3FFFh 0001 2000h - 0001 3FFFh
DARAM 2 00 4000h - 00 5FFFh 0001 4000h - 0001 5FFFh
DARAM 3 00 6000h - 00 7FFFh 0001 6000h - 0001 7FFFh
DARAM 4 00 8000h - 00 9FFFh 0001 8000h - 0001 9FFFh
DARAM 5 00 A000h - 00 BFFFh 0001 A000h - 0001 BFFFh
DARAM 6 00 C000h - 00 DFFFh 0001 C000h - 0001 DFFFh
DARAM 7 00 E000h - 00 FFFFh 0001 E000h - 0001 FFFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com System Memory

47SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.2.1.2 On-Chip Single-Access RAM (SARAM) (Not Available for TMS320C5532)
The SARAM is located at the following CPU byte address ranges for each device.
• TMS320C5545/35: 01 0000h–04 FFFFh (SARAM 0–31), 32 blocks of 4K words each.
• TMS320C5534: 01 0000h–03 FFFFh (SARAM 0–23), 24 blocks of 4K words each.
• TMS320C5533: 01 0000h–01 FFFFh (SARAM 0–7), 8 blocks of 4K words each.
• SARAM is not available on TMS320C5532.

The SARAM blocks are detailed in Table 1-4, SARAM Blocks.

Each SARAM block can perform one access per cycle (one read or one write). SARAM can be accessed
by the internal program, data, and DMA buses.

As shown in Table 1-4, the DMA controllers access SARAM at an address offset 0008_0000h from the
CPU memory byte address space.

Table 1-4. SARAM Blocks

Memory Block CPU Byte Address Range
DMA/USB Controller Byte Address

Range
SARAM 0 01 0000h - 01 1FFFh 0009 0000h - 0009 1FFFh
SARAM 1 01 2000h - 01 3FFFh 0009 2000h - 0009 3FFFh
SARAM 2 01 4000h - 01 5FFFh 0009 4000h - 0009 5FFFh
SARAM 3 01 6000h - 01 7FFFh 0009 6000h - 0009 7FFFh
SARAM 4 01 8000h - 01 9FFFh 0009 8000h - 0009 9FFFh
SARAM 5 01 A000h - 01 BFFFh 0009 A000h - 0009 BFFFh
SARAM 6 01 C000h - 01 DFFFh 0009 C000h - 0009 DFFFh
SARAM 7 01 E000h - 01 FFFFh 0009 E000h - 0009 FFFFh
SARAM 8 02 0000h - 02 1FFFh 000A 0000h - 000A 1FFFh
SARAM 9 02 2000h - 02 3FFFh 000A 2000h - 000A 3FFFh
SARAM 10 02 4000h - 02 5FFFh 000A 4000h - 000A 5FFFh
SARAM 11 02 6000h - 02 7FFFh 000A 6000h - 000A 7FFFh
SARAM 12 02 8000h - 02 9FFFh 000A 8000h - 000A 9FFFh
SARAM 13 02 A000h - 02 BFFFh 000A A000h - 000A BFFFh
SARAM 14 02 C000h - 02 DFFFh 000A C000h - 000A DFFFh
SARAM 15 02 E000h - 02 FFFFh 000A E000h - 000A FFFFh
SARAM 16 03 0000h - 03 1FFFh 000B 0000h - 000B 1FFFh
SARAM 17 03 2000h - 03 3FFFh 000B 2000h - 000B 3FFFh
SARAM 18 03 4000h - 03 5FFFh 000B 4000h - 000B 5FFFh
SARAM 19 03 6000h - 03 7FFFh 000B 6000h - 000B 7FFFh
SARAM 20 03 8000h - 03 9FFFh 000B 8000h - 000B 9FFFh
SARAM 21 03 A000h - 03 BFFFh 000B A000h - 000B BFFFh
SARAM 22 03 C000h - 03 DFFFh 000B C000h - 000B DFFFh
SARAM 23 03 E000h - 03 FFFFh 000B E000h - 000B FFFFh
SARAM 24 04 0000h - 04 1FFFh 000C 0000h - 000C 1FFFh
SARAM 25 04 2000h - 04 3FFFh 000C 2000h - 000C 3FFFh
SARAM 26 04 4000h - 04 5FFFh 000C 4000h - 000C 5FFFh
SARAM 27 04 6000h - 04 7FFFh 000C 6000h - 000C 7FFFh
SARAM 28 04 8000h - 04 9FFFh 000C 8000h - 000C 9FFFh
SARAM 29 04 A000h - 04 BFFFh 000C A000h - 000C BFFFh
SARAM 30 04 C000h - 04 DFFFh 000C C000h - 000C DFFFh
SARAM 31 04 E000h - 04 FFFFh 000C E000h - 000C FFFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

System Memory www.ti.com

48 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.2.1.3 On-Chip Single-Access Read-Only Memory (SAROM)
The zero-wait-state ROM is located at the CPU byte address range FE 0000h - FF FFFFh. The ROM is
composed of four 16K-word blocks, for a total of 128K-bytes of ROM. Each ROM block can perform one
access per cycle (one read or one write). ROM can be accessed by the internal program or data buses,
but not the DMA buses. The ROM address space can be mapped by software to the external memory or
to the internal ROM via the MPNMC bit in the ST3 status register.

The standard device includes a bootloader program resident in the ROM and the bootloader code is
executed immediately after hardware reset. When the MPNMC bit field of the ST3 status register is set
through software, the on-chip ROM is disabled and not present in the memory map, and byte address
range FE 0000h - FF FFFFh is unmapped. A hardware reset always clears the MPNMC bit, so it is not
possible to disable the ROM at hardware reset. However, the software reset instruction does not affect the
MPNMC bit. The ROM can be accessed by the program and data buses. Each SAROM block can perform
one word read access per cycle.

Table 1-5. SAROM Blocks

Memory Block CPU Byte Address Range CPU Word Address Range
SAROM0 FE 0000h - FE 7FFFh 7F 0000h - 7F 3FFFh
SAROM1 FE 8000h - FE FFFFh 7F 4000h - 7F 7FFFh
SAROM2 FF 0000h - FF 7FFFh 7F 8000h - 7F BFFFh
SAROM3 FF 8000h - FF FFFFh 7F C000h - 7F FFFFh

1.2.2 I/O Memory Map
The C5x DSP has a separate memory map for peripheral and system registers, called I/O space. This
space is 64K-words in length and is accessed via word read and write instructions dedicated for I/O
space.

The I/O space registers related to each peripheral are documented in subsequent chapters of this guide.
System registers, which provide system-level control and status, are described in detail in other sections
throughout this chapter.

Unused addresses in I/O space should be treated as reserved and should not be accessed. Accessing
unused I/O space addresses may stall or hang the DSP.

Each of the four DMA controllers has access to a different set of peripherals and their I/O space registers.
This is shown in Section 1.7.4.

NOTE: Writing to I/O space registers incurs in at least 2 CPU cycle latency. Thus, when configuring
peripheral devices, wait at least two cycles before accessing data from the peripheral. When
more than one peripheral register is updated in a sequence, the CPU only needs to wait
following the final register write.

The users should consult the respective peripheral chapter to determine if a peripheral
requires additional initialization time.

Before accessing any peripheral register, make sure the peripheral is not held in reset and its internal
clock is enabled. The peripheral reset control register (Section 1.7.5.2) and the peripheral clock gating
control registers (Section 1.5.3.2.1) control these functions. Accessing a peripheral whose clocks are
gated will either return the value of the last address read from the peripheral (when the clocks were last
ON) or it may possibly hang the DSP -- depending on the peripheral.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Device Clocking

49SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.3 Device Clocking

1.3.1 Overview
The DSP requires two primary reference clocks: a system reference clock and a USB reference clock. The
system clock, which is used by the CPU and most of the DSP peripherals, is controlled by the system
clock generator. The system clock generator features a software-programmable PLL multiplier and several
dividers. The system clock generator accepts an input reference clock from the CLKIN pin or the output
clock of the 32.768-KHz real-time clock (RTC) oscillator. The selection of the input reference clock is
based on the state of the CLK_SEL pin. The CLK_SEL pin is required to be statically tied high or low and
cannot change dynamically after reset. The system clock generator can be used to modify the system
reference clock signal according to software-programmable multiplier and dividers.

The resulting clock output, the DSP system clock, is passed to the CPU, peripherals, and other modules
inside the DSP. Alternatively, the system clock generator can be fully bypassed and the input reference
clock can be passed directly to the DSP system clock. The USB reference clock is generated using a
dedicated on-chip oscillator with a 12 MHz external crystal connected to the USB_MXI and USB_MXO
pins. This crystal is not required if the USB peripheral is not being used. The USB oscillator cannot be
used to provide the system reference clock.

The RTC oscillator generates a clock when a 32.768-KHz crystal is connected to the RTC_XI and
RTC_XO pins. The RTC core (CVDDRTC) must always be externally powered but the 32.768-KHz crystal
can be disabled if CLKIN is used as the clock source for the DSP. However, when the RTC oscillator is
disabled, the RTC peripheral will not operate and the RTC registers (I/O address range 1900h - 197Fh)
will not be accessible. This includes the RTC power management register (RTCPMGT) which controls the
RTCLKOUT and WAKEUP pins. To disable the RTC oscillator, connect the RTC_XI pin to CVDDRTC and
the RTC_XO pin to ground.

The USB oscillator is powered down at hardware reset. The USB oscillator must be enabled using the
USBSCR register and must settle for an amount of time specified by USB Oscillator Startup Time
parameter in the device-specific data manual before using the USB peripheral.

Figure 1-7 shows the overall DSP clock structure. For detailed specifications on clock frequency, voltage
requirements, and oscillator/crystal requirements, see the device-specific data manual.
• TMS320C5535, 'C5534, 'C5533, 'C5532 Fixed-Point Digital Signal Processors

(literature number SPRS737).
• TMS320C5545A Fixed-Point Digital Signal Processor (literature number SPRS856)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H
http://www.ti.com/lit/pdf/SPRS737

CLKSEL

1

0

CLKIN

PCGCR1
[SYSCLKDIS]

LS 1

0

LS

CCR2
[SYSCLKSEL]

SYSCLK
System Clock

Generator

ST3_55[CLKOFF]

CLKOUT

ICR[HWAI]

FFT Hardware

ICR[MPORTI]

MPORT Clock

ICR[XPORTI]

XPORT Clock

PCGCR2[DMA1CG]

DMA0

PCGCR2[DMA2CG]

DMA1

PCGCR2[DMA3CG]

DMA2

DMA3

ICR[IPORTI]

IPORT Clock

ICR[DPORTI]

DPORT Clock

ICR[CPUI]

CPU Clock

PCGCR2[USBCG]
USB_MXI

UDB_MXO

12 MHz

PCGCR1[DMA0CG]

PCGCR1[SPICG]

SPI

PCGCR1[UARTCG]

I2C

PCGCR1[TMR2CG]

UART

PCGCR1[TMR1CG]

Timer2

Timer1

PCGCR1[I2CCG]

PCGCR1[TMR0CG]

Timer0

PCGCR1[I2S0CG]

I2S0

PCGCR1[I2S1CG]

I2S1

PCGCR1[I2S2CG]

I2S2

PCGCR1[I2S3CG]

I2S3

PCGCR1[MMCSD0CG]

MMC/SD0

PCGCR1[MMCSD1CG]

MMC/SD1

RTC Clock
LS

RTC
OSC

RTC_XI

RTC_XO

32.768
KHz

RTC_CLKOUT

RTC

CLKREF

(1)

(1) (1) (2)

Accelerator

PCGCR2[ANAREGCG]

Analog
Registers

LSUSB
Digital

USB
OSC

USBSCR
[USBOSCDIS]

U
S

B
P

H
Y

C
L

K

LS

(1)

USB
PHY

60 MHz

USB
PLL

OFF

12 MHz

(1)

Device Clocking www.ti.com

50 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

Figure 1-7. DSP Clocking Diagram (1) (2)

(1) LS = Level Shifter
(2) The CLKOUT pin's output driver is enabled/disabled through the CLKOFF bit of the CPU ST3_55 register. At

the beginning of the boot sequence, the on-chip Bootloader sets CLKOFF = 1 and CLKOUT pin is disabled
(high-impedance). For more information on the ST3_55 register, see the TMS320C55x 3.0 CPU (SWPU073),
Algebraic Instruction Set (SWPU068E), and Mnemonic Instruction Set (SWPU067E) reference guides.

1.3.2 Clock Domains
The device has many clock domains defined by individually disabled portions of the clock tree structure.
Understanding the clock domains and their clock enable/disable control registers is very important for
managing power and for ensuring clocks are enabled for domains that are needed. By disabling the clocks
and thus the switching current in portions of the chip that are not used, lower dynamic power consumption
can be achieved and prolonging battery life.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H
http://www.ti.com/lit/pdf/SWPU073
http://www.ti.com/lit/pdf/SWPU068E
http://www.ti.com/lit/pdf/SWPU067E

www.ti.com System Clock Generator

51SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

Figure 1-7 shows the clock tree structure with the clock gating represented by the AND gates. Each AND
gate shows the controlling register that allows the downstream clock signal to be enabled/disabled. Once
disabled most clock domains can be re-enabled, when the associated clock domain logic is needed, via
software running on the CPU. But some domains actually stop the clocks to the CPU and therefore
software running on the CPU cannot be responsible for re-enabling those clock domains. Other
mechanism must exist for restarting those clocks, and the specific cases are listed below:
• The System Clock Generator (PLL) can be powered-down by writing a 1 to PLL_PWRDN bit in the

clock generator control register CGCR1. This stops the PLL from oscillating and shuts down its analog
circuits. It is important to bypass the System Clock Generator by writing 0 to SYSCLKSEL bit in CCR2
(clock confguration register 2) prior to powering it down, else the CPU will loose its clock and not be
able to recover without hardware reset.

NOTE: Failsafe logic exists to prevent selecting the PLL clock if it has been powered down but this
logic does not protect against powering down the PLL while it is selected as the system clock
source. Therefore, software should always maintain responsibility for bypassing the PLL prior
to and whenever it is powered down.

• The SYSCLKDIS bit in PCGCR1 (clock gating control register 1) is the master clock gater. Asserting
this bit causes the main system clock, SYSCLK, to stop and, therefore, the CPU and all peripherals no
longer receive clocks. The WAKEUP pin, INT0 & INT1 pin, or RTC interrupt can be used to re-enable
the clock from this condition.

• The ICR bit in CPUI (clock gating control register) gates clocks to the CPU and uses the CPU’s idle
instruction to initiate the clock off mode. Any non-masked interrupt can be used to re-enable the CPU
clocks.

1.4 System Clock Generator

1.4.1 Overview
The system clock generator (Figure 1-8) features a software-programmable PLL multiplier and several
dividers. The clock generator accepts an input clock from the CLKIN pin or the output clock of the real-
time clock (RTC) oscillator. The clock generator offers flexibility and convenience by way of software-
configurable multiplier and divider to modify the clock rate internally. The resulting clock output, SYSCLK,
is passed to the CPU, peripherals, and other modules inside the DSP.

A set of registers are provided for controlling and monitoring the activity of the clock generator. You can
write to the SYSCLKSEL bit in CCR2 register to toggle between the two main modes of operation:
• In the BYPASS MODE (see Section 1.4.3.1), the entire clock generator is bypassed, and the frequency

of SYSCLK is determined by CLKIN or the RTC oscillator output. Once the PLL is bypassed, the PLL
can be powered down to save power.

• In the PLL MODE (see Section 1.4.3.2), the input frequency can be both multiplied and divided to
produce the desired SYSCLK frequency, and the SYSCLK signal is phase-locked to the input clock
signal (CLKREF).

The clock generator bypass mux (controlled by SYSCLKSEL bit in CCR2 register) is a glitchfree mux,
which means that clocks will be switched cleanly and not short cycle pulses when switching among the
BYPASS MODE and PLL MODE.

For debug purposes, the CLKOUT pin can be used to see different clocks within the clock generator. For
details, see Section 1.4.2.3.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

1
CLKREF M + 4

ODRATIO + 1
´ ´é ùë û

CLKREF M + 4´ é ùë û

()M + 4 1
CLKREF

RDRATIO + 4 ODRATIO + 1
´ ´

()M + 4
CLKREF

RDRATIO + 4
´

CLKREF

Reference
Divider

1

0

CGCR2[RDBYPASS]

PLL

LS
PLLIN PLLOUT

Output
Divider

0

CGCR4.
[OUTDIVEN]

1

0

CCR2.
[SYSCLKSEL]

LS
SYSCLK

CLKSEL

1

0

CLKIN

RTC Clock

LS

RTC
OSC

RTC_XI

RTC_XO

32.768
KHz

RTC_CLKOUT

RTC

1

CLKGENOUT

System Clock Generator www.ti.com

52 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

Figure 1-8. Clock Generator

1.4.2 Functional Description
The following sections describe the multiplier and dividers of the clock generator.

1.4.2.1 Multiplier and Dividers
The clock generator has a one multiplier and a two programmable dividers: one before the PLL input and
one on the PLL output. The PLL can be programmed to multiply the PLL input clock, PLLIN, using a x4 to
x4099 multiplier value. The reference clock divider can be programmed to divide the clock generator input
clock from a /4 to /4099 divider ratio and may be bypassed. The Reference Divider and RDBYPASS mux
must be programmed such that the PLLIN frequency range is 32.786 KHz to 170 KHz. At the output of the
PLL, the output divider can be used to divide the PLL output clock, PLLOUT, from a /1 to a /128 divider
ratio and may also be bypassed.

The PLL output, PLLOUT, frequency must be programmed within the range defined by the datasheet. See
the device-specific data manual for allowed values of PLLIN, PLLOUT, and SYSCLK. Keep in mind that
programming the output divider with an odd divisor value other than 1 will result in a non-50% duty cycle
SYSCLK. This is not a problem for any of the on-chip logic, but the non-50% duty cycle will be visible on
chip pins such as CLKOUT. See the device-specific data manual for allowed values of PLLIN, PLLOUT,
and SYSCLK.

The multiplier and divider ratios are controlled through the PLL control registers. The M bits define the
multiplier rate. The RDRATIO and ODRATIO bits define the divide ratio of the reference divider and
programmable output divider, respectively. The RDBYPASS and OUTDIVEN bits are used to enable or
bypass the dividers. Table 1-6 lists the formulas for the output frequency based on the setting of these
bits.

The clock generator must be placed in BYPASS MODE when any PLL dividers or multipliers are changed.
Then, it must remain in BYPASS MODE for at least 4 mS before switching to PLL MODE.

Table 1-6. PLL Output Frequency Configuration

RDBYPASS OUTDIVEN SYSCLK Frequency
0 0

0 1

1 0

1 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com System Clock Generator

53SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.4.2.2 Powering Down and Powering Up the System PLL
To save power, you can put the PLL in its power down mode. You can power down the PLL by setting the
PLL_PWRDN = 1 in the clock generator control register CGCR1. However, before powering down the
PLL, you must first place the clock generator in bypass mode.

When the PLL is powered up (PLL_PWRDN = 0), the PLL will start its phase-locking sequence. You must
keep the clock generator in BYPASS MODE for at least 4 mS while the phase-locking sequence is
ongoing. See Section 1.4.3.2 for more details on the PLL_MODE of the clock generator.

1.4.2.3 CLKOUT Pin
For debug purposes, the DSP includes a CLKOUT pin which can be used to tap different clocks within the
clock generator. The SRC bits of the CLKOUT control source register (CCSSR) can be used to specify the
source for the CLKOUT pin (see Figure 1-9 and Table 1-7).

NOTE: There is no internal logic to prevent glitches while changing the CLKOUT source. Also there
is no provision for internally dividing down the CLKOUT frequency other than the options
inherently available for selecting the CLKOUT source.

The CLKOUT pin's output driver is enabled/disabled through the CLKOFF bit of the CPU ST3_55 register.
At hardware reset, CLKOFF is cleared to 0 so that the clock is visible for debug purposes. But within the
bootloader romcode, CLKOFF is set to 1 to conserve power. After the bootloader finishes, the customer
application code is free to re-enable CLKOUT. For more information on the ST3_55 register, see the
following reference guides:
• TMS320C55x 3.0 CPU Reference Guide (SWPU073)
• TMS320C55x v3.x CPU Algebraic Instruction Set Reference Guide (SWPU068E)
• TMS320C55x v3.x CPU Mnemonic Instruction Set Reference Guide (SWPU067E)

The slew rate (dV/dt) of the CLKOUT pin can be controlled by the CLKOUTSR bits in the output slew rate
control register (OSRCR). This feature allows for additional power savings when the CLKOUT pin does
not need to drive large loads.

Figure 1-9. CLKOUT Control Source Select Register (CCSSR) [1C24h]
15 4 3 0

Reserved SRC
R-0 R/W-Bh

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

(1) SAR available on only TMS320C5545/35.

Table 1-7. CLKOUT Control Source Select Register (CCSSR) Field Descriptions

Bit Field Value Description
15-4 Reserved 0 Reserved.
3-0 SRC CLKOUT source bits. These bits specify the source clock for the CLKOUT pin.

0 CLKOUT pin outputs System Clock Generator output clock, CLKGENOUT.
1h CLKOUT pin is set high.
2h CLKOUT pin outputs System Clock Generator output clock, CLKGENOUT.
3h CLKOUT pin is set low.
4h CLKOUT pin outputs System Clock Generator output clock, CLKGENOUT.
5h CLKOUT pin is set low.
6h CLKOUT pin outputs System Clock Generator output clock, CLKGENOUT.
7h CLKOUT pin outputs USB PLL output clock.
8h CLKOUT pin outputs System Clock Generator output clock, CLKGENOUT.
9h CLKOUT pin outputs SAR clock. (1)

Ah CLKOUT pin outputs System Clock Generator output clock, CLKGENOUT.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H
http://www.ti.com/lit/pdf/SWPU073
http://www.ti.com/lit/pdf/SWPU068E
http://www.ti.com/lit/pdf/SWPU067E

System Clock Generator www.ti.com

54 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

Table 1-7. CLKOUT Control Source Select Register (CCSSR) Field Descriptions (continued)
Bit Field Value Description

Bh CLKOUT pin outputs system clock, SYSCLK (default mode).
Ch CLKOUT pin outputs System Clock Generator output clock, CLKGENOUT.
Dh Reserved, do not use.
Eh CLKOUT pin outputs System Clock Generator output clock, CLKGENOUT.
Fh CLKOUT pin outputs USB PLL output clock.

1.4.2.4 DSP Reset Conditions of the System Clock Generator
The following sections describe the operation of the system clock generator when the DSP is held in reset
state and the DSP is removed from its reset state.

1.4.2.4.1 Clock Generator During Reset
During reset, the PLL_PWRDN bit of the clock generator control register 1 (CGCR1) is set to 1, and the
PLL does not generate an output clock. Furthermore, the SYSCLKSEL bit of the clock configuration
register 2 (CCR2) defaults to 0 (BYPASS MODE), and the system clock (SYSCLK) is driven by either the
CLKIN pin or the real-time clock (RTC). See Section 1.4.3.1 for more information on the bypass mode of
the clock generator.

1.4.2.4.2 Clock Generator After Reset
After reset, the on-chip bootloader programs the system clock generator based on the input clock selected
via the CLK_SEL pin. If CLK_SEL = 0, the bootloader programs the system clock generator and sets the
system clock to 12.288 MHz. If CLK_SEL = 1, the bootloader bypasses the system clock generator
altogether and the system clock is driven by the CLKIN pin. In this case, the CLKIN frequency is expected
to be 11.2896 MHz, 12.0 MHz, or 12.288 MHz. While the bootloader tries to boot from the USB, the clock
generator is programmed to output approximately 36 MHz.

1.4.3 Configuration

1.4.3.1 BYPASS MODE
When the system clock generator is in the BYPASS MODE, the clock generator is not used and the
system clock (SYSCLK) is driven by either the CLKIN pin or the real-time clock (RTC).

NOTE: In bypass mode, the PLL is not automatically powered down and will still consume power.
For maximum power savings, the PLL should be placed in its power-down mode. See
Section 1.4.2.2 for more details.

1.4.3.1.1 Entering and Exiting the BYPASS MODE
To enter the bypass mode, write a 0 to the SYSCLKSEL bit in the clock configuration register 2 (CCR2). In
bypass mode, the frequency of the system clock (SYSCLK) is determined by the CLK_SEL pin. If
CLK_SEL = 0, SYSCLK is driven by the output of the RTC. Otherwise, SYSCLK will be driven by the
CLKIN pin.

To exit the BYPASS MODE, ensure the PLL has completed its phase-locking sequence by waiting at least
4 ms and then write a 1 to the SYSCLKSEL bit. The frequency of SYSCLK will then be determined by the
multiplier and divider ratios of the PLL System Clock Generator.

If the clock generator is in the PLL MODE and you want to reprogram the PLL or any of the dividers, you
must set the clock generator to BYPASS MODE before changing the PLL and divider settings.

Logic within the clock generator ensures that there are no clock glitches during the transition from PLL
MODE to BYPASS MODE and vice versa.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com System Clock Generator

55SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.4.3.1.2 Register Bits Used in the BYPASS MODE
Table 1-8 describes the bits of the clock generator control registers that are used in the BYPASS MODE.
For detailed descriptions of these bits, see Section 1.4.4.

Table 1-8. Clock Generator Control Register Bits Used In BYPASS MODE

Register Bit Role in BYPASS MODE
SYSCLKSEL Allows you to switch to the PLL or BYPASS MODES.
PLL_PWRDN Allows you to power down the PLL.

1.4.3.1.3 Setting the System Clock Frequency In the BYPASS MODE
In the BYPASS MODE, the frequency of SYSCLK is determined by the CLK_SEL pin. If CLK_SEL = 0,
SYSCLK is driven by the output of the RTC. Otherwise, SYSCLK will be driven by the CLKIN pin.

NOTE: The CLK_SEL pin must be statically tied high or low; it cannot be changed after the device
has been powered up.

Table 1-9. Output Frequency in Bypass Mode

CLK_SEL SYSCLK Source / Frequency
1 CLKIN, expected to be one of the following values by the bootloader: 11.2896

MHz, 12.0MHz, or 12.288 MHz
0 RTC clock = 32.768 kHz

The state of the CLK_SEL pin is read via the CLKSELSTAT bit in the CCR2 register.

1.4.3.2 PLL MODE
In PLL MODE, the frequency of the input clock signal (CLKREF) can be both multiplied and divided to
produce the desired output frequency, and the output clock signal is phase-locked to the input clock
signal.

1.4.3.2.1 Entering and Exiting the PLL MODE
To enter the PLL_MODE from BYPASS_MODE, first program the PLL to the desired frequency. You must
always ensure the PLL has completed its phase-locking sequence before switching to PLL MODE. This
PLL has no lock indicator as such indicators are notoriously unreliable. Instead, a fixed amount of time
must be allowed to expire while in BYPASS_MODE to allow the PLL to lock. After 4 msec, write a 1 to the
SYSCLKSEL bit in the clock configuration register 2 (CCR2) to set the system clock to the output of the
PLL.

Whenever PLL needs to be reprogrammed, first the clock generator must be in bypass mode, and then
changed to PLL configuration. After waiting 4 msec, write a 1 to the SYSCLKSEL bit to get into the PLL
MODE.

Logic within the clock generator ensures that there are no clock glitches during the transition from
BYPASS MODE to PLL MODE and vice versa.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

System Clock Generator www.ti.com

56 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.4.3.2.2 Register Bits Used in the PLL Mode
Table 1-10 describes the bits of the clock generator control registers that are used in the PLL MODE. For
detailed descriptions of these bits, see Section 1.4.4.

Table 1-10. Clock Generator Control Register Bits Used In PLL Mode

Register Bit Role in Bypass Mode
SYSCLKSEL Allows you to switch to the PLL or bypass modes.
RDBYPASS Determines whether reference divider should be bypassed or used.
RDRATIO Specifies the divider ratio of the reference divider.
M Specify the multiplier value for the PLL.
OUTDIVEN Determines whether the output divider is bypassed.
ODRATIO Specifies the divider ratio of the output divider.

1.4.3.2.3 Frequency Ranges for Internal Clocks
All internal clocks include specific minimum and maximum frequencies.

For the specific frequencies, see the PLL Clock Frequency Ranges table in the device-specific datasheet.
• TMS320C5535, 'C5534, 'C5533, 'C5532 Fixed-Point Digital Signal Processors

(literature number SPRS737).
• TMS320C5545A Fixed-Point Digital Signal Processor (literature number SPRS856)

1.4.3.2.4 Setting the Output Frequency for the PLL MODE
The clock generator output frequency configured based on the settings programmed in the clock generator
control registers. The output frequency depends primarily on three factors: the reference divider value, the
PLL multiplier value, and the output divider value (see Figure 1-8). Based on the register settings
controlling these divider and multiplier values, you can calculate the frequency of the output clock using
the formulas listed in Table 1-6.

Follow these steps to determine the values for the different dividers and multipliers of the system clock
generator:
1. With the desired clock frequency in mind, choose a PLLOUT frequency that falls within the range listed

in the datasheet. Keep in mind that you can use the programmable output divider to divide the output
frequency of the PLL.

2. Determine the divider ratio for the reference divider that will generate the PLLIN frequency that meets
the requirements listed in the datasheet. When possible, choose a high value for PLLIN to optimize
PLL performance. If the DSP is being clocked by the RTC oscillator output, the reference divider must
bypassed (set RDBYPASS = 1); PLLIN will be 32.768 kHz.

3. Determine a multiplier value that generates the desired PLLOUT frequency given the equation:
multiplier = round(PLLOUT/PLLIN).

4. Using the multiplier, figure out the values for M (PLL multiplier = M + 4).

Table 1-11 shows programming examples for different PLL MODE frequencies.

Table 1-11. Examples of Selecting a PLL MODE Frequency, When CLK_SEL=L

RDBYPASS OUTDIVEN M RDRATIO ODRATIO PLL Output Frequency
1 1 BE8h X 1 32.768KHz x (BE8h + 4)/2 = 50.00 MHz
1 0 BE8h X X 32.768KHz x (BE8h + 4) = 100.01 MHz

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H
http://www.ti.com/lit/pdf/SPRS737

www.ti.com System Clock Generator

57SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.4.3.2.5 Lock Time
As previously discussed, you must place the clock generator in bypass mode before changing the PLL
settings. The time it takes the PLL to complete its phase-locking sequence is referred to as the lock time.
The PLL has a lock time of 4 ms. Software is responsible for ensuring the PLL remains in
BYPASS_MODE for at least 4 ms before switching to PLL_MODE.

1.4.3.2.6 Software Steps To Modify Multiplier and Divider Ratios
You can follow the steps below to program the PLL of the DSP clock generator. The recommendation is to
stop all peripheral operation before changing the PLL frequency, with the exception of the device CPU and
USB. The device CPU must be operational to program the PLL controller. Software is responsible for
ensuring the PLL remains in BYPASS_MODE for at least 4 ms before switching to PLL_MODE.
1. Ensure the clock generator is in BYPASS MODE by setting SYSCLKSEL = 0.
2. Set CLR_CNTL = 0 (bit 15) in the CGCR1 register.
3. Program RDRATIO, M, and RDBYPASS in CGCR1 and CGCR2 according to your required settings.
4. Program ODRATIO and OUTDIVEN in CGCR4 according to your required settings.
5. Write 0806h to the INIT field of CGCR3.
6. Set PLL_PWRDN = 0.
7. Set CLR_CNTL = 1 (bit 15) in the CGCR1 register.
8. Wait 4 ms for the PLL to complete its phase-locking sequence.
9. Place the clock generator in its PLL MODE by setting SYSCLKSEL = 1.

Note: This is a suggested sequence. It is most important to have all programming done before the last
step to place the clock generator in PLL MODE.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

System Clock Generator www.ti.com

58 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.4.4 Clock Generator Registers
Table 1-12 lists the registers associated with the clock generator of the DSP. The clock generator
registers can be accessed by the CPU at the 16-bit addresses specified in Table 1-12. Note that the CPU
accesses all peripheral registers through its I/O space. All other register addresses not listed in Table 1-12
should be considered as reserved locations and the register contents should not be modified.

Table 1-12. Clock Generator Registers

CPU Word
Address

Acronym Register Description Section

1C20h CGCR1 Clock Generator Control Register 1 Section 1.4.4.1
1C21h CGCR2 Clock Generator Control Register 2 Section 1.4.4.2
1C22h CGCR3 Clock Generator Control Register 3 Section 1.4.4.3
1C23h CGCR4 Clock Generator Control Register 4 Section 1.4.4.4
1C1Fh CCR2 Clock Configuration Register 2 Section 1.4.4.5

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com System Clock Generator

59SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.4.4.1 Clock Generator Control Register 1 (CGCR1) [1C20h]
The clock generator control register 1 (CGCR1) is shown in Figure 1-10 and described in Table 1-13.

Figure 1-10. Clock Generator Control Register 1 (CGCR1) [1C20h]
15 14 13 12 11 8

CLR_CNTL Reserved PLL_PWRDN M
R/W-0 R/W-0 R/W-1 R/W-0

7 6 5 4 3 2 1 0
M

R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-13. Clock Generator Control Register 1 (CGCR1) Field Descriptions

Bit Field Value Description
15 CLR_CNTL Clear control bit. This bit is used to clear digital flip-flops within the clock generator. This bit must be

cleared to 0 while changing the PLL settings.
0 Digital flip-flops are cleared.
1 Digital flip-flops are not cleared (normal operation).

14-13 Reserved 0 Reserved. This bit must be always written to be zero.
12 PLL_PWRDN PLL power down bit. This bit is used to power down the PLL when it is not being used.

0 PLL is powered up.
1 PLL is powered down.

11-0 M 0-FFFh PLL multiplier value bits. These bits define the PLL multiplier value. Multiplier value = M + 4.

1.4.4.2 Clock Generator Control Register 2 (CGCR2) [1C21h]
The clock generator control register 2 (CGCR2) is shown in Figure 1-11 and described in Table 1-14.

Figure 1-11. Clock Generator Control Register 2 (CGCR2) [1C21h]
15 14 12 11 0

RDBYPASS Reserved RDRATIO
R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-14. Clock Generator Control Register 2 (CGCR2) Field Descriptions

Bit Field Value Description
15 RDBYPASS Reference divider bypass control. When this bit is set to 1 the PLL reference divider is bypassed

(FPLLIN = FCLKREF). When this bit is set to 0, the reference clock to the PLL is divided by the reference
divider (FPLLIN = FCLKIN / (RDRATIO+4)). The RDRATIO bits specify the divider value.

0 Use the reference divider.
1 Bypass the reference divider.

14-12 Reserved 0 Reserved.
11-0 RDRATIO 0-FFFh Divider ratio bits for the reference divider. Divider value = RDRATIO + 4. For example, setting

RDRATIO = 0 means divide the input clock rate by 4.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

System Clock Generator www.ti.com

60 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.4.4.3 Clock Generator Control Register 3 (CGCR3) [1C22h]
The clock generator control register 3 (CGCR3) is shown in Figure 1-12 and described in Table 1-15.

Figure 1-12. Clock Generator Control Register 3 (CGCR3) [1C22h]
15 0

INIT
R/W-0806h

LEGEND: R/W = Read/Write; -n = value after reset

Table 1-15. Clock Generator Control Register 3 (CGCR3) Field Descriptions

Bit Field Value Description
15-0 INIT 0806h Initialization bits for the DSP clock generator. These bits are used for testing purposes and

must be initialized with 806h during PLL configuration for proper operation of the PLL.

1.4.4.4 Clock Generator Control Register 4 (CGCR4) [1C23h]
The clock generator control register 4 (CGCR4) is shown in Figure 1-13 and described in Table 1-16.

Figure 1-13. Clock Generator Control Register 4 (CGCR4) [1C23h]
15 10 9 8 7 0

Reserved OUTDIVEN Reserved ODRATIO
R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-16. Clock Generator Control Register 4 (CGCR4) Field Descriptions

Bit Field Value Description
15-10 Reserved 0 Reserved.

9 OUTDIVEN Output divider enable bit. This bit determines whether the output divider of the PLL is are
enabled or bypassed.

0 The output divider is bypassed.
1 The output divider is enabled.

8 Reserved 0 Reserved.
7-0 ODRATIO 0-FFh Divider ratio bits for the output divider of the PLL.

Divider value = ODRATIO + 1.

1.4.4.5 Clock Configuration Register 2 (CCR2) [1C1Fh]
The clock configuration register 2 (CCR2) is shown in Figure 1-14 and described in Table 1-17.

Figure 1-14. Clock Configuration Register 2 (CCR2) [1C1Fh]
15 6 5 4 3 2 1 0

Reserved SYSCLKSRC Reserved CLKSELSTAT Reserved SYSCLKSEL
R-0 R-0 R/W-0 R-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com System Clock Generator

61SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

Table 1-17. Clock Configuration Register 2 (CCR2) Field Descriptions

Bit Field Value Description
15-6 Reserved 0 Reserved.
5-4 SYSCLKSRC System clock source status bits. These read-only bits reflect the source for the system clock. This

status register exists to indicate that switching from the PLL BYPASS_MODE to the PLL_MODE
was successful or not. Logic exists on the chip to prevent switching to PLL_MODE if the PLL has its
PWRDN bit already asserted. However, this circuit does not protect against asserting the PWRDN
bit after already in PLL_MODE. Therefore, software must ultimately make sure not to do something
that would cause the system clock to be lost.

0 The system clock generator is in bypass mode; SYSCLK is driven by the RTC oscillator output.
1h The system clock generator is in PLL mode; the RTC oscillator output provides the input clock.
2h The system clock generator is in bypass mode; SYSCLK is driven by CLKIN.
3h The system clock generator is in PLL mode; the CLKIN pin provides the input clock.

3 Reserved 0 Reserved. This bit must be written to be 0.
2 CLKSELSTAT CLK_SEL pin status bit. This reflects the state of the CLK_SEL pin.

0 CLK_SEL pin is low (RTC input clock selected).
1 CLK_SEL pin is high (CLKIN input clock selected).

1 Reserved 0 Reserved. This bit must be written to be 0.
0 SYSCLKSEL System clock source select bit. This bit is used to select between the two main clocking modes for

the DSP: bypass and PLL mode. In bypass mode, the DSP clock generator is bypassed and the
system clock is set to either CLKIN or the RTC output (as determined by the CLKSEL pin). In PLL
mode, the system clock is set to the output of the DSP clock generator. Logic in the system clock
generator prevents switching from bypass mode to PLL mode if the PLL is powered down.

0 Bypass mode is selected.
1 PLL mode is selected.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Power Management www.ti.com

62 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.5 Power Management

1.5.1 Overview
In many applications there may be specific requirements to minimize power consumption for both power
supply (and battery) and thermal considerations. There are two components to power consumption: active
power and leakage power. Active power is the power consumed to perform work and, for digital CMOS
circuits, scales roughly with clock frequency and the amount of computations being performed. Active
power can be reduced by controlling the clocks in such a way as to either operate at a clock frequency
just high enough to complete the required operation in the required time-line or to run at a high enough
clock frequency until the work is complete and then drastically cut the clocks (that is, to bypass mode or
clock gate) until additional work must be performed.

Leakage power is due to static current leakage and occurs regardless of the clock rate. Leakage, or
standby power, is unavoidable while power is applied and scales roughly with the operating junction
temperatures. Leakage power can only be avoided by removing power completely.

The DSP has several means of managing the power consumption, as detailed in the following sections.
There is extensive use of automatic clock gating in the design as well as software-controlled module clock
gating to not only reduce the clock tree power, but to also reduce module power by freezing its state while
not operating. Clock management enables you to slow the clocks down on the chip in order to reduce
switching power. Independent power domains allow you to shut down parts of the DSP to reduce static
power consumption. When not being used, the internal memory of the DSP can also be placed in a low
leakage power mode while preserving the memory contents. The operating voltage and drive strength of
the I/O pins can also be reduced to decrease I/O power consumption.

Table 1-18 summarizes all of the power management features included in the DSP.

Table 1-18. Power Management Features

Power Management Features Description
Clock Management

PLL power-down The system PLL can be powered-down when not in use to
reduce switching and bias power.

Peripheral clock idle Peripheral clocks can be idled to reduce switching power.
Dynamic Power Management

Core Voltage Scaling The DSP logic support two voltage ranges to allow voltage
adjustments on-the-fly, increasing voltage during peak
processing power demand and decreasing during low demand.

Static Power Management
DARAM/SARAM low power modes The internal memory of the DSP can be placed in a low leakage

power mode while preserving memory contents.
Independent power domains DSP Core (CVDD) and USB Core (USB_VDD1P3, USB_VDDA1P3)

can be shut off while other supplies remain powered.
I/O Management

I/O voltage selection The operating voltage and/or slew rate of the I/O pins can be
reduced (at the expense of performance) to decrease I/O power
consumption.

USB power-down The USB peripheral can be powered-down when not being
used.

1.5.2 Power Domains
The DSP has separate power domains which provide power to different portions of the device. The
separate power domains allow the user to select the optimal voltage to achieve the lowest power
consumption at the best possible performance. Note that several power domains have similar voltage
requirements and, therefore, could be grouped under a single voltage domain.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Power Management

63SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

(1) Not applicable to TMS320C5532.
(2) Not applicable to TMS320C5532.

Table 1-19. DSP Power Domains

Power Domains Description
Real-Time Clock Power Domain
(CVDDRTC)

This domain powers the real-time clock digital circuits and oscillator pins (RTC_XI,
RTC_XO).
Nominal supply voltage can be 1.05 V through 1.3 V. Note: CV DDRTC must always be
powered by an external power source. None of the on-chip LDOs can power CVDDRTC.

Core Power Domain
(CVDD)

This domain powers the digital circuits that include the C55x CPU, on-chip memory, and
peripherals.
Nominal supply voltage is either 1.05 V or 1.3 V.

Digital I/O Power Domain 2
(DVDDIO)

This domain powers all I/Os, except the EMIF I/O, USB I/O, USB oscillator I/O, some of
the analog related digital pins, and the real-time clock power domain I/O.
Nominal supply voltage can be 1.8, 2.5, 2.75, or 3.3 V.

RTC I/O Power Domain
(DVDDRTC)

This domain powers the WAKEUP and RTC_CLKOUT pins.
Nominal supply voltage can be 1.8, 2.5, 2.75, or 3.3 V.

PLL Power Domain
(VDDA_PLL)

This domain powers the system clock generator PLL.
Nominal supply voltage is 1.3 V.
This domain can be powered from the on-chip analog LDO output pin (ANA_LDOO).

Analog Power Domain
(VDDA_ANA)

This domain powers the power management analog circuits and the 10-bit SAR.
Nominal supply voltage is 1.3 V.
This domain can be powered from the on-chip analog LDO output pin (ANA_LDOO).
Note: When externally powered, this domain must be always powered for proper
operation.

USB Analog Power Domain
(USB_VDDA1P3) (1)

This domain powers the USB analog PHY.
Nominal supply voltage is 1.3 V.

USB Digital Power Domain
(USB_VDD1P3) (1)

This domain powers the USB digital module.
Nominal supply voltage is 1.3 V.

USB Oscillator Power Domain
(USB_VDDOSC) (2)

This domain powers the USB oscillator.
Nominal supply voltage is 3.3 V.

USB Transceiver & Analog Power
Domain
(USB_VDDA3P3) (2)

This domain powers the USB transceiver.
Nominal supply voltage is 3.3 V.

USB PLL Power Domain
(USB_VDDPLL) (2)

This domain powers the USB PLL.
Nominal supply voltage is 3.3 V.

LDOI Power Domain (LDOI) This domain powers LDO, POR comparator, and I/O supply for some pins.
Nominal supply voltage is 1.8 V through 3.6 V. Note: This domain must be always
powered for proper operation.

1.5.3 Clock Management
As mentioned in Section 1.3.2, there are several clock domains within the DSP. The device supports clock
gating features that allows software to disable clocks to entire clock domains or modules within a domain
in order to reduce the domain's active power consumption to very-near zero (a very small amount of logic
will still see a clock).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Power Management www.ti.com

64 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

There are two distinct methods of clock gating. The first uses the ICR CPU register and the CPU's IDLE
instruction. This method is used for the following domains: CPU, IPORT, DPORT, MPORT, XPORT and
HWA. See Figure 1-7 for a diagram of these domains. In this method, the ICR is written with a value
indicating the desired clock gating configuration and then (possibly much later) the IDLE instruction is
executed. The contents of the ICR do not become effective until the IDLE instruction is executed. The
second method uses system registers, PCGCR1 and PCGCR2. These registers control most of the
peripheral clock domains and writes to this register take effect immediately.

The SYSCLKDIS bit in PCGCR register has global effect and, therefore, is a superset of the two methods.
When this bit as asserted the whole device is clock gated with the exceptions of the PLL, the USB PLL,
the RTC, and the oscillators.

NOTE: Stopping clocks to a domain or a module within that domain only affects active power
consumption; it does not affect leakage power consumption.

NOTE: The on-chip Bootloader idles all peripherals and CPU ports at startup, but it enables some
peripherals as it uses them. Application code should not assume all peripherals and CPU
ports are disabled. To get the minimum power consumption, make sure to disable all
peripherals and CPU ports first and then enable only necessary peripherals and CPU ports
before using them.

1.5.3.1 CPU Domain Clock Gating
Two registers are provided to individually configure and monitor the clock gating modes of the CPU
domain: the idle configuration register (ICR) and the idle status register (ISTR).

ICR lets you configure how the CPU domain will respond the next time the idle instruction is executed.
When you execute the idle instruction, the content of ICR is copied to ISTR. Then the ISTR values are
propagated to the different portions of the CPU domain.

In the CPU domain, there are five CPU ports.
• IPORT: this port is used by the CPU for fetching instructions from external memory.
• DPORT: this port is used by the CPU when reading and writing data from/to external memory.

Note: Reading and writing data using external memory is not supported if the device does not support
EMIF.

• XPORT: this port is used by the CPU when reading and writing from/to IO-space (peripheral) registers.
• MPORT: this port is used by the four DMAs, the USB CDMA, and the LCD controller DMA when

accessing SARAM or DARAM.
• HWA: this port is the hardware accelerator (FFT coprocessor). It shares all CPU buses.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Power Management

65SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.5.3.1.1 Idle Configuration Register (ICR) [0001h] and IDLE Status Register (ISTR) [0002h]
Table 1-20 describes the read/write bits of ICR, and Table 1-21 describes the read-only bits of ISTR.

NOTE: To prevent an emulation lock up, idle requests to these domains may be overridden or
ignored when an emulator is connected to the JTAG port of the DSP.

Figure 1-15. Idle Configuration Register (ICR) [0001h]
15 10 9 8

Reserved HWAI IPORTI
R/W-0 R/W-0 R/W-0

7 6 5 4 1 0
MPORTI XPORTI DPORTI IDLECFG CPUI
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 1-20. Idle Configuration Register (ICR) Field Descriptions

Bit Field Value Description
15-10 Reserved 0 Reserved.

9 HWAI FFT hardware accelerator idle control bit. (TMS320C5545/35 only)
0 Hardware accelerator remains active after execution of an IDLE instruction.
1 Hardware accelerator is disabled after execution of an IDLE instruction.

8 IPORTI Instruction port idle control bit. The IPORT is used for all external memory instruction accesses.
0 IPORT remains active after execution of an IDLE instruction.
1 IPORT is disabled after execution of an IDLE instruction.

7 MPORTI Memory port idle control bit. The memory port is used for all DMA, and USB CDMA transactions
into on-chip memory.

0 MPORT remains active after execution of an IDLE instruction.
1 MPORT is disabled after execution of an IDLE instruction.

6 XPORTI I/O port idle control bit. The XPORT is used for all CPU I/O memory transactions.
0 XPORT remains active after execution of an IDLE instruction.
1 XPORT is disabled after execution of an IDLE instruction.

5 DPORTI Note: Reading and writing data using external memory is not supported if the device does not
support EMIF.
Data port idle control bit. The data port is used for all CPU external memory data accesses.

0 DPORT remains active after execution of an IDLE instruction.
1 DPORT is disabled after execution of an IDLE instruction.

4-1 IDLECFG 0111b Idle configuration bits. You must always set bit 1, 2 and 3 to 1 and bit 4 to 0 before executing the
idle instruction.

0 CPUI CPU idle control bit.
0 CPU remains active after execution of an IDLE instruction.
1 CPU is disabled after execution of an IDLE instruction.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Power Management www.ti.com

66 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

Figure 1-16. Idle Status Register (ISTR) [0002h]
15 10 9 8

Reserved HWAIS IPORTIS
R-0 R-0 R-0

7 6 5 4 1 0
MPORTIS XPORTIS DPORTIS Reserved CPUIS

R-0 R-0 R-0 R-0 R-0
LEGEND: R = Read only; -n = value after reset

Table 1-21. Idle Status Register (ISTR) Field Descriptions

Bit Field Value Description
15-10 Reserved 0 Reserved.

9 HWAIS FFT hardware accelerator idle status bit. (TMS320C5545/35 only)
0 Hardware accelerator is active.
1 Hardware accelerator is disabled.

8 IPORTIS Instruction port idle status bit. The IPORT is used for all external memory instruction accesses.
0 IPORT is active.
1 IPORT is disabled.

7 MPORTIS Memory port idle status bit. The memory port is used for all DMA, and USB CDMA transactions into
on-chip memory.

0 MPORT is active.
1 MPORT is disabled.

6 XPORTIS I/O port idle status bit. The XPORT is used for all CPU I/O memory transactions.
0 XPORT is active.
1 XPORT is disabled.

5 DPORTIS Note: Reading and writing data using external memory is not supported if the device does not
support EMIF.
Data port idle status bit. The data port is used for all CPU external memory data accesses.

0 DPORT is active.
1 DPORT is disabled.

4-1 Reserved 0 Reserved.
0 CPUIS CPU idle status bit.

0 CPU is active.
1 CPU is disabled.

1.5.3.1.2 Valid Idle Configurations
Not all of the values that you can write to the idle configuration register (ICR) provide valid idle
configurations. The valid configurations are limited by dependencies within the system. For example, the
IDLECFG bits 1, 2 and 3 of ICR must always be set to 1, and bit 4 must always be cleared to 0. As
another example, the XPORT cannot be idled unless the CPU is also idled. Before any part of the CPU
domain is idled, you must observe the requirements outlined in Section 1.5.3.2.

A bus error will be generated (BERR = 1 in IFR1) if you execute the idle instruction under any of the
following conditions and the idle command will not take effect:
1. If you fail to set IDLECFG = 0111 while setting any of these bits: DPORTI, XPORTI, IPORTI or

MPORTI.
2. If you set DPORTI, XPORTI, or IPORTI without also setting CPUI.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Power Management

67SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

Table 1-22. CPU Clock Domain Idle Requirements

To Idle the Following Module/Port Requirements Before Going to Idle
CPU No requirements.

FFT Hardware Accelerator No requirements.
MPORT DMA controllers, and USB CDMA must not be accessing DARAM or SARAM.
XPORT

CPU CPUI must also be set.
DPORT

1.5.3.1.3 Clock Configuration Process
The clock configuration indicates which portions of the CPU clock domain will be idle, and which will be
active. The basic steps to the clock configuration process are:
1. To idle MPORT, the DMA controller, LCD DMA, and USB CDMA must not be accessing SARAM or

DARAM. If any DMA is in active, wait for the DMA transfer to complete
2. Write the desired configuration to the idle configuration register (ICR). Make sure that you use a valid

idle configuration (see Section 1.5.3.1.2).
3. Apply the new idle configuration by executing the IDLE instruction. The content of ICR is copied to the

idle status register (ISTR). The bits of ISTR are then propagated through the CPU domain system to
enable or disable the specified clocks. If the CPU domain was idled, then program execution will stop
immediately after the idle instruction. If the CPU domain was not idled, then program execution will
continue past the idle instruction but the appropriate domains will be idle.

The IDLE instruction cannot be executed in parallel with another instruction.

The CPU, DPORT, XPORT, and IPORT domains are enabled automatically by any unmasked interrupts.
There is a logic in the DSP core that enables CPU, DPORT, XPORT, and IPORT (clears the bits 0, 5, 6,
and 8 of the ISTR register) asynchronously upon detecting an interrupt signal. Therefore, when an
unmasked interrupt signal reaches the DSP core, these domains are un-idled automatically. Once the
CPU is enabled, it takes 3 CPU cycles to detect the interrupt in the IFR. Note that HWA and MPORT have
to be manually enabled after being disabled.

1.5.3.2 Peripheral Domain Clock Gating
The peripheral clock gating allows software to disable clocks to the DSP peripherals, in order to reduce
the peripheral's active power consumption to zero. Aside from the analog logic, the DSP is designed in
static CMOS; thus, when a peripheral clock stops, the peripheral's state is preserved, and no active
current is consumed. When the clock is restarted the peripheral resumes operating from the stopping
point.

NOTE: Stopping clocks to a peripheral only affects active power consumption; it does not affect
leakage power consumption.

If a peripheral's clock is stopped while being accessed, the access may not occur completely, and could
potentially lock-up the device. To avoid this issue, some peripherals have a clock stop request and
acknowledge protocol that allows software to ask the peripheral when it is safe to stop the clocks. This is
described further in Section 1.5.3.2.2. For the peripherals that do not have the request/acknowledge
protocol, the user must ensure that all of the transactions to the peripheral are finished prior to stopping
the clocks.

The procedure to turn peripheral clocks on/off is described in Section 1.5.3.2.3.

Some peripherals provide additional power saving features by clock gating components within its
peripheral boundary. See the peripheral-specific user's guide for more details on these additional power
saving features.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Power Management www.ti.com

68 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.5.3.2.1 Peripheral Clock Gating Configuration Registers (PCGCR1 and PCGCR2) [1C02 - 1C03h]
The peripheral clock gating configuration registers (PCGCR1 and PCGCR2) are used to disable the clocks
of the DSP peripherals. In contrast to the idle control register (ICR), these bits take effect within 6
SYSCLK cycles and do not require an idle instruction.

The peripheral clock gating configuration register 1 (PCGCR1) is shown in Figure 1-17 and described in
Table 1-23.

Figure 1-17. Peripheral Clock Gating Configuration Register 1 (PCGCR1) [1C02h]
15 14 13 12 11 10 9 8

SYSCLKDIS I2S2CG TMR2CG TMR1CG Reserved TMR0CG I2S1CG I2S0CG
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

7 6 5 4 3 2 1 0
MMCSD1CG I2CCG Reserved MMCSD0CG DMA0CG UARTCG SPICG I2S3CG

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-23. Peripheral Clock Gating Configuration Register 1 (PCGCR1) Field Descriptions

Bit Field Value Description
15 SYSCLKDIS System clock disable bit. This bit can be used to turn off the system clock. Setting the WAKEUP pin

high enables the system clock. Since the WAKEUP pin is used to re-enable the system clock, the
WAKEUP pin must be low to disable the system clock.
NOTE Disabling the system clock disables the clock to most parts of the DSP, including the CPU.

0 System clock is active.
1 System clock is disabled.

14 I2S2CG I2S2 clock gate control bit. This bit is used to enable and disable the I2S2 peripheral clock.
0 Peripheral clock is active.
1 Peripheral clock is disabled.

13 TMR2CG Timer 2 clock gate control bit. This bit is used to enable and disable the Timer 2 peripheral clock.
0 Peripheral clock is active.
1 Peripheral clock is disabled.

12 TMR1CG Timer 1 clock gate control bit. This bit is used to enable and disable the Timer 1 peripheral clock.
0 Peripheral clock is active.
1 Peripheral clock is disabled.

11 Reserved 0 Reserved. You must always write 1 to this bit.
10 TMR0CG Timer 0 clock gate control bit. This bit is used to enable and disable the Timer 0 peripheral clock.

0 Peripheral clock is active.
1 Peripheral clock is disabled.

9 I2S1CG I2S1 clock gate control bit. This bit is used to enable and disable the I2S1 peripheral clock.
0 Peripheral clock is active.
1 Peripheral clock is disabled.

8 I2S0CG I2S0 clock gate control bit. This bit is used to enable and disable the I2S0 peripheral clock.
0 Peripheral clock is active.
1 Peripheral clock is disabled.

7 MMCSD1CG MMC/SD1 clock gate control bit. This bit is used to enable and disable the MMC/SD1 peripheral
clock.

0 Peripheral clock is active.
1 Peripheral clock is disabled.

6 I2CCG I2C clock gate control bit. This bit is used to enable and disable the I2C peripheral clock.
0 Peripheral clock is active.
1 Peripheral clock is disabled.

5 Reserved 0 Reserved, you must always write 1 to this bit.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Power Management

69SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

Table 1-23. Peripheral Clock Gating Configuration Register 1 (PCGCR1) Field Descriptions (continued)
Bit Field Value Description
4 MMCSD0CG MMC/SD0 clock gate control bit. This bit is used to enable and disable the MMC/SD0 peripheral

clock.
0 Peripheral clock is active.
1 Peripheral clock is disabled.

3 DMA0CG DMA controller 0 clock gate control bit. This bit is used to enable and disable the peripheral clock
the DMA controller 0.

0 Peripheral clock is active.
1 Peripheral clock is disabled.

2 UARTCG UART clock gate control bit. This bit is used to enable and disable the UART peripheral clock.
NOTE You must request permission before stopping the UART clock through the peripheral clock
stop request/acknowledge register (CLKSTOP).

0 Peripheral clock is active.
1 Peripheral clock is disabled.

1 SPICG SPI clock gate control bit. This bit is used to enable and disable the SPI controller peripheral clock.
0 Peripheral clock is active.
1 Peripheral clock is disabled.

0 I2S3CG I2S3 clock gate control bit. This bit is used to enable and disable the I2S3 peripheral clock.
0 Peripheral clock is active.
1 Peripheral clock is disabled.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Power Management www.ti.com

70 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

The peripheral clock gating configuration register 2 (PCGCR2) is shown in Figure 1-18 and described in
Table 1-24 .

Figure 1-18. Peripheral Clock Gating Configuration Register 2 (PCGCR2) [1C03h]
15 8

Reserved
R-0

7 6 5 4 3 2 1 0
Reserved ANAREGCG DMA3CG DMA2CG DMA1CG USBCG SARCG LCDCG

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-24. Peripheral Clock Gating Configuration Register 2 (PCGCR2) Field Descriptions

Bit Field Value Description
15-7 Reserved 0 Reserved.

6 ANAREGCG Analog registers clock gate control bit. This bit is used to enable and disable the clock to the
registers that control the analog domain of the device, that is, registers in the 7000h-70FFh I/O
space address range. NOTE When SARCG = 0, the clocks to the analog domain registers are
enabled regardless of the ANAREGCG setting.

0 Clock is active.
1 Clock is disabled.

5 DMA3CG DMA controller 3 clock gate control bit. This bit is used to enable and disable the DMA controller 3
peripheral clock.

0 Peripheral clock is active.
1 Peripheral clock is disabled.

4 DMA2CG DMA controller 2 clock gate control bit. This bit is used to enable and disable the DMA controller 2
peripheral clock.

0 Peripheral clock is active.
1 Peripheral clock is disabled.

3 DMA1CG DMA controller 1 clock gate control bit. This bit is used to enable and disable the DMA controller 1
peripheral clock.

0 Peripheral clock is active.
1 Peripheral clock is disabled.

2 USBCG USB clock gate control bit. This bit is used to enable and disable the USB controller peripheral
clock. NOTE You must request permission before stopping the USB clock through the peripheral
clock stop request/acknowledge register (CLKSTOP). This register does not stop the USB PLL.

0 Peripheral clock is active.
1 Peripheral clock is disabled.

1 SARCG SAR clock gate control bit. This bit is used to enable and disable the SAR peripheral clock. Note:
When SARCG = 0, the clock to the analog domain registers is enabled regardless of the
ANAREGCG setting.

0 Peripheral clock is active.
1 Peripheral clock is disabled.

0 LCDCG LCD controller clock gate control bit. This bit is used to enable and disable the LCD controller
peripheral clock.

0 Peripheral clock is active.
1 Peripheral clock is disabled.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Power Management

71SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.5.3.2.2 Peripheral Clock Stop Request/Acknowledge Register (CLKSTOP) [1C3Ah]
You must execute a handshaking procedure before stopping the clock to the USB and UART. This
handshake procedure ensures that current bus transactions are completed before the clock is stopped.
The peripheral clock stop request/acknowledge register (CLKSTOP) enables this handshaking
mechanism.

To stop the clock to the USB or UART, set the corresponding clock stop request bit in the CLKSTOP
register, then wait for the peripheral to set the corresponding clock stop acknowledge bit. Once this bit is
set, you can idle the corresponding clock in the PCGCR1 and PCGCR2.

To enable the clock to the USB or UART, first enable the clock the peripheral through PCGCR1 or
PCGCR2, then clear the corresponding clock stop request bit in the CLKSTOP register.

The peripheral clock stop request/acknowledge register (CLKSTOP) is shown in Figure 1-19 and
described in Table 1-25.

Figure 1-19. Peripheral Clock Stop Request/Acknowledge Register (CLKSTOP) [1C3Ah]
15 8

Reserved
R-0

7 6 5 4 3 2 1 0
Reserved URTCLKSTPACK URTCLKSTPREQ USBCLKSTPACK USBCLKSTPREQ Reserved

R-0 R-1 R/W-1 R-1 R/W-1 R-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-25. Peripheral Clock Stop Request/Acknowledge Register (CLKSTOP) Field Descriptions

Bit Field Value Description
15-6 Reserved 0 Reserved.

5 URTCLKSTPACK UART clock stop acknowledge bit. This bit is set to 1 when the UART has acknowledged
a request for its clock to be stopped. The UART clock should not be stopped until this bit
is set to 1.

0 The request to stop the peripheral clock has not been acknowledged.
1 The request to stop the peripheral clock has been acknowledged, the clock can be

stopped.
4 URTCLKSTPREQ UART peripheral clock stop request bit. When disabling the UART internal peripheral

clock, you must set this bit to 1 to request permission to stop the clock. After the UART
acknowledges the request (URTCLKSTPACK = 1) you can stop the clock through the
peripheral clock gating control register 1 (PCGCR1). When enabling the UART internal
clock, enable the clock through PCGCR1, then set URTCKLSTPREQ to 0.

0 Normal operating mode.
1 Request permission to stop the peripheral clock.

3 USBCLKSTPACK USB clock stop acknowledge bit. This bit is set to 1 when the USB has acknowledged a
request for its clock to be stopped. The USB clock should not be stopped until this bit is
set to 1.

0 The request to stop the peripheral clock has not been acknowledged.
1 The request to stop the peripheral clock has been acknowledged, the clock can be

stopped.
2 USBCLKSTPREQ USB peripheral clock stop request bit. When disabling the USB internal peripheral clock,

you must set this bit to 1 to request permission to stop the clock. After the USB
acknowledges the request (USBCLKSTPACK = 1) you can stop the clock through the
peripheral clock gating control register 2 (PCGCR2). When enabling the USB internal
clock, enable the clock through PCGCR2, then set USBCKLSTPREQ to 0.

0 Normal operating mode.
1 Request permission to stop the peripheral clock.

1 Reserved 0 Reserved.
0 Reserved 0 Reserved.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Power Management www.ti.com

72 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.5.3.2.3 Clock Configuration Process
The clock configuration indicates which portions of the peripheral clock domain will be idle, and which will
be active. The basic steps to the clock configuration process are:
1. Wait for all DMA transfers to complete. You can poll the DMA transfer status and disable DMA

transfers using the DMA registers.
2. If idling the USB and UART clocks, set the corresponding clock stop request bit in CLKSTOP.
3. Wait for confirmation from the module that its clock can be stopped by polling the clock stop

acknowledge bits of CLKSTOP.
4. Set the clock configuration for the peripheral domain through PCGCR1 and PCGCR2. The clock

configuration takes place as soon as you write to these registers; the idle instruction is not required

1.5.3.3 Clock Generator Domain Clock Gating
To save power, the system clock generator can be placed in its BYPASS MODE and its PLL can be
placed in power down mode. When the system clock generator is in the BYPASS MODE, the clock
generator is not used and the system clock (SYSCLK) is driven by either the CLKIN pin or the real-time
clock (RTC). For more information entering and exiting the bypass mode of the clock generator, see
Section 1.4.3.1.1.

When the clock generator is placed in its bypass mode, the PLL continues to generate a clock output. You
can save additional power by powering down the PLL. Section 1.4.2.2 provides more information on
powering down the PLL.

1.5.3.4 USB Domain Clock Gating
The USB peripheral has two clock domains. The first is a high speed domain that has its clock supplied by
a dedicated USB PLL. The reference clock for the USB PLL is the 12.0 MHz USB oscillator. The clock
output from the PLL must support the serial data stream that, in high-speed mode, is at a rate of 480
Mb/s. The second clock into the USB peripheral handles the data once it has been packetized and
transported in parallel fashion. This clock supports all of the USB registers, CDMA, FIFO, etc., and is
clocked by SYSCLK. In order to keep up with the serial data stream, the USB requires SYSCLK to be at
least 30 MHz for low-speed/full-speed modes and at least 60 MHz for high-speed mode.

By stopping both of these clocks, it is possible to reduce the USB's active power consumption (in the
digital logic) to zero.

NOTE: Stopping clocks to a peripheral only affects active power consumption; it does not affect
leakage power consumption. USB leakage power consumption can be reduced to zero by
not powering the USB.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Power Management

73SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.5.3.4.1 Clock Configuration Process
The clock configuration process for the USB clock domain consists of disabling the USB peripheral clock
followed by disabling the USB on-chip oscillator. This procedure will completely shut off USB module,
which does not comply with USB suspend/resume protocol.

To set the clock configuration of the USB clock domain to idle follow these steps:
1. Set the ENSUSPM bit in the Power Management Register (POWER). For more information about the

ENSUSPM bit, see Section 13.3.22, Power Management Register.
2. Set the USB clock stop request bit (USBCLKSTREQ) in the CLKSTOP register to request permission

to shut off the USB peripheral clock.
3. Wait until the USB acknowledges the clock stop request by polling the USB clock stop acknowledge bit

(USBCLKSTPACK) in the CLKSTOP register.
4. Disable the USB peripheral clock by setting USBCG = 1 in the peripheral clock gating control register 2

(PCGCR2).
5. Disable the USB oscillator by setting USBOSCDIS = 1 in the USB system control register (USBSCR).

To enable the USB clock domain, follow these steps:
1. Enable the USB oscillator by setting USBOSCDIS = 0 in USBSCR.
2. Wait for the oscillator to stabilize. Refer to the device-specific data manual for oscillator stabilization

time.
3. Enable the USB peripheral clock by setting USBCG = 0 in the peripheral clock gating control register 2

(PCGCR2).
4. Clear the USB clock stop request bit (USBCLKSTREQ) in the CLKSTOP register.
5. Clear the SUSPENDM bit in the Power Management Register (POWER). For more information about

the SUSPENDM bit, see Section 13.3.22, Power Management Register .

1.5.3.4.2 USB System Control Register (USBSCR) [1C32h]
The USB system control register is used to disable the USB on-chip oscillator and to power-down the
USB.

The USB system control register (USBSCR) is shown in Figure 1-20 and described in Table 1-26.

Figure 1-20. USB System Control Register (USBSCR) [1C32h]
15 14 13 12 11 8

USBPWDN USBSESSEND USBVBUSDET USBPLLEN Reserved
R/W-1 R/W-0 R/W-1 R/W-0 R-0

7 6 5 4 3 2 1 0
Reserved USBDATPOL Reserved USBOSCBIASDIS USBOSCDIS BYTEMODE

R-0 R/W-1 R-0 R/W-1 R/W-1 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-26. USB System Control Register (USBSCR) Field Descriptions

Bit Field Value Description
15 USBPWDN USB module power. Asserting USBPWDN puts the USB PHY and PLL in their lowest

power state. The USB peripheral is not operational in this state.
0 USB module is powered.
1 USB module is powered-down.

14 USBSESSEND USB VBUS session end comparator enable. The USB VBUS pin has two comparators
that monitor the voltage level on the pin. These comparators can be disabled for power
savings when not needed.

0 USB VBUS session end comparator is disabled.
1 USB VBUS session end comparator is enabled.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Power Management www.ti.com

74 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

Table 1-26. USB System Control Register (USBSCR) Field Descriptions (continued)
Bit Field Value Description
13 USBVBUSDET USB VBUS detect enable. The USB VBUS pin has two comparators that monitor the

voltage level on the pin. These comparators can be disabled for power savings when not
needed.

0 USB VBUS detect comparator is disabled.
1 USB VBUS detect comparator is enabled.

12 USBPLLEN USB PLL enable. This is normally only used for test purposes.
0 Normal USB operation.
1 Override USB suspend end behavior and force release of PLL from suspend state.

11-7 Reserved 0 Reserved. Always write 0 to these bits.
6 USBDATPOL USB data polarity bit. Changing this bit can be useful since the data polarity is opposite

on type-A and type-B connectors.
0 Reverse polarity on DP and DM signals.
1 Normal polarity (normal polarity matching pin names).

5-4 Reserved 0 Reserved.
3 USBOSCBIASDIS USB internal oscillator bias resistor disable.

0 Internal oscillator bias resistor enabled (normal operating mode).
1 Internal oscillator bias resistor disabled. Disabling the internal resistor is primarily for

production test purposes. But it can also be used when an external oscillator bias resistor
is connected between the USB_MXI and USB_MXO pins (but this is not a recommended
configuration).

2 USBOSCDIS USB oscillator disable bit.
0 USB internal oscillator enabled.
1 USB internal oscillator disabled. Causes the USB_MXO pin to be tristated and the

oscillator's clock into the core is forced low.
1-0 BYTEMODE USB byte mode select bits.

0 Word accesses by the CPU are allowed.
1h Byte accesses by the CPU are allowed (high byte is selected).
2h Byte accesses by the CPU are allowed (low byte is selected).
3h Reserved.

1.5.3.5 RTC Domain Clock Gating
Dynamic RTC domain clock gating is not supported. Note that the RTC oscillator, and by extension the
RTC domain, can be permanently disabled by not connecting a crystal and tying off the RTC oscillator
pins. However, in this configuration, the RTC must still be powered and the RTC registers starting at I/O
address 1900h will not be accessible. This includes the RTC Power Management Register (RTCPMGT)
that provides powerdown control to the on-chip LDO and control of the WAKEUP and RTC_CLKOUT pins.
See the device-specific data manual for more details on permanently disabling the RTC oscillator.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Power Management

75SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.5.4 Static Power Management

1.5.4.1 RTC Power Management Register (RTCPMGT) [1930h]
This register enables static power management with power down and wake up register bits as described
in the device-specific data sheet and, more generally, below. The RTC power management register
(RTCPMGT) is shown in Figure 1-21 and described in Table 1-27 .

Figure 1-21. RTC Power Management Register (RTCPMGT) [1930h]
15 5 4 3 2 1 0

Reserved WU_DOUT WU_DIR BG_PD LDO_PD RTCCLKOUTEN

R-0 RW-1 RW-0 RW-0 RW-0 RW-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-27. RTC Power Management Register (RTCPMGT) Field Descriptions

Bit Field Value Description
15-5 Reserved 0 Reserved

4 WU_DOUT Wakeup output, active low/Open-drain. Default is 1.
0 WAKEUP pin driven low.
1 WAKEUP pin driver is in high impedance.

3 WU_DIR Wakeup pin direction control.
0 WAKEUP pin is configured as input.
1 WAKEUP pin is configured as output.

NOTE: The WAKEUP pin, when configured as an input, is active high. When it is configured as an
output, it is open-drain and thus it should have an external pullup and it is active low.

2 BG_PD Powerdown control bit for the bandgap, on-chip LDOs, and the analog POR (power on reset)
comparator. This bit shuts down the on-chip LDOs (ANA_LDO, DSP_LDO, and USB_LDO), the
Analog POR, and Bandgap reference. BG_PD and LDO_PD are only intended to be used when the
internal LDOs supply power to the chip. If the internal LDOs are bypassed and not used then the
BG_PD and LDO_PD power down mechanisms should not be used since the POR gets powered
down and the POWERGOOD signal would not get generated properly.
After this bit is asserted, the on-chip LDOs, Analog POR, and the Bandgap reference can only be
re-enabled by the WAKEUP pin (being driven HIGH externally) or an enabled RTC alarm or an
enabled RTC periodic event interrupt. Once reenabled, the Bandgap circuit takes about 100 msec to
charge the external 0.1 μF capacitor on the BG_CAP pin via the the internal resistance of
aproxmiately. 320 kΩ.

0 On-chip LDO, Analog POR, and Bandgap reference are enabled.
1 On-chip LDO, Analog POR, and Bandgap reference are disabled (shutdown).

1 LDO_PD On-chip LDOs and Analog POR power down bit. This bit shuts down the on-chip LDOs (ANA_LDO,
DSP_LDO, and USB_LDO) and the Analog POR. BG_PD and LDO_PD are only intended to be
used when the internal LDOs supply power to the chip. If the internal LDOs are bypassed and not
used then the BG_PD and LDO_PD power down mechanisms should not be used since POR gets
powered down and the POWERGOOD signal is not generated properly.
After this bit is asserted, the on-chip LDOs and Analog POR can only be re-enabled by the
WAKEUP pin (being driven HIGH externally) or an enabled RTC alarm or an enabled RTC periodic
event interrupt. This bit keeps the Bandgap reference turned on to allow a faster wake-up time with
the expense power consumption of the Bandgap reference.

0 On-chip LDO and Analog POR are enabled.
1 On-chip LDO and Analog POR are disabled (shutdown).

0 RTCCLKOUTEN Clock-out output enable.
0 Clock output disabled.
1 Clock output enabled.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Power Management www.ti.com

76 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.5.4.2 RTC Interrupt Flag Register (RTCINTFL) [1920h]
The RTC interrupt flag register (RTCINTFL) is shown in Figure 1-22 and described in Table 1-28.

Figure 1-22. RTC Interrupt Flag Register (RTCINTFL) [1920h]
15 14 8

ALARMFL Reserved
R-0 R-0

7 6 5 4 3 2 1 0
Reserved EXTFL DAYFL HOURFL MINFL SECFL MSFL

R-0 R-0 R-0 R-0 R-0 R-0 R-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-28. RTC Interrupt Flag Register (RTCINTFL) Field Descriptions

Bit Field Value Description
15 ALARMFL Indicates that an alarm interrupt has been generated.

0 Alarm interrupt did not occur.
1 Alarm interrupt occurred (write 1 to clear).

14-6 Reserved 0 Reserved.
5 EXTFL External event (WAKEUP pin assertion) has occurred.

0 External event interrupt has not occurred.
1 External event interrupt occurred (write 1 to clear).

4 DAYFL Day event has occurred.
0 Periodic Day event has not occurred.
1 Periodic Day event occurred (write 1 to clear).

3 HOURFL Hour event has occurred.
0 Periodic Hour event has not occurred.
1 Periodic Hour event occurred (write 1 to clear).

2 MINFL Minute Event has occurred.
0 Periodic Minute event has not occurred.
1 Periodic Minute event occurred (write 1 to clear).

1 SECFL Second Event occurred.
0 Periodic Second event has not occurred.
1 Periodic Second event occurred (write 1 to clear).

0 MSFL Millisecond event occurred.
0 Periodic Millisecond event has not occurred.
1 Periodic Millisecond event occurred (write 1 to clear).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Power Management

77SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.5.4.3 Internal Memory Low Power Modes
To save power, software can place on-chip memory (DARAM or SARAM) in one of two power modes:
memory retention mode and active mode. These power modes are activated through the SLPZVDD and
SLPZVSS bits of the RAM Sleep Mode Control Register 1-5 (RAMSLPMDCNTLR[1:5]). To activate
memory retention mode, set SLPZVDD bit and clear SLPZVSS bit of each memory bank to be put in
retention mode. The retention/active mode of each 4kW DARAM and SARAM bank is independently
controllable.

When either type of memory is placed in memory retention, read and write accesses are not allowed. In
memory retention mode, the memory is placed in a low power mode while maintaining its contents. The
contents are retained as long as there are no access attempts to that memory. In active mode, the
memory is readily accessible by the CPU, but consumes more leakage power.

For the entire duration that the memory is in retention mode, there can be no attempts to read or write to
the memories address range. This includes accesses by the CPU or any DMA. If an access is attempted
while in retention mode then the memory contents will be lost.

NOTE: You must wait at least 10 CPU clock cycles after taking memory out of a low power mode
before initiating any read or write access.

Table 1-29 summarizes the power modes for both DARAM and SARAM.

Table 1-29. On-Chip Memory Standby Modes

SLPZVDD SLPZVSS Mode CVDD Voltage
1 1 Active 1.05 V or 1.3 V

- Normal operational mode
- Read and write accesses are allowed

1 0 Retention 1.05 V or 1.3 V
- Low power mode
- Contents are retained
- No read or write access is allowed

0 0 Memory Disabled Mode 1.05 V or 1.3 V
- Lowest leakage mode
- Contents are lost
- No read or write access is allowed

1.5.4.3.1 RAM Sleep Mode Control Register 1 (RAMSLPMDCNTLR1) [1C28h]
The RAM sleep mode control register 1 (RAMSLPMDCNTLR1) is shown in Figure 1-23 through Figure 1-
27.

Figure 1-23. RAM Sleep Mode Control Register1 [1C28h]
15 14 13 12 11 10 9 8

DARAM7
SLPZVDD

DARAM7
SLPZVSS

DARAM6
SLPZVDD

DARAM6
SLPZVSS

DARAM5
SLPZVDD

DARAM5
SLPZVSS

DARAM4
SLPZVDD

DARAM4
SLPZVSS

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

7 6 5 4 3 2 1 0
DARAM3
SLPZVDD

DARAM3
SLPZVSS

DARAM2
SLPZVDD

DARAM2
SLPZVSS

DARAM1
SLPZVDD

DARAM1
SLPZVSS

DARAM0
SLPZVDD

DARAM0
SLPZVSS

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Power Management www.ti.com

78 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

Figure 1-24. RAM Sleep Mode Control Register2 [1C2Ah]
15 14 13 12 11 10 9 8

SARAM7
SLPZVDD

SARAM7
SLPZVSS

SARAM6
SLPZVDD

SARAM6
SLPZVSS

SARAM5
SLPZVDD

SARAM5
SLPZVSS

SARAM4
SLPZVDD

SARAM4
SLPZVSS

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

7 6 5 4 3 2 1 0
SARAM3
SLPZVDD

SARAM3
SLPZVSS

SARAM2
SLPZVDD

SARAM2
SLPZVSS

SARAM1
SLPZVDD

SARAM1
SLPZVSS

SARAM0
SLPZVDD

SARAM0
SLPZVSS

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 1-25. RAM Sleep Mode Control Register3 [1C2Bh]
15 14 13 12 11 10 9 8

SARAM15
SLPZVDD

SARAM15
SLPZVSS

SARAM14
SLPZVDD

SARAM14
SLPZVSS

SARAM13
SLPZVDD

SARAM13
SLPZVSS

SARAM12
SLPZVDD

SARAM12
SLPZVSS

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

7 6 5 4 3 2 1 0
SARAM11
SLPZVDD

SARAM11
SLPZVSS

SARAM10
SLPZVDD

SARAM10
SLPZVSS

SARAM9
SLPZVDD

SARAM9
SLPZVSS

SARAM8
SLPZVDD

SARAM8
SLPZVSS

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 1-26. RAM Sleep Mode Control Register4 [1C2Ch]
15 14 13 12 11 10 9 8

SARAM23
SLPZVDD

SARAM23
SLPZVSS

SARAM22
SLPZVDD

SARAM22
SLPZVSS

SARAM21
SLPZVDD

SARAM21
SLPZVSS

SARAM20
SLPZVDD

SARAM20
SLPZVSS

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

7 6 5 4 3 2 1 0
SARAM19
SLPZVDD

SARAM19
SLPZVSS

SARAM18
SLPZVDD

SARAM18
SLPZVSS

SARAM17
SLPZVDD

SARAM17
SLPZVSS

SARAM16
SLPZVDD

SARAM16
SLPZVSS

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 1-27. RAM Sleep Mode Control Register5 [1C2Dh]
15 14 13 12 11 10 9 8

SARAM31
SLPZVDD

SARAM31
SLPZVSS

SARAM30
SLPZVDD

SARAM30
SLPZVSS

SARAM29
SLPZVDD

SARAM29
SLPZVSS

SARAM28
SLPZVDD

SARAM28
SLPZVSS

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

7 6 5 4 3 2 1 0
SARAM27
SLPZVDD

SARAM27
SLPZVSS

SARAM26
SLPZVDD

SARAM26
SLPZVSS

SARAM25
SLPZVDD

SARAM25
SLPZVSS

SARAM24
SLPZVDD

SARAM24
SLPZVSS

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Power Management

79SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

(1) SAR applies to only TMS320C5545/35.

1.5.5 Power Considerations

1.5.5.1 Power Considerations for TMS320C5545/35/34
The device provides several means of managing power consumption.

To minimize power consumption, the device divides its circuits into nine main isolated supply domains:
• LDOI (LDOs and Bandgap Power Supply)
• Analog POR, SAR, and PLL (VDDA_ANA and VDDA_PLL) (1)

• RTC Core (CVDDRTC)
Note: CV DDRTC must always be powered by an external power source. None of the on-chip LDOs can
power CVDDRTC.

• Digital Core (CVDD)
• USB Core (USB_ VDD1P3 and USB_VDDA1P3)
• USB PHY and USB PLL (USB_VDDOSC, USB_VDDA3P3, and USB_VDDPLL)
• RTC I/O (DVDDRTC)
• Rest of the I/O (DVDDIO)

1.5.5.1.1 LDO Configuration
The device includes three Low-Dropout Regulators (LDOs) which can be used to regulate the power
supplies of the analog PLL and SAR ADC/Power Management (ANA_LDO), Digital Core (DSP_LDO), and
USB Core (USB_LDO).

These LDOs are controlled by a combination of pin configuration and register settings. For more detailed
information see the following sections.

1.5.5.1.1.1 LDO Inputs
The LDOI pins provide power to the internal Analog LDO, DSP LDO, USB LDO, the bandgap reference
generator, and some I/O input pins, and can range from 1.8 V to 3.6 V. The bandgap provides accurate
voltage and current references to the POR, LDOs, PLL, and SAR; therefore, for proper device operation,
power must always be applied to the LDOI pins even if the LDO outputs are not used.

1.5.5.1.1.2 LDO Outputs
The ANA_LDOO pin is the output of the internal ANA_LDO and can provide regulated 1.3 V power of up
to 4 mA. The ANA_LDOO pin is intended to be connected, on the board, to the VDDA_ANA and VDDA_PLL pins
to provide a regulated 1.3 V to the 10-bit SAR ADC, Power Management Circuits, and System PLL.
VDDA_ANA and VDDA_PLL may be powered by this LDO output, which is recommended, to take advantage of
the device's power management techniques, or by an external power supply. The ANA_LDO cannot be
disabled individually (see Section 1.5.5.1.1.3, LDO Control).

The DSP_LDOO pin is the output of the internal DSP_LDO and provides software-selectable regulated 1.3
V or regulated 1.05 V power of up to 250 mA. The DSP_LDOO pin is intended to be connected, on the
board, to the CVDD pins. In this configuration, the DSP_LDO_EN pin should be tied to the board VSS, thus
enabling the DSP_LDO. Optionally, the CVDD pins may be powered by an external power supply; in this
configuration the DSP_LDO_EN pin should be tied (high) to LDOI, disabling DSP_LDO. The
DSP_LDO_EN also affects how reset is generated to the chip. When the DSP_LDO is disabled, its output
pin is in a high-impedance state. Note: DSP_LDO_EN is not intended to be changed dynamically.

When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz
devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation
after reset.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Power Management www.ti.com

80 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

The USB_LDOO pin is the output of the internal USB_LDO and provides regulated 1.3 V, software-
switchable (on/off) power of up to 25 mA. The USB_LDOO pin is intended to be connected, on the board,
to the USB_VDD1P3 and USB_VDDA1P3 pins to provide power to portions of the USB. Optionally, the
USB_VDD1P3 and USB_VDDA1P3 may be powered by an external power supply and the USB_LDO can be left
disabled. When the USB_LDO is disabled, its output pin is in a high-impedance state. See Section 1.7.3.2
for LDO control programming.

1.5.5.1.1.3 LDO Control
All three LDOs can be simultaneously disabled via software by writing to either the BG_PD bit or the
LDO_PD bit in the RTCPMGT register (see Section 1.5.4.1). When the LDOs are disabled via this
mechanism, the only way to re-enable them is by asserting the WAKEUP signal pin (which must also have
been previously enabled to allow wakeup), or by a previously enabled and configured RTC alarm, or by
cycling power to the CVDDRTC pin.

ANA_LDO: The ANA_LDO is only disabled by the BG_PD and the LDO_PD mechanism described above.
Otherwise, it is always enabled.

DSP_LDO: The DSP_LDO can be statically disabled by the DSP_LDO_EN pin as described in
Section 1.5.5.1.1.2, LDO Outputs. It can be also dynamically disabled via the BG_PD and the LDO_PD
mechanism described above. The DSP_LDO can change its output voltage dynamically by software via
the DSP_LDO_V bit in the LDOCNTL register (see Figure 1-28). The DSP_LDO output voltage is set to
1.3 V at reset.

For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for
proper operation after reset.

USB_LDO: The USB_LDO can be independently and dynamically enabled or disabled by software via the
USB_LDO_EN bit in the LDOCNTL register (see Figure 1-28). The USB_LDO is disabled at reset.

Table 1-31 shows the ON/OFF control of each LDO and its register control bit configurations.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Power Management

81SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

15 8
Reserved

R-0

7 2 1 0
Reserved DSP_LDO_V USB_LDO_EN

R-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 1-28. LDO Control Register (LDOCNTL) [7004h]

Table 1-30. LDOCNTL Register Bit Descriptions

BIT NAME DESCRIPTION
15:2 RESERVED Reserved. Read-only, writes have no effect.

1 DSP_LDO_V

DSP_LDO voltage select bit.
0 = DSP_LDOO is regulated to 1.3 V.
1 = DSP_LDOO is regulated to 1.05 V
Note: For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core
voltage, CVDD, for proper operation after reset.

0 USB_LDO_EN
USB_LDO enable bit.
0 = USB_LDO output is disabled. USB_LDOO pin is placed in high-impedance (Hi-Z) state.
1 = USB_LDO output is enabled. USB_LDOO is regulated to 1.3 V.

Table 1-31. LDO Controls Matrix

RTCPMGT Register
(1930h)

LDOCNTL Register
(7004h) DSP_LDO_EN ANA_LDO DSP_LDO USB_LDO

BG_PD Bit LDO_PD Bit USB_LDO_EN Bit
1 Don't Care Don't Care Don't Care OFF OFF OFF

Don't Care 1 Don't Care Don't Care OFF OFF OFF
0 0 0 Low ON ON OFF
0 0 0 High ON OFF OFF
0 0 1 Low ON ON ON

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Power Management www.ti.com

82 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.5.5.2 Power Considerations for TMS320C5533
The device provides several means of managing power consumption.

To minimize power consumption, the device divides its circuits into nine main isolated supply domains:
• LDOI (LDOs and Bandgap Power Supply)
• Analog POR and PLL (VDDA_ANA and VDDA_PLL)
• RTC Core (CVDDRTC)

Note: CV DDRTC must always be powered by an external power source. None of the on-chip LDOs can
power CVDDRTC.

• Digital Core (CVDD)
• USB Core (USB_ VDD1P3 and USB_VDDA1P3)
• USB PHY and USB PLL (USB_VDDOSC, USB_VDDA3P3, and USB_VDDPLL)
• RTC I/O (DVDDRTC)
• Rest of the I/O (DVDDIO)

1.5.5.2.1 LDO Configuration
The device includes two Low-Dropout Regulators (LDOs) which can be used to regulate the power
supplies of the analog PLL and Power Management (ANA_LDO) and USB Core (USB_LDO).

These LDOs are controlled by a combination of pin configuration and register settings. For more detailed
information see the following sections.

1.5.5.2.1.1 LDO Inputs
The LDOI pins provide power to the internal Analog and USB LDOs, the bandgap reference generator,
and some I/O input pins, and can range from 1.8 V to 3.6 V. The bandgap provides accurate voltage and
current references to the POR, LDOs, and PLL; therefore, for proper device operation, power must
always be applied to the LDOI pins even if the LDO outputs are not used.

1.5.5.2.1.2 LDO Outputs
The ANA_LDOO pin is the output of the internal ANA_LDO and can provide regulated 1.3 V power of up
to 4 mA. The ANA_LDOO pin is intended to be connected, on the board, to the VDDA_ANA and VDDA_PLL pins
to provide a regulated 1.3 V to the Power Management Circuits and System PLL. VDDA_ANA and VDDA_PLL
may be powered by this LDO output, which is recommended, to take advantage of the device's power
management techniques, or by an external power supply. The ANA_LDO cannot be disabled individually
(see Section 1.5.5.1.1.3, LDO Control).

The USB_LDOO pin is the output of the internal USB_LDO and provides regulated 1.3 V, software-
switchable (on/off) power of up to 25 mA. The USB_LDOO pin is intended to be connected, on the board,
to the USB_VDD1P3 and USB_VDDA1P3 pins to provide power to portions of the USB. Optionally, the
USB_VDD1P3 and USB_VDDA1P3 may be powered by an external power supply and the USB_LDO can be left
disabled. When the USB_LDO is disabled, its output pin is in a high-impedance state. See Section 1.7.3.3
for LDO control programming.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Power Management

83SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.5.5.3 Power Considerations for TMS320C5532
The device provides several means of managing power consumption.

To minimize power consumption, the device divides its circuits into nine main isolated supply domains:
• LDOI (ANA_LDO and Bandgap Power Supply)
• Analog POR and PLL (VDDA_ANA and VDDA_PLL)
• RTC Core (CVDDRTC)

Note: CV DDRTC must always be powered by an external power source. None of the on-chip LDOs can
power CVDDRTC.

• Digital Core (CVDD)
• USB Core (USB_VDD1P3 and USB_VDDA1P3) — C5545/35/34/33 Only
• USB PHY and USB PLL (USB_VDDOSC, USB_VDDA3P3, and USB_VDDPLL) — C5545/35/34/33 Only
• RTC I/O (DVDDRTC)
• Rest of the I/O (DVDDIO)

1.5.5.3.1 LDO Configuration
The device includes one Low-Dropout Regulators (LDO) which can be used to regulate the power
supplies of the analog PLL.

1.5.5.3.2 LDO Inputs
The LDOI pins provide power to the internal Analog LDO, the bandgap reference generator, and some I/O
input pins, and can range from 1.8 V to 3.6 V. The bandgap provides accurate voltage and current
references to the LDO PLL; therefore, for proper device operation, power must always be applied to the
LDOI pins even if the LDO output is not used.

1.5.5.3.3 LDO Outputs
The ANA_LDOO pin is the output of the internal ANA_LDO and can provide regulated 1.3 V power of up
to 4 mA. The ANA_LDOO pin is intended to be connected, on the board, to the VDDA_ANA and
VDDA_PLL pins to provide a regulated 1.3 V to the System PLL. VDDA_ANA and VDDA_PLL may be
powered by this LDO output. However, when VDDA_PLL requires 1.4 V, VDDA_PLL must be powered
externally and ANA_LDO output can provide a regulated 1.3 V, but only to VDDA_ANA, not both.

NOTE: The DSP_LDOO is not supported on this device. However, DSP_LDO can be enabled to
support the RTC-only mode (for details, see the RTC Only Mode section in the device-
specific data manual). Otherwise, DSP_LDO should be disabled on this device and the
DSP_LDO output pin must be always left unconnected. The USB_LDOO is not supported on
this device, so the USB_LDO must be left disabled. USB_LDO is disabled at reset, so it does
not require any action to disable the USB_LDO. When the USB_LDO is disabled, the
USB_LDOO pin is in a high-impedance (Hi-Z) state and should be left unconnected.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Power Management www.ti.com

84 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.5.6 Power Configurations
The power-saving features described in the previous sections, such as peripheral clock gating, and on-
chip memory power down to name a few, can be combined to form a power configuration. Many different
power configurations can be created by enabling and disabling different power domains and clock
domains, however, this section defines some basic power configurations that may be useful. These are
shown and described in Table 1-32. Please note that there is no single instruction or register that can
place the device in these power configurations. Instead, these power configurations are achieved by
modifying multiple registers.

NOTE: Before you change the power configuration, make sure that there is a method for the device
to exit the power configuration. After exiting a power configuration, your software may have
to take additional steps to change the clock and power configuration for other domains.

NOTE: The on-chip Bootloader idles all peripherals and CPU ports at startup. It enables some
peripherals as it uses them. Your application code should check the idle configuration of
peripherals and CPU ports before using them to be sure these are not idle.

(1) The RTC will reboot after the device wakes up from RTC-only mode.
(2) RTC-only mode and the WAKEUP pin are available only on TMS320C5535 and C5534. See Table 1-1, Differences Between

Devices.

Table 1-32. Power Configurations

Power
Configuration

Power Domain
State Clock Domain State

Steps to Enter Clock
and Power
Configuration

Available Methods for
Changing/Exiting Clock and
Power Configuration

RTC-only mode (1)

(2)
LDOI, DVDDRTC,
and CVDDRTC
powered. All others
powered-down.

Only RTC clock is
running

Set LDO_PD and
BG_PD bits in
RTCPMGT register

A. RTC interrupt
B. WAKEUP pin (2)

IDLE3
(Standby Mode)

All power domains
on

RTC clock domain
enabled

Idle peripheral domain A. WAKEUP pin (2)

Other clock domains
disabled. Clock
generator domain
disabled (BYPASS
MODE and PLL
powerdown).

Idle CPU domain B. RTC interrupt

PLL in BYPASS MODE
PLL powerdown

C. External hardware interrupt (INT0
or INT1).

Execute idle instruction D. Any unmasked peripheral
interrupt as defined in IER0 and
IER1.
E. Hardware Reset

IDLE2 All power domains
on

RTC clock domain
enabled

Idle peripheral domains A. WAKEUP pin (2)

Clock generator domain
enabled (PLL_MODE)

Idle CPU domain B. RTC interrupt

Other clock domains
disabled

Execute idle instruction C. External hardware interrupt (INT0
or INT1).
D. Any unmasked peripheral
interrupt as defined in IER0 and
IER1.
E. Hardware Reset

Active All power domains
on

All clock domains
enabled

Turn on all power
domains
Enable all clock
domains

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Power Management

85SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.5.6.1 IDLE2 Procedure
In this power configuration all the power domains are turned on, the RTC and clock generator domains are
enabled, the CPU domain is disabled, and the DSP peripherals are disabled. When you enter this power
configuration all CPU and peripheral activity in the DSP is stopped. Leaving the clock generator domain
enabled allows the DSP to quickly exit this power configuration since there is no need to wait for power
domains to turn on or for the PLL to re-lock.

Follow these steps to enter the IDLE2 power configuration:
1. Wait for completion of all DMA transfers. You can poll the DMA transfer status and disable DMA

transfers through the DMA registers.
2. Disable the USB clock domain as described in Section 1.5.3.4.
3. Idle all the desired peripherals in the peripheral clock domain by modifying the peripheral clock gating

configuration registers (PCGCR1 and PCGCR2). See Section 1.5.3.2 for more details on setting the
DSP peripherals to idle mode.

4. Clear all interrupts by writing ones to the CPU interrupt flag registers (IFR0 and IFR1).
5. Enable the appropriate wake-up interrupt in the CPU interrupt enable registers (IER0 and IER1).

• If using the WAKEUP pin to exit this mode:
(a) Configure the WAKEUP pin as an input by setting WU_DIR = 1 in the RTC power

management register (RTCPMGT).
(b) Enable the external event interrupt by setting EXTINTEN = 1 in the RTCINTREG register.

• If using the RTC alarm or periodic interrupt as a wake-up event, the RTCINTEN bit must be set in
the RTC interrupt enable register (RTCINTEN).

6. Disable the CPU domain by setting to 1 the CPUI, MPORTI, XPORTI, DPORTI, IPORTI, and CPI bits
of the idle configuration register (ICR). Note that the MPORT will not go into idle mode if the USB
CDMA or DMA controllers is not idled.

7. Apply the new idle configuration by executing the “IDLE” instruction. The content of ICR is copied to
the idle status register (ISTR). The bits of ISTR are then propagated through the CPU domain system
to enable or disable the specified clocks.

The IDLE instruction cannot be executed in parallel with another instruction.

To exit the IDLE2 power configuration, follow these steps:
1. Generate the wake-up interrupt you specified during the IDLE2 power down procedure.
2. After the interrupt is generated, the DSP will execute the interrupt service routine.
3. After exiting the interrupt service routine, code execution will resume from the point where the “IDLE”

instruction was originally executed.

You can also exit the IDLE2 power configuration by generating a hardware reset. However, in this case,
the DSP is completely reset and the state of the DSP before going into IDLE2 is lost.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Power Management www.ti.com

86 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.5.6.2 IDLE3 Procedure
In this power configuration all the power domains are turned on, the CPU and clock generator domains
are disabled, and the RTC clock domain is enabled. The DSP peripherals and the USB are also disabled
in this mode. When you enter this power configuration, all CPU and peripheral activity in the DSP is
stopped.

Since the clock generator domain is disabled, you must allow enough time for the PLL to re-lock before
exiting this power configuration.

Follow these steps to enter the IDLE3 power configuration:
1. Wait for completion of all DMA transfers. You can poll the DMA transfer status and disable DMA

transfers through the DMA registers.
2. Disable the USB clock domain as described in Section 1.5.3.4.
3. Idle all the desired peripherals in the peripheral clock domain by modifying the peripheral clock gating

configuration registers (PCGCR1 and PCGCR2). See Section 1.5.3.2 for more details on setting the
DSP peripherals to idle mode.

4. Disable the clock generator domain as described in Section 1.5.3.3.
5. Clear all interrupts by writing ones to the CPU interrupt flag registers (IFR0 and IFR1).
6. Enable the appropriate wake-up interrupt in the CPU interrupt enable registers (IER0 and IER1).

• If using the WAKEUP pin to exit this mode:
(a) Configure the WAKEUP pin as an input by setting WU_DIR = 1 in the RTC power

management register (RTCPMGT)
(b) Enable the external event interrupt by setting EXTINTEN = 1 in the RTCINTREG register.

• If using the RTC alarm or periodic interrupt as a wake-up event, the RTCINTEN bit must be set in
the RTC interrupt enable register (RTCINTEN).

7. Disable the CPU domain by setting to 1 the CPUI, MPORTI, XPORTI, DPORTI, IPORTI, and CPI bits
of the idle configuration register (ICR).

8. Bypass the PLL by setting SYSCLKSEL = 0 in the CCR2 register.
9. Power down the PLL by setting the PCR register to A000h.
10. Apply the new idle configuration by executing the IDLE instruction. The content of ICR is copied to the

idle status register (ISTR). The bits of ISTR are then propagated through the CPU domain system to
enable or disable the specified clocks.

The IDLE instruction cannot be executed in parallel with another instruction.

To exit the IDLE3 power configuration, follow these steps:
1. Generate the wake-up interrupt you specified during the IDLE3 power down procedure.
2. After the interrupt is generated, the DSP will execute the interrupt service routine.
3. After exiting the interrupt service routine, code execution will resume from the point where the “IDLE”

instruction was originally executed.
4. Enable the clock generator domain as described in Section 1.5.3.3. You can also enable the clock

generator domain inside the interrupt service routine.

You can also exit the IDLE3 power configuration by generating a hardware reset, however, in this case the
DSP is completely reset and the state of the DSP before going into IDLE3 is lost.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Power Management

87SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.5.6.3 Core Voltage Scaling
When the core voltage domain (CVDD) is ON, it can be set to two voltages: 1.3 V or 1.05 V (nominal). The
core voltage can be reduced during periods of low processing demand and increased during high
demand. Core voltage scaling can be accomplished with an external power management IC (LDO, DC-
DC, etc). When the core voltage is decreased (1.3 V to 1.05 V), care must be taken to ensure device
stability. The following rules must be followed to maintain stability:
• When using an external PMIC (power management IC), the board designer must ensure that the 1.3 V

to 1.05 V transition does not have ringing that would violate our VDDC minimum rating (1.05 V - 5% =
0.998 V).

• Software must ensure that the clock speed of the device does not exceed the maximum speed of the
device at the lower voltage before making the voltage transition. For example, if the device is running
at 100 MHz @ 1.3 V, then the PLL must be changed to 50 MHz before changing the core voltage to
1.05 V.

When the core voltage is increased (1.05 V to 1.3 V) clock speed is not an issue since the device can
operate faster at the higher voltage. However, when switching from 1.05 V to 1.3 V software must allow
time for the voltage transition to reach the 1.3 V range. Additionally, external regulators might produce an
overshoot that must not pass the maximum operational voltage of the core supply (see the Recommended
Operating Conditions section in device-specific data manual). Otherwise, the device will be operating out
of specification. This could happen if large current draw occurs while the regulator transitions to the higher
voltage.

For external PMICs, the step response varies greatly and it is up to the system designer to ensure that the
ringing is maintained within the DSP's core supply high voltage operational tolerance (see the
Recommended Operating Conditions section in device-specific data manual).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Interrupts www.ti.com

88 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.6 Interrupts
Vector-relative locations and priorities for all internal and external interrupts are shown in Table 1-33.

(1) Absolute addresses of the interrupt vector locations are determined by the contents of the IVPD and IVPH registers. Interrupt
vectors for interrupts 0-15 and 24-31 are relative to IVPD. Interrupt vectors for interrupts 16-23 are relative to IVPH.

(2) The NMI signal is internally tied high (not asserted). However, NMI interrupt vector can be used for SINT1.

Table 1-33. Interrupt Table

NAME
SOFTWARE

(TRAP)
EQUIVALENT

RELATIVE
LOCATION

(HEX BYTES) (1)
PRIORITY FUNCTION

RESET SINT0 0x0 0 Reset (hardware and software)
NMI (2) SINT1 0x8 1 Non-maskable interrupt
INT0 SINT2 0x10 3 External user interrupt #0
INT1 SINT3 0x18 5 External user interrupt #1
TINT SINT4 0x20 6 Timer aggregated interrupt

PROG0 SINT5 0x28 7 Programmable transmit interrupt 0 (I2S0 transmit or
MMC/SD0 interrupt)

UART SINT6 0x30 9 UART interrupt
PROG1 SINT7 0x38 10 Programmable receive interrupt 1 (I2S0 receive or

MMC/SD0 SDIO interrupt)
DMA SINT8 0x40 11 DMA aggregated interrupt

PROG2 SINT9 0x48 13 Programmable transmit interrupt 1 (I2S1 transmit or
MMC/SD1 interrupt)

- SINT10 0x50 14 Software interrupt
PROG3 SINT11 0x58 15 Programmable receive interrupt 3 (I2S1 Receive or

MMC/SD1 SDIO interrupt)
LCD SINT12 0x60 17 LCD interrupt.
SAR SINT13 0x68 18 10-bit SAR A/D conversion or pin interrupt

XMT2 SINT14 0x70 21 I2S2 transmit interrupt
RCV2 SINT15 0x78 22 I2S2 receive interrupt
XMT3 SINT16 0x80 4 I2S3 transmit interrupt
RCV3 SINT17 0x88 8 I2S3 receive interrupt
RTC SINT18 0x90 12 Wakeup or real-time clock interrupt
SPI SINT19 0x98 16 SPI interrupt
USB SINT20 0xA0 19 USB Interrupt
GPIO SINT21 0xA8 20 GPIO aggregated interrupt
I2C SINT23 0xB8 24 I2C interrupt

BERR SINT24 0xC0 2 Bus error interrupt
DLOG SINT25 0xC8 25 Data log interrupt
RTOS SINT26 0xD0 26 Real-time operating system interrupt

- SINT27 0xD8 14 Software interrupt #27
- SINT28 0xE0 15 Software interrupt #28
- SINT29 0xE8 16 Software interrupt #29
- SINT30 0xF0 17 Software interrupt #30
- SINT31 0xF8 18 Software interrupt #31

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Interrupts

89SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.6.1 IFR and IER Registers
The interrupt flag register 0 (IFR0) and interrupt enable register 0 (IER0) bit layouts are shown in Figure 1-
29 and described in Table 1-34 .

Figure 1-29. IFR0 and IER0 Register
15 14 13 12 11 10 9 8

RCV2 XMT2 SAR LCD PROG3 Reserved PROG2 DMA
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

7 6 5 4 3 2 1 0
PROG1 UART PROG0 TINT INT1 INT0 Reserved
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-34. IFR0 and IER0 Register Description

Bit Field Value Description
15 RCV2 1-0 I2S2 receive interrupt flag/mask bit.
14 XMT2 1-0 I2S2 transmit interrupt flag/mask bit.
13 SAR 1-0 10-BIT SAR A/D conversion or pin interrupt flag/mask bit.
12 LCD 1-0 LCD interrupt bit.
11 PROG3 1-0 Programmable receive interrupt 3 flag/mask bit. This bit is used as either the I2S1 receive interrupt

flag/mask bit or the MMC/SD1 SDIO interrupt flag/mask bit. The function of this bit is selected
depending on the setting of the SP1MODE bit is in external bus selection register. If SP1MODE =
00b, this bit supports MMC/SD1 SDIO interrupts. If SP1MODE = 01, this bit supports I2S1
interrupts.

10 Reserved 0 Reserved. This bit should always be written with 0.
9 PROG2 1-0 Programmable transmit interrupt 2 flag/mask bit. This bit is used as either the I2S1 transmit

interrupt flag/mask bit or the MMC/SD1 interrupt flag/mask bit. The function of this bit is selected
depending on the setting of the SP1MODE bit in the external bus selection register. If SP1MODE =
00b, this bit supports MMC/SD1 interrupts. If SP1MODE = 01, this bit supports I2S1 interrupts.

8 DMA 1-0 DMA aggregated interrupt flag/mask bit
7 PROG1 1-0 Programmable receive interrupt 1 flag/mask bit. This bit is used as either the I2S0 receive interrupt

flag/mask bit or the MMC/SD0 SDIO interrupt flag/mask bit. The function of this bit is selected
depending on the setting of the SP0MODE bit in the external bus selection register. If SP0MODE =
00b, this bit supports MMC/SD0 SDIO interrupts. If SP0MODE = 01, this bit supports I2S0
interrupts.

6 UART 1-0 UART interrupt flag/mask bit
5 PROG0 1-0 Programmable transmit interrupt 0 flag/mask bit. This bit is used as either the I2S0 transmit

interrupt flag/mask bit or the MMC/SD0 interrupt flag/mask bit. The function of this bit is selected
depending on the setting of the SP0MODE bit in the external bus selection register. If SP0MODE =
00b, this bit supports MMC/SD0 interrupts. If SP0MODE = 01, this bit supports I2S0 interrupts.

4 TINT 1-0 Timer aggregated interrupt flag/mask bit.
3 INT1 1-0 External user interrupt #1 flag/mask bit.
2 INT0 1-0 External user interrupt #0 flag/mask bit.

1-0 Reserved 0 Reserved. This bit should always be written with 0.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Interrupts www.ti.com

90 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

The interrupt flag register (IFR1) and interrupt enable register 1 (IER1) bit layouts are shown in Figure 1-
30 and described in Table 1-35.

Figure 1-30. IFR1 and IER1 Register
15 11 10 9 8

Reserved RTOS DLOG BERR
R-0 R/W-0 R/W-0 R/W-0

7 6 5 4 3 2 1 0
I2C Reserved GPIO USB SPI RTC RCV3 XMT3

R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-35. IFR1 and IER1 Register Description

Bit Field Value Description
15-11 Reserved 0 Reserved. These bits should always be written with 0.

10 RTOS 1-0 Real-Time operating system interrupt flag/mask bit.
9 DLOG 1-0 Data log interrupt flag/mask bit.
8 BERR 1-0 Bus error interrupt flag/mask bit.
7 I2C 1-0 I2C interrupt flag/mask bit.
6 Reserved 0 Reserved.
5 GPIO 1-0 GPIO aggregated interrupt flag/mask bit.
4 USB 1-0 USB interrupt flag/mask bit.
3 SPI 1-0 SPI interrupt flag/mask bit.
2 RTC 1-0 Wakeup or real-time clock interrupt flag/mask bit.
1 RCV3 1-0 I2S3 receive interrupt flag/mask bit.
0 XMT3 1-0 I2S3 transmit interrupt flag/mask bit.

1.6.2 Interrupt Timing
The interrupt signals on the external interrupts pins (INT0 and INT1) are detected with a synchronous
negative edge detector circuit. To reliably detect the external interrupts, the interrupt signal must have at
least 2 SYSCLK high followed by at least 2 SYSCLK low.

To define the minimum low pulse width in nanoseconds scale, you should take into account that the on-
chip PLL of the device is software programmable and that your application may be dynamically changing
the frequency of PLL. You should use the slowest frequency that will be used by your application to
calculate the minimum interrupt pulse duration in nanoseconds.

When the system master clock is disabled (SYSCLKDIS =1), the external interrupt pins (INT0 and INT1)
will be asynchronously latched and held low while the clocks are re-enabled. Once the clocks are re-
enabled, the DSP will latch the interrupt in the IFR.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Interrupts

91SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.6.3 Timer Interrupt Aggregation Flag Register (TIAFR) [1C14h]
The CPU has only one interrupt flag that is shared among the three timers. The CPU's interrupt flag is bit
4 (TINT) of the IFR0 and IER0 registers (see Figure 1-29, IFR0 and IER0 Register). Since the interrupt
flag is shared, software must have a means of determining which timer instance caused the interrupt.
Therefore, the timer interrupt aggregation flag register (TIAFR) is a secondary flag register that serves this
purpose.

The timer interrupt aggregation flag register (TIAFR) latches each timer (Timer 0, Timer 1, and Timer 2)
interrupt signal when the timer counter expires. Using this register, the programmer can determine which
timer generated the timer aggregated CPU interrupt signal (TINT).

Each Timer flag in TIAFR needs to be cleared by the CPU with a write of 1. Note that the IFR0 (TINT) bit
is automatically cleared when entering the interrupt service routine (ISR). Therefore there is no need to
manually clear it in the ISR. If two (or more) timers happen to interrupt simultaneously, the TIAFR register
will indicate the two (or more) interrupt flags. In this case, the ISR can choose to service both timer
interrupts or only one-at-a-time. If the ISR services only one of them, then it should clear only one of the
TIAFR flags and upon exiting the ISR, the CPU will immediately be interrupted again to service the second
timer flag. If the ISR services all of them, then it should clear all of them in the TIAFR flags and upon
exiting the ISR, the CPU won't be interrupted again until a new timer interrupt comes in. For more
information, see Section 5.1 .

1.6.4 GPIO Interrupt Enable and Aggregation Flag Registers
The CPU has only one interrupt flag that is shared among all GPIO pin interrupt signals. The CPU's
interrupt flag is bit 5 (GPIO) of the IFR1 and IER1 registers (see Figure 1-30, IFR1 and IER1 Register).
Since the interrupt flag is shared, software must have a means of determining which GPIO pin caused the
interrupt. Therefore, the GPIO interrupt aggregation flag registers (IOINTFLG1 and IOINTFLG2) are
secondary flag registers that serve this purpose.

If any of the GPIO pins are configured as inputs, they can be enabled to accept external signals as
interrupts using the GPIO Interrupt Enable Registers (IOINTEN1 and IOINTEN2). The GPIO Interrupt Flag
Registers (IOINTFLG1 and IOINTFLG2) can be used to determine which of the GPIO pins triggered the
interrupt.

Note that the IFR0 (GPIO) bit is automatically cleared when entering the interrupt service routine (ISR).
Therefore, there is no need to manually clear it in the ISR. If two (or more) GPIO pins happen to interrupt
simultaneously, the IOINTFLG1/IOINTFLG2 register indicates the two (or more) interrupt flags. In this
case, the ISR can choose to service both/all GPIO interrupts or only one-at-a-time.

If the ISR services only one of them, then it should clear only one of the IOINTFLG1/IOINTFLG2 flags and
upon exiting the ISR, the CPU is immediately interrupted again to service the others. For more
information, see Section 12.3.11, GPIO Interrupt Flag Registers (IOINTFLG1 and IOINTFLG2).

1.6.5 DMA Interrupt Enable and Aggregation Flag Registers
The CPU has only one interrupt flag that is shared among the 16 DMA interrupt sources. The CPU's
interrupt flag is bit 8 (DMA) of the IFR0 and IER0 registers (see Figure 1-29, IFR0 and IER0 Register).
Since the interrupt flag is shared, software must have a means of determining which DMA instance
caused the interrupt. Therefore, the DMA interrupt aggregation flag registers (DMAIFR) are secondary flag
registers that serve this purpose.

Each of the four channels of a DMA controller has its own interrupt, which you can enable or disable a
channel interrupt though the DMAnCHm bits of the DMA Interrupt Enable Register (DMAIER) (see
Section 1.7.4.2.1). The interrupts from the four DMA controllers are combined into a single CPU interrupt.
You can determine which DMA channel generated the interrupt by reading the bits of the DMA interrupt
flag register (DMAIFR).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

System Configuration and Control www.ti.com

92 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.7 System Configuration and Control

1.7.1 Overview
The DSP includes system-level registers for controlling, configuring, and reading status of the device.
These registers are accessible by the CPU and support the following features:
• Device Identification
• Device Configuration

– Pin multiplexing control
– Output drive strength configuration
– Internal pullup and pulldown enable/disable
– On-chip LDO control

• DMA Controller Configuration
• Peripheral Reset
• USB Byte Access

1.7.2 Device Identification
The DSP includes a set of device ID registers that are intended for use in TI chip manufacturing, but can
be used by users as a 128-bit unique ID for each device. These registers are summarized in the following
table.

(1) Die ID registers are reserved for TMS320C5545.

Table 1-36. Die ID Registers

CPU Word
Address

Acronym Register Description (1) Section

1C40h DIEIDR0 Die ID Register 0 Section 1.7.2.1
1C41h DIEIDR1 Die ID Register 1 Section 1.7.2.2
1C42h DIEIDR2 Die ID Register 2 Section 1.7.2.3
1C43h DIEIDR3 Die ID Register 3 Section 1.7.2.4
1C44h DIEIDR4 Die ID Register 4 Section 1.7.2.5
1C45h DIEIDR5 Die ID Register 5 Section 1.7.2.6
1C46h DIEIDR6 Die ID Register 6 Section 1.7.2.7
1C47h DIEIDR7 Die ID Register 7 Section 1.7.2.8

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com System Configuration and Control

93SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.7.2.1 Die ID Register 0 (DIEIDR0) [1C40h]
The die ID register 0 (DIEIDR0) is shown in Figure 1-31 and described in Table 1-37.

Figure 1-31. Die ID Register 0 (DIEIDR0) [1C40h]
15 0

DIEID0
R

LEGEND: R = Read only; -n = value after reset

Table 1-37. Die ID Register 0 (DIEIDR0) Field Descriptions

Bit Field Value Description
15-0 DIEID0 0-FFFFh Die ID bits.

1.7.2.2 Die ID Register 1 (DIEIDR1) [1C41h]
The die ID register 1 (DIEIDR1) is shown in Figure 1-32 and described in Table 1-38.

Figure 1-32. Die ID Register 1 (DIEIDR1) [1C41h]
15 14 13 0
Reserved DIEID1

R
LEGEND: R = Read only; -n = value after reset

Table 1-38. Die ID Register 1 (DIEIDR1) Field Descriptions

Bit Field Value Description
15-14 Reserved 0 Reserved.
13-0 DIEID1 0-3FFFh Die ID bits.

1.7.2.3 Die ID Register 2 (DIEIDR2) [1C42h]
The die ID register 2 (DIEIDR2) is shown in Figure 1-33 and described in Table 1-39.

Figure 1-33. Die ID Register 2 (DIEIDR2) [1C42h]
15 0

DIEID2
R

LEGEND: R = Read only; -n = value after reset

Table 1-39. Die ID Register 2 (DIEIDR2) Field Descriptions

Bit Field Value Description
15-0 DIEID2 0-FFFFh Die ID bits.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

System Configuration and Control www.ti.com

94 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.7.2.4 Die ID Register 3 (DIEIDR3) [1C43h]
The die ID register 3 (DIEIDR3) is shown in Figure 1-34 and described in Table 1-40.

Figure 1-34. Die ID Register 3 (DIEIDR3) [1C43h]
15 12 11 0

DesignRev DIEID3
R R

LEGEND: R = Read only; -n = value after reset

(1) Bits 15-12 are reserved on TMS320C5545.

Table 1-40. Die ID Register 3 (DIEIDR3) Field Descriptions

Bit Field Value Description
15-12 DesignRev 0-Fh Silicon Revision (1)

2 Silicon 2.2
11-0 DIEID3 0-3Fh Die ID bits.

1.7.2.5 Die ID Register 4 (DIEIDR4) [1C44h]
The die ID register 4 (DIEIDR4) is shown in Figure 1-35 and described in Table 1-41.

Figure 1-35. Die ID Register 4 (DIEIDR4) [1C44h]
15 6 5 0

Reserved DIEID4
R

LEGEND: R = Read only; -n = value after reset

Table 1-41. Die ID Register 4 (DIEIDR4) Field Descriptions

Bit Field Value Description
15-6 Reserved 0 Reserved.
5-0 DIEID4 0-3Fh Die ID bits.

1.7.2.6 Die ID Register 5 (DIEIDR5) [1C45h]
The die ID register 5 (DIEIDR5) is shown in Figure 1-36 and described in Table 1-42.

Figure 1-36. Die ID Register 5 (DIEIDR5) [1C45h]
15 0

Reserved
R

LEGEND: R = Read only; -n = value after reset

Table 1-42. Die ID Register 5 (DIEIDR5) Field Descriptions

Bit Field Value Description
15-0 Reserved 0 Reserved.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com System Configuration and Control

95SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.7.2.7 Die ID Register 6 (DIEIDR6) [1C46h]
The die ID register 6 (DIEIDR6) is shown in Figure 1-37 and described in Table 1-43.

Figure 1-37. Die ID Register 6 (DIEIDR6) [1C46h]
15 0

Reserved
R

LEGEND: R = Read only; -n = value after reset

Table 1-43. Die ID Register 6 (DIEIDR6) Field Descriptions

Bit Field Value Description
15-0 Reserved 0 Reserved.

1.7.2.8 Die ID Register 7 (DIEIDR7) [1C47h]
The die ID register 7 (DIEIDR7) is shown in Figure 1-38 and described in Table 1-44.

Figure 1-38. Die ID Register 7 (DIEIDR7) [1C47h]
15 0

Reserved
R

LEGEND: R = Read only; -n = value after reset

Table 1-44. Die ID Register 7 (DIEIDR7) Field Descriptions

Bit Field Value Description
15 Reserved 0 Reserved.

14-1 CHECKSUM 0-3FFFh Checksum bits.
0 Reserved 0 Reserved.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

System Configuration and Control www.ti.com

96 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.7.3 Device Configuration
The DSP includes registers for configuring pin multiplexing, the pin output slew rate, the internal pullups
and pulldowns.

1.7.3.1 External Bus Selection Register (EBSR)
The external bus selection register (EBSR) determines the mapping of the I2S2, I2S3, UART, SPI, and
GPIO signals to 21 signals of the external parallel port pins. It also determines the mapping of the I2S or
eMMC/SD/SDHC ports to serial port 0 pins and serial port 1 pins. The EBSR register is located at port
address 1C00h. Once the bit fields of this register are changed, the routing of the signals takes place on
the next CPU clock cycle.

Before modifying the values of the external bus selection register, you must clock gate all affected
peripherals through the Peripheral Clock Gating Control Register (for more information on clock gating
peripherals, see Section 1.5.3.2). After the external bus selection register has been modified, you must
reset the peripherals before using them through the Peripheral Software Reset Counter Register.

After the boot process is complete, the external bus selection register must be modified only once, during
device configuration. Continuously switching the EBSR configuration is not supported. The bootloader
process will modify the EBSR register from its reset value.

The external bus selection register (EBSR) is shown in Figure 1-39 and described in Table 1-45.

Figure 1-39. External Bus Selection Register (EBSR) [1C00h]
15 14 12 11 10 9 8

Reserved PPMODE SP1MODE SP0MODE

R-0 R/W-000 R/W-00 R/W-00

7 6 5 4 3 2 1 0
Reserved

R-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-45. EBSR Register Bit Descriptions Field Descriptions

Bit Field Value Description
15 Reserved 0 Reserved. Read-only, writes have no effect.

14-12 PPMODE Parallel Port Mode Control Bits. These bits control the pin multiplexing of the LCD Controller, SPI,
UART, I2S2, I2S3, and GP[31:27, 20:12] pins on the parallel port.

000 Mode 0 (16-bit LCD Controller). All 21 signals of the LCD Bridge module are routed to the 21
external signals of the parallel port.

001 Mode 1 (SPI, GPIO, UART, and I2S2). 7 signals of the SPI module, 6 GPIO signals, 4 signals of
the UART module and 4 signals of the I2S2 module are routed to the 21 external signals of the
parallel port.

010 Mode 2 (8-bit LCD Controller and GPIO). 8-bits of pixel data of the LCD Controller module and 8
GPIO are routed to the 21 external signals of the parallel port.

011 Mode 3 (8-bit LCD Controller, SPI, and I2S3). 8-bits of pixel data of the LCD Controller module, 4
signals of the SPI module and 4 signals of the I2S3 module are routed to the 21 external signals of
the parallel port.

100 Mode 4 (8-bit LCD Controller, I2S2, and UART). 8-bits of pixel data of the LCD Controller module, 4
signals of the I2S2 module and 4 signals of the UART module are routed to the 21 external signals
of the parallel port.

101 Mode 5 (8-bit LCD Controller, SPI, and UART). 8-bits of pixel data of the LCD Controller module, 4
signals of the SPI module and 4 signals of the UART module are routed to the 21 external signals
of the parallel port.

110 Mode 6 (SPI, I2S2, I2S3, and GPIO). 7 signals of the SPI module, 4 signals of the I2S2 module, 4
signals of the I2S3 module, and 6 GPIO are routed to the 21 external signals of the parallel port.

111 Reserved

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com System Configuration and Control

97SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

Table 1-45. EBSR Register Bit Descriptions Field Descriptions (continued)
Bit Field Value Description

11-10 SP1MODE Serial Port 1 Mode Control Bits. The bits control the pin multiplexing of the eMMC/SD1, I2S1, and
GPIO pins on serial port 1.

00 Mode 0 (eMMC/SD1). All 6 signals of the eMMC/SD1 module are routed to the 6 external signals of
the serial port 1.

01 Mode 1 (I2S1 and GP[11:10]). 4 signals of the I2S1 module and 2 GP[11:10] signals are routed to
the 6 external signals of the serial port 1.

10 Mode 2 (GP[11:6]). 6 GPIO signals (GP[11:6]) are routed to the 6 external signals of the serial port
1.

11 Reserved
9-8 SP0MODE Serial Port 0 Mode Control Bits. The bits control the pin multiplexing of the eMMC/SD0, I2S0, and

GPIO pins on serial port 0.
00 Mode 0 (eMMC/SD0). All 6 signals of the eMMC/SD0 module are routed to the 6 external signals of

the serial port 0.
01 Mode 1 (I2S0 and GP[5:0]). 4 signals of the I2S0 module and 2 GP[5:4] signals are routed to the 6

external signals of the serial port 0.
10 Mode 2 (GP[5:0]). 6 GPIO signals (GP[5:0]) are routed to the 6 external signals of the serial port 0.
11 Reserved

7-0 Reserved 0 Reserved. Read-only. Writes have no effect.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

System Configuration and Control www.ti.com

98 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.7.3.2 LDO Control for TMS320C5545/35/34
All three LDOs can be simultaneously disabled via software by writing to either the BG_PD bit or the
LDO_PD bit in the RTCPMGT register (see Section 1.5.4.1). When the LDOs are disabled via this
mechanism, the only way to re-enable them is by asserting the WAKEUP signal pin (which must also have
been previously enabled to allow wakeup), or by a previously enabled and configured RTC alarm, or by
cycling power to the CVDDRTC pin.

ANA_LDO: The ANA_LDO is only disabled by the BG_PD and the LDO_PD mechanism described above.
Otherwise, it is always enabled.

DSP_LDO: The DSP_LDO can be statically disabled by the DSP_LDO_EN pin as described in
Section 1.5.5.1.1.2, LDO Outputs. It can be also dynamically disabled via the BG_PD and the LDO_PD
mechanism described above. The DSP_LDO can change its output voltage dynamically by software via
the DSP_LDO_V bit in the LDOCNTL register (see Figure 1-40). The DSP_LDO output voltage is set to
1.3 V at reset.

For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for
proper operation after reset.

USB_LDO: The USB_LDO can be independently and dynamically enabled or disabled by software via the
USB_LDO_EN bit in the LDOCNTL register (see Figure 1-40). The USB _LDO is disabled at reset.

Table 1-47 shows the ON/OFF control of each LDO and its register control bit configurations.

15 8
Reserved

R-0

7 2 1 0
Reserved DSP_LDO_V USB_LDO_EN

R-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 1-40. LDO Control Register (LDOCNTL) [7004h]

Table 1-46. LDOCNTL Register Bit Descriptions

BIT NAME DESCRIPTION
15:2 RESERVED Reserved. Read-only, writes have no effect.

1 DSP_LDO_V

DSP_LDO voltage select bit.
0 = DSP_LDOO is regulated to 1.3 V.
1 = DSP_LDOO is regulated to 1.05 V.
Note: For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core
voltage, CVDD, for proper operation after reset.

0 USB_LDO_EN
USB_LDO enable bit.
0 = USB_LDO output is disabled. USB_LDOO pin is placed in high-impedance (Hi-Z) state.
1 = USB_LDO output is enabled. USB_LDOO is regulated to 1.3 V.

Table 1-47. LDO Controls Matrix

RTCPMGT Register
(1930h)

LDOCNTL Register
(7004h) DSP_LDO_EN ANA_LDO DSP_LDO USB_LDO

BG_PD Bit LDO_PD Bit USB_LDO_EN Bit
1 Don't Care Don't Care Don't Care OFF OFF OFF

Don't Care 1 Don't Care Don't Care OFF OFF OFF
0 0 0 Low ON ON OFF
0 0 0 High ON OFF OFF
0 0 1 Low ON ON ON

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com System Configuration and Control

99SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.7.3.3 LDO Control for TMS320C5533
Both LDOs can be simultaneously disabled via software by writing to either the BG_PD bit or the LDO_PD
bit in the RTCPMGT register (see Section 1.5.4.1). When the LDOs are disabled via this mechanism, the
only way to re-enable them is by asserting the WAKEUP signal pin (which must also have been previously
enabled to allow wakeup), or by a previously enabled and configured RTC alarm, or by cycling power to
the CVDDRTC pin.

ANA_LDO: The ANA_LDO is only disabled by the BG_PD and the LDO_PD mechanism described above.
Otherwise, it is always enabled.

USB_LDO: The USB_LDO can be independently and dynamically enabled or disabled by software via the
USB_LDO_EN bit in the LDOCNTL register (see Figure 1-41). The USB _LDO is disabled at reset.

Table 1-49 shows the ON/OFF control of each LDO and its register control bit configurations.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

System Configuration and Control www.ti.com

100 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

15 8
Reserved

R-0

7 1 0
Reserved USB_LDO_EN

R-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 1-41. LDO Control Register (LDOCNTL) [7004h]

Table 1-48. LDOCNTL Register Bit Descriptions

BIT NAME DESCRIPTION
15:1 RESERVED Reserved. Read-only. Writes have no effect.

0 USB_LDO_EN
USB_LDO enable bit.
0 = USB_LDO output is disabled. USB_LDOO pin is placed in high-impedance (Hi-Z) state.
1 = USB_LDO output is enabled. USB_LDOO is regulated to 1.3 V.

Table 1-49. LDO Controls Matrix

RTCPMGT Register
(1930h)

LDOCNTL Register
(7004h) DSP_LDO_EN ANA_LDO USB_LDO

BG_PD Bit LDO_PD Bit USB_LDO_EN Bit
1 Don't Care Don't Care High OFF OFF

Don't Care 1 Don't Care High OFF OFF
0 0 0 High ON OFF
0 0 0 High ON OFF
0 0 1 High ON ON

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com System Configuration and Control

101SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.7.3.4 Output Slew Rate Control Register (OSRCR) [1C16h]
To provide the lowest power consumption setting, the DSP has configurable slew rate control on the
CLKOUT output pin. The output slew rate control register (OSRCR) is used to set a subset of the device
I/O pins, namely the CLKOUT pin, to either fast or slow slew rate. The slew rate feature is implemented by
staging/delaying turn-on times of the parallel p-channel drive transistors and parallel n-channel drive
transistors of the output buffer. In the slow slew rate configuration, the delay is longer, but ultimately the
same number of parallel transistors are used to drive the output high or low; therefore, the drive strength
is ultimately the same. The slower slew rate control can be used for power savings and has the greatest
effect at a lower DVDDIO voltage.

The output slew rate control register (OSRCR) is shown in Figure 1-42 and described in Table 1-50.

Figure 1-42. Output Slew Rate Control Register (OSRCR) [1C16h]
15 3 2 1 0

Reserved CLKOUTSR Reserved
R-0 RW-1 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-50. Output Slew Rate Control Register (OSRCR) Field Descriptions

Bit Field Value Description
15-3 Reserved 0 Reserved.

2 CLKOUTSR CLKOUT pin output slew rate bits. These bits set the slew rate for the CLKOUT pin.
0 Slow slew rate
1 Fast slew rate

1-0 Reserved 0 Reserved.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

System Configuration and Control www.ti.com

102 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.7.3.5 Pullup/Pulldown Inhibit Register (PDINHIBR1, PDINHIBR2, and PDINHIBR3 [1C17h, 1C18h, and
1C19h]

The device allows you to individually enable or disable the internal pullup and pulldown resistors. You can
individually inhibit the pullup and pulldown resistors of the I/O pins through the pulldown/up inhibit
registers (PDINHIBRn). There is one pin, TRSTN, that has a pulldown that is permanently enabled and
cannot be disabled.

The pulldown inhibit register 1 (PDINHIBR1) is shown in Figure 1-43 and described in Table 1-51.

Figure 1-43. Pulldown Inhibit Register 1 (PDINHIBR1) [1C17h]
15 14 13 12 11 10 9 8

Reserved S15PD S14PD S13PD S12PD S11PD S10PD
R-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

7 6 5 4 3 2 1 0
Reserved S05PD S04PD S03PD S02PD S01PD S00PD

R-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-51. Pulldown Inhibit Register 1 (PDINHIBR1) Field Descriptions

Bit Field Value Description
15-14 Reserved 0 Reserved.

13 S15PD Serial port 1 pin 5 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.
0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

12 S14PD Serial port 1 pin 4 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.
0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

11 S13PD Serial port 1 pin 3 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.
0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

10 S12PD Serial port 1 pin 2 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.
0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

9 S11PD Serial port 1 pin 1 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.
0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

8 S10PD Serial port 1 pin 0 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.
0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

7-6 Reserved 0 Reserved.
5 S05PD Serial port 0 pin 5 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.

0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

4 S04PD Serial port 0 pin 4 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.
0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

3 S03PD Serial port 0 pin 3 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.
0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com System Configuration and Control

103SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

Table 1-51. Pulldown Inhibit Register 1 (PDINHIBR1) Field Descriptions (continued)
Bit Field Value Description
2 S02PD Serial port 0 pin 2 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.

0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

1 S01PD Serial port 0 pin 1 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.
0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

0 S00PD Serial port 0 pin 0 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.
0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

The pulldown inhibit register 2 (PDINHIBR2) is shown in and described in .

Figure 1-44. Pulldown Inhibit Register 2 (PDINHIBR2) [1C18h]
15 14 13 12 11 10 9 8

Reserved INT1PU INT0PU RESETPU EMU01PU TDIPU TMSPU TCKPU
R-0 R/W-1 R/W-1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

7 6 5 4 3 2 1 0
Reserved

R-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-52. Pulldown Inhibit Register 2 (PDINHIBR2) Field Descriptions

Bit Field Value Description
15 Reserved 0 Reserved.
14 INT1PU Interrupt 1 pin pullup inhibit bit. Setting this bit to 1 disables the pin's internal pullup.

0 Pin pullup is enabled.
1 Pin pullup is disabled.

13 INT0PU Interrupt 0 pin pullup inhibit bit. Setting this bit to 1 disables the pin's internal pullup.
0 Pin pullup is enabled.
1 Pin pullup is disabled.

12 RESETPU Reset pin pullup inhibit bit. Setting this bit to 1 disables the pin's internal pullup.
0 Pin pullup is enabled.
1 Pin pullup is disabled.

11 EMU01PU EMU1 and EMU0 pin pullup inhibit bit. Setting this bit to 1 disables the pin's internal pullup.
0 Pin pullup is enabled.
1 Pin pullup is disabled.

10 TDIPU TDI pin pullup inhibit bit. Setting this bit to 1 disables the pin's internal pullup.
0 Pin pullup is enabled.
1 Pin pullup is disabled.

9 TMSPU TMS pin pullup inhibit bit. Setting this bit to 1 disables the pin's internal pullup.
0 Pin pullup is enabled.
1 Pin pullup is disabled.

8 TCKPU TCK pin pullup inhibit bit. Setting this bit to 1 disables the pin's internal pullup.
0 Pin pullup is enabled.
1 Pin pullup is disabled.

7-0 Reserved 0 Reserved.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

System Configuration and Control www.ti.com

104 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

The pulldown inhibit register 3 (PDINHIBR3) is shown in Figure 1-45 and described in Table 1-53.

Figure 1-45. Pulldown Inhibit Register 3 (PDINHIBR3) [1C19h]
15 14 13 12 11 10 9 8

PD15PD PD14PD PD13PD PD12PD PD11PD PD10PD PD9PD PD8PD
R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

7 6 5 4 3 2 1 0
PD7PD PD6PD PD5PD PD4PD PD3PD PD2PD Reserved
R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-53. Pulldown Inhibit Register 3 (PDINHIBR3) Field Descriptions

Bit Field Value Description
15 PD15PD Parallel port pin 15 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.

0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

14 PD14PD Parallel port pin 14 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.
0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

13 PD13PD Parallel port pin 13 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.
0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

12 PD12PD Parallel port pin 12 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.
0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

11 PD11PD Parallel port pin 11 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.
0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

10 PD10PD Parallel port pin 10 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.
0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

9 PD9PD Parallel port pin 9 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.
0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

8 PD8PD Parallel port pin 8 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.
0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

7 PD7PD Parallel port pin 7 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.
0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

6 PD6PD Parallel port pin 6 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.
0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

5 PD5PD Parallel port pin 5 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.
0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

4 PD4PD Parallel port pin 4 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.
0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com System Configuration and Control

105SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

Table 1-53. Pulldown Inhibit Register 3 (PDINHIBR3) Field Descriptions (continued)
Bit Field Value Description
3 PD3PD Parallel port pin 3 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.

0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

2 PD2PD Parallel port pin 2 pulldown inhibit bit. Setting this bit to 1 disables the pin's internal pulldown.
0 Pin pulldown is enabled.
1 Pin pulldown is disabled.

1-0 Reserved 0 Reserved.

1.7.4 DMA Controller Configuration
The DSP includes four DMA controllers that allow movement of blocks of data among internal memory,
external memory, and peripherals to occur without intervention from the CPU and in the background of
CPU operation. Each DMA has an EVENT input signal (per channel) that can be used to tell it when to
start the block transfer. And each DMA has an interrupt output (per channel) that can signal the CPU
when the block transfer is completed. While most DMA configuration registers are described in Chapter 3,
Direct Memory Access (DMA) Controller , the EVENT source and interrupt aggregation is more of a
system-level concern and, therefore, they are best described in this guide.

The following sections provide more details on these features. In this section and subsections, the
following notations will be used:
• Lowercase, italicized, n is an integer, 0-3, representing each of the 4 DMAs.
• Lowercase, italicized, m is an integer, 0-3, representing each of the 4 channels within each DMA.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

System Configuration and Control www.ti.com

106 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.7.4.1 DMA Synchronization Events
The DMA controllers allow activity in their channels to be synchronized to selected events. The DSP
supports separate synchronization events and each channel can be tied to separate sync events
independent of the other channels. Synchronization events are selected by programming the CHnEVT
field in the DMAn channel event source registers (DMAnCESR1 and DMAnCESR2) (where n is an
integer, 0-3, representing each of the 4 DMAs). The synchronization events available to each DMA
controller are shown in Table 1-54.

Table 1-54. Channel Synchronization Events for DMA Controllers

CHmEVT Options

DMA0
Synchronization

Event

DMA1
Synchronization

Event

DMA2
Synchronization

Event

DMA3 Synchronization
Event

0000b Reserved Reserved Reserved Reserved
0001b I2S0 transmit event I2S2 transmit event I2C transmit event I2S1 transit event
0010b I2S0 receive event I2S2 receive event I2C receive event I2S1 receive event
0011b Reserved Reserved SAR A/D event Reserved
0100b Reserved Reserved I2S3 transmit event Reserved

0101b
eMMC/SD0 transmit

event UART transmit event I2S3 receive event Reserved
0110b eMMC/SD0 receive

event UART receive event Reserved Reserved
0111b eMMC/SD1 transmit

event Reserved Reserved Reserved
1000b eMMC/SD1 receive

event Reserved Reserved Reserved
1001b Reserved Reserved Reserved Reserved
1010b Reserved Reserved Reserved Reserved
1011b Reserved Reserved Reserved Reserved
1100b Timer 0 event Timer 0 event Timer 0 event Timer 0 event
1101b Timer 1 event Timer 1 event Timer 1 event Timer 1 event
1110b Timer 2 event Timer 2 event Timer 2 event Timer 2 event
1111b Reserved Reserved Reserved Reserved

1.7.4.2 DMA Configuration Registers
The system-level DMA registers are listed in Table 3-4. The DMA interrupt flag and enable registers
(DMAIFR and DMAIER) are used to control the aggregation and CPU interrupt generation for the four
DMA controllers and their associated channels. In addition, there are two registers per DMA controller
which control event synchronization in each channel; the DMAn channel event source registers
(DMAnCESR1 and DMAnCESR2).

Table 1-55. System Registers Related to the DMA Controllers

CPU Word
Address Acronym Register Description

1C30h DMAIFR DMA Interrupt Flag Register
1C31h DMAIER DMA Interrupt Enable Register
1C1Ah DMA0CESR1 DMA0 Channel Event Source Register 1
1C1Bh DMA0CESR2 DMA0 Channel Event Source Register 2
1C1Ch DMA1CESR1 DMA1 Channel Event Source Register 1
1C1Dh DMA1CESR2 DMA1 Channel Event Source Register 2
1C36h DMA2CESR1 DMA2 Channel Event Source Register 1
1C37h DMA2CESR2 DMA2 Channel Event Source Register 2
1C38h DMA3CESR1 DMA3 Channel Event Source Register 1
1C39h DMA3CESR2 DMA3 Channel Event Source Register 2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com System Configuration and Control

107SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.7.4.2.1 DMA Interrupt Flag Register (DMAIFR) [1C30h] and DMA Interrupt Enable Register (DMAIER)
[1C31h]

The DSP includes two registers for aggregating the four channel interrupts of the four DMA controllers.
Use the DMA interrupt enable register (DMAIER) to enable channel interrupts. At the end of a block
transfer, if the DMA controller channel interrupt enable (DMAnCHmIE) bit is 1, an interrupt request is sent
to the DSP CPU, where it can be serviced or ignored. Each channel can generate an interrupt, although
all channel interrupts are aggregated into a single DMA interrupt signal to the CPU.

To see which channel generated an interrupt, your program can read the DMA interrupt flag register
(DMAIFR). The DMA controller channel interrupt flag (DMAnCHmIF) bits are set to 1 when a DMA
channel generates an interrupt. Your program must manually clear the bits of DMAIFR by writing a 1 to
the bit positions to be cleared.

Figure 1-46. DMA Interrupt Flag Register (DMAIFR) [1C30h]
15 14 13 12 11 10 9 8

DMA3CH3IF DMA3CH2IF DMA3CH1IF DMA3CH0IF DMA2CH3IF DMA2CH2IF DMA2CH1IF DMA2CH0IF
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0
DMA1CH3IF DMA1CH2IF DMA1CH1IF DMA1CH0IF DMA0CH3IF DMA0CH2IF DMA0CH1IF DMA0CH0IF

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 1-47. DMA Interrupt Enable Register (DMAIER) [1C31h]
15 14 13 12 11 10 9 8

DMA3CH3IE DMA3CH2IE DMA3CH1IE DMA3CH0IE DMA2CH3IE DMA2CH2IE DMA2CH1IE DMA2CH0IE
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0
DMA1CH3IE DMA1CH2IE DMA1CH1IE DMA1CH0IE DMA0CH3IE DMA0CH2IE DMA0CH1IE DMA0CH0IE

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-56. DMA Interrupt Flag Register (DMAIFR) Field Descriptions

Bit Field Value Description
15-0 DMAnCHmIF Channel interrupt status bits.

0 DMA controller n, channel m has not completed its block transfer.
1 DMA controller n, channel m block transfer complete.

Table 1-57. DMA Interrupt Enable Register (DMAIER) Field Descriptions

Bit Field Value Description
15-0 DMAnCHmIE Channel interrupt enable bits.

0 DMA controller n, channel m interrupt is disabled.
1 DMA controller n, channel m interrupt is enabled.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

System Configuration and Control www.ti.com

108 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.7.4.2.2 DMAn Channel Event Source Registers (DMAnCESR1 and DMAnCESR2) [1C1Ah, 1C1Bh,
1C1Ch, 1C1Dh, 1C36h, 1C37h, 1C38h, and 1C39h]

Each DMA controller contains two channel event source registers (DMAnCESR1 and DMAnCESR2).
DMAnCESR1 controls the synchronization event for DMAn channel 0 and 1 while DMAnCESR2 controls
the synchronization event for DMAn channel 2 and 3.

The synchronization events available to each DMA controller are shown in Table 1-54. Multiple DMAs and
multiple channels within a DMA are allowed to have the same synchronization event.

Figure 1-48. DMAn Channel Event Source Register 1 (DMAnCESR1) [1C1Ah, 1C1Ch, 1C36h, and
1C38h]

15 12 11 8 7 4 3 0
Reserved CH1EVT Reserved CH0EVT

R-0 RW-0 R-0 RW-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 1-49. DMAn Channel Event Source Register 2 (DMAnCESR2) [1C1Bh, 1C1Dh, 1C37h, and
1C39h]

15 12 11 8 7 4 3 0
Reserved CH3EVT Reserved CH2EVT

R-0 RW-0 R-0 RW-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 1-58. DMAn Channel Event Source Register 1 (DMAnCESR1) Field Descriptions

Bit Field Value Description
15-12 Reserved 0 Reserved.
11-8 CH1EVT 0-Fh Channel 1 synchronization events. When SYNCMODE = 1 in a channel's DMACHmTCR2, the

CH1EVT bits in the DMAnCESR registers specify the synchronization event for activity in the DMA
controller. See Table 1-54 for a list of available synchronization event options.

7-4 Reserved 0 Reserved.
3-0 CH0EVT 0-Fh Channel 0 synchronization events. when SYNCMODE = 1 in a channel's DMACHmTCR2, the

CH0EVT bits in the DMAnCESR registers specify the synchronization event for activity in the DMA
controller. See Table 1-54 for a list of available synchronization event options.

Table 1-59. DMAn Channel Event Source Register 2 (DMAnCESR2) Field Descriptions

Bit Field Value Description
15-12 Reserved 0 Reserved.
11-8 CH3EVT 0-Fh Channel 3 synchronization events. When SYNCMODE = 1 in a channel's DMACHmTCR2, the

CH3EVT bits in the DMAnCESR registers specify the synchronization event for activity in the DMA
controller. See Table 1-54 for a list of available synchronization event options.

7-4 Reserved 0 Reserved.
3-0 CH2EVT 0-Fh Channel 2 synchronization events. When SYNCMODE = 1 in a channel's DMACHmTCR2, the

CH2EVT bits in the DMAnCESR registers specify the synchronization event for activity in the DMA
controller. See Table 1-54 for a list of available synchronization event options.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com System Configuration and Control

109SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

1.7.5 Peripheral Reset
All peripherals can be reset through software using the peripheral reset control register (PRCR). The
peripheral software reset counter register (PSRCR) controls the duration, in SYSCLK cycles, that the reset
signal is asserted low once activated by the bits in PRCR.

To reset a peripheral or group of peripherals, follow these steps:
1. Set COUNT = 08h in PSRCR.
2. Initiate the desired peripheral reset by setting to 1 the bits of PRCR.
3. Do not attempt to access the peripheral for at least the number of clock cycles set in the PSRCR

register. A repeated NOP may be necessary.

In some cases, a single reset is used for multiple peripherals. For example, PG4_RST controls the reset
to I2S2, I2S3, UART, and SPI.

1.7.5.1 Peripheral Software Reset Counter Register (PSRCR) [1C04h]
The Peripheral Software Reset Counter Register (PSRCR) is shown in Table 1-60 and described in
Table 1-60.

Figure 1-50. Peripheral Software Reset Counter Register (PSRCR) [1C04h]
15 0

COUNT
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 1-60. Peripheral Software Reset Counter Register (PSRCR) Field Descriptions

Bit Field Value Description
15-0 COUNT 0-FFFFh Count bits. These bits specify the number of system clock (SYSCLK) cycles the software

reset signals are asserted. When the software counter reaches 0, the software reset bits
will be cleared to 0. Always initialize this field with a value of at least 08h.

1.7.5.2 Peripheral Reset Control Register (PRCR) [1C05h]
Writing a 1 to any bits in this register initiates the reset sequence for the associated peripherals. The
associated peripherals will be held in reset for the duration of clock cycles set in the PSRCR register and
they should not be accessed during that time. Reads of this register return the state of the reset signal for
the associated peripherals. In other words, polling may be used to wait for the reset to become de-
asserted.

The Peripheral Reset Control Register (PRCR) is shown in Figure 1-51 and described in Table 1-61 .

Figure 1-51. Peripheral Reset Control Register (PRCR) [1C05h]
15 14 13 12 11 10 9 8

Reserved
R-0

7 6 5 4 3 2 1 0
PG4_RST Reserved PG3_RST DMA_RST USB_RST SAR_RST PG1_RST I2C_RST

R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

System Configuration and Control www.ti.com

110 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

Table 1-61. Peripheral Reset Control Register (PRCR) Field Descriptions

Bit Field Value Description
15-8 Reserved 0 Reserved. Always write 0 to these bits.

7 PG4_RST Peripheral group 4 software reset bit. Drives the I2S2, I2S3, UART, and SPI reset signal.
Write 0 Writing zero has no effect
Write 1 Writing one starts resetting the peripheral group
Read 0 Reading zero means that peripheral group is out of reset
Read 1 Reading one means the peripheral group is being held in reset and should not be accessed

6 Reserved 0 Reserved, always write 0 to this bit.
5 PG3_RST Peripheral group 3 software reset bit. Drives the MMC/SD0, MMC/SD1, I2S0, and I2S1 reset signal.

Write 0 Writing zero has no effect
Write 1 Writing one starts resetting the peripheral group
Read 0 Reading zero means that peripheral group is out of reset
Read 1 Reading one means the peripheral group is being held in reset and should not be accessed

4 DMA_RST DMA software reset bit. Drives the reset signal to all four controllers.
Write 0 Writing zero has no effect
Write 1 Writing one starts resetting the peripheral group
Read 0 Reading zero means that peripheral group is out of reset
Read 1 Reading one means the peripheral group is being held in reset and should not be accessed

3 USB_RST USB software reset bit. Drives the USB reset signal.
Write 0 Writing zero has no effect
Write 1 Writing one starts resetting the peripheral group
Read 0 Reading zero means that peripheral group is out of reset
Read 1 Reading one means the peripheral group is being held in reset and should not be accessed

2 SAR_RST SAR software reset bit and reset for most analog-related register in the IO-space address range of
7000h-70FFh

Write 0 Writing zero has no effect
Write 1 Writing one starts resetting the peripheral group
Read 0 Reading zero means that peripheral group is out of reset
Read 1 Reading one means the peripheral group is being held in reset and should not be accessed

1 PG1_RST Peripheral group 1 software reset bit. Drives all three timer reset signal.
Write 0 Writing zero has no effect
Write 1 Writing one starts resetting the peripheral group
Read 0 Reading zero means that peripheral group is out of reset
Read 1 Reading one means the peripheral group is being held in reset and should not be accessed

0 I2C_RST I2C software reset bit. Drives the I2C reset signal.
Write 0 Writing zero has no effect
Write 1 Writing one starts resetting the peripheral group
Read 0 Reading zero means that peripheral group is out of reset
Read 1 Reading one means the peripheral group is being held in reset and should not be accessed

1.7.6 USB Byte Access (Not Available for TMS320C5532)
The C55x CPU architecture cannot generate 8-bit accesses to its data or I/O space. But in some cases
specific to the USB peripheral, it is necessary to access a single byte of data.

For these situations, the upper or lower byte of a CPU word access can be masked using the BYTEMODE
bits of the USB system control register (USBSCR). The BYTEMODE bits of USBSCR only affect CPU
accesses to the USB registers. Table 1-62 summarizes the effect of the BYTEMODE bits for different CPU
operations.

The USB system control register (USBSCR) is described in Section 1.5.3.4.2.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com System Configuration and Control

111SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

System Control

Table 1-62. Effect of USBSCR BYTEMODE Bits on USB Access

BYTEMODE Setting CPU Access to USB Register
BYTEMODE = 00b (16-bit word access) Entire register contents are accessed
BYTEMODE = 01b (8-bit access with high byte selected) Only the upper byte of the register is accessed
BYTEMODE = 10b (8-bit access with low byte selected) Only the lower byte of the register is accessed

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

112 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

Chapter 2
SPRUH87H–August 2011–Revised April 2016

FFT Implementation on the TMS320C5545/35 DSP

This chapter describes how to implement the fast fourier transform.

Topic ... Page

2.1 Introduction ... 113
2.2 Basics of DFT and FFT .. 113
2.3 DSP Overview Including the FFT Accelerator... 117
2.4 FFT Hardware Accelerator Description.. 119
2.5 HWAFFT Software Interface ... 121
2.6 Simple Example to Illustrate the Use of the FFT Accelerator.................................. 128
2.7 FFT Benchmarks .. 130
2.8 Computation of Large (Greater Than 1024-Point) FFTs.. 132
2.9 Appendix A Methods for Aligning the Bit-Reverse Destination Vector 134

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

/ 2-1 / 2-11 2 2() (2) (2 1) , 0 - 1
0 0

k
WN N

nk nkN
X k x n W x n W k to N

N NN Nn n

= + + =å å

= =

k
W

N

/ 2-1 / 2-1 (2 1)1 12() (2) (2 1) , 0 - 1
0 0

N N n knk
X k x n W x n W k to N

N NN Nn n

+
= + + =å å

= =

- 2 /
, 0 - 1

j N
W e k to N

N

p

= =

-11
() () , 0 - 1

0

N
nk

X k x n W k to N
N Nn

= =å

=

www.ti.com Introduction

113SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

(1) Fast Fourier Transform (FFT) is available only on TMS320C5545/35.

2.1 Introduction
The Fast Fourier Transform (FFT) is an efficient means for computing the Discrete Fourier Transform
(DFT). It is one of the most widely used computational elements in Digital Signal Processing (DSP)
applications. This DSP is ideally suited for such applications. They include an FFT hardware accelerator
(HWAFFT) that is tightly coupled with the CPU, allowing high FFT processing performance at very low
power. The following sections describe FFT computation on the TMS320C5545/5535 DSP and covers the
following topics: (1)

• Basics of DFT and FFT
• DSP Overview Including the FFT Accelerator
• HWAFFT Description
• HWAFFT Software Interface
• Simple Example to Illustrate the Use of the FFT Accelerator
• FFT Benchmarks
• Description of Open Source FFT Example Software
• Computation of Large (Greater Than 1024-point) FFTs

Project collateral and source code discussed in this application report can be downloaded from:
http://www-s.ti.com/sc/techlit/sprabb6.zip.

2.2 Basics of DFT and FFT
The DFT takes an N-point vector of complex data sampled in time and transforms it to an N-point vector of
complex data that represents the input signal in the frequency domain. A discussion on the DFT and FFT
is provided as background material before discussing the HWAFFT implementation.

The DFT of the input sequence x(n), n = 0, 1, …, N-1 is defined as

(1)

Where WN, the twiddle factor, is defined as

(2)

The FFT is a class of efficient DFT implementations that produce results identical to the DFT in far fewer
cycles. The Cooley-Tukey algorithm is a widely used FFT algorithm that exploits a divide-and-conquer
approach to recursively decompose the DFT computation into smaller and smaller DFT computations until
the simplest computation remains. One subset of this algorithm called Radix-2 Decimation-in-Time (DIT)
breaks each DFT computation into the combination of two DFTs, one for even-indexed inputs and another
for odd-indexed inputs. The decomposition continues until a DFT of just two inputs remains. The 2-point
DFT is called a butterfly, and it is the simplest computational kernel of Radix-2 FFT algorithms.

2.2.1 Radix-2 Decimation in Time Equations
The Radix-2 DIT decomposition can be seen by manipulating the DFT equation (Equation 1):

Split x(n) into even and odd indices:

(3)

Factor from the odd indexed summation:

(4)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H
http://www-s.ti.com/sc/techlit/sprabb6.zip

P

Q
Q’ = P – Q

k

N
W*

P’ = P + Q
k

N
W*

k

N
W

+

+

+

–

k
W

N

1
(/ 2) (() - ()), 0 / 2 - 1

2

k
X k N X k W X k k to N

even N odd

+ = =

1
() (() ()), 0 / 2 - 1

2

k
X k X k W X k k to N

even N odd

= + =

/ 2-11
() (2 1) , 0 - 1

(/ 2) / 20

N
nk

X k x n W k to N
Nodd Nn

= + =å

=

/ 2-11
() (2) , 0 - 1

(/ 2) / 20

N
nk

X k x n W k to N
Neven Nn

= =å

=

()X k

even

()X k

odd

/ 2-1 / 2-11
() (2) (2 1) , 0 - 1

/ 2 / 20 0

k
WN N

nk nkN
X k x n W x n W k to N

N NN Nn n

= + + =å å

= =

/ 2- 2 / - 2 /(/ 2)2 2() () - , 0 / 2 - 1
/ 2

k Nj N j Nnk nk nk nk kW e e W and W W k to N
N N N N

+P P
= = = = =

Basics of DFT and FFT www.ti.com

114 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

Only twiddle factors from 0 to N/2 are needed:

(5)

This results in:

(6)

Define and such that:

(7)

and

(8)

Finally, Equation 6 is rewritten as:

(9)

and

(10)

Equation 9 and Equation 10 show that the N-point DFT can be divided into two smaller N/2-point DFTs.
Each smaller DFT is then further divided into smaller DFTs until N = 2. The pair of equations that makeup
the 2-point DFT is called the Radix2 DIT Butterfly (see Section 2.2.2). The DIT Butterfly is the core
calculation of the FFT and consists of just one complex multiplication and two complex additions.

2.2.2 Radix-2 DIT Butterfly
The Radix-2 Butterfly is illustrated in Figure 2-1. In each butterfly structure, two complex inputs P and Q
are operated upon and become complex outputs P’ and Q’. Complex multiplication is performed on Q and
the twiddle factor, then the product is added to and subtracted from input P to form outputs P’ and Q’. The

exponent of the twiddle factor is dependent on the stage and group of its butterfly. The butterfly is
usually represented by its flow graph (Figure 2-1), which looks like a butterfly.

Figure 2-1. DIT Radix 2 Butterfly

The mathematical meaning of this butterfly is shown below with separate equations for real and imaginary
parts:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Basics of DFT and FFT

115SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

Complex Real Part Imaginary Part
P’ = P + Q * W Pr’ = Pr + (Qr * Wr - Qi * Wi) Pi’ = Pi + (Qr * Wi + Qi * Wr)
Q’ = P - Q * W Qr’ = Pr - (Qr * Wr - Qi * Wi) Qi’ = Pi - (Qr * Wi + Qi * Wr)

The flow graph in Figure 2-2 shows the interconnected butterflies of an 8-point Radix-2 DIT FFT. Notice
that the inputs to the FFT are indexed in bit-reversed order (0, 4, 2, 6, 1, 5, 3, 7) and the outputs are
indexed in sequential order (0, 1, 2, 3, 4, 5, 6, 7). Computation of a Radix-2 DIT FFT requires the input
vector to be in bit-reversed order, and generates an output vector in sequential order. This bit-reversal is
further explained in Section 2.5.3, Bit-Reverse Function.

Figure 2-2. DIT Radix 2 8-point FFT

2.2.3 Computational Complexity
The Radix-2 DIT FFT requires log2(N) stages, N/2 * log2(N) complex multiplications, and N * log2(N)
complex additions. In contrast, the direct computation of X(k) from the DFT equation (Equation 1) requires
N2 complex multiplications and (N2 – N) complex additions. Table 2-1 compares the computational
complexity for direct DFT versus Radix-2 FFT computations for typical FFT lengths.

Table 2-1. Computational Complexity of Direct DFT Computation versus Radix-2 FFT

FFT Length Direct DFT Computation Radix-2 FFT
Complex
Multiplications

Complex Additions Complex
Multiplications

Complex Additions

128 16,384 16,256 448 896
256 65,536 65,280 1,024 2,048
512 262,144 264,632 2,304 4,608
1024 1,048,576 1,047,552 5,120 10,240

Table 2-1 clearly shows significant reduction in computational complexity with the Radix-2 FFT, especially
for large N. This substantial decrease in computational complexity of the FFT has allowed DSPs to
efficiently compute the DFT in reasonable time. For its substantial efficiency improvement over direct
computation, the HWAFFT coprocessor in the DSP implements the Radix-2 FFT algorithm.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Real (Time Domain Signal) Real (Frequency Domain Signal)

Imaginary (Time Domain Signal) Imaginary (Frequency Domain Signal)

FFT

IFFT

Basics of DFT and FFT www.ti.com

116 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

2.2.4 FFT Graphs
Figure 2-3 is a graphical example of the FFT computation. These results were obtained by using the
HWAFFT coprocessor on the DSP. On the left half is the complex time domain signal (real part on top,
imaginary part on bottom). On the right half is the complex frequency domain signal produced by the FFT
computation (real part on top, imaginary part on bottom). In this example, two sinusoidal tones are present
in the time domain. The time domain signal is 1024 points and contains only real data (the imaginary part
is all zeros). The two sinusoids are represented in the frequency domain as impulses located at the
frequency bins that correspond to the two sinusoidal frequencies. The frequency domain signal is also
1024 points and contains both real parts (top right) and imaginary parts (bottom right).

Figure 2-3. Graphical FFT Computation

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com DSP Overview Including the FFT Accelerator

117SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

2.3 DSP Overview Including the FFT Accelerator
This DSP is a member of TI's TMS320C5000™ fixed-point DSP product family and is designed for low-
power applications. With an active mode power consumption of less than 0.15 mW/MHz and a standby
mode power consumption of less than 0.15 mW, these DSPs are optimized for applications characterized
by sophisticated processing and portable form factors that require low power and longer battery life.
Examples of such applications include portable voice/audio devices, noise cancellation headphones,
software-defined radio, musical instruments, medical monitoring devices, wireless microphones,
biometrics, industrial instruments, telephony, and audio cards.

Figure 2-4 shows an overview of the DSP consisting of the following primary components:
• Dual MAC, C55x v3.x CPU
• On-Chip memory: 320 KB RAM (64 KB DARAM, 256 KB SARAM), 128 KB ROM
• HWAFFT that supports 8- to 1024-point (powers of 2) real and complex-valued FFTs
• Four DMA controllers
• Power management module
• A set of I/O peripherals that includes I2C, I2S, SPI, UART, Timers, MMC/SD, GPIO, 10-bit SAR, LCD

Controller, and USB 2.0
• Three on-chip LDO regulators (TMS320C5545/35/34), Two on-chip LDO regulators (C5533), one on-

chip LDO regulator (C5532)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

PLL/Clock
Generator

Power
Management

Pin
Multiplexing

JTAG Interface

64 KB DARAM

128 KB ROM

Switched Central Resource (SCR)

Input
Clocks

C55x DSP CPU

DSP System

Peripherals

I S
(x4)

2

I C
2

SPI UART

Serial Interfaces

DMA
(x4)

Interconnect
Program/Data

Storage

eMMC/SD
SDHC
(x2)

No SARAMTMS320C5532

TMS320C5533

TMS320C5534

TMS320C5545/35

64 KB SARAM

192 KB SARAM

256 KB SARAM

FFT Hardware
Accelerator

TMS320C5534

USB 2.0
PHY (HS)
[DEVICE]

Connectivity

TMS320C5533

Not Applicable
TMS320C5532

TMS320C5545/35

10-Bit
SAR
ADC

Application
Specific

LCD
Bridge

Display

GP Timer
(x2)RTC

GP Timer
or WD

System

USB_LDO

DSP_LDO

TMS320C5533

TMS320C5532

TMS320C5545/35/C5534

ANA_LDO

DSP Overview Including the FFT Accelerator www.ti.com

118 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

Figure 2-4. Block Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com FFT Hardware Accelerator Description

119SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

The C55x CPU includes a tightly coupled FFT accelerator that communicates with the C55x CPU through
the use of the coprocessor instructions. The main features of this hardware accelerator are:
• Supports 8- to 1024-point (powers of 2) complex-valued FFTs.
• Internal twiddle factor generation for optimal use of memory bandwidth and more efficient

programming.
• Basic and software-driven auto-scaling feature provides good precision versus cycle count trade-off.
• Single-stage and double-stage modes enable computation of one or two stages in one pass, and thus

better handle the odd power of two FFT widths.
• Is 4 to 6 times more energy efficient and 2.2 to 3.8 times faster than the FFT computations on the

CPU.

2.4 FFT Hardware Accelerator Description
The HWAFFT in the DSP is a tightly-coupled, software-controlled coprocessor designed to perform FFT
and inverse FFT (IFFT) computations on complex data vectors ranging in length from 8 to 1024 points
(powers of 2). It implements a Radix-2 DIT structure that returns the FFT or IFFT result in bit-reversed
order.

2.4.1 Tightly-Coupled Hardware Accelerator
The HWAFFT is tightly-coupled with the DSP core which means that it is physically located outside of the
DSP core but has access to the core’s full memory read bandwidth (busses B, C, and D), access to the
core’s internal registers and accumulators, and access to its address generation units. The HWAFFT
cannot access the data write busses or memory mapped registers (MMRs). Because the HWAFFT is seen
as part of the execution unit of the CPU, it must also comply to the core’s pipeline exceptions, and in
particular those caused by stalls and conditional execution.

2.4.2 Hardware Butterfly, Double-Stage and Single-Stage Mode
The core of the HWAFFT consists of a single Radix-2 DIT Butterfly implemented in hardware. This
hardware supports a double-stage mode where two FFT stages are computed a single pass. In this mode
the HWAFFT feeds the results from the first stage back into the hardware butterfly to compute the second
stage results in a single pass. This double-stage mode offers significant speed-up especially for large FFT
lengths. However, when the number of required stages is odd (FFT lengths = 8, 32, 128, or 512 points)
the final stage needs to be computed alone and, consequently, at a lower acceleration rate. For this
reason a single-stage mode is also provided.

The HWAFFT supports two stage modes:
• Double-Stage Mode – two FFT stages performed in each pass
• Single-Stage Mode – one FFT stage performed in each pass

2.4.3 Pipeline and Latency
The logic of the HWAFFT is pipelined to deliver maximum throughput. Complex multiplication with the
twiddle factors is performed in the first pipeline stage, and complex addition and subtraction is performed
in the second pipeline stage. Valid results appear some cycles of latency after the first data is read from
memory:
• 5 cycles of latency in single-stage mode
• 9 cycles of latency in double-stage mode

There are three states to consider during computation of a single or double stage:
• Prologue: The hardware accelerator is fed with one complex input at a time but does not output any

valid data.
• Kernel: Valid outputs appear while new inputs are received and computed upon.
• Epilogue: A few more cycles are needed to flush the pipeline and output the last butterfly results.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

FFT Hardware Accelerator Description www.ti.com

120 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

Consecutive stages can be overlapped such that the first data points for the next pass are read while the
final output values of the current pass are returned. For odd-power-of-two FFT lengths, the last double-
stage pass needs to be completed before starting a final single-stage pass. Thus, the double-stage
latency is only experienced once for even-powers-of-2 FFT computations and twice for odd-powers-of-2
FFT computations. Latency has little impact on the total computation performance, and less and less so
as the FFT size increases.

2.4.4 Software Control
Software is required to communicate between the CPU and the HWAFFT. The CPU instruction set
architecture (ISA) includes a class of coprocessor (copr) instructions that allows the CPU to initialize, pass
data to, and execute butterfly computations on the HWAFFT. Computation of an FFT/IFFT is performed by
executing a sequence of these copr instructions.

C-callable HWAFFT functions are provided with optimized sequences of copr instructions for each
available FFT length. To conserve program memory, these functions are located in the DSP’s ROM. A
detailed explanation of the HWAFFT software interface and its application is provided in Section 2.5,
HWAFFT Software Interface.

2.4.5 Twiddle Factors
To conserve memory bus bandwidth, twiddle factors are stored in a look-up-table within the HWAFFT
coprocessor. The 512 complex twiddle factors (16-bit real, 16-bit imaginary) are available for computing up
to 1024-point FFTs. Smaller FFT lengths use a decimated subset of these twiddle factors. Indexing the
twiddle table is pipelined and optimized based on the current FFT stage and group being computed. When
the IFFT computation is performed, the complex conjugates of the twiddle factors are used.

2.4.6 Scaling
FFT computation with fixed-point numbers is vulnerable to overflow, underflow, and saturation effects.
Depending on the dynamic range of the input data, some scaling may be required to avoid these effects
during the FFT computation. This scaling can be done before the FFT computation, by computing the
dynamic range of the input points and scaling them down accordingly. If the magnitude of each complex
input element is less than 1/N, where N = FFT Length, then the N-point FFT computation will not overflow.

Uniformly dividing the input vector elements by N (Pre-scaling) is equivalent to shifting each binary
number right by log2(N) bits, which introduces significant error (especially for large FFT lengths). When
this error propagates through the FFT flow graph, the output noise-to-signal ratio increases by 1 bit per
stage or log2(N) bits in total. Overflow will not occur if each input’s magnitude is less than 1/N.

Alternatively, a simple divide-by-2 and round scaling after each butterfly offers a good trade-off between
precision and overflow protection, while minimizing computation cycles. Because the error introduced by
early FFT stages is also scaled after each butterfly, the output noise-to-signal ratio increases by just ½ bit
per stage or ½ * log2(N) bits in total. Overflow is avoided if each input’s magnitude is less than 1.

The HWAFFT supports two scale modes:
• NOSCALE

– Scaling logic disabled
– Vulnerable to overflow
– Output dynamic range grows with each stage
– No overflow if input magnitudes < 1/N

• SCALE
– Scales each butterfly output by 1/2
– No overflow if input magnitudes < 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Int32 CMPLX_Vec32[N] = …(N = FFT Length)

Real[0] Imag[0] Real[1] Imag[1] Imag[2]Real[2]

Bit31,.................., Bit16, Bit15,.................., Bit0 Bit31,.................., Bit16, Bit15,.................., Bit0 Bit31,.................., Bit16, Bit15,.................., Bit0

Int16 CMPLX_Vec16[2*N] = …(N = FFT Length)

Real[0] Imag[0] Real[1] Imag[1] Imag[2]Real[2]

Bit15,..................,Bit0Bit15,..................,Bit0 Bit15,..................,Bit0 Bit15,..................,Bit0 Bit15,..................,Bit0 Bit15,..................,Bit0

www.ti.com HWAFFT Software Interface

121SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

2.5 HWAFFT Software Interface
The software interface to the HWAFFT is handled through a set of coprocessor instructions. When
decoded by the coprocessor, the coprocessor instructions perform initialization, load and store, and
execute operations on the HWAFFT coprocessor. C-callable functions are provided that contain the
necessary sequences of coprocessor instructions for performing FFT and IFFT computations in the range
of 8 to 1024 points (by powers of 2).

In addition, an optimized out-of-place bit-reversal function is provided to perform the complex vector bit-
reversal required by Radix-2 FFT computations. These functions are defined in the hwafft.asm source
code file. To conserve on-chip RAM, these functions have been placed in the on-chip ROM of the DSP.
See Section 2.5.5, Project Configuration for Calling Functions from ROM, for steps to configure your
project to call the HWAFFT functions from ROM.

2.5.1 Data Types
The input and output vectors of the HWAFFT contain complex numbers. Each real and imaginary part is
represented by a two’s complement, 16-bit fixed-point number. The most significant bit holds the number’s
sign value, and the remaining 15 are fraction bits (S16Q15 format). The range of each number is [-1, 1 –
(1/2)15]. Real and imaginary parts appear in an interleaved order within each vector:

The HWAFFT functions use an Int32 pointer to reference these complex vectors. Therefore, each 32-bit
element contains the 16-bit real part in the most significant 16 bits, and the 16-bit imaginary part in the
least significant 16 bits.

To extract the real and imaginary parts from the complex vector, it is necessary to mask and shift each 32-
bit element into its 16-bit real and imaginary parts:

Uint16 Real_Part = CMPLX_Vec32[i] >> 16;
Uint16 Imaginary_Part = CMPLX_Vec32[i] & 0x0000FFFF;

2.5.2 HWAFFT Functions
C-Callable HWAFFT Functions are provided for computing FFT/IFFT transforms on the HWAFFT
coprocessor. These functions contain optimized sequences of coprocessor instructions for computing
scaled or unscaled 8-, 16-, 32-, 64-, 128-, 256-, 512-, and 1024-point FFT/IFFTs. Additionally, an
optimized out-of-place bit-reversal function is provided to bit-reverse the input vector before supplying it to
the HWAFFT. Computation of a Radix-2 DIT FFT requires the input vector to be in bit-reversed order, and
generates an output vector in sequential order.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

HWAFFT Software Interface www.ti.com

122 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

2.5.2.1 HWAFFT Naming and Format

NOTE: To execute the HWAFFT routines from the ROM of the DSP, the programmer must satisfy
memory allocation restrictions for the data and scratch buffers. For an explanation of the
restrictions and workarounds, see the device-specific errata:
• TMS320C5535/34/33/32 Fixed-Point DSP Silicon Errata

(literature number SPRZ373)
• TMS320C5545A Fixed-Point DSP Silicon Errata (literature number SPRZ404)

The HWAFFT functions are named hwafft_Npts, where N is the FFT length. For example, hwafft_32pts is
the name of the function for performing 32-point FFT and IFFT operations. The structure of the HWAFFT
functions is:
Uint16 hwafft_Npts(Performs N-point complex FFT/IFFT, where N = {8, 16, 32, 64, 128, 256, 512,

1024}
Int32 *data, Input/output – complex vector
Int32 *scratch, Intermediate/output – complex vector
Uint16

fft_flag,
Flag determines whether FFT or IFFT performed, (0 = FFT, 1 = IFFT)

Uint16
scale_flag

Flag determines whether butterfly output divided by 2 (0 = Scale, 1 = No Scale)

); Return value Flag determines whether output in data or scratch vector (0 = data, 1 = scratch)

2.5.2.2 HWAFFT Parameters
The following describe the parameters for the HWAFFT functions.

Int32 *data
This is the input vector to the HWAFFT. It contains complex data elements (real part in most significant 16
bits, imaginary part in least significant 16 bits). After the HWAFFT function completes, the result will either
be stored in this data vector or in the scratch vector, depending on the status of the return value. The
return value is Boolean where 0 indicates that the result is stored in this data vector, and 1 indicates the
scratch vector. The data and scratch vectors must reside in separate blocks of RAM (DARAM or SARAM)
to maximize memory bandwidth.
#pragma DATA_SECTION(data_buf, "data_buf");

//Static Allocation to Section: "data_buf : > DARAM" in Linker CMD File
Int32 data_buf[N = FFT Length];
Int32 *data = data_buf;
Int32 *data:

The *data parameter is a complex input vector to HWAFFT. It contains the output vector if Return Value =
0 = OUT_SEL_DATA. There is a strict address alignment requirement if *data is shared with a bit-reverse
destination vector (recommended). See Section 2.5.3.1, Bit Reverse Destination Vector Alignment
Requirement.

Int32 *scratch
This is the scratch vector used by the HWAFFT to store intermediate results between FFT stages. It
contains complex data elements (real part in most significant 16 bits, imaginary part in least significant 16
bits). After the HWAFFT function completes the result will either be stored in the data vector or in this
scratch vector, depending on the status of the return value. The return value is Boolean, where 0 indicates
that the result is stored in the data vector, and 1 indicates this scratch vector. The data and scratch
vectors must reside in separate blocks of RAM (DARAM or SARAM) to maximize memory bandwidth.
#pragma DATA_SECTION(scratch_buf, "scratch_buf");

//Static Allocation to Section: "scratch_buf : > DARAM" in Linker CMD File
Int32 scratch_buf[N = FFT Length];
Int32 *scratch = scratch_buf;
Int32 *scratch:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H
http://www.ti.com/lit/pdf/SPRZ373

www.ti.com HWAFFT Software Interface

123SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

The *scratch parameter is a complex scratchpad vector to HWAFFT. It contains the output vector if Return
Value = 1 = OUT_SEL_SCRATCH.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

HWAFFT Software Interface www.ti.com

124 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

Uint16 fft_flag
The FFT/IFFT selection is controlled by setting the fft_flag to 0 for FFT and 1 for Inverse FFT.
#define FFT_FLAG (0) /* HWAFFT to perform FFT */
#define IFFT_FLAG (1) /* HWAFFT to perform IFFT */
Uint16 fft_flag:

fft_flag = FFT_FLAG: FFT Performed
fft_flag = IFFT_FLAG: Inverse FFT Performed

Uint16 scale_flag
The automatic scaling (divide each butterfly output by 2) feature is controlled by setting the scale_flag to 0
to enable scaling and 1 to disable scaling.
#define SCALE_FLAG (0) /* HWAFFT to scale butterfly output */
#define NOSCALE_FLAG (1) /* HWAFFT not to scale butterfly output */
Uint16 scale_flag:

scale_flag = SCALE_FLAG: Divide by 2 scaling is performed at the output of each FFT Butterfly.
scale_flag = NOSCALE_FLAG: No scaling is performed, overflow may occur if the input dynamic is

too high.

Uint16 <Return Value>:
This is the Uint16 return value of the HWAFFT functions. After the HWAFFT function completes, the result
will either be stored in the data vector or in the scratch vector, depending on the status of this return
value. The return value is Boolean where 0 indicates that the result is stored in the data vector, and 1
indicates this scratch vector. The program must check the status of the Return Value to determine the
location of the FFT/IFFT result.
#define OUT_SEL_DATA (0) /* indicates HWAFFT output located in input data vector */
#define OUT_SEL_SCRATCH (1) /* indicates HWAFFT output located in scratch vector */
Uint16 <Return Value>:

Return Value = OUT_SEL_DATA: FFT/IFFT result located in the data vector
Return Value = OUT_SEL_SCRATCH: FFT/IFFT result located in the scratch vector

2.5.3 Bit Reverse Function
Before computing the FFT/IFFT on the HWAFFT, the input buffer must be bit-reversed to facilitate a
Radix-2 DIT computation. This function contains optimized assembly that executes on the CPU to
rearrange the Int32 elements of the input vector by placing each element in the destination vector at the
index that corresponds to the bit-reversal of its current index. For example, in an 8-element vector, the
index of the third element is 011 in binary, then the bit-reversed index is 110 in binary or 6 in decimal, so
the third element of the input vector is copied to the sixth element of the bit-reversal destination vector.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Int32 data[8]

Int32 data_br[8]

Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7]

Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7]

Index = 000 001 010 011 100 101 110 111

Index = 000 100 010 110 001 101 011 111

www.ti.com HWAFFT Software Interface

125SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

Figure 2-5. Bit Reversed Input Buffer

2.5.3.1 Bit Reverse Destination Vector Alignment Requirement
Strict requirements are placed on the address of the bit-reversal destination buffer. This buffer must be
aligned in RAM such that log2(4 * N) zeros appear in the least significant bits of the byte address (8 bits),
where N is the FFT Length. For example, a 1024-point FFT needs to bit-reverse 1024 complex array
elements (32-bit elements). The address for the bit-reversed buffer needs to have 12 zeros in the least
significant bits of its byte address (log2(4 * 1024) = 12). Since the word address (16 bits) is the byte
address shifted right one bit, the word address requires 11 zeros in the least significant bits. This bit-
reverse is considered out-of-place because the inputs and outputs are stored in different vectors. In-place
bit-reversal is not supported by this function. There are no alignment requirements for the bit-reverse
source vector.

2.5.3.2 Bit Reverse Format and Parameters
The structure of the HWAFFT functions is:

void
hwafft_br(

Performs out-of-place bit-reversal on 32-bit data vector

Int32 *data, Input – 32-bit data vector
Int32

*data_br,
Output – bit-reversed data vector

Uint16
data_len,

Length of complex data vector

);

The parameters for the hwafft_br function are:

Int32 *data
This is the input vector to the bit reverse function. It contains complex data elements (real part in most
significant 16 bits, imaginary part in least significant 16 bits). There are no specific alignment requirements
for this vector.
#pragma DATA_SECTION(data_buf, "data_buf");

//Static Allocation to Section: "data_buf : > DARAM" in Linker CMD File
Int32 data_buf[N = FFT Length];
Int32 *data = data_buf;

Int32 *data_br
This is the destination vector of the bit-reverse function. It contains complex data elements (real part in
most significant 16 bits, imaginary part in least significant 16 bits). A strict alignment requirement is placed
on this destination vector of the bit-reverse function: This buffer must be aligned in RAM such that log2(4 *
N) zeros appear in the least significant bits of the byte address (8 bits), where N is the FFT Length. See
Section 2.9, Appendix A Methods for Aligning the Bit-Reverse Destination Vector, for ways to force the
linker to enforce this alignment requirement.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

HWAFFT Software Interface www.ti.com

126 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

#define ALIGNMENT 2*N // ALIGNS data_br_buf to an address with log2(4*N) zeros in the
// least significant bits of the byte address

#pragma DATA_SECTION(data_br _buf, "data_br_buf");
// Allocation to Section: "data_br _buf : > DARAM" in Linker CMD File

#pragma DATA_ALIGN (data_br_buf, ALIGNMENT);
Int32 data_br_buf[N = FFT Length];
Int32 * data_br = data_br_buf;
Int32 *data_br:

Strict address alignment requirement: This buffer must be aligned in RAM such that (log2(4 * N) zeros
appear in the least significant bits of the byte address (8 bits), where N is the FFT Length. See Section 2.9
for ways to force the linker to enforce this alignment requirement.

Uint16 *data_len
This Uint16 parameter indicates the length of the data and data_br vectors.
Uint16 data_len:

The data_len parameter indicates the length of the Int32 vector (FFT Length). Valid lengths include
powers of two: {8, 16, 32, 64, 128, 256, 512, 1024}.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com HWAFFT Software Interface

127SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

2.5.4 Function Descriptions and ROM Locations
Table 2-2 shows the available HWAFFT routines with descriptions and respective addresses in ROM.

Table 2-2. Available HWAFFT Routines

Address Name Description Calling Convention
0x00fefe9c hwafft br Vector bit-reversal void hwafft_br(Int32 *data, Int32 *data_br, Uint16

data_len);
0x00fefeb0 hwafft 8pts 8-pt FFT/IFFT Uint16 hwafft_8pts(Int32 *data,Int32 *scratch, Uint16

fft_flag, Uint16 scale_flag);
0x00feff9f hwafft 16pts 16-pt FFT/IFFT Uint16 hwafft_16pts(Int32 *data,Int32 *scratch, Uint16

fft_flag, Uint16 scale_flag);
0x00ff00f5 hwafft 32pts 32-pt FFT/IFFT Uint16 hwafft_32pts(Int32 *data,Int32 *scratch, Uint16

fft_flag, Uint16 scale_flag);
0x00ff03fe hwafft 64pts 64-pt FFT/iFFT Uint16 hwafft_64pts(Int32 *data,Int32 *scratch, Uint16

fft_flag, Uint16 scale_flag);
0x00ff0593 hwafft 128pts 128-pt FFT/IFFT Uint16 hwafft_128pts(Int32 *data,Int32 *scratch,

Uint16 fft_flag, Uint16 scale_flag);
0x00ff07a4 hwafft 256pts 256-pt FFT/IFFT Uint16 hwafft_256pts(Int32 *data,Int32 *scratch,

Uint16 fft_flag, Uint16 scale_flag);
0x00ff09a2 hwafft 512pts 512-pt FFT/iFFT Uint16 hwafft_512pts(Int32 *data,Int32 *scratch,

Uint16 fft_flag, Uint16 scale_flag);
0x00ff0c1c hwafft 1024pts 1024-pt FFT/IFFT Uint16 hwafft_1024pts(Int32 *data,Int32 *scratch,

Uint16 fft_flag, Uint16 scale_flag);

2.5.5 Project Configuration for Calling Functions from ROM
The HWAFFT functions occupy approximately 4K Bytes of memory, so to conserve RAM they have been
placed in the DSP’s 128K Bytes of on-chip ROM. These functions have the same names as the functions
stored in hwafft.asm, but the functions in the on-chip ROM do not consume any RAM.

NOTE: To execute the HWAFFT routines from the ROM of the DSP, the programmer must satisfy
memory allocation restrictions for the data and scratch buffers. For an explanation of the
restrictions and workarounds, see the device-specific errata:
• TMS320C5535/34/33/32 Fixed-Point DSP Silicon Errata

(literature number SPRZ373)
• TMS320C5545A Fixed-Point DSP Silicon Errata (literature number SPRZ404)

In order to utilize these HWAFFT routines in ROM, add the following lines to the bottom of the project’s
linker CMD file and remove the hwafft.asm file from the project (or exclude it from the build). When the
project is rebuilt, the HWAFFT functions will reference the ROM locations. The HWAFFT ROM locations
for the DSP are shown in Table 2-2.
/*** Add the following code to the linker command file to call HWAFFT Routines from ROM ***/

/* HWAFFT Routines ROM Addresses */
_hwafft_br = 0x00fefe9c;
_hwafft_8pts = 0x00fefeb0;
_hwafft_16pts = 0x00feff9f;
_hwafft_32pts = 0x00ff00f5;
_hwafft_64pts = 0x00ff03fe;
_hwafft_128pts = 0x00ff0593;
_hwafft_256pts = 0x00ff07a4;
_hwafft_512pts = 0x00ff09a2;
_hwafft_1024pts = 0x00ff0c1c;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H
http://www.ti.com/lit/pdf/SPRZ373

Simple Example to Illustrate the Use of the FFT Accelerator www.ti.com

128 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

2.6 Simple Example to Illustrate the Use of the FFT Accelerator

NOTE: To execute the HWAFFT routines from the ROM of the DSP, the programmer must satisfy
memory allocation restrictions for the data and scratch buffers. For an explanation of the
restrictions and workarounds, see the device-specific errata:
• TMS320C5535/34/33/32 Fixed-Point DSP Silicon Errata

(literature number SPRZ373)
• TMS320C5545A Fixed-Point DSP Silicon Errata (literature number SPRZ404)

The source code below demonstrates typical use of the HWAFFT for the 1024-point FFT and IFFT cases.

The HWAFFT Functions make use of Boolean flag variables to select between FFT and IFFT, Scale and
No Scale mode, and Data and Scratch output locations.

#define FFT_FLAG (0) /* HWAFFT to perform FFT */
#define IFFT_FLAG (1) /* HWAFFT to perform IFFT */
#define SCALE_FLAG (0) /* HWAFFT to scale butterfly output */
#define NOSCALE_FLAG (1) /* HWAFFT not to scale butterfly output */
#define OUT_SEL_DATA (0) /* Indicates HWAFFT output located in input data vector */
#define OUT_SEL_SCRATCH (1) /* Indicates HWAFFT output located in scratch vector */
Int32 *data;
Int32 *data_br;
Uint16 fft_flag;
Uint16 scale_flag;
Int32 *scratch;
Uint16 out_sel;
Int32 *result;

2.6.1 1024-Point FFT, Scaling Disabled
Compute 1024-point FFT with Scaling enabled: a ½ scale factor after every stage:

fft_flag = FFT_FLAG;
scale_flag = SCALE_FLAG;

data = <1024-point Complex input>;

/* Bit-Reverse 1024-point data, Store into data_br, data_br aligned to
12-least significant binary zeros*/

hwafft_br(data, data_br, DATA_LEN_1024); /* bit-reverse input data,
Destination buffer aligned */

data = data_br;

/* Compute 1024-point FFT, scaling enabled. */
out_sel = hwafft_1024pts(data, scratch, fft_flag, scale_flag);

if (out_sel == OUT_SEL_DATA) {
result = data;

}else {
result = scratch;

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H
http://www.ti.com/lit/pdf/SPRZ373

www.ti.com Simple Example to Illustrate the Use of the FFT Accelerator

129SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

2.6.2 1024-Point IFFT, Scaling Disabled
Compute 1024-point IFFT with Scaling disabled:

fft_flag = IFFT_FLAG;
scale_flag = NOSCALE_FLAG;

data = <1024-point Complex input>;

/* Bit-Reverse 1024-point data, Store into data_br, data_br aligned to
12-least significant binary zeros */

hwafft_br(data, data_br, DATA_LEN_1024);
data = data_br;

/* Compute 1024-point IFFT, scaling disabled */
out_sel = hwafft_1024pts(data, scratch, fft_flag, scale_flag);

if (out_sel == OUT_SEL_DATA) {
result = data;

} else {
result = scratch;

}

2.6.3 Graphing FFT Results in CCS4
Code Composer includes a graphing utility that makes visualization of the FFT operation quick and easy.
The Graph Utility is located in the CCSv4 window, under Tools → Graph → Single Time.

If the FFT Result is stored in scratch (OutSel = 1) and scratch is located at address 0x3000…

Plot the real part:

Figure 2-6. Graphing the Real Part of the FFT Result in CCS4

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

FFT Benchmarks www.ti.com

130 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

Plot the imaginary part:

Figure 2-7. Graphing the Imaginary Part of the FFT Result in CCS4

2.7 FFT Benchmarks
Table 2-3 compares the FFT performance of the HWAFFT versus FFT computation using the CPU under
the following conditions:
• Core voltage = 1.05 V
• PLL = 50 MHz
• Power measurement condition:

– At room temperature only
– All peripherals are clock gated
– Measured at CVDD

(1) BR = Bit Reverse

Table 2-3. FFT Performance on HWAFFT vs CPU (CVDD = 1.05 V, PLL = 50 MHz)
FFT with HWA CPU (Scale) HWA versus CPU

Complex FFT FFT + BR (1) Cycles Energy/FFT
(nJ/FFT)

FFT + BR (1) Cycles Energy/FFT
(nJ/FFT)

x Times Faster
(Scale)

x Times Energy
Efficient (Scale)

8 pt 92 + 38 = 130 23.6 196 + 95 = 291 95.1 2.2 4

16 pt 115 + 55 = 170 32.1 344 + 117 = 461 157.1 2.7 4.9

32 pt 234 + 87 = 321 69.5 609 + 139 = 748 269.9 2.3 3.9

64 pt 285 + 151 = 436 98.5 1194 + 211 = 1405 531.7 3.2 5.4

128 pt 633 + 279 = 912 219.2 2499 + 299 = 2798 1090.4 3.1 5

256 pt 1133 + 535 = 1668 407.2 5404 + 543 = 5947 2354.2 3.6 5.8

512 pt 2693 + 1047 = 3740 939.7 11829 + 907 = 12736 5097.5 3.4 5.4

1024 pt 5244 + 2071 = 7315 1836.2 25934 + 1783 = 27717 11097.9 3.8 6

In summary, Table 2-3 shows that for the test conditions used, HWAFFT is 4 to 6 times more energy
efficient and 2.2 to 3.8 times faster than the CPU.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com FFT Benchmarks

131SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

Table 2-4 compares FFT performance of the accelerator versus FFT computation using the CPU under
the following conditions:
• Core voltage = 1.3 V
• PLL = 100 MHz
• Power measurement condition:

– At room temperature only
– All peripherals are clock gated
– Measured at CVDD

(1) BR = Bit Reverse

Table 2-4. FFT Performance on HWAFFT vs CPU (CVDD = 1.3 V, PLL = 100 MHz)
FFT with HWA CPU (Scale) HWA versus. CPU

Complex FFT FFT + BR (1) Cycles Energy/FFT
(nJ/FFT)

FFT + BR (1) Cycles Energy/FFT
(nJ/FFT)

x Times Faster
(Scale)

x Times Energy
Efficient (Scale)

8 pt 92 + 38 = 130 36.3 196 + 95 = 291 145.9 2.2 4

16 pt 115 + 55 = 170 49.3 344 + 117 = 461 241 2.7 4.9

32 pt 234 + 87 = 321 106.9 609 + 139 = 748 414 2.3 3.9

64 pt 285 + 151 = 436 151.3 1194 + 211 = 1405 815.7 3.2 5.4

128 pt 633 + 279 = 912 336.8 2499 + 299 = 2798 1672.9 3.1 5

256 pt 1133 + 535 = 1668 625.6 5404 + 543 = 5947 3612.9 3.6 5.8

512 pt 2693 + 1047 = 3740 1442.8 11829 + 907 = 12736 7823.8 3.4 5.4

1024 pt 5244 + 2071 = 7315 2820.6 25934 + 1783 = 27717 17032.4 3.8 6

In summary, Table 2-4 shows that for the test conditions used, HWAFFT is 4 to 6 times more energy
efficient and 2.2 to 3.8 times faster than the CPU.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

1
(/ 2) (() - ()), 0 / 2 - 1

2

k
X k N X k W X k k to N

even N odd

+ = =

1
() (() ()), 0 / 2 - 1

2

k
X k X k W X k k to N

even N odd

= + =

Computation of Large (Greater Than 1024-Point) FFTs www.ti.com

132 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

2.8 Computation of Large (Greater Than 1024-Point) FFTs
The HWAFFT can perform up to 1024-point complex FFTs/IFFTs at a maximum, but if larger FFT sizes
(that is, 2048-point) are required, the DSP core can be used to compute extra Radix-2 stages that are too
large for the HWAFFT to handle.

Recall the Radix-2 DIT equations:

(11)

and

(12)

2.8.1 Procedure for Computing Large FFTs
The procedure for computing an additional Radix-2 DIT stage on the CPU is outlined:
• Split the input signal into even and odd indexed signals, Xeven and Xodd.
• Call N/2 point FFTs for the even and odd indexed inputs.
• Complex Multiply the Xodd FFT results with the decimated twiddle factors for that stage.
• Add the Xodd * Twiddle product to Xeven to find the first half of the FFT result.
• Subtract Xodd * Twiddle to find the second half of the FFT result.

2.8.2 Twiddle Factor Computation
The HWAFFT stores 512 complex twiddle factors enabling FFT/IFFT computations up to 1024 points.
Recall Equation 5 states that only twiddle factors from 0 to N/2 are needed. To compute FFT/IFFTs larger
than 1024 points, you must supply N/2 complex twiddle factors, where N is the FFT length (powers of 2).

The following MATLAB code creates real and imaginary parts of the twiddle factors for any N:
N = 2048;
n = 0:(N/2-1);
twid_r = cos(2*pi*n/N);
twid_i = -sin(2*pi*n/N);

2.8.3 Bit-Reverse Separates Even and Odd Indexes
A nice property of the bit-reversal process is the automatic separation of odd-indexed data from even-
indexed data. Before the bit-reverse, even indexes have a 0 in the least significant bit and odd indexes
have a 1 in the least significant bit. After the bit-reverse, even indexes have a 0 in the most significant bit,
and odd indexes have a 1 in the most significant bit. Therefore, all even indexed data resides in the first
half of the bit-reversed vector, and all odd indexed data resides in the second half of the bit-reversed
vector. This process meets two needs: separation of even and odd indexed-data vectors and bit-reversing
both vectors.

2.8.4 2048-point FFT Source Code
The following C source code demonstrates a 2048-point FFT using this approach. Two 1024-point FFTs
are computed on the HWAFFT, and a final Radix-2 stage is performed on the CPU to generate a 2048-
point FFT result:
#define FFT_FLAG (0) /* HWAFFT to perform FFT */
#define IFFT_FLAG (1) /* HWAFFT to perform IFFT */
#define SCALE_FLAG (0) /* HWAFFT to scale butterfly output */
#define NOSCALE_FLAG (1) /* HWAFFT not to scale butterfly output */
#define OUT_SEL_DATA (0) /* Indicates HWAFFT output located in input data vector */
#define OUT_SEL_SCRATCH (1) /* Indicates HWAFFT output located in scratch vector */
#define DATA_LEN_2048 (2048)
#define TEST_DATA_LEN (DATA_LEN_2048)

// Static Memory Allocations and Alignment:
#pragma DATA_SECTION(data_br_buf, "data_br_buf");

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Computation of Large (Greater Than 1024-Point) FFTs

133SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

#pragma DATA_ALIGN (data_br_buf, 4096);
// Align 2048-pt bit-reverse dest vector to byte addr w/ 13 least sig zeros

Int32 data_br_buf[TEST_DATA_LEN];

#pragma DATA_SECTION(data_even_buf, "data_even_buf");
Int32 data_even_buf[TEST_DATA_LEN/2];

#pragma DATA_SECTION(data_odd_buf, "data_odd_buf");
Int32 data_odd_buf[TEST_DATA_LEN/2];

#pragma DATA_SECTION(scratch_even_buf, "scratch_even_buf");
Int32 scratch_even_buf[TEST_DATA_LEN/2];

#pragma DATA_SECTION(scratch_odd_buf, "scratch_odd_buf");
Int32 scratch_odd_buf[TEST_DATA_LEN/2];

// Function Prototypes:
Int32 CPLX_Mul(Int32 op1, Int32 op2);

// Yr = op1_r*op2*r - op1_i*op2_i, Yi = op1_r*op2_i + op1_i*op2_r
Int32 CPLX_Add(Int32 op1, Int32 op2, Uint16 scale_flag);

// Yr = 1/2 * (op1_r + op2_r), Yi = 1/2 *(op1_i + op2_i)
Int32 CPLX_Subtract(Int32 op1, Int32 op2, Uint16 scale_flag);

// Yr = 1/2 * (op1_r - op2_r), Yi = 1/2 *(op1_i - op2_i)

// Declare Variables
Int32 *data_br;
Int32 *data;
Int32 *data_even, *data_odd;
Int32 *scratch_even, *scratch_odd;
Int32 *twiddle;
Int32 twiddle_times_data_odd;
Uint16 fft_flag;
Uint16 scale_flag;
Uint16 out_sel;
Uint16 k;

// Assign pointers to static memory allocations
data_br = data_br_buf;
data_even = data_even_buf;
data_odd = data_odd_buf;
scratch_even = scratch_even_buf;
scratch_odd = scratch_odd_buf;
twiddle = twiddle_buf; // 1024-pt Complex Twiddle Table
data = invec_fft_2048pts; // 2048-pt Complex Input Vector

// HWAFFT flags:
fft_flag = FFT_FLAG; // HWAFFT to perform FFT (not IFFT)
scale_flag = SCALE_FLAG; // HWAFFT to scale by 2 after each butterfly stage

// Bit-reverse input data for DIT FFT calculation
hwafft_br(data, data_br, DATA_LEN_2048);

// data_br aligned to log2(4*2048) = 13 zeros in least sig bits
data = data_br;

// Split data into even-indexed data & odd-indexed data
// data is already bit-reversed, so even-indexed data = first half & odd-
indexed data = second half
for(k=0; k<DATA_LEN_2048/2; k++)
{

data_even[k] = data[k];
data_odd[k] = data[k+DATA_LEN_2048/2];

}

// 1024-pt FFT the even data on the FFT Hardware Accelerator
out_sel = hwafft_1024pts(data_even, scratch_even, fft_flag, scale_flag);
if(out_sel == OUT_SEL_SCRATCH) data_even = scratch_even;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Appendix A Methods for Aligning the Bit-Reverse Destination Vector www.ti.com

134 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

// 1024-pt FFT the odd data on the FFT Hardware Accelerator
out_sel = hwafft_1024pts(data_odd, scratch_odd, fft_flag, scale_flag);
if(out_sel == OUT_SEL_SCRATCH) data_odd = scratch_odd;

// Combine the even and odd FFT results with a final Radix-2 Butterfly stage on the CPU
for(k=0; k<DATA_LEN_2048/2; k++) // Computes 2048-point FFT
{

// X(k) = 1/2*(X_even[k] + Twiddle[k]*X_odd(k))
// X(k+N/2) = 1/2*(X_even[k] - Twiddle[k]*X_odd(k))
// Twiddle[k]*X_odd(k):

twiddle_times_data_odd = CPLX_Mul(twiddle[k], data_odd[k]);

// X(k):
data[k] = CPLX_Add(data_even[k], twiddle_times_data_odd, SCALE_FLAG); // Add then scale by 2

// X(k+N/2):
data[k+DATA_LEN_2048/2] = CPLX_Subtract(data_even[k], twiddle_times_data_odd, SCALE_FLAG);

//Sub then scale
}

result = data; //2048-pt FFT result

/* END OF 2048-POINT FFT SOURCE CODE */

2.9 Appendix A Methods for Aligning the Bit-Reverse Destination Vector
The optimized bit-reverse function hwafft_br requires the destination vector to be data aligned such that
the starting address of the destination vector, data_br, contains log2(4 * N) zeros in the least significant
bits of the binary address. There are a few different ways to force the linker map the bit-reverse
destination vector to an address with log2(4 * N) zeros in the least significant bits. Three different methods
are shown here. For further details, refer to the TMS320C55x C/C++ Compiler User’s Guide (SPRU280).

2.9.1 Statically Allocate Buffer at Beginning of Suitable RAM Block

NOTE: To execute the HWAFFT routines from the ROM of the DSP, the programmer must satisfy
memory allocation restrictions for the data and scratch buffers. For an explanation of the
restrictions and workarounds, see the device-specific errata:
• TMS320C5535/34/33/32 Fixed-Point DSP Silicon Errata

(literature number SPRZ373)
• TMS320C5545A Fixed-Point DSP Silicon Errata (literature number SPRZ404)

Place the buffer at the beginning of a DARAM or SARAM block with log2(4 * N) zeros in the least
significant bits of its byte address. For example, memory section DARAM2_3 below starts at address
0x0004000, which contains 14 zeros in the least significant bits of its binary address (0x0004000 =
0b0100 0000 0000 0000). Therefore, this address is a suitable bit-reverse destination vector for FFT
Lengths up to 4096-points because log2(4 * 4096) = 14.

In the Linker CMD File...
MEMORY
{

MMR (RWIX): origin = 0000000h, length = 0000c0h /* MMRs */
DARAM0 (RWIX): origin = 00000c0h, length = 001f40h /* on-chip DARAM 0, 4000 words */
DARAM1 (RWIX): origin = 0002000h, length = 002000h /* on-chip DARAM 1, 4096 words */
DARAM2_3 (RWIX): origin = 0004000h, length = 004000h /* on-chip DARAM 2_3, 8192 words */
DARAM4 (RWIX): origin = 0008000h, length = 002000h /* on-chip DARAM 4, 4096 words */
... (leaving out rest of memory sections)

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H
http://www.ti.com/lit/pdf/spru280
http://www.ti.com/lit/pdf/SPRZ373

www.ti.com Appendix A Methods for Aligning the Bit-Reverse Destination Vector

135SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

FFT Implementation on the TMS320C5545/35 DSP

SECTIONS
{

data_br_buf : > DARAM2_3 /* ADDR = 0x004000, Aligned to addr with 14 least-sig zeros */
}

2.9.2 Use the ALIGN Descriptor to Force log2(4 * N) Zeros in the Least Significant Bits
The ALIGN descriptor forces the alignment of a specific memory section, while providing the linker with
added flexibility to allocate sections across the entire DARAM or SARAM because no blocks are statically
allocated. It aligns the memory section to an address with log2(ALIGN Value) zeros in the least significant
bits of the binary address.

For example, the following code aligns data_br_buf to an address with 12 zeros in the least significant
bits, suitable for a 1024-point bit-reverse destination vector.

In the Linker CMD File...
MEMORY
{

MMR (RWIX): origin = 0000000h, length = 0000c0h /* MMRs */
DARAM (RWIX): origin = 00000c0h, length = 00ff40h /* on-chip DARAM 32 Kwords */
SARAM (RWIX): origin = 0010000h, length = 040000h /* on-chip SARAM 128 Kwords */

}

SECTIONS
{

data_br_buf : > DARAM ALIGN = 4096
/* 2^12 = 4096 , Aligned to addr with 12 least-sig zeros */

}

2.9.3 Use the DATA_ALIGN Pragma
The DATA_ALIGN pragma is placed in the source code where the vector is defined. The syntax is shown
below.

#pragma DATA_ALIGN (symbol, constant);
The DATA_ALIGN pragma aligns the symbol to an alignment boundary. The boundary is the value of the
constant in words. For example, a constant of 4 specifies a 64-bit alignment. The constant must be a
power of 2.

In this example, a constant of 2048 aligns the data_br_buf symbol to an address with 12 zeros in the least
significant bits, suitable for a 1024-point bit-reverse destination vector.

In the source file where data_br is declared (e.g., main.c):
#pragma DATA_SECTION(data_br_buf, "data_br_buf");
#pragma DATA_ALIGN (data_br_buf, 2048);
Int32 data_br_buf[TEST_DATA_LEN];

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

136 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

Chapter 3
SPRUH87H–August 2011–Revised April 2016

Direct Memory Access (DMA) Controller

This chapter describes the features and operations of the direct memory access (DMA) controller.

Topic ... Page

3.1 Introduction ... 137
3.2 DMA Controller Architecture .. 139
3.3 DMA Transfer Examples .. 148
3.4 Registers ... 153

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Introduction

137SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

3.1 Introduction
The following sections describe the features and operation of the direct memory access (DMA) controller
in the digital signal processor (DSP). The DMA controller allows movement of data between internal
memory and other peripherals without CPU intervention.

3.1.1 Purpose of the DMA Controller
The DMA controller is used to move data between internal memory and peripherals without intervention
from the CPU and in the background of CPU operation.

The DSP includes four DMA controllers with four DMA channels each for a total of 16 DMA channels.
Aside from the DSP resources they can access, all four DMA controllers are identical. Throughout this
document the general operation of each DMA controller will be described. Differences between each DMA
controller will be noted when necessary.

3.1.2 Key Features of the DMA Controller
The DMA controller has the following features:
• Operation that is independent of the CPU.
• Four channels per DMA controller, which allow the DMA controller to keep track of the context of four

independent block transfers.
• Event synchronization. DMA transfers in each channel can be made dependent on the occurrence of

selected events. For details, see Section 3.2.7.
• An interrupt for each channel. Each channel can send an interrupt to the CPU on completion of the

programmed transfer. See Interrupt Support in Section 3.2.14.
• A dedicated clock idle domain. The user can put the four device DMA controllers into a low-power state

by turning off their input clock. See Power Management in Section 3.2.15.
• Ping-Pong mode for DMA transfer. This mode provides double buffering capability fully implemented in

hardware. For details, see Section 3.2.9.

To read about the registers used to program the DMA controller, see Section 3.4.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

DMA Controller 3

DMA Controller 2

DMA Controller 1

C55x CPU

Peripherals

Switched
Central

Resource

Register Interface Port

Data Interface Port

Channel
0-3

64-byte
FIFO

DMA Controller 0

Introduction www.ti.com

138 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

3.1.3 Block Diagram of the DMA Controller
Figure 3-1 is a conceptual diagram of connections between the DMA controller and other parts of the
DSP. The DMA controller is made up of the following blocks:
• Register interface port. The CPU uses this port to access the DMA controller registers.
• Data interface port. The DMA controller accesses internal dual-access RAM (DARAM), internal single-

access RAM (SARAM) and on-chip peripherals through its data interface port.
• Data transfers are carried out by the four DMA channels. (The DMA channels are described in

Section 3.2.3)
• 64-byte FIFO. As data is read from the source address, it is placed in the DMA controller FIFO. The

four DMA channels must share the DMA controller FIFO; the FIFO can only be accessed by a single
channel at a time.

It is possible for multiple channels to request access to the DMA controller FIFO at the same time. In this
case the DMA controller arbitrates amongst the DMA channels using a round-robin arbitration scheme.

Figure 3-1. Conceptual Block Diagram of the DMA Controller

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

External
Input
Clock

RTC

Crystal

CLKSEL

DMA
Controller n

PCGCR[DMA CG]nDSP
System Clock

DMA
Controller
Input Clock

n

Clock
Generator

SYSCLKSEL[CCR2]

www.ti.com DMA Controller Architecture

139SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

3.2 DMA Controller Architecture

3.2.1 Clock Control
As shown in Figure 3-2, the clock generator receives either the real-time clock (RTC) or a signal from an
external clock source and produces the DSP system clock. This clock is used by the DSP CPU and
peripherals.

The DSP includes logic which can be used to gate the clock to its on-chip peripherals, including each of
the four DMA controllers. The input clock to the DMA controllers can be enabled and disabled through the
peripheral clock gating configuration registers (PCGCR1 and PCGCR2).

Figure 3-2. Clocking Diagram for the DMA Controller

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Source

Address
DMA FIFO

Destination

Address

Read Access Write Access

DMA Controller Architecture www.ti.com

140 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

3.2.2 Memory Map
On the DSP, although all DMA controllers can access internal dual-access RAM (DARAM) and single-
access RAM (SARAM), each DMA controller can only access a subset of on-chip peripherals. The
addresses from the point of view of the CPU as compared to the DMA controller are different for DARAM
and SARAM. The DMA controller reads on-chip memory by adding the offsets introduced in Table 3-1.
The memory map, as seen by the DMA controllers and the CPU, is shown in Table 3-1. Peripherals not
shown in Table 3-1 are not accessible by the DMA controllers.

(1) Word addresses 00 0000h-00 005Fh (which correspond to byte addresses 00 0000h-00 00BFh) are reserved for the memory-
mapped registers (MMRs) of the DSP CPU.

Table 3-1. DMA Controller Memory Map

DMA Start
Byte Address

CPU Start
Word

Address (I/O
Space)

CPU Start
Word

Address
(Data Space)

DSP Memory
Map

DMA
Controller 0
Memory Map

DMA
Controller 1
Memory Map

DMA
Controller 2
Memory Map

DMA
Controller 3
Memory Map

0000 2800h 00 2800h - I2S0 I2S0
Reserved Reserved Reserved0000 3A00h 00 3A00h - eMMC/SD0 eMMC/SD0

0000 3B00h 00 3B00h - eMMC/SD1 eMMCSD1
0001 0000h* - 00 0000h (1) DARAM DARAM DARAM DARAM DARAM
0009 0000h - 00 8000h SARAM SARAM SARAM SARAM SARAM
0000 1B00h 00 1B00h - UART UART

Reserved
Reserved

0000 2A00h 00 2A00h - I2S2 I2S2
0000 1A00h 00 1A00h - I2C Reserved I2C
0000 2B00h 00 2B00h - I2S3 Reserved I2S3
0000 2900h 00 2900h - I2S1 Reserved I2S1
0000 7000h 00 7000h - 10-bit SAR 10-bit SAR Reserved

3.2.3 DMA Channels
Each DMA controller has four channels to transfer data among the DSP resources (DARAM, SARAM, and
peripherals). Each channel reads data from the source address and writes data to the destination address.

The DMA first in, first out (FIFO) buffer is used by the channels to store transfer data; this allows the data
transfer to occur in two stages (see Figure 3-3).

Data read access Transfer of data from the source address to the DMA FIFO buffer.

Data write access Transfer of data from the DMA FIFO buffer to the destination address.

Figure 3-3. Two-Part DMA Transfer

The set of conditions under which transfers occur in a channel is called the channel context. Each of the
four channels contains a register structure for programming and updating the channel context (see
Figure 3-4). The user code modifies the configuration registers. The DMA channel becomes active when
the channel is enabled (EN = 1 in DMACHmTCR2).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com DMA Controller Architecture

141SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

The channel configuration registers cannot be programmed while the channel is active (EN = 1 in
DMACHmTCR2). Modifying channel registers while the DMA channel is running may cause unpredictable
operation of the channel. To change a DMA channel configuration, the channel must first be disabled (EN
= 0 in DMACHmTCR2). The DMA controller will always complete any on-going burst transfer before
stopping channel activity. Note that a block transfer may consist of a number of burst transfers. The
channel is considered to be active until it completes the burst transfer during which the channel is
disabled. After a channel has been disabled, the channel context must be fully reloaded.

Figure 3-4. Registers for Controlling the Context of a Channel

3.2.4 Channel Source and Destination Start Addresses
During a data transfer in a DMA channel, the first address at which data is read is called the source start
address. The first address to which the data is written is called the destination start address. These are
byte addresses. Each channel contains the following registers for specifying the start addresses.

In Ping-Pong mode, the source or destination start address is the start address of the Ping buffer. The
length of the Ping and the Pong buffers should be half of the DMA transfer size as programmed in TCR1.
The first half is assumed to be the Ping buffer and the second half is assumed to be the Pong buffer.
These two buffers are required to be contiguous in the memory space and are of equal size. The
programmer is responsible for allocating these buffers contiguously. It is recommended to consider the
Ping and the Pong buffers to be a single data buffer in the memory space so that the compiler always
allocates them next to each other.

Table 3-2. Registers Used to Define the Start Addresses for a DMA Transfer

Register Load with...
DMACHmSSAL Source start address (least-significant part)
DMACHmSSAU Source start address (most-significant part)
DMACHmDSAL Destination start address (least-significant part)
DMACHmDSAU Destination start address (most-significant part)

Section 3.2.2 shows a high-level memory map of the DSP as seen by the DMA controllers and the CPU.
The table shows both the word addresses (23-bit addresses) used by the CPU and byte addresses (32-bit
addresses) used by the DMA controller.

The following sections explain how to determine the start address for memory accesses and I/O accesses.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

DMA Controller Architecture www.ti.com

142 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

CAUTION
All data buffers in on-chip or off-chip memory should be 32-bit aligned. For
more information on managing memory, see the TMS320C55x Assembly
Language Tools User Guide (SPRU280).

Additionally, the amount of data (in bytes) to be transferred as programmed in
the LENGTH field in DMACHmTCR1 should be a multiple of 4 bytes x
2BURSTMODE field in DMACHmTCR2, that is, LENGTH = (4 x 2BURSTMODE) bytes.

3.2.4.1 Start Address for On-Chip Memory
The CPU uses word addresses and the DMA uses byte addresses. Furthermore, an offset must be added
to CPU addresses to generate DMA addresses.

Follow these steps to program the DMA controller with a byte address corresponding to a CPU word
address:
1. Identify the correct start address. If you have a word address, shift it left by 1 bit to form a byte address

of 32 bits. For example, the CPU word address for SARAM block 0 (00 8000h) should be converted to
byte address 0001 0000h.

2. Add correct offset to the CPU byte address. For DARAM, add a value of 01 0000h to the desired byte
address. For SARAM, add a value of 08 0000h. For example, since byte address 0001 0000h
corresponds to SARAM block 0, a value of 0008 0000h should be added to the byte address to
generate 0009 0000h.

3. Load the 16 least significant bits (LSBs) of the byte address into DMACHmSSAL (for source) or
DMACHmDSAL (for destination).

4. Load the 16 most significant bits (MSBs) of the byte address into DMACHmSSAU (for source) or
DMACHmDSAU (for destination).

3.2.4.2 Start Address for I/O Space
The CPU uses word addresses and the DMA uses byte addresses. The following steps describe how to
program the DMA controller with a byte address for a peripheral memory-mapped register:
1. Identify the correct DMA byte address for the peripheral memory-mapped register. The starting DMA

byte addresses for the memory-mapped register space of the DSP peripherals are given in Table 3-1.
2. Load the 16 least significant bits (LSBs) of the byte address into DMACHmSSAL (for source) or

DMACHmDSAL (for destination).
3. Load the 16 most significant bits (MSBs) of the byte address into DMACHmSSAU (for source) or

DMACHmDSAU (for destination).

3.2.5 Updating Addresses in a Channel
During data transfers in a DMA channel, the DMA controller begins its read and write accesses at the start
addresses you specify (as described in Section 3.2.4). Each time the DMA controller services a channel, it
transfers the number of double words specified in the BURSTMODE of the channel's transfer control
register (DMACHmTCR2). If constant addressing mode is selected (DST/SRCAMODE = 10b), the channel
does not update the addressing registers (DMACHmSSAU/L and DMACHmDSAU/L). Otherwise, if the
channel is set to automatic-post increment addressing mode (DST/SRCAMODE = 00b), the channel
increments the value in the addressing registers by the total number of bytes transferred.

To change the source or destination address of a channel, the channel must first be disabled by setting
EN = 0. The CPU can then update the Source/Destination Address registers and the Transfer Control
registers before restarting the channel.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H
http://www.ti.com/lit/pdf/SPRU280

www.ti.com DMA Controller Architecture

143SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

3.2.6 Data Burst Capability
During a read-write transaction (from source address to destination address) through the Switched Central
Resource (see Figure 3-1), the DMA controller moves data one double word at a time by default. Since
every transaction request involves cycle overheads (see Section 3.2.11), the DMA throughput can be
increased by programming the DMA channel to move multiple double words during a transaction, provided
both the source and destination targets associated with the transfer support burst capability. The DMA
controller can burst to and from SARAM, DARAM, and UART. For a list of DSP resources that support
data bursting, see Table 3-3.

The BURSTMODE bits of the Transfer Control Register 2 (DMACHmTCR2) specify the number of double
words the DMA controller moves each time it services a channel, that is, the DMA controller executes a
burst of n double words (n = 2, 4, 8, or 16) each time a channel is serviced instead of moving only 1
double word.

Note that the DMA controller services one channel at a time. Each time the DMA services a channel it
must transfer the number of double words specified by the burst mode bits. Therefore, care must be taken
when programming a channel to use a high burst count since this may impact the minimum amount of
time it takes the DMA controller to service other channels. DMA channels are serviced in a round-robin
fashion.

(1) The UART treats each double word transfer as a single byte. Therefore, an 8 double word transfer from
the DMA to the UART will yield 8 new bytes in the UART FIFO. For more information, see Section 7.1,
Universal Asynchronous Receiver/Transmitter (UART).

Table 3-3. Destinations/Sources That Support DMA Bursting

Destination/Source
Address Burst Mode Supported

DARAM 1, 2, 4, 8, 16 double words
SARAM 1, 2, 4, 8, 16 double words
UART (1) 1, 2, 4, 8 double words

3.2.7 Synchronizing Channel Activity to DSP Peripheral Events
Activity in a channel can be synchronized to an event in a DSP peripheral. Synchronization is enabled by
setting SYNCMODE = 1 in DMACHmTCR2. Using the CHnEVT bits of DMACESR1 and DMACESR2, the
user can specify which synchronization event triggers channel activity. Note that synchronization to an
event signaled by the driving of an external interrupt pin is not supported.

If event synchronization is enabled, the channel will wait for the event from the peripheral as programmed
in the DMACESR1 and/or DMACESR2 registers before reading from the source address into the DMA
FIFO. The synchronization event will trigger the channel to transfer the number of bytes specified by the
BURSTMODE bits into the FIFO. Once the FIFO has been filled, the DMA channel will begin writing to the
destination address to empty the FIFO.

In non-synchronized transfers (SYNCMODE = 0), the channel sends an access request to the source
address as soon as the channel is enabled (EN = 1 in DMACHmTCR2). The channel will transfer data
from the source address to the FIFO, and then to the destination address until the entire block transfer
has been completed or until the user program disables the channel.

The synchronization events are not buffered. Hence, if a synchronization event occurs when the DMA
channel is still servicing the previous event, the overlapping (second) event is dropped. In this scenario,
the DMA controller does not disable the affected channel nor does it signal an error to the CPU.
Therefore, care must be taken when programming the DSP to ensure that the DMA has enough clock
cycles to transfer the required number of data bytes on each synchronization event.

Note that some peripherals can generate interrupts whenever a data underrun or overrun condition
occurs. The user program can use these interrupts to detect dropped synchronization events.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

DMA

Ping
Buf1

Pong
Buf1

Ping
Buf2

Pong
Buf2

CPU
DMA

To Peripheral

DMA Controller Architecture www.ti.com

144 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

CAUTION
When using synchronization events, you must set EN = 1 and SYNCMODE = 1
during the same write cycle to DMACHmTCR2. The DMA channel will transfer
the first data value when it receives the synchronization event specified by
CHnEVT in DMACESR1 and DMACESR2. Also, when disabling the channel,
you must set EN = 0 and SYNCMODE = 0 during the same write cycle to
DMACHmTCR2.

3.2.8 Channel Auto-Initialization Capability
After a block transfer is completed (all of the bytes specified by LENGTH in DMACHmTCR1 have been
moved), the DMA controller automatically disables the channel (EN = 0). If it is necessary for the channel
to be used again, the CPU can reprogram the new channel context and re-enable the DMA channel, or
the DMA controller can automatically initialize the new context and re-enable the channel.

When auto-initialization is used, after each block transfer is completed, the DMA controller automatically
reloads the transfer control register and the source and destination start address registers and re-enables
the channel allowing the channel to run again. Auto-initialization is enabled by setting the AUTORLD = 1
in the transfer control register (DMACHmTCR2).

CAUTION
The auto-initialization feature can only be used when event synchronization is
used (SYNCMODE = 1 in DMACHmTCR2).

Using auto-initialization feature without event synchronization can lead to
unintended behavior of the DMA controller.

3.2.9 Ping-Pong DMA Mode
The Ping-Pong mode for DMA transfer can be used to do continuous processing of incoming data without
losing any samples. Every channel in the DMA controller has the capability of being configured in the
Ping-Pong mode. This mode can be initiated by setting PING_PONG_EN bit of the Transfer Control
Register 2 (TCR2) to 1. For more information, see Section 3.4.3. You should also define the transfer buffer
length in bytes in the Transfer Control Register 1 (TCR1). The length of the Ping and the Pong buffers
should be half of the DMA transfer size as programmed in TCR1. The first half is assumed to be the Ping
buffer and the second half is assumed to be the Pong buffer. These two buffers are required to be
contiguous in the memory space and of equal size. The programmer is responsible for allocating these
buffers contiguously. It is recommended to consider the Ping and the Pong buffers to be a single data
buffer in the memory space so that the compiler always allocates them next to each other.

Figure 3-5. Ping-Pong Mode for DMA Data Transfer

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com DMA Controller Architecture

145SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

As shown in Figure 3-5, in Ping-Pong mode, DMA starts filling up the Ping buffer first. Once the Ping
buffer is full, a DMA interrupt is generated to the CPU and the LAST_XFER bit (bit 1 in TCR2) is set to 0,
which indicates that the data in the Ping buffer can be processed. The CPU can start processing the
samples in the Ping buffer while the DMA is transferring the data to the Pong buffer. When the Pong
buffer is full, another DMA interrupt is sent to the CPU to indicate the availability of data in the Pong buffer
and the LAST_XFER bit in TCR2 is set to 1. If the AUTORLD bit = 1 in TCR2 (Section 3.4.3), then the
DMA automatically reinitiates the DMA transfer until either EN or AUTORLD bit is set to 0. In the case that
the AUTORLD bit is set to 0, DMA stops data transfer after the Pong buffer is full and the interrupt is
generated. It also resets the EN bit to 0 in TCR2.

At any time during the DMA transfer, LAST_XFER bit of TCR2 (Section 3.4.3) can be polled to find
whether the last completed transfer was the Ping or Pong buffer.

3.2.10 Monitoring Channel Activity
The DMA controller can send an interrupt to the CPU whenever a channel has completed a block transfer.
Each channel has an interrupt enable (DMAnCHmIE) bit in the interrupt enable register (DMAIER) and
corresponding status bits in the interrupt flag register (DMAIFR). When a channel completes a block
transfer, the DMA controller checks the corresponding DMAnCHmIE bit and acts accordingly:
• If the DMAnCHmIE bit is 1 (the interrupt is enabled), the DMA controller sets the corresponding status

bit and sends the associated interrupt request to the CPU. Your program must manually clear bits in
DMAIFR by writing a 1 to them.

• If the DMAnCHmIE bit is 0, no interrupt is sent and the status bit is not affected.

Each channel also includes a STATUS bit in DMACHmTCR2 to indicate the state of the channel transfer.
The DMA controller sets the channel STATUS bit to 1 if:
• A nonzero value is written on LENGTH in DMACHmTCR1.
• A write access is performed to DMACHmTCR2 and LENGTH has a nonzero value.

The DMA controller clears the STATUS bit to 0 if:
• All the bytes specified by LENGTH in DMACHmTCR1 have been transferred.
• A value of 0 is written to LENGTH in DMACHmTCR1.

The LAST_XFER bit which is bit 1 in TCR2 (Section 3.4.3) indicates whether the last completed transfer
was the Ping or the Pong buffer. This bit is valid only when Ping-Pong DMA mode is enabled
(PING_PONG_EN bit in TCR2 is 1).

LAST_XFER bit in TCR2 is set to 0 if:
• The last completed transfer was the Ping buffer.

LAST_XFER bit in TCR2 is set to 1 if:
• The last completed transfer was the Pong buffer.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

DMA Controller Architecture www.ti.com

146 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

3.2.11 Latency in DMA Transfers
Each element transfer in a channel is composed of a read access (a transfer from the source location to
the DMA controller FIFO) and a write access (a transfer from the DMA controller FIFO to the destination
location). The time to complete this activity depends on factors such as:
• The selected frequency of the CPU clock signal. This signal, as propagated to the DMA controller,

determines the timing for all DMA transfers.
• Wait states or other extra cycles added by or resulting from an interface.
• Activity on other channels. Since channels are serviced in a sequential order, the number of pending

DMA service requests in the other channels affects how often a given channel can be serviced.
• Competition from the CPU or other DMA controllers. If a DMA controller and the CPU request access

to the same internal memory block or peripheral in the same cycle and the memory block or peripheral
cannot service both requests at the same time, the CPU request has higher priority. The DMA request
is serviced as soon as there are no pending CPU requests.

• The timing of synchronization events (if the channel is synchronized). The DMA controller cannot
service a synchronized channel until the synchronization event has occurred. For more details on
synchronization, see Section 3.2.7.

The minimum (best-case) latency for a burst DMA transfer can be summarized as follows:
• For transfers initiating from internal memory: the first access for word read and write takes 8 cycles,

while consecutive accesses take 2 more cycles. Thus the DMA takes 2N + 6 system clock cycles to
complete a burst transfer, where N corresponds to the burst size in words.

• For transfers initiating from a peripheral source: the first access for word read and write takes 6 cycles,
while consecutive accesses take 2 more cycles. Thus the DMA takes 2N + 4 system clock cycles to
complete a burst transfer, where N corresponds to the burst size in words.

The burst size of the DMA is specified through the BURSTMODE bits. Note that a block transfer may
consist of a number of burst transfers.

3.2.12 Reset Considerations
The DMA controller has one reset source: a hardware reset. This reset is always initiated during a full chip
reset. Alternatively, software can force a hardware reset on all DMA controllers through the DMA_RST bit
of the peripheral reset control register (PRCR). See the device data manual for more details on PRCR.
Please note that the DMA controller input clock must be enabled when using DMA_RST (see
Section 3.2.1).

When a hardware reset occurs, all the registers of the DMA controllers are set to their default values. The
DMA controllers remain inactive until programmed by software.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com DMA Controller Architecture

147SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

3.2.13 Initialization
To initialize the DMA controller follow these steps:
1. Ensure the DMA controller is out of reset by setting the DMA_RST bit to 0 in the peripheral reset

control register (PRCR). PRCR is a chip configuration register, it is not part of the DMA controller, see
the device data manual for more details.

2. Enable the DMA controller input clock by setting the corresponding DMAnCG bit to 0 in the peripheral
clock gating configuration registers (PCGCR1 and PCGCR2). PCGCR1 and PCGCR2 are chip
configuration registers, they are not part of the DMA controller, see the device data manual for more
details.

3. Ensure that all DMA channel interrupt flags are cleared by writing a 1 to the bits of the DMA interrupt
flag register (DMAIFR). Also, ensure all DMA interrupt flags in the CPU interrupt flag registers (IFR0
and IFR1) are cleared.

4. If using interrupts, enable the desired channel interrupt by setting the DMAnCHmIE bits of the interrupt
enable register (DMAIER). The CPU interrupt enable bit (INTEN) in the transfer control register 2
(DMACHmTCR2) must also be set.

5. If using synchronization events, select the event to be used through the CHmEVT bits of the channel
event source registers (DMAnCESR1 and DMAnCESR2). The synchronization mode bit (SYNCMODE)
of DMACHmTCR2 must also be set, although this should be done only when the channel is ready to
be enabled.

6. Load the source address to the source start address registers (DMACHmSSAL and DMACHmSSAU).
See Section 3.2.4, Start Address in a Channel, for more information on calculating the correct source
start address.

7. Load the destination address to the destination start address registers (DMACHmDSAL and
DMACHmDSAU). See Section 3.2.4, Start Address in a Channel, for more information on calculating
the correct destination start address.

8. Load the DMA transfer control register 1 (DMACHmTCR1) with the number of double words to
transfer. Note that the number of double words must be specified in bytes. For example, for a 256
double word transfer, program this field with 1024 (256 x 4 = 1024). When Ping-Pong DMA mode is
enabled, this is the size of the Ping and the Pong buffer combined. For more details, see Section 3.2.4.

9. Configure DMACHmTCR2 accordingly. Through this register you can specify the source and
destination addressing modes and burst mode. You can also enable automatic reload, event
synchronization, CPU interrupts and Ping-Pong mode. Note that you must keep EN = 0 and
SYNCMODE = 0 during this step.

10. If the DMA channel is servicing a peripheral, ensure that the corresponding peripheral is not active and
hence not generating synchronization events.

11. Enable the DMA channel by setting EN = 1 (and SYNCMODE = 1 if using synchronization events).
12. If necessary, enable peripheral being serviced the DMA channel.

If using synchronization events, the DMA channel will start a data transfer when an event is received.
Otherwise, the DMA channel will start the transfer immediately. At the end of the block transfer, if
interrupts are enabled, the DMA controller will generate a CPU interrupt. If interrupts are not enabled, your
program can poll DMACHmTCR1 until either EN or STATUS are cleared to 0 by the DMA controller to
determine when the DMA has finished a block transfer. If AUTORLD is set the DMA controller will restart
the specified transfer (for more details, see Section 3.2.8.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

DMA Controller Architecture www.ti.com

148 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

For more specific examples of programming the DMA controller, see Section 3.3, DMA Transfer
Examples.

NOTE: If a DMA controller is programmed to access on-chip memory, ensure that the MPORT is not
idled in the Idle Configuration Register (ICR). Note that the value programmed in the ICR
takes effect only on running the 'idle' instruction on the CPU. For more information on these
registers, see Chapter 1, System Control.

3.2.14 Interrupt Support

3.2.14.1 Interrupt Events and Requests
Each of the four channels of a DMA controller has its own interrupt which the user can enable or disable a
channel interrupt though the DMAnCHm bits of the DMA interrupt enable register (DMAIER). The
interrupts from the four DMA controllers are combined into a single CPU interrupt. You can determine
which DMA channel generated the interrupt by reading the bits of the DMA interrupt flag register
(DMAIFR). Your program must manually clear bits in DMAIFR by writing a 1 to them.

3.2.14.2 Interrupt Multiplexing
As described in the previous section, on the DSP, the interrupts from each of the four DMA controllers are
combined into a single CPU interrupt. However, the resulting DMA interrupt is not multiplexed with any
other interrupt source.

3.2.15 Power Management
Each DMA controller can be idled independently to conserve power if it is not being actively used. This is
achieved by turning off the peripheral clock of each DMA controller in the peripheral clock gating
configuration register (PCGCR). For more information on the PCGCR register, see Chapter 1, System
Control.

3.2.16 Emulation Considerations
The DMA controller is not interrupted by emulation events such as an emulation breakpoint. However, an
emulation suspend may halt activity in a peripheral being serviced by the DMA controller. In this case, the
DMA controller activity will be indirectly suspended.

3.3 DMA Transfer Examples
The DMA controller can be used to perform two basic types of transfers: block transfers and peripheral
servicing transfers. The following sections provide examples for these two typical use case scenarios.

3.3.1 Block Move Example
The most basic transfer performed by the DMA is a block move. During device operation it is often
necessary to transfer a block of data from one location to another.

In this example, data is copied from one section of the internal single-access memory (SARAM) to another
section. A data block of 256 double words (1024 bytes) residing at internal CPU word address 01 3000h
(SARAM, block 11) needs to be transferred to internal CPU word address 01 D000h (SARAM, block 21),
as shown in Figure 3-6.

The source address for the transfer is set to the equivalent DMA byte address of the data block in
SARAM. More specifically the equivalent DMA byte addresses for source and destination buffers
described in this example are 000A 6000h and 000B A000, respectively. For more information on DMA
byte addresses, see Section 3.2.2.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

(a) DMA Register Contents

000Ah

000Bh

E020h

6000h

A000h

0400h

Register Contents

DMACH SSAUm

DMACH DSAUm

DMACH TCR2m

DMACH SSALm

DMACH DSALm

DMACH TCR1m

Parameter

(b) Channel Transfer Control Options

1

15 11

00

10

1

14

1

13

1

12 9

00

8

EN STATUS INTEN AUTORLD RSV DSTAMODE

7

10

6 5

000

3

SRCAMODE BURSTMODE

1

2

SYNCMODE

1 0

LAST_XFER

0 0

PING_PONG_EN

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21

249 250 251 252 253 254 255 256

... ... 244 245 246 247 248

01 3000h 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21

249 250 251 252 253 254 255 256

... ... 244 245 246 247 248

01 D000h

www.ti.com DMA Transfer Examples

149SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

Figure 3-7 shows the DMA channel register contents during the transfer after the channel is enabled.

Figure 3-6. Block Move Example

Figure 3-7. Block Move Example DMA Configuration

3.3.2 Peripheral Servicing Example
The DMA controllers can service peripherals in the background of CPU operation, without requiring any
CPU intervention. Through proper initialization of the DMA channels, they can be configured to
continuously service on-chip and off-chip peripherals throughout device operation. Each DMA controller
has a set of synchronization events which can trigger activity in DMA channels specified by the user.
When programming a DMA channel to service a peripheral, it is necessary to know how data is to be
presented to the DSP. Data is always provided with some kind of synchronization event as either one data
sample per event (non-bursting) or multiple data samples per event (bursting).

3.3.2.1 Non-Bursting Peripherals
Non-bursting peripherals include the on-chip inter-integrated circuit (I2C) module and many external
devices, such as codecs. Regardless of the peripheral, the DMA channel configuration is the same.

The I2C transmit and receive data streams are treated independently by the DMA. The transmit and
receive data streams can have completely different counts, data sizes, and formats. Figure 3-8 shows
DMA servicing incoming I2C data.

To transfer the incoming data stream to its proper location in internal memory, the DMA channel must be
set up for a non-burst transfer with synchronization enabled. Since a receive event (ICREVT) is generated
for every data sample as it arrives, it is necessary to have the DMA transfer each data sample individually.
Figure 3-8 shows the DMA channel register contents for this transfer after the channel is enabled.

The source address of the DMA channel is set to the data receive register (ICDRR) address for the I2C,
and the destination address is set to the start of the data block in internal memory. Since the address of
ICDRR is fixed, the source address mode is set to 10b (constant address) and the destination address
mode is set to 00b (automatic post-increment). Note that in this example the destination address is set to
the DMA byte address 000C E000h, which corresponds to SARAM block 31. For more information on
DMA byte addresses, see Section 3.2.2.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

(a) DMA Register Contents

0000h

000Ch

F084h

1A18h

E000h

0400h

Register Contents

DMACH SSAUm

DMACH DSAUm

DMACH TCR2m

DMACH SSALm

DMACH DSALm

DMACH TCR1m

Parameter

(b) Channel Transfer Control Options

1

15 11

00

10

1

14

1

13

1

12 9

00

8

EN STATUS INTEN AUTORLD RSV DSTAMODE

7

10

6 5

000

3

SRCAMODE BURSTMODE

1

2

SYNCMODE

1 0

LAST_XFER

0 0

PING_PONG_EN

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21

249 250 251 252 253 254 255 256

... ... 244 245 246 247 248

000C E000h

ICDRRICRSR

.

.

3

.

.

2

.

.

1

ICREVT

1A18h

DMA Transfer Examples www.ti.com

150 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

Note that the DMA will transfer a full double word from ICDRR to the destination address every time a
receive synchronization event is generated by the I2C. When allocating memory for the receive buffer, two
16-bit words must be allocated for every I2C data sample.

Figure 3-8. Servicing Incoming I2C Data Example

Figure 3-9. Servicing Incoming I2C Data Example DMA Configuration

3.3.2.2 Bursting Peripherals
Bursting peripherals include only the universal asynchronous receiver/transmitter (UART). For it, the DMA
can be configured to transfer multiple data samples every time the channel is serviced.

The UART transmit and receive data streams are treated independently by the DMA. The transmit and
receive data streams can have completely different counts, data sizes, and formats. Furthermore, the
DMA burst size feature can be used to empty or fill the UART FIFO every time the UART generates a
synchronization event. Figure 3-10 shows DMA servicing incoming UART data.

To transfer the incoming data in the UART FIFO to its proper location in internal memory, the DMA
channel must be set up for a burst transfer with synchronization enabled. Since a receive event (URXEVT)
is generated every time the FIFO trigger level is reached, it is necessary to have the DMA channel burst
transfer size match the UART FIFO trigger level. For example, if the UART FIFO trigger level is set to 8
bytes, the DMA channel burst size must be set to 8 double words. Note that although the DMA always
transfers double words, the UART treats each double word request as a single byte request. Also, when
allocating memory for the receive buffer, four bytes must be allocated for every UART data sample.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

(a) DMA Register Contents

0000h

000Ch

F09Ch

1B00h

E000h

0400h

Register Contents

DMACH SSAUm

DMACH DSAUm

DMACH TCR2m

DMACH SSALm

DMACH DSALm

DMACH TCR1m

Parameter

(b) Channel Transfer Control Options

1

15 11

00

10

1

14

1

13

1

12 9

00

8

EN STATUS INTEN AUTORLD RSV DSTAMODE

7

10

6 5

000

3

SRCAMODE BURSTMODE

1

2

SYNCMODE

1 0

LAST_XFER

0 0

PING_PONG_EN

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21

249 250 251 252 253 254 255 256

... ... 244 245 246 247 248

000C E000h

RBR
Receiver

FIFO
RSR

.

.

3

.

.

2

.

.

1
URXEVT

1B00

www.ti.com DMA Transfer Examples

151SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

Figure 3-11 shows the DMA channel register contents for this transfer after the channel is enabled. The
source address of the DMA channel is set to the receive buffer register (RBR) address for the UART, and
the destination address is set to the start of the data block in internal memory. Since the address of RBR
is fixed, the source address mode is set to 10b (constant address) and the destination address mode is
set to 00b (automatic post-increment).

Note that in this example the destination address is set to the DMA byte address 000C E000h, which
corresponds to SARAM block 31 .

For more information on DMA byte addresses, see Section 3.2.2.

Figure 3-10. Servicing Incoming UART Data Example

Figure 3-11. Servicing Incoming UART Data Example DMA Configuration

3.3.3 Ping-Pong DMA Example
The example here describes Ping-Pong transfer from an external codec (non-bursting peripheral) to the
internal memory. Figure 3-12 shows DMA transfer of incoming data from the codec through the I2S0 in a
Ping-Pong fashion. To transfer the incoming data stream to its destination in the internal memory, the
DMA channel must be set up for a non-burst transfer with synchronization enabled. A receive
synchronization event is generated for every data sample as it arrives; hence it is necessary to have the
DMA transfer each data sample individually.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

(a) DMA Register Contents

0000h

000Ch

F085h

2828h

E000h

0400h

Register Contents

DMACH SSAUm

DMACH DSAUm

DMACH TCR2m

DMACH SSALm

DMACH DSALm

DMACH TCR1m

Parameter

(b) Channel Transfer Control Options

1

15 11

00

10

1

14

1

13

1

12 9

00

8

EN STATUS INTEN AUTORLD RSV DSTAMODE

7

10

6 5

000

3

SRCAMODE BURSTMODE

1

2

SYNCMODE

1 0

LAST_XFER

0 1

PING_PONG_EN

1 2 3 4 5 6 7 8

121 122 123 124 125 126 127

249 250 251 252 253 254 255 256

E200hI2S0RXLT0I2S0_RX

.

.
3
.
.
2
.
.
1

Receive
Sync
Event
2828h

E000h

129 130 131 132 133 134 135 136

.....

.....

128

Ping
Buffer

Pong
Buffer

DMA Transfer Examples www.ti.com

152 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

Figure 3-12 shows the DMA channel register contents for this transfer after the channel is enabled. The
source address of the DMA channel is set to the left data0 receive register (I2S0RXLT0) address for I2S0,
and the destination address is set to the start of the data block in internal memory. Since the address of
I2S0RXLT0 is fixed, the source address mode is set to 10b (constant address) and the destination
address mode is set to 00b (automatic post-increment). Note that in this example the destination address
is set to the DMA byte address 000C E000h, which corresponds to SARAM block 31 at 0004 E000h and
DMA transfer length is 1K bytes. For more information on DMA byte addresses, see Section 3.2.2. When
allocating memory for the receive buffer, two 16-bit words must be allocated for every I2S data sample. It
is also assumed that 1K bytes data buffer has been allocated at 000C E000h.

On every receive event generated by the I2S, the DMA will transfer a full double word from I2S0RXLT0 to
the destination address. After the DMA has transferred the 128th sample, it sends an interrupt to the CPU,
sets the LAST_XFER bit to 0 and continues the transfer. Once the 256th sample is transferred, the DMA
controller again generates an interrupt to the CPU and sets the LAST_XFER bit to 1. Since the AUTORLD
bit has been set to 1, the destination address is reloaded and the transfer resumes.

Figure 3-12. Servicing Incoming I2S Data Example in Ping-Pong DMA Mode

Figure 3-13. Servicing Incoming I2S Data Example DMA Configuration

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

153SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

3.4 Registers
Table 3-4 through Table 3-8 list the memory-mapped registers associated with the four direct memory
access (DMA) controllers. The DMA controller registers can be accessed by the CPU at the word
addresses specified in each table. Note that the CPU accesses all peripheral registers through its I/O
space. All other register addresses not listed in the tables below should be considered as reserved
locations and the register contents should not be modified.

There are several other registers that affect the operation of the DMA controllers. The DMA interrupt flag
and enable registers (DMAIFR and DMAIER) are used to control the interrupt generation of the four DMA
controllers. In addition, there are two registers per DMA controller which control event synchronization in
each channel—the DMAn channel event source registers (DMAnCESR1 and DMAnCESR2). These
registers are not part of the DMA controllers; they are part of the DSP system. For more information on
these registers, see Chapter 1

(1) See Chapter 1 for more information on these registers.

Table 3-4. System Registers Related to the DMA Controllers (1)

CPU Word
Address Acronym Register Description

1C30h DMAIFR DMA Interrupt Flag Register
1C31h DMAIER DMA Interrupt Enable Register
1C1Ah DMA0CESR1 DMA0 Channel Event Source Register 1
1C1Bh DMA0CESR2 DMA0 Channel Event Source Register 2
1C1Ch DMA1CESR1 DMA1 Channel Event Source Register 1
1C1Dh DMA1CESR2 DMA1 Channel Event Source Register 2
1C36h DMA2CESR1 DMA2 Channel Event Source Register 1
1C37h DMA2CESR2 DMA2 Channel Event Source Register 2
1C38h DMA3CESR1 DMA3 Channel Event Source Register 1
1C39h DMA3CESR2 DMA3 Channel Event Source Register 2

Table 3-5. DMA Controller 0 (DMA0) Registers

CPU Word
Address Acronym Register Description Section
0C00h DMACH0SSAL Channel 0 Source Start Address (Lower Part) Register Section 3.4.1
0C01h DMACH0SSAU Channel 0 Source Start Address (Upper Part) Register Section 3.4.1
0C02h DMACH0DSAL Channel 0 Destination Start Address (Lower Part) Register Section 3.4.2
0C03h DMACH0DSAU Channel 0 Destination Start Address (Upper Part) Register Section 3.4.2
0C04h DMACH0TCR1 Channel 0 Transfer Control Register 1 Section 3.4.3
0C05h DMACH0TCR2 Channel 0 Transfer Control Register 2 Section 3.4.3
0C20h DMACH1SSAL Channel 1 Source Start Address (Lower Part) Register Section 3.4.1
0C21h DMACH1SSAU Channel 1 Source Start Address (Upper Part) Register Section 3.4.1
0C22h DMACH1DSAL Channel 1 Source Start Address (Lower Part) Register Section 3.4.2
0C23h DMACH1DSAU Channel 1 Destination Start Address (Upper Part) Register Section 3.4.2
0C24h DMACH1TCR1 Channel 1 Transfer Control Register 1 Section 3.4.3
0C25h DMACH1TCR2 Channel 1 Transfer Control Register 2 Section 3.4.3
0C40h DMACH2SSAL Channel 2 Source Start Address (Lower Part) Register Section 3.4.1
0C41h DMACH2SSAU Channel 2 Source Start Address (Upper Part) Register Section 3.4.1
0C42h DMACH2DSAL Channel 2 Destination Start Address (Lower Part) Register Section 3.4.2
0C43h DMACH2DSAU Channel 2 Destination Start Address (Upper Part) Register Section 3.4.2
0C44h DMACH2TCR1 Channel 2 Transfer Control Register 1 Section 3.4.3
0C45h DMACH2TCR2 Channel 2 Transfer Control Register 2 Section 3.4.3
0C60h DMACH3SSAL Channel 3 Source Start Address (Lower Part) Register Section 3.4.1
0C61h DMACH3SSAU Channel 3 Source Start Address (Upper Part) Register Section 3.4.1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

154 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

Table 3-5. DMA Controller 0 (DMA0) Registers (continued)
CPU Word
Address Acronym Register Description Section
0C62h DMACH3DSAL Channel 3 Destination Start Address (Lower Part) Register Section 3.4.2
0C63h DMACH3DSAU Channel 3 Destination Start Address (Upper Part) Register Section 3.4.2
0C64h DMACH3TCR1 Channel 3 Transfer Control Register 1 Section 3.4.3
0C65h DMACH3TCR2 Channel 3 Transfer Control Register 2 Section 3.4.3

Table 3-6. DMA Controller 1 (DMA1) Registers

CPU Word
Address Acronym Register Description Section
0D00h DMACH0SSAL Channel 0 Source Start Address (Lower Part) Register Section 3.4.1
0D01h DMACH0SSAU Channel 0 Source Start Address (Upper Part) Register Section 3.4.1
0D02h DMACH0DSAL Channel 0 Destination Start Address (Lower Part) Register Section 3.4.2
0D03h DMACH0DSAU Channel 0 Destination Start Address (Upper Part) Register Section 3.4.2
0D04h DMACH0TCR1 Channel 0 Transfer Control Register 1 Section 3.4.3
0D05h DMACH0TCR2 Channel 0 Transfer Control Register 2 Section 3.4.3
0D20h DMACH1SSAL Channel 1 Source Start Address (Lower Part) Register Section 3.4.1
0D21h DMACH1SSAU Channel 1 Source Start Address (Upper Part) Register Section 3.4.1
0D22h DMACH1DSAL Channel 1 Destination Start Address (Lower Part) Register Section 3.4.2
0D23h DMACH1DSAU Channel 1 Destination Start Address (Upper Part) Register Section 3.4.2
0D24h DMACH1TCR1 Channel 1 Transfer Control Register 1 Section 3.4.3
0D25h DMACH1TCR2 Channel 1 Transfer Control Register 2 Section 3.4.3
0D40h DMACH2SSAL Channel 2 Source Start Address (Lower Part) Register Section 3.4.1
0D41h DMACH2SSAU Channel 2 Source Start Address (Upper Part) Register Section 3.4.1
0D42h DMACH2DSAL Channel 2 Destination Start Address (Lower Part) Register Section 3.4.2
0D43h DMACH2DSAU Channel 2 Destination Start Address (Upper Part) Register Section 3.4.2
0D44h DMACH2TCR1 Channel 2 Transfer Control Register 1 Section 3.4.3
0D45h DMACH2TCR2 Channel 2 Transfer Control Register 2 Section 3.4.3
0D60h DMACH3SSAL Channel 3 Source Start Address (Lower Part) Register Section 3.4.1
0D61h DMACH3SSAU Channel 3 Source Start Address (Upper Part) Register Section 3.4.1
0D62h DMACH3DSAL Channel 3 Destination Start Address (Lower Part) Register Section 3.4.2
0D63h DMACH3DSAU Channel 3 Destination Start Address (Upper Part) Register Section 3.4.2
0D64h DMACH3TCR1 Channel 3 Transfer Control Register 1 Section 3.4.3
0D65h DMACH3TCR2 Channel 3 Transfer Control Register 2 Section 3.4.3

Table 3-7. DMA Controller 2 (DMA2) Registers

CPU Word
Address Acronym Register Description Section
0E00h DMACH0SSAL Channel 0 Source Start Address (Lower Part) Register Section 3.4.1
0E01h DMACH0SSAU Channel 0 Source Start Address (Upper Part) Register Section 3.4.1
0E02h DMACH0DSAL Channel 0 Destination Start Address (Lower Part) Register Section 3.4.2
0E03h DMACH0DSAU Channel 0 Destination Start Address (Upper Part) Register Section 3.4.2
0E04h DMACH0TCR1 Channel 0 Transfer Control Register 1 Section 3.4.3
0E05h DMACH0TCR2 Channel 0 Transfer Control Register 2 Section 3.4.3
0E20h DMACH1SSAL Channel 1 Source Start Address (Lower Part) Register Section 3.4.1
0E21h DMACH1SSAU Channel 1 Source Start Address (Upper Part) Register Section 3.4.1
0E22h DMACH1DSAL Channel 1 Destination Start Address (Lower Part) Register Section 3.4.2
0E23h DMACH1DSAU Channel 1 Destination Start Address (Upper Part) Register Section 3.4.2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

155SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

Table 3-7. DMA Controller 2 (DMA2) Registers (continued)
CPU Word
Address Acronym Register Description Section
0E24h DMACH1TCR1 Channel 1 Transfer Control Register 1 Section 3.4.3
0E25h DMACH1TCR2 Channel 1 Transfer Control Register 2 Section 3.4.3
0E40h DMACH2SSAL Channel 2 Source Start Address (Lower Part) Register Section 3.4.1
0E41h DMACH2SSAU Channel 2 Source Start Address (Upper Part) Register Section 3.4.1
0E42h DMACH2DSAL Channel 2 Destination Start Address (Lower Part) Register Section 3.4.2
0E43h DMACH2DSAU Channel 2 Destination Start Address (Upper Part) Register Section 3.4.2
0E44h DMACH2TCR1 Channel 2 Transfer Control Register 1 Section 3.4.3
0E45h DMACH2TCR2 Channel 2 Transfer Control Register 2 Section 3.4.3
0E60h DMACH3SSAL Channel 3 Source Start Address (Lower Part) Register Section 3.4.1
0E61h DMACH3SSAU Channel 3 Source Start Address (Upper Part) Register Section 3.4.1
0E62h DMACH3DSAL Channel 3 Destination Start Address (Lower Part) Register Section 3.4.2
0E63h DMACH3DSAU Channel 3 Destination Start Address (Upper Part) Register Section 3.4.2
0E64h DMACH3TCR1 Channel 3 Transfer Control Register 1 Section 3.4.3
0E65h DMACH3TCR2 Channel 3 Transfer Control Register 2 Section 3.4.3

Table 3-8. DMA Controller 3 (DMA3) Registers

CPU Word
Address Acronym Register Description Section

0F00h DMACH0SSAL Channel 0 Source Start Address (Lower Part) Register Section 3.4.1
0F01h DMACH0SSAU Channel 0 Source Start Address (Upper Part) Register Section 3.4.1
0F02h DMACH0DSAL Channel 0 Destination Start Address (Lower Part) Register Section 3.4.2
0F03h DMACH0DSAU Channel 0 Destination Start Address (Upper Part) Register Section 3.4.1
0F04h DMACH0TCR1 Channel 0 Transfer Control Register 1 Section 3.4.3
0F05h DMACH0TCR2 Channel 0 Transfer Control Register 2 Section 3.4.3
0F20h DMACH1SSAL Channel 1 Source Start Address (Lower Part) Register Section 3.4.1
0F21h DMACH1SSAU Channel 1 Source Start Address (Upper Part) Register Section 3.4.1
0F22h DMACH1DSAL Channel 1 Destination Start Address (Lower Part) Register Section 3.4.2
0F23h DMACH1DSAU Channel 1 Destination Start Address (Upper Part) Register Section 3.4.2
0F24h DMACH1TCR1 Channel 1 Transfer Control Register 1 Section 3.4.3
0F25h DMACH1TCR2 Channel 1 Transfer Control Register 2 Section 3.4.3
0F40h DMACH2SSAL Channel 2 Source Start Address (Lower Part) Register Section 3.4.1
0F41h DMACH2SSAU Channel 2 Source Start Address (Upper Part) Register Section 3.4.1
0F42h DMACH2DSAL Channel 2 Destination Start Address (Lower Part) Register Section 3.4.2
0F43h DMACH2DSAU Channel 2 Destination Start Address (Upper Part) Register Section 3.4.2
0F44h DMACH2TCR1 Channel 2 Transfer Control Register 1 Section 3.4.3
0F45h DMACH2TCR2 Channel 2 Transfer Control Register 2 Section 3.4.3
0F60h DMACH3SSAL Channel 3 Source Start Address (Lower Part) Register Section 3.4.1
0F61h DMACH3SSAU Channel 3 Source Start Address (Upper Part) Register Section 3.4.1
0F62h DMACH3DSAL Channel 3 Destination Start Address (Lower Part) Register Section 3.4.2
0F63h DMACH3DSAU Channel 3 Destination Start Address (Upper Part) Register Section 3.4.2
0F64h DMACH3TCR1 Channel 3 Transfer Control Register 1 Section 3.4.3
0F65h DMACH3TCR2 Channel 3 Transfer Control Register 2 Section 3.4.3

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

156 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

3.4.1 Source Start Address Registers (DMACHmSSAL and DMACHmSSAU)
Each channel has two source start address registers, which are shown in Figure 3-14 and Figure 3-15 and
described in Table 3-9 and Table 3-10. For the first access to the source port of the channel, the DMA
controller generates a byte address by concatenating the contents of the two I/O-mapped registers.
DMACHmSSAU supplies the upper bits, and DMACHmSSAL supplies the lower bits:

Source start address = DMACHmSSAU:DMACHmSSAL

The channel updates the source start address registers every time it is serviced the DMA controller. The
amount of data transferred each time the channel is serviced is specified by the BURSTMODE bits of
DMACHmTCR2.

The destination start address is supplied by DMACHmDSAL and DMACHmDSAU, which are described in
Section 3.4.2.

NOTE:
1. You must load the source start address registers with a byte address. For more details,

see Section 3.2.4.
2. There are four DMA controllers in the DSP, although all DMA controllers can access

DARAM and SARAM, each DMA controller can only access a subset of on-chip
peripherals. For more details, see Section 3.2.2.

3. All data buffers in on-chip memory should be aligned on an even boundary. For more
information on managing memory, see the TMS320C55x Assembly Language Tools
User Guide (SPRU280).

Figure 3-14. Source Start Address Register - Lower Part (DMACHmSSAL)
15 0

SSAL
RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 3-15. Source Start Address Register - Upper Part (DMACHmSSAU)
15 0

SSAU
RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 3-9. Source Start Address Register - Lower Part (DMACHmSSAL) Field Description

Bit Field Type Reset Description
15-0 SSAL RW 0 Lower part of source start address (byte address). Value is 0 to FFFFh.

Table 3-10. Source Start Address Register - Upper Part (DMACHmSSAU) Field Description

Bit Field Type Reset Description
15-0 SSAU RW 0 Upper part of source start address (byte address). Value is 0 FFFFh.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H
http://www.ti.com/lit/pdf/SPRU280

www.ti.com Registers

157SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

3.4.2 Destination Start Address Registers (DMACHmDSAL and DMACHmDSAU)
Each channel has two destination start address registers, which are shown in Figure 3-16 as well as
Figure 3-17 and described in Table 3-11 and Table 3-12. For the first access to the destination port of the
channel, the DMA controller generates a byte address by concatenating the contents of the two I/O-
mapped registers. DMACHmDSAU supplies the upper bits, and DMACHmDSAL supplies the lower bits:

Destination start address = DMACHmDSAU:DMACHmDSAL

The channel updates the source start address registers every time it is serviced the DMA controller. The
amount of data transferred each time the channel is serviced is specified by the BURSTMODE bits of
DMACHmTCR2.

The source start address is supplied by DMACHmSSAL and DMACHmSSAU, which are described in
Section 3.4.1.

NOTE:
1. You must load the source start address registers with a byte address. For more details,

see Section 3.2.4.
2. There are four DMA controllers in the DSP, although all DMA controllers can access

DARAM and SARAM, each DMA controller can only access a subset of on-chip
peripherals. For more details, see Section 3.2.2.

3. All data buffers in on-chip memory should be aligned on an even boundary. For more
information on managing memory, see the TMS320C55x Assembly Language Tools
User Guide (SPRU280).

Figure 3-16. Destination Start Address Register - Lower Part (DMACHmDSAL)
15 0

DSAL
RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 3-17. Destination Start Address Register - Upper Part (DMACHmDSAU)
15 0

DSAU
RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 3-11. DMA Destination Start Address Register - Lower Part (DMACHmDSAL) Field
Description

Bit Field Type Value Description
15-0 DSAL RW 0 Lower part of destination start address (byte address). Value is 0 to FFFFh.

Table 3-12. DMA Destination Start Address Register - Upper Part (DMACHmDSAU) Field
Description

Bit Field Type Value Description
15-0 DSAU RW 0 Upper part of destination start address (byte address). Value is 0 to FFFFh.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H
http://www.ti.com/lit/pdf/SPRU280

Registers www.ti.com

158 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

3.4.3 Transfer Control Registers (DMACHmTCR1 and DMACHmTCR2)
Each channel has two transfer control registers shown in Figure 3-18 and Figure 3-19. These I/O-mapped
register enables you to specify the size of the transfer, enable event synchronization and auto-
initialization, select the source and destination addressing mode, and specify the burst mode of the
channel. You can also monitor the status of the DMA channel through these registers. Table 3-13 and
Table 3-14 describes the fields of these registers.

CAUTION
When using synchronization events, you must set EN = 1 and SYNCMODE = 1
during the same write cycle to DMACHmTCR2. The DMA channel will transfer
the first data value when it receives the synchronization event specified by
CHnEVT in DMACESR1 and DMACESR2. Also, when disabling the channel,
you must set EN = 0 and SYNCMODE = 0 during the same write cycle to
DMACHmTCR2.

The amount of data (in bytes) to be transferred as programmed in the LENGTH
field in DMACHmTCR1 should be a multiple of 4 bytes x 2BURSTMODE field in
DMACHmTCR2, that is, LENGTH = (4 x 2BURSTMODE) bytes.

Figure 3-18. Transfer Control Register 1 (DMACHmTCR1)
15 0

LENGTH
RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 3-19. Transfer Control Register 2 (DMACHmTCR2)
15 14 13 12 11 10 9 8
EN STATUS INTEN AUTORLD RSV DSTAMODE

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

7 6 5 3 2 1 0

SRCAMODE BURSTMODE SYNCMODE LAST_XFER PING_PONG_
EN

R/W-0 R/W-0 R/W-0 R/W-0 R-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 3-13. Transfer Control Register 1 (DMACHmTCR1) Field Description

Bit Field Type Reset Description
15-0 LENGTH RW 0 Size of transfer. When Ping-Pong mode is enabled, this is the size of the

Ping and the Pong transfer combined.
Value 0000h to 0003h: Reserved, do not use.
Value 0004h to FFFCh: These bits specify the number of double words
(specified in bytes) to be transferred in multiples of (4 x 2BURSTMODE) bytes.
Note: These bits are not updated by the channel each time it is serviced by
the DMA controller.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

159SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

Table 3-14. Transfer Control Register 2 (DMACHmTCR2) Field Descriptions

Bit Field Type Reset Description
15 EN R/W 0 Channel enable bit. Use EN to enable or disable transfers in the channel. The DMA

controller clears EN once a block transfer in the channel is complete.
0 = The channel is disabled. the channel cannot be serviced by the DMA controller. If
DMA burst transfer is ongoing in the channel, the DMA controller allows the burst
transfer to complete.
Note: When you write a 0 to this bit, you must also write a 0 to the SYNCMODE bit.
1 = The channel is enabled. the channel can be serviced by the DMA in the next
available time slot.

14 STATUS R/W 0 Channel status bit. This bit indicates the status o the DMA channel transfer.
The DMA controller sets the channel STATUS bit to 1 if:
- A nonzero value is written on LENGTH in DMACHmTCR1
- A write access is performed to DMACHmTCR2 and LENGTH has a nonzero value.
The DMA controller clears the STATUS bit to 0 if:
- All the bytes specified by LENGTH in DMACHmTCR1 have been transferred.
- A value of 0 is written to LENGTH in DMACHmTCR1
0 = Corresponding DMA channel has transferred all the bytes specified by LENGTH in
DMACHmTCR1.
1 = Corresponding DMA channel has not finished transferring all the bytes specified
by LENGTH in DMACHmTCR1.

13 INTEN R/W 0 CPU interrupt enable bit. The DMA channel is capable of generating a CPU interrupt
when a block transfer is finished. In order for the CPU to receive the interrupt, the
corresponding channel interrupt mask bit in the interrupt enable register (DMAIER)
must be set to 1.
0 = Disable channel interrupt.
1 = Enabled channel interrupt.

12 AUTORLD R/W 0 Automatic reload bit. Once a transfer is finished, the DMA automatically reloads the
transfer control register and the source and destination start address registers and
restarts the transfer.
Note: Automatic reload can only be used when SYNCMODE = 1.
0 = DMA transfer does not automatically reload.
1 = Upon completion of a full transfer, the registers are reloaded and the transfer is
restarted.

11-10 Reserved R/W 0 Reserved, always write zeroes to these bits.
9-8 DSTAMODE R/W 0 Destination addressing mode bits. DSTAMODE determines the addressing mode used

by the DMA controller when it writes to the destination address.
0 = Automatic post increment. The destination byte address is incremented by four
each transfer.
1h = Reserved, do not use.
2h = Constant address.
3h = Reserved, do not use.

7-6 SRAMODE R/W 0 Source addressing mode bits. SRCAMODE determines the addressing mode used by
the DMA controller when it reads from the source address.
0 = Automatic post increment. The source byte address is incremented by four after
each transfer.
1h = Reserved, do not use.
2h = Constant address.
3h = Reserved, do not use.

5-3 BURSTMODE R/W 0 Burst mode bits. These bits specify the number of double word transfers that each
channel performs at once before the DMA controller moves on to the active channel.
Note: The burst mode selected must always be less than or equal to the number of
bytes specified in DMACHmTCR1.
0 = 1 double word (4 bytes).
1h = 2 double words (8 bytes).
2h = 4 double words (16 bytes).
3h = 8 double words (32 bytes).
4h = 16 double words (64 bytes).
5h to 7h = Reserved, do not use.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

160 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Direct Memory Access (DMA) Controller

Table 3-14. Transfer Control Register 2 (DMACHmTCR2) Field Descriptions (continued)
Bit Field Type Reset Description
2 SYNCMODE R/W 0 Synchronization mode bit. CHnEVT bits in DMACESRn determine which event in the

DSP (for example, a timer countdown) initiates a DMA transfer in the channel. Multiple
channels can have the same SYNCEVT value; in other words, one synchronization
event can initiate activity in multiple channels.
On each sync event, the DMA transfers the number of double words specified by the
BURSTMODE bits. For example, BURSTMODE = 010b, the DMA will transfer a total
of 4 double words per sync event.
A DSP reset selects SYNCMODE = 0 (no synchronization). When SYNCMODE = 0,
the DMA controller does not wait for a synchronization event before beginning a DMA
transfer in the channel; channel activity begins as soon as the channel is enabled (EN
= 1).
0 = When synchronization is disabled, the DMA controller does not wait for a
synchronization event before beginning a DMA transfer.
Note: When you write a 0 to the EN bit, you must also write a 0 to this bit.
1 = Activity in the DMA controller is synchronized to the event specified in the
CHnEVT bits of DMACESRn.
Note: When you set this bit to 1, you must also write a 1 to the EN bit.

1 LAST_XFER R/W 0 Indicates whether the most recent completed transfer was the Ping buffer or the Pong
buffer. This status bit is only valid when the PING_PONG_EN bit is set to 1.
0 = The last completed transfer was the Ping buffer
1 = The last completed transfer was the Pong buffer

0 PING_PONG_E
N

R 0 Enable Ping-Pong DMA transfer mode.
0 = Ping-Pong mode is disabled
1 = Ping-Pong mode is enabled

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

161SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

Chapter 4
SPRUH87H–August 2011–Revised April 2016

Real-Time Clock (RTC)

This chapter describes the features and operations of the real-time clock (RTC).

Topic ... Page

4.1 Introduction ... 162
4.2 Peripheral Architecture ... 163
4.3 Registers ... 171

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Introduction www.ti.com

162 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

4.1 Introduction
The following sections describe the features and operation of the real-time clock (RTC) on the digital
signal processor (DSP).

4.1.1 Purpose of the Peripheral
The device includes a real time clock (RTC) that provides a time reference to an application executing on
the DSP.

The RTC has its own crystal input, clock domain, and core and I/O power supplies. The separate clock
domain allows the RTC to run while the rest of the device is clock gated. All RTC registers are preserved
and the counter continues to operate when the host CPU is clock gated. The RTC has the capability to
wake-up the rest of the device through an alarm interrupt, periodic interrupt, or external WAKEUP signal.

NOTE: The RTC Core (CVDDRTC) must be powered using an external power source if the RTC is not
used.

4.1.2 Features
The real-time clock (RTC) provides the following features:
• RTC-only mode
• 100-year calendar up to year 2099
• Counts milliseconds, seconds, minutes, hours, and date (including day, month, and year with leap year

compensation)
• Millisecond time correction
• Binary-coded-decimal (BCD) representation of time, calendar, and alarm
• 24-hour clock mode
• Alarm interrupt for specific millisecond, second, minute, hour, day, month, and year
• Periodic interrupt: every millisecond, second, minute, hour, or day
• Single interrupt to the DSP CPU
• 32.768kHz oscillator with frequency calibration
• Bidirectional I/O pin that can be set up as:

– Input for an external device to wake up the DSP
– Output to wake up an external device

The current date and time is tracked in a set of counter registers that update once per millisecond. The
time is represented in 24-hour mode. For information on how to set the time and date, see Section 4.2.4.

Alarms can be set to interrupt the DSP CPU at a particular time, or at periodic time intervals, such as once
per minute or once per day. For information on how to set and use alarms, see Section 4.2.5.

The clock reference for the RTC is an external 32.768kHz crystal (connected between signals RTC_XI
and RTC_XO). The RTC also has separate core and I/O power supplies that are isolated from the rest of
the DSP.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Oscillator

Time/Calendar /Alarm
Counters

Read
Buffer

Control and Status
Registers

Interrupt
Control

Periodic Interrupt

Alarm Interrupt

Write
Buffer

Peripheral Bus

RTC_XI

RTC_XO

RTC IRQ
to CPU

WAKEUP

Real Time Clock

WU_DOUT

WU_DIR

www.ti.com Introduction

163SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

4.1.3 Functional Block Diagram
Figure 4-1 shows a block diagram of the RTC.

Figure 4-1. Block Diagram

4.2 Peripheral Architecture
This section describes the Real-Time Clock (RTC) peripheral.

NOTE: If the WAKEUP pin is used to wake up the device, DVDDRTC and CVDDRTC must be powered. If
the RTC is not used DVDDRTC can be tied to ground (VSS), but CVDDRTC must be powered by an
external power source. In addition, the RTC_XI pin must be tied to CVDDRTC and the RTC_XO
pin must be tied to VSS. If the RTC_XI and RTC_XO pins are tied off, then the RTC registers
are inaccessible.

4.2.1 Clock Control
The RTC oscillator is driven by an external 32.768 KHz crystal connected between RTC_XI and RTC_XO.

4.2.2 Signal Descriptions
As shown in Figure 4-1, the WAKEUP pin is a bidirectional pin that can be used as an input to wake up
the DSP clock domains or it can be used as an open-drain output to wake up an external device. At
power-up the WAKEUP pin is configured as an input. This signal can be used to trigger the RTC interrupt
to the CPU and to wake-up gated clocks regardless of whether the clocks were gated by the master clock
gate or whether they were gated by the DSP's idle instruction.

A high pulse for a minimum of one RTC clock period (30.5 μs) to the WAKEUP pin will trigger the RTC
interrupt when:
• The WAKEUP pin is configured as an input (RTCPMGT:WU_DIR = 0)
• The RTC interrupt is enabled (RTCINTEN:RTCINTEN = 1)
• The External Event Interrupt in RTCINTREG is enabled (RTCINTREG:EXTINTEN = 1)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Peripheral Architecture www.ti.com

164 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

In addition, when WAKEUP is high, the Master Clock Gater for the whole digital core is forced into the un-
gated state (clocks on). Note that the interrupt generation is edge sensitive while the clocks on condition is
level sensitive. Please see Section 4.2.6 for Interrupt support.

4.2.3 RTC-Only Mode (TMS320C5535/34 Only)
RTC-only mode allows all supplies except LDOI, DVDDRTC and CVDDRTC to be powered down. In this mode,
the RTC counter continues to operate. The RTC has the capability to wake up the device from idle states,
or completely power down the CPU, via alarms, periodic interrupts, or an external WAKEUP input. The
RTC will reboot after waking up from the CPU powering down.

In addition, the RTC is able to output an alarm or periodic interrupt on the WAKEUP pin to cause external
power management to re-enable power to the DSP core and I/O.

Note: RTC-only mode uses the DSP_LDO and WAKEUP pins and is not supported on TMS320C5545,
C5533 or C5532.

4.2.4 Using the Real-Time Clock Time and Calendar Registers
The current time and date are maintained in the RTC time and calendar registers. Information about how
to use these registers is in the sections that follow.

4.2.4.1 Time/Calendar Data Format
The time and calendar data in the RTC is stored as binary-coded decimal (BCD) format. In BCD format,
the decimal numbers 0 through 9 are encoded with their binary equivalent. Although most of the
time/calendar registers have 4 bits assigned to each BCD digit, some of the register fields are shorter
since the range of valid numbers may be limited. For example, only 3 bits are required to represent the
first digit (most significant digit) of the “seconds” because only 0 through 5 are required.

The summary of the time/calendar registers is shown in Table 4-1. The alarm registers are interleaved
with the time/calendar registers and are not shown in this table. The alarm registers are shown in Table 4-
2. A complete description all RTC registers is available in Section 4.3.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Peripheral Architecture

165SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

Table 4-1. Time/Calendar Registers

Address (Hex) Name Function Decimal Range BCD Format
1904h RTCMIL Milliseconds 0-1023 0000-1023
1908h RTCSEC Seconds 0-59 00-59
190Ch RTCMIN Minutes 0-59 00-59
1910h RTCHOUR Hours (24) 0-23 00-23
1914h RTCDAY Days 1-31 01-31
1918h RTCMONTH Months (January = 01) 1-12 01-12
191Ch RTCYEAR Years 0-99 00-99

• The RTC Milliseconds Register (RTCMIL) stores the milliseconds value of the current time. After the
milliseconds count reaches 1023 then the seconds register is updated by one. The reason for the
rollover occurring at 1024, rather than 1000, is due to the crystal's oscillation frequency being a power
of two, 32.768kHz. 32768 / 1024 = 32 clocks per 'millisecond'. Thus, calling this register a
'milliseconds' register is a bit of a misnomer. The milliseconds digit 3 is 1 bit and the milliseconds digits
2:0 are 4 bits; digits 3:0 are encoded BCD values 0000 (0b 0000b 0000b 0000b) through 1023 (1b
0000b 0010b 0011b).

• The RTC Seconds Register (RTCSEC) stores the seconds value of the current time. The seconds digit
1 is 3 bits and the seconds digit 0 is 4 bits; digits 1 and 0 are encoded BCD values 00 (000b 0000b)
through 59 (101b 1001b).

• The RTC Minutes Register (RTCMIN) stores the minutes value of the current time. The minutes digit 1
is 3 bits and the minutes digit 0 is 4 bits; digits 1 and 0 are encoded BCD values 00 (000b 0000b)
through 59 (101b 1001b).

• The RTC Hours Register (RTCHOUR) stores the hours value of the current time. The hours digit 1 is 2
bits and the hours digit 0 is 4 bits; digits 1 and 0 are encoded BCD values 01 (00b 0001b) through 23
(10b 0011b).

• The RTC Days Register (RTCDAY) stores the day of the month for the current date. The days digit 1 is
2 bits and the days digit 0 is 4 bits; digits 1 and 0 are encoded BCD 01 (00b 0001b) through 31 (11b
0001b).

• The RTC Months Register (RTCMONTH) stores the month for the current date. The months digit 1 is 1
bit and the months digit 0 is 4 bits; digits 1 and 0 are encoded BCD values 01 (0b 0000b) through 12
(1b 0010b).

• The RTC Years Register (RTCYEAR) stores the year for the current date. The years digit 1 is 4 bits
and the years digit 0 is 4 bits; digits 1 and 0 are encoded BCD values 00 (0000b 0000b) through 99
(1001b 1001b).

4.2.4.2 Setting the Time/Calendar Register
The time/calendar registers are set or initialized by writing to the appropriate register bytes. To set date
and time, unlock the RTC registers and write all the time and date registers. When written to, the data is
stored to a buffer. Next, set the TIMEUPDT bit in the RTC Update Register (RTCUPDATE). Setting this bit
causes the time/calendar values in the buffer to be loaded into the RTC simultaneously. All values should
be encoded as BCD values.

4.2.4.3 Reading the Time/Calendar Registers
The time/calendar registers are updated every millisecond as the time changes. To get the most accurate
time reading you should start with reading the Millisecond register (RTCMIL) and then the Second register
(RTCSEC) followed by the remaining time/calendar register values (RTCMIN, RTCHOUR, RTCDAY,
RTCMONTH, and RTCYEAR). Read the RTCMIL again and compare to the previous value. If both values
are the same, an RTC update did not occur while the other registers were being read and all the values
read represent the current time. If the Milliseconds have changed, this indicates that and RTC update
occurred while the registers were being read and the process should be repeated. Results are
unpredictable if values are written out of the register's normal range.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Peripheral Architecture www.ti.com

166 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

4.2.5 Using the Real-Time Clock Time and Calendar Alarms
Alarms can be configured to interrupt the CPU at a specific time, that is, at specific values for the
following:
• Milliseconds
• Seconds
• Minutes
• Hours
• Days of the month
• Months
• On specific Years

The time/calendar alarm registers control the setting of alarms. Information about how to use these
registers can be found in the following sections. The alarms can be configured to generate an interrupt to
the CPU or to wake-up the clocks. The operation of the alarm interrupt is described in Section 4.2.6.4.

4.2.5.1 Time/Calendar Alarm Data Format
The time and calendar alarm data in the RTC is stored as binary-coded decimal (BCD) format. In BCD
format, the decimal numbers 0 through 9 are encoded with their binary equivalent. Although most of the
time/calendar alarm registers have 4 bits assigned to each BCD digit, some of the register field lengths
may differ to accommodate the desired function.

The summary of the time/calendar alarm registers is shown in Table 4-2. The time/calendar registers are
interleaved with the alarm registers and are not shown in this table. The time/calendar registers are shown
in Table 4-1. A complete description of all RTC registers is available in Section 4.3.

Table 4-2. Time and Calendar Alarm Data

Address (Hex) Name Function Decimal Range BCD Format
1905h RTCMILA Milliseconds alarm 0-1023 0000-1023
1909h RTCSECA Seconds alarm 0-59 00-59
190Dh RTCMINA Minutes alarm 0-59 00-59
1911h RTCHOURA Hours (24) alarm 0-23 00-23
1915h RTCDAYA Days alarm 1-31 01-31
1919h RTCMONTHA Months (January = 01) alarm 1-12 01-12
191Dh RTCYEARA Years alarm 0-99 00-99

The RTC Milliseconds Alarm Register (RTCMILA) stores the milliseconds value of the desired alarm. The
milliseconds alarm digit 3 is 1 bit and the milliseconds alarm digits 2:0 are 4; digits 3:0 are encoded BCD
values 0000 (0b 0000b 0000b 0000b) through 1023 (1b 0000b 0010b 0011b). Values outside of the
decimal range of 0 – 1023 will cause the alarm to never occur.

The RTC Seconds Alarm Register (RTCSECA) stores the seconds value of the desired alarm. The
seconds alarm digit 1 is 3 bits and the seconds alarm digit 0 is 4 bits; digits 1 and 0 are encoded BCD
values 00 (000b 0000b) through 59 (101b 1001b). Values outside of the decimal range of 0 - 59 will cause
the alarm to never occur.

The RTC Minutes Alarm Register (RTCMINA) stores the minute value of the desired alarm. The minutes
alarm digit 1 is 3 bits and the minutes alarm digit 0 is 4 bits; digits 1 and 0 are encoded BCD values 00
(000b 0000b) through 59 (101b 1001b). Values outside of the decimal range of 0 - 59 will cause the alarm
to never occur.

The RTC Hours Alarm Register (RTCHOURA) stores the hour value of the desired alarm. The hours
alarm digit 1 is 2 bits and the hours alarm digit 0 is 4 bits; digits 1 and 0 are encoded BCD values 01 (00b
0001b) through 23 (10b 0011b). Values outside of the decimal range of 1 - 23 will cause the alarm to
never occur.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Peripheral Architecture

167SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

The RTC Days Alarm Register (RTCDAYA) stores the day of the month value of the desired alarm. The
days alarm digit 1 is 2 bits and the days alarm digit 0 is 4 bits; digits 1 and 0 are encoded BCD 01 (00b
0001b) through 31 (11b 0001b). Values outside of the decimal range of 1 - 31 will cause the alarm to
never occur.

The RTC Months Alarm Register (RTCMONTHA) stores the month of the year value of the desired alarm.
The months alarm digit 1 is 1 bit and the months alarm digit 0 is 4 bits; digits 1 and 0 are encoded BCD
values 01 (0b 0000b) through 12 (1b 0010b). Values outsides the range 1 - 12 will cause the alarm to
never occur.

The RTC Years Alarm Register (RTCYEARA) stores the year value of the desired alarm. The years alarm
digit 1 is 4 bits and the years alarm digit 0 is 4 bits; digits 1 and 0 are encoded BCD values 00 (0000b
0000b) through 99 (1001b 1001b). Values outsides the range 0 - 99 will cause the alarm to never occur.

4.2.5.2 Setting and Reading the Time/Calendar Alarm Registers
The time/calendar alarm registers are set or initialized by writing to the appropriate register bytes. To set
date and time, write all the time and date registers. Then set the ALARMUPDT bit in the RTC Update
Register (RTCUPDATE). This will simultaneously copy all the alarm register settings in one RTC cycle.

Time/calendar alarm registers can be read at any time and are not updated by the RTC.

4.2.5.3 Examples of Time/Calendar Alarm Settings
Some examples of various alarm settings are shown in Table 4-3. A complete description of the RTC
registers and their functions is provided in Section 4.3.

Table 4-3. Time/Calendar Alarm Settings
Alarm Occurs… RTCYEARA RTCMONTHA RTCDAYA RTCHOURA RTCMINA RTCSECA RTCMILA

May 7, 2010 @ 3:19:46
AM

10h 5h 7h 3h 19h 46h 0h

Dec 22, 2099 @ 5:50:15
and 300ms PM

99h 12h 22h 17h 50h 15h 300h

4.2.6 Real-Time Clock Interrupt Requests
The RTC provides the ability to interrupt the CPU based on three events: a periodic interrupt, an alarm
interrupt, or an external "Wakeup" interrupt. Although three interrupt sources are available, the RTC
makes a single interrupt request to the CPU. Specific information about using each of the interrupt types is
in the sections that follow.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Peripheral Architecture www.ti.com

168 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

4.2.6.1 Interrupt Enable
The RTC has two registers for enabling interrupts. The RTC Interrupt Enable (RTCINTEN) enables the
RTC interrupt to the CPU. This bit allows any interrupt that is triggered in the RTC to be sent to the CPU.
The second register is the RTC Interrupt Register (RTSINTREG) is used to enable the different interrupt
events that can be passed to the CPU. These include the following:
• Alarm Interrupt
• External “wakeup” Interrupt
• Periodic Day Interrupt
• Periodic Hour Interrupt
• Periodic Minute Interrupt
• Periodic Second Interrupt
• Periodic Millisecond Interrupt

NOTE: To use the external wakeup interrupt, you must set the WU_DIR bit in the RTCPMGT
register to 0.

When an RTC interrupt is generated, the RTC’s interrupt is directed to two places (see Figure 4-2).

1. System Clock Wakeup Logic: the interrupt will cause the Master Clock Gater to enable the Master
Clock.

2. The RTC interrupt can be directed to the CPU if RTCINTEN = 1. The CPU's RTC interrupt must be
unmasked for the CPU to respond to the interrupt.
• If the CPU is idled, the interrupt will cause the CPU to exit idle. If interrupts are globally enabled,

the CPU will execute the RTC ISR.
• If the CPU is not idled and interrupts are globally enabled, the CPU will execute the RTC ISR.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

alarm_evt

DAYINTEN

day_evt

WU_DOUT

Alarm
Registers

Alarm
Event

Detection

Time
Registers

Periodic
Event

Detection

HOURINTEN

hour_evt

MININTEN

min_evt

SECINTEN

sec_evt

MSINTEN

ms_evt

RTCINTEN

RTC
Interrupt

Flags

ALARMINTEN

EXTINTEN

WU_DIR

DSP INT

Master CLK gate

Wake
Up

www.ti.com Peripheral Architecture

169SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

Figure 4-2. RTC Interrupt and Wakeup Logic

4.2.6.2 Interrupt Flag Bits
When the interrupts are enabled in Section 4.2.6.1 and the event occurs, the equivalent flag is set in the
RTC Interrupt Flag Register (RTCINTFL). See Section 4.3 for complete details of the RTC registers. The
flagged event is cleared when the programmer writes a "1" to the flag bit.

There is also an RTC Lost Power Register (RTCNOPWR). If this flag is set the RTC has lost power and
requires a software reset. NOTE: at least 3 RTC clock cycles must elapse after power-up in order to read
valid data since the synchronization logic between the CPU and RTC consumes 3 RTC clock cycles.

If the RTC Interrupt enable bit is set and any of the active events occur then an RTC interrupt is sent to
the CPU. The RTC interrupt is asserted as long as at least one of the interrupt flag bits are set. When an
interrupt occurs from the RTC, the source of the interrupt can be determined by reading the flag bits in
RTCINTFL.

4.2.6.3 Periodic Interrupt Request
Periodic Interrupts cause the RTC to make an interrupt request to the CPU periodically. The periodicity
can be every millisecond, every second, every minute, hourly, or daily. The periodic interrupt rate is
selected using the RTC Interrupts Register (RTCINTREG), see Table 4-4. Writing a 1 to these bits
enables the periodic interrupt. Writing a 0 disables the interrupt. Once the interrupt occurs it will remain
active until the corresponding flag bit in the RTC Status Register is cleared.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Peripheral Architecture www.ti.com

170 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

NOTE: The interrupt occurs whenever that particular time value is incremented.

Table 4-4. Periodic Interrupts

RTCINTREG bits Periodic Interrupt Rate
Bit 0 Every Millisecond
Bit 1 Every Second
Bit 2 Every Minute
Bit 3 Every Hour
Bit 4 Every Day

To use the RTC Periodic interrupt:
• Select the desired interrupt period by enabling the proper interrupt in the RTCINTREG
• Enable the RTC interrupt to the CPU by setting bit 0 of RTCINTEN

When the periodic interrupt occurs, the corresponding interrupt flag will be set in the RTC Interrupt Flag
(RTCINTFL) register and the interrupt is sent to the CPU.

4.2.6.4 Alarm Interrupt Request
The RTC alarm interrupt can be used to generate an interrupt to the CPU at a specific time. The alarm
interrupt occurs when the alarm time programmed in the RTC alarm registers match the current time. For
information about programming an alarm time, see Section 4.2.5.

To use the RTC alarm interrupt:
• Select the desired alarm time by configuring the RTC alarm registers.
• Enable the RTC alarm interrupt by setting bit 15 of the RTCINTREG.
• Enable the RTC interrupt to the CPU by setting bit 0 of RTCINTEN

When the alarm interrupt occurs, the Alarm Flag (bit 15) in the RTCINTFL register will be set and the RTC
interrupt is sent to the CPU.

4.2.6.5 WAKEUP Interrupt Request
The external WAKEUP signal or RTC alarm trigger sends a WAKEUP event to the System Clock Wakeup
Logic. This asynchronously clears the clock gate which gates the Master Clock and enables the Master
Clock. When the DSP wakes up due to an RTC alarm, periodic interrupt, or by the external WAKEUP
signal, the DSP latches the RTC interrupt. Because there is only one interrupt line for the RTC, the user
must look at the RTC status register to determine which RTC event caused the wake-up.

4.2.7 Reset Considerations
The RTC can be reset by the RTCRESET bit located in the RTC oscillator register (RTCOSC). The RTC
can also be reset by an internal POR circuit that monitors VDD_RTC. Neither the RESETN pin nor the
DSP's POR can reset the RTC.

4.2.7.1 Software Reset Considerations
The DSP can cause a software reset of the RTC when the RTCRESET bit is set to 1. When this occurs,
all RTC registers are reset to the default settings. The RTC will not be reset when the RESETN pin goes
low. After a RTC software reset, do not access any RTC register for three 32.768kHz clock cycles after
setting the software reset bit.

4.2.7.2 Hardware Reset Considerations
The RTC has a hardware reset that is tied to a POR circuit that monitors the VDD_RTC. The RTC is not
reset with the RESETN pin or the DSP's POR.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

171SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

4.3 Registers

4.3.1 Overview
This section describes the memory-mapped registers for the Real Time Clock (RTC).

Control of the RTC is maintained through a set of I/O memory mapped registers. The first two registers,
RTCINTEN and RTCUPDATE, are located in the DSP core power domain, while the remaining registers in
Table 5 are located in the RTC power domain.

Writes to registers in the RTC power domain are synchronized to the RTC 32.768-kHz clock and can
therefore take many CPU clock cycles to complete. The CPU clock must run at least three-times faster
than the RTC, and writes to registers in the RTC domain will not be evident for up to two 32.768kHz clock
cycles. If the RTC oscillator is disabled (RTC_XI and RTC_XO pins tied off), no RTC register in the RTC
power domain can be written.

4.3.2 RTC Registers
This section describes the memory-mapped registers for the Real Time Clock (RTC).

Control of the RTC is maintained through a set of I/O memory mapped registers. The first two registers,
RTCINTEN and RTCUPDATE, are located in the DSP core power domain, while the remaining registers in
Table 5 are located in the RTC power domain.

Writes to registers in the RTC power domain are synchronized to the RTC 32.768-kHz clock and can
therefore take many CPU clock cycles to complete. The CPU clock must run at least three-times faster
than the RTC, and writes to registers in the RTC domain will not be evident for up to two 32.768kHz clock
cycles. If the RTC oscillator is disabled (RTC_XI and RTC_XO pins tied off), no RTC register in the RTC
power domain can be written.

Table 4-5. RTC Registers

Offset Acronym Register Name Section
1900h RTCINTEN RTC Interrupt Enable Register Section 4.3.2.1
1901h RTCUPDATE RTC Update Register Section 4.3.2.2
1904h RTCMIL Milliseconds Register Section 4.3.2.3
1905h RTCMILA Milliseconds Alarm Register Section 4.3.2.4
1908h RTCSEC Seconds Register Section 4.3.2.5
1909h RTCSECA Seconds Alarm Register Section 4.3.2.6
190Ch RTCMIN Minutes Register Section 4.3.2.7
190Dh RTCMINA Minutes Alarm Register Section 4.3.2.8
1910h RTCHOUR Hours Register Section 4.3.2.9
1911h RTCHOURA Hours Alarm Register Section 4.3.2.10
1914h RTCDAY Days Register Section 4.3.2.11
1915h RTCDAYA Days Alarm Register Section 4.3.2.12
1918h RTCMONTH Months Register Section 4.3.2.13
1919h RTCMONTHA Months Alarm Register Section 4.3.2.14
191Ch RTCYEAR Years Register Section 4.3.2.15
191Dh RTCYEARA Years Alarm Register Section 4.3.2.16
1920h RTCINTFL RTC Interrupt Flag Register Section 4.3.2.17
1921h RTCNOPWR RTC Lost Power Status Register Section 4.3.2.18
1924h RTCINTREG RTC Interrupt Register Section 4.3.2.19
1928h RTCDRIFT RTC Compensation Register Section 4.3.2.20
192Ch RTCOSC RTC Oscillator Register Section 4.3.2.21
1930h RTCPMGT RTC Power Management Register Section 4.3.2.22
1960h RTCSCR1 RTC LSW Scratch Register 1 Section 4.3.2.23
1961h RTCSCR2 RTC MSW Scratch Register 2 Section 4.3.2.24

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

172 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

Table 4-5. RTC Registers (continued)
Offset Acronym Register Name Section
1964h RTCSCR3 RTC LSW Scratch Register 3 Section 4.3.2.25
1965h RTCSCR4 RTC MSW Scratch Register 4 Section 4.3.2.26

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

173SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

4.3.2.1 RTCINTEN Register
The RTC interrupt enable register (RTCINTEN) is shown in Figure 4-3 and described in Table 4-6.

Figure 4-3. RTCINTEN Register
15 1 0

Reserved RTCINTEN
R-0 RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-6. RTCINTEN Register Field Descriptions

Bit Field Type Reset Description
15-1 Reserved R 0 Reserved.

0 RTCINTEN R/W 0 RTC interrupt enable.
0 = RTC interrupt is disabled.
1 = RTC interrupt is enabled.

4.3.2.2 RTCUPDATE Register
The RTC update register (RTCUPDATE) is shown in Figure 4-4 and described in Table 4-7.

Figure 4-4. RTCUPDATE Register
15 14 13 0

TIMEUPDT ALARMUPDT Reserved
RW-0 RW-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-7. RTCUPDATE Register Field Descriptions

Bit Field Type Reset Description
15 TIMEUPDT RW 0 Initiates the Time updates.

0 = RTC time registers updated.
1 = Initiates the transfar of the time registers from the DSP to the RTC

14 ALARMUPDT RW 0 Initiates the alarm updates.
0 = RTC alarm registers updated.
1 = Initiate update of the alarm registers.

13-0 Reserved R 0 Reserved.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

174 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

4.3.2.3 RTCMIL Register
The milliseconds register (RTCMIL) is shown in Figure 4-5 and described in Table 4-8.

Figure 4-5. RTCMIL Register
15 13 12 11 8 7 4 3 0

Reserved MS3 MS2 MS1 MS0
R-0 RW-0 RW-0 RW-0 RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-8. RTCMIL Register Field Descriptions

Bit Field Type Reset Description
15-13 Reserved R 0 Reserved.

12 MS3 R/W 0 Digit 3 of Milliseconds in BCD format.
0 = Digit 3 of MS is 0.
1 = Digit 3 of MS is 1.

11-8 MS2 R/W 0 Digit 2 of Milliseconds in BCD format, value 0 to 9.
7-4 MS1 R/W 0 Digit 1 of Milliseconds in BCD format, value 0 to 9
3-0 MS0 R/W 0 Digit 0 of Milliseconds in BCD format, value 0 to 9

4.3.2.4 RTCMILA Register
The milliseconds alarm register (RTCMILA) is shown in Figure 4-6 and described in Table 4-9.

Figure 4-6. RTCMILA Register (RTCMILA)
15 13 12 11 8 7 4 3 0

Reserved MSA3 MSA2 MSA1 MSA0
R-0 RW-0 RW-0 RW-0 RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-9. RTCMILA Register Field Descriptions

Bit Field Type Reset Description
15-13 Reserved R 0 Reserved.

12 MSA3 RW 0 Digit 3 of Millisecond alarm in BCD format.
0 = Digit 3 of MS Alarm is 0.
1 = Digit 3 of MS Alarm is 1.

11-8 MSA2 RW 0 Digit 2 of Millisecond alarm in BCD format, value 0 to 9
7-4 MSA1 RW 0 Digit 1 of Millisecond alarm in BCD format, value 0 to 9
3-0 MSA0 RW 0 Digit 0 of Millisecond alarm in BCD format, value 0 to 9

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

175SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

4.3.2.5 RTCSEC Register
The seconds register (RTCSEC) is shown in Figure 4-7 and described in Table 4-10.

Figure 4-7. RTCSEC Register
15 7 6 4 3 0

Reserved SEC1 SEC0
R-0 RW-0 RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-10. RTCSEC Register Field Descriptions

Bit Field Type Reset Description
15-7 Reserved R 0 Reserved.
6-4 SEC1 RW 0 Digit 1 of Seconds in BCD format, value 0 to 5
3-0 SEC0 RW 0 Digit 0 of Seconds in BCD format, value 0 to 9

4.3.2.6 RTCSECA Register
The seconds alarm register (RTCSECA) is shown in Figure 4-8 and described in Table 4-11.

Figure 4-8. RTCSECA Register
15 7 6 4 3 0

Reserved SECA1 SECA0
R-0 RW-0 RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-11. RTCSECA Register Field Descriptions

Bit Field Type Reset Description
15-7 Reserved R 0 Reserved.
6-4 SECA1 R/W 0 Digit 1 of Seconds Alarm in BCD format, value 0 to 5
3-0 SECA0 R/W 0 Digit 0 of Seconds Alarm in BCD format, value 0 to 9

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

176 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

4.3.2.7 RTCMIN Register
The minutes register (RTCMIN) is shown in Figure 4-9 and described in Table 4-12.

Figure 4-9. RTCMIN Register
15 7 6 4 3 0

Reserved MIN1 MIN0
R-0 RW-0 RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-12. RTCMIN Register Field Descriptions

Bit Field Type Reset Description
15-7 Reserved R 0 Reserved.
6-4 MIN1 R/W 0 Digit 1 of Minutes in BCD format, value 0 to 5
3-0 MIN0 R/W 0 Digit 0 of Minutes in BCD format, value 0 to 9

4.3.2.8 RTCMINA Register
The minutes alarm register (RTCMINA) is shown in Figure 4-10 and described in Table 4-13.

Figure 4-10. RTCMINA Register
15 7 6 4 3 0

Reserved MINA1 MINA0
R-0 RW-0 RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-13. RTCMINA Register Field Descriptions

Bit Field Type Reset Description
15-7 Reserved R 0 Reserved.
6-4 MINA1 R/W 0 Digit 1 of Minutes Alarm in BCD format, 0 to 5
3-0 MINA0 R/W 0 Digit 0 of Minutes Alarm in BCD format, 0 to 9

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

177SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

4.3.2.9 RTCHOUR Register
The hours register (RTCHOUR) is shown in Figure 4-11 and described in Table 4-14.

Figure 4-11. RTCHOUR Register
15 6 5 4 3 0

Reserved HOUR1 HOUR0
R-0 RW-0 RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-14. RTCHOUR Register Field Descriptions

Bit Field Type Reset Description
15-6 Reserved R 0 Reserved.
5-4 HOUR1 R/W 0 Digit 1 of Hours in BCD format, value 0 to 2
3-0 HOUR0 R/W 0 Digit 0 of Hours in BCD format, value 0 to 9

4.3.2.10 RTCHOURA Register
The hours alarm register (RTCHOURA) is shown in Figure 4-12 and described in Table 4-15.

Figure 4-12. RTCHOURA Register
15 6 5 4 3 0

Reserved HOURA1 HOURA0
R-0 RW-0 RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-15. RTCHOURA Register Field Descriptions

Bit Field Type Reset Description
15-6 Reserved R 0 Reserved.
5-4 HOURA1 R/W 0 Digit 1 of Hours Alarm in BCD format, value 0 to 2
3-0 HOURA0 R/W 0 Digit 0 of Hours Alarm in BCD format, value 0 to 9

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

178 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

4.3.2.11 RTCDAY Register
The days register (RTCDAY) is shown in Figure 4-13 and described in Table 4-16.

Figure 4-13. RTCDAY Register
15 6 5 4 3 0

Reserved DAY1 DAY0
R-0 RW-0 RW-1

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-16. RTCDAY Register Field Descriptions

Bit Field Type Reset Description
15-6 Reserved R 0 Reserved.
5-4 DAY1 R/W 0 Digit 1 of Days in BCD format, 0 to 3
3-0 DAY0 R/W 1 Digit 0 of Days in BCD format, 0 to 9

4.3.2.12 RTCDAYA Register
The days alarm register (RTCDAYA) is shown in Figure 4-14 and described in Table 4-17.

Figure 4-14. RTCDAYA Register
15 6 5 4 3 0

Reserved DAYA1 DAYA0
R-0 RW-0 RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-17. RTCDAYA Register Field Descriptions

Bit Field Type Reset Description
15-6 Reserved R 0 Reserved.
5-4 DAYA1 R/W 0 Digit 1 of Days Alarm in BCD format, 0 to 3
3-0 DAYA0 R/W 0 Digit 0 of Days Alarm in BCD format, value 0 to 9

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

179SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

4.3.2.13 RTCMONTH Register
The months register (RTCMONTH) is shown in Figure 4-15 and described in Table 4-18.

Figure 4-15. RTCMONTH Register
15 5 4 3 0

Reserved MONTH1 MONTH0
R-0 RW-0 RW-1

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-18. RTCMONTH Register Field Descriptions

Bit Field Type Reset Description
15-5 Reserved R 0 Reserved.

4 MONTH1 RW 0 Digit 1 of Months in BCD format, value 0 to 1.
3-0 MONTH0 RW 1 Digit 0 of Months in BCD format, value 0 to 9.

4.3.2.14 RTCMONTHA Register
The months alarm register (RTCMONTHA) is shown in Figure 4-16 and described in Table 4-19.

Figure 4-16. RTCMONTHA Register
15 5 4 3 0

Reserved MONTHA1 MONTHA0
R-0 RW-0 RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-19. RTCMONTHA Register Field Descriptions

Bit Field Type Reset Description
15-5 Reserved R 0 Reserved.

4 MONTHA1 RW 0 Digit 1 of Months Alarm in BCD format, value 0 to 1.
3-0 MONTHA0 RW 0 Digit 0 of Months Alarm in BCD format, value 0 to 9.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

180 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

4.3.2.15 RTCYEAR Register
The years register (RTCYEAR) is shown in Figure 4-17 and described in Table 4-20.

Figure 4-17. RTCYEAR Register
15 8 7 4 3 0

Reserved YEAR1 YEAR0
R-0 RW-0 RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-20. RTCYEAR Register Field Descriptions

Bit Field Type Reset Description
15-8 Reserved R 0 Reserved.
7-4 YEAR1 RW 0 Digit 1 of Year in BCD format (20XX), value 0 to 9.
3-0 YEAR0 RW 0 Digit 0 of Year in BCD format (20XX), value 0 to 9.

4.3.2.16 RTCYEARA Register
The years alarm register (RTCYEARA) is shown in Figure 4-18 and described in Table 4-21.

Figure 4-18. RTCYEARA Register
15 8 7 4 3 0

Reserved YEARA1 YEARA0
R-0 RW-0 RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-21. RTCYEARA Register Field Descriptions

Bit Field Type Reset Description
15-8 Reserved R 0 Reserved.
7-4 YEARA1 RW 0 Digit 1 of Year Alarm in BCD format (20XX), value 0 to 9.
3-0 YEARA0 RW 0 Digit 0 of Year Alarm in BCD format (20XX), value 0 to 9.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

181SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

4.3.2.17 RTCINTFL Register
The RTC interrupt flag register (RTCINTFL) is shown in Figure 4-19 and described in Table 4-22.

Figure 4-19. RTCINTFL Register
15 14 8

ALARMFL Reserved
R/W-0 R-0

7 6 5 4 3 2 1 0
Reserved EXTFL DAYFL HOURFL MINFL SECFL MSFL

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-22. RTCINTFL Register Field Descriptions

Bit Field Type Reset Description
15 ALARMFL R/W 0 Flag indicating whether an Alarm interrupt has occurred.

0 = Alarm interrupt did not occur.
1 = Alarm interrupt occurred (write 1 to clear)

14-6 Reserved R 0 Reserved.
5 EXTFL R/W 0 Flag indicating whether an external event interrupt (WAKEUP pin) has occurred.

0 = External event interrupt did not occur
1= External event interrupt occurred (write 1 to clear).

4 DAYFL R/W 0 Flag indicating whether a periodic Day interrupt has occurred.
0 = Periodic Day interrupt did not occur.
1 = Periodic Day interrupt occurred (write 1 to clear).

3 HOURFL R/W 0 Flag indicating whether a periodic Hour event interrupt has occurred.
0 = Periodic Hour interrupt did not occur.
1 = Periodic Hour interrupt occurred (write 1 to clear).

2 MINFL R/W 0 Flag indicating whether a periodic Minute event interrupt has occurred.
0 = Periodic Minute interrupt did not occur.
1 = Periodic Minute interrupt occurred (write 1 to clear).

1 SECFL R/W 0 Flag indicating whether a periodic Second event interrupt has occurred.
0 = Periodic Second interrupt did not occur.
1 = Periodic Second interrupt occurred (write 1 to clear).

0 MSFL R/W 0 Flag indicating whether a periodic Millisecond event interrupt has occurred.
0 = Periodic Millisecond interrupt did not occur.
1 = Periodic Millisecond interrupt occurred (write 1 to clear).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

182 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

4.3.2.18 RTCNOPWR Register
The RTC lost power status register (RTCNOPWR) is shown in Figure 4-20 and described in Table 4-23.

Figure 4-20. RTCNOPWR Register
15 1 0

Reserved PWRUP
R-0 R-1

LEGEND: R = Read only; -n = value after reset

Table 4-23. RTCNOPWR Register Field Descriptions

Bit Field Type Reset Description
15-1 Reserved R 0 Reserved.

0 PWRUP R 1 RTC has lost power Flag.
0 = RTC has not lost power since software reset.
1 = RTC has lost power and requires a software reset and initialization of the time
registers to the current time and date.
PWRUP is cleared by a read of RTCINTFL or RTCNOPWR. Therefore, read
RTCNOPWR before reading RTCINTFL to obtain the correct PWRUP value.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

183SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

4.3.2.19 RTCINTREG Register
The RTC interrupt register (RTCINTREG) is shown in Figure 4-21 and described in Table 4-24.

Figure 4-21. RTCINTREG Register
15 14 8

ALARMINTEN Reserved
R/W-0 R-0

7 6 5 4 3 2 1 0
Reserved EXTINTEN DAYINTEN HOURINTEN MININTEN SECINTEN MSINTEN

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-24. RTCINTREG Register Field Descriptions

Bit Field Type Reset Description
15 ALARMINTEN R/W 0 Alarm interrupt enable.

0 = Alarm interrupt not enabled.
1 = Alarm interrupt enabled.

14-6 Reserved R 0 Reserved.
5 EXTINTEN R/W 0 External event (WAKEUP pin) interrupt enable.

0 = External event interrupt not enabled.
1 = External event interrupt enabled.

4 DAYINTEN R/W 0 Periodic Day interrupt enable.
0 = Periodic Day interrupt not enabled.
1 = Periodic Day interrupt enabled.

3 HOURINTEN R/W 0 Periodic Hour interrupt enable.
0 = Periodic Hour interrupt not enabled.
1 = Periodic Hour interrupt enabled.

2 MININTEN R/W 0 Periodic Minute interrupt enable.
0 = Periodic Minute interrupt not enabled.
1 = Periodic Minute interrupt enabled.

1 SECINTEN R/W 0 Periodic Second interrupt enable.
0 = Periodic Second interrupt not enabled.
1 = Periodic Second interrupt enabled.

0 MSINTEN R/W 0 Periodic Millisecond interrupt enable.
0 = Periodic Millisecond interrupt not enabled.
1 = Periodic Millisecond interrupt enabled.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

184 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

4.3.2.20 RTCDRIFT Register
Every hour on the hour, a positive or negative number of milliseconds is added to the milliseconds register
to compensate for inaccuracy in the 32.768kHz crystal based on the value of COMP[3:0]. If this value is 0
then no compensation will be applied.

Any positive compensation value must not be a multiple of 10.

The RTC compensation register (RTCDRIFT) is shown in Figure 4-22 and described in Table 4-25.

Figure 4-22. RTCDRIFT Register
15 14 13 12 11 8 7 4 3 0

DRIFT Reserved COMP3 COMP2 COMP1 COMP0
RW-0 R-0 RW-0 RW-0 RW-0 RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-25. RTCDRIFT Register Field Descriptions

Bit Field Type Reset Description
15 DRIFT R/W 0 Positive or Negative Compensation.

0 = Negative compensation.
1 = Positive compensation

14-13 Reserved R 0 Reserved.
12 COMP3 R/W 0 Digit 3 of Compensation in BCD format.

0 = Digit 3 of Compensation is 0.
1 = Digit 3 of Compensation is 1.

11-8 COMP2 R/W 0 Digit 2 of Compensation register in BCD format, value 0 to 9
7-4 COMP1 R/W 0 Digit 1 of Compensation register in BCD format, value 0 to 9
3-0 COMP0 R/W 0 Digit 0 of Compensation register in BCD format. Value = 0-9, value 0 to 9

4.3.2.21 RTCOSC Register
The RTC oscillator register (RTCOSC) is shown in Figure 4-23 and described in Table 4-26.

Figure 4-23. RTCOSC Register
15 14 4 3 0

RTCRESET Reserved OSCRES
W-0 R-0 RW-1011b

LEGEND: R/W = Read/Write; R = Read only; W = Write only; n = value after reset

Table 4-26. RTCOSC Register Field Descriptions

Bit Field Type Reset Description
15 RTCRESET W 0 RTC software reset. The RTC only resets when this bit is set. The RTC is not reset

when RESTN goes low. Once set, this bit is cleared by the RTC. Do not access any
RTC register for three 32.768kHz clock cycles after setting this bit.
0 = RTC not reset.
1 = RTC reset.

14-4 Reserved R 0 Reserved.
3-0 OSCRES R/W 1011b Value of the oscillator cell's internal resistor. The default (reset state) is 1011b and this

gives faster startup but higher power. Once the oscillator is running it can be changed
to 1000b for lower power consumption, value 0 to Fh.

4.3.2.22 RTCPMGT Register
The RTC power management register (RTCPMGT) is shown in Figure 4-24 and described in Table 4-27.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

185SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

Figure 4-24. RTCPMGT Register
15 5 4 3 2 1 0

Reserved WU_DOUT WU_DIR BG_PD LDO_PD RTCCLKOUTEN

R-0 RW-1 RW-0 RW-0 RW-0 RW-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-27. RTCPMGT Register Field Descriptions

Bit Field Type Reset Description
15-5 Reserved R 0 Reserved.

4 WU_DOUT R/W 0 Wake-up output, active low/open-drain.
0 = WAKEUP pin driven low.
1 = WAKEUP pin is in high impedance.

3 WU_DIR R/W 0 Wake-up pin direction control.
0 = WAKEUP pin is configured as input.
1 = WAKEUP pin is configured as output
Note: The WAKEUP pin, when configured as an input, is active high. When it is
configured as an output, it is open-drain and thus it should have an external pullup
and it is active low.

2 BG_PD R/W 0 Bandgap, on-chip LDOs, and the analog POR power down bit.
This bit shuts down the on-chip LDOs (ANA_LDO, DSP_LDO, and USB_LDO), the
Analog POR, and Bandgap reference. BG_PD and LDO_PD are only intended to be
used when the internal LDOs supply power to the chip. If the internal LDOs are
bypassed and not used then the BG_PD and LDO_PD power down mechanisms
should not be used since POR gets powered down and the POWERGOOD signal is
not generated properly.
After this bit is asserted, the on-chip LDOs, Analog POR, and the Bandgap reference
can be re-enabled by the WAKEUP pin (high) or the RTC alarm interrupt. The
Bandgap circuit will take about 100 msec to charge the external 0.1 uF capacitor via
the internal 326-kΩ resistor.
0 = On-chip LDOs, Analog POR, and Bandgap reference are enabled.
1 = On-chip LDOs, Analog POR, and Bandgap reference are disabled (shutdown).

1 LDO_PD R/W 0 On-chip LDOs and Analog POR power down bit.
This bit shuts down the on-chip LDOs (ANA_LDO, DSP_LDO, and USB_LDO) and the
Analog POR. BG_PD and LDO_PD are only intended to be used when the internal
LDOs supply power to the chip. If the internal LDOs are bypassed and not used then
the BG_PD and LDO_PD power down mechanisms should not be used since POR
gets powered down and the POWERGOOD signal is not generated properly.
After this bit is asserted, the on-chip LDOs and Analog POR can be re-enabled by the
WAKEUP pin (high) or the RTC alarm interrupt. This bit keeps the Bandgap reference
turned on to allow a faster wake-up time with the expense power consumption of the
Bandgap reference.
0 = On-chip LDOs and Analog POR are enabled.
1 = On-chip LDOs and Analog POR are disabled (shutdown).

0 RTCCLKOUTE
N

R/W 0 Clockout output enable.
0 = RTC clock output disabled
1 = RTC clock output enabled

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

186 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

4.3.2.23 RTCSCR1 Register
The RTC Scratch Registers are general purpose memory that can be used to store a value that will be
preserved even when the DSP power is off.

The RTC LSW scratch register 1 (RTCSCR1) is shown in Figure 4-25 and described in Table 4-28.

Figure 4-25. RTCSCR1 Register
15 0

SCRATCH0
RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-28. RTCSCR1 Register 1 Field Descriptions

Bit Field Type Reset Description
15-0 SCRATCH0 R/W 0 Scratch registers, available to program, value 0 to FFFFh

4.3.2.24 RTCSCR2 Register
The RTC MSW scratch register 2 (RTCSCR2) is shown in Figure 4-26 and described in Table 4-29.

Figure 4-26. RTCSCR2 Register
15 0

SCRATCH2
RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-29. RTCSCR2 Register Field Descriptions

Bit Field Type Reset Description
15-0 SCRATCH2 R/W 0 Scratch registers, available to program, value 0 to FFFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

187SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Real-Time Clock (RTC)

4.3.2.25 RTCSCR3 Register
The RTC LSW scratch register 3 (RTCSCR3) is shown in Figure 4-27 and described in Table 4-30.

Figure 4-27. RTCSCR3 Register
15 0

SCRATCH3
RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-30. RTCSCR3 Register Field Descriptions

Bit Field Type Reset Description
15-0 SCRATCH3 R/W 0 Scratch registers, available to program, value 0 to FFFFh

4.3.2.26 RTCSCR4 Register
The RTC MSW scratch register 4 (RTCSCR4) is shown in Figure 4-28 and described in Table 4-31.

Figure 4-28. RTCSCR4 Register
15 0

SCRATCH4
RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-31. RTCSCR4 Register Field Descriptions

Bit Field Type Reset Description
15-0 SCRATCH4 R/W 0 Scratch registers, available to program, value 0 to FFFFh.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

188 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

32-Bit Timer/Watchdog Timer

Chapter 5
SPRUH87H–August 2011–Revised April 2016

32-Bit Timer/Watchdog Timer

This chapter describes the features and operations of the timers for the device.

Topic ... Page

5.1 Introduction ... 189
5.2 General-Purpose Timer ... 190
5.3 Watchdog Timer ... 192
5.4 Reset Considerations.. 193
5.5 Interrupt Support .. 193
5.6 Registers ... 194

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Introduction

189SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

32-Bit Timer/Watchdog Timer

5.1 Introduction
The following information describes the operation of the three 32-bit software programmable timers in the
digital signal process (DSP). Each timer can be used as a general-purpose (GP) timer. Timer2 also
contains a 16-bit Watchdog (WD) timer, which shares the same clock gating bit as the GP but works
independently.

5.1.1 Purpose of the Timers
General purpose timers are typically used to provide interrupts to the CPU to schedule periodic tasks or a
delayed task. The general-purpose (GP) timers are 32-bit timers with a 13-bit prescaler that divides the
source clock and uses this scaled value as a reference clock. These timers can be used to generate
periodic interrupts.

Watchdog timers are used to reset the CPU in the event of a deadlocked state, such as a non-exiting
code loop. This device includes a timer that functions as a timer or a watchdog timer simultaneously,
Timer2. This watchdog timer is a 32-bit timer composed of a 16-bit counter with a 16-bit prescaler that
divides the CPU system clock and uses this scaled value as a reference clock. The programmer must
continuously service the watchdog timer to prevent it from resetting the device. Once the code fails to
service the watchdog timer due to a deadlock or non-exiting code loop, the watchdog expires and resets
the device.

5.1.2 Features
32-bit Timers:
• 32-bit programmable count down timer
• 13-bit prescaler divider
• Auto reload option
• Generates a single interrupt to the CPU. The interrupt is individually latched to determine which timer

triggered the interrupt
• Interrupt can be used for DMA event

Watchdog Timer:
• 16-bit programmable count down timer
• 16-bit prescaler divider
• Lock registers require a specific sequence of keys to enable and change the watchdog settings. These

sequence of keys prevent loose pointers from corrupting the state of the watchdog.
• Generated an active low pulse to the hardware reset when the Watchodg timer expires.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Internal Timer Clock

TIMCNT1
TIMCNT2

32-Bit
Counter

PRD

Counter=0

Pulse
Generator

Timer Interrupt
(TIAFR) to CPU

TIMCNT1
TIMCNT2

32-Bit
CounterPRDH

PRDL

13-Bit
Prescaler

TINT

PSCDIV

System CLK

Introduction www.ti.com

190 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

32-Bit Timer/Watchdog Timer

5.1.3 Functional Timer Block Diagram
A block diagram of the timer is shown in Figure 5-1. Detailed information about the architecture and
operation of the watchdog timer is in Section 5.3.

Figure 5-1. The Architecture and Operation of the Watchdog Timer

5.2 General-Purpose Timer
All three timers (Timer0, Timer1, and Timer2) can be used as GP timers. Timer2 can also be used as a
WD timer. To use the WD timer see Section 5.3.

5.2.1 General-Purpose Timer Clock Control
The clock source to the GP timer and to the WD timer is driven by the system clock. This clock source
determines the speed of the timer since the timer counts down in units of source clock cycles. The source
clock for the GP timer can be divided down by a 13-bit prescaler and uses this scaled value as the
reference clock of the timer. Each GP timer has its own 13-bit prescaler. When determining the period and
prescaler setting for the timer, choose the desired period in units of source clock cycles.

5.2.2 Using the 32-bit General Purpose Timer
The general-purpose timers consist of a 32-bit timer with a 13-bit prescaler. Figure 5-2 shows a high-level
diagram of the timer.

Figure 5-2. 32-Bit GP Timer With a 13-Bit Prescaler

Each GP timer has a count register (TIMCNTn) which consists of two 16-bit words (TIMCNT1 and
TIMCNT2) and a period register (TIMPRDn) which also consists of two 16-bit words (TIMPRD1 and
TIMPRD2). When the timer is set to start the contents of the TIMPRDn register is loaded into the TIMCNT
register and begins to count down. A timer control register (TCR) controls the operation of the timer.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com General-Purpose Timer

191SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

32-Bit Timer/Watchdog Timer

The Prescaler Divider (PSCDIV), located in the TCR, is used to divide the internal CPU clock.

When the START bit is set to 1 in the TCR, the contents of the Timer Period Registers (TIMPRD1 and
TIMPRD2) are loaded into the concatenated Timer Counter Registers (TIMCNT1 and TIMCNT2) and the
timer starts to count down with every cycle of the prescale divided clock. When TIMCNT1 and TIMCNT2
reach 0, the timer sends an interrupt request (TINT) to the CPU and a DMA event to the four DMAs.

The timer can be configured in auto-reload mode by setting the AUTORELOAD bit in the TCR. In this
mode, the timer counter is reloaded with the timer period register when the timer counter reaches 0 and
the timer re-starts its count down.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Watchdog Timer www.ti.com

192 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

32-Bit Timer/Watchdog Timer

5.3 Watchdog Timer
This section describes the timer in the watchdog (WD) timer mode. Only Timer2 can be used as a
Watchdog timer. This timer can also be used as general-purpose timer. To use it as a general-purpose
timer, see Section 5.2.

5.3.1 Watchdog Timer Function
The watchdog timer function consists of a 16-bit main counter preceded by 16-bit prescaler. The
combination of the 16-bit counter with the 16-bit prescaler allows for a maximum countdown value of
4,294,967,296. As a watchdog, the timer can be used to prevent system lockup when the software
becomes deadlocked or trapped in a loop with no controlled exit. When the counter expires, a hardware
reset is generated. To prevent the hardware reset from being generated, the watchdog must be serviced
periodically before the counter expires. The service reinitializes the counter to its starting value and starts
counting down again.

After a hardware reset occurs, the watchdog timer is disabled, allowing a flexible period of time for code to
be loaded into the on-chip memory. To configure the watchdog timer, each control register has a
corresponding lock register that requires a specific key sequence (with two or three keys written in order)
to unlock that control register. Once the appropriate key sequence has been written to the lock register,
then the corresponding control register is unlocked and can be written. After the control register is written,
it is automatically locked. To write the register, the sequence must be repeated to unlock the register. If
the wrong value is written for any of the keys, then it is necessary to restart at the first key. Each control
and lock register pair has its own state machine to keep track of the key sequence. Therefore, it is
possible to write the 1st key to each of the 4 lock registers, and then proceed to write the 2nd key to each
of the 4 lock registers, and so on until all of the keys have been written. In other words, each control
register must have it's specific keys written in order; but the CPU can perform other things while writing
the keys in order. In the watchdog timer mode, the timer requires a periodic execution of this unlock/write
sequence to reinitialize the watchdog counter to its starting value. Without this periodic servicing, the
watchdog timer counter reaches zero and causes a watchdog timeout event.

When the timeout event occurs, the watchdog timer resets the entire chip with the exception of the RTC
(real time clock).

5.3.2 Watchdog Timer Operation
The Watchdog (WD) timer function is enabled when:
• The Start Value and Prescale registers have been unlocked.
• The Start Value and Prescale registers have been programmed.
• The Watchdog Enable Lock register is unlocked.
• A 1 is written to bit 0 of the Watchdog Enable register.

There are example codes in the Chip Support Library (CSL) on how to program GP and WD timers. After
the Watchdog timer is enabled, a write to the Watchdog Kick register when it is unlocked starts the count
down. To enable the watchdog timer, a certain sequence of events must be followed. First, to configure
the watchdog timer, each control register has a lock register that requires a specific key sequence (with
two or three keys written in the proper order) to unlock the corresponding control register. Table 5-1
details the unlock sequence for the watchdog lock registers:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Reset Considerations

193SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

32-Bit Timer/Watchdog Timer

Table 5-1. Unlock Sequence for the Watchdog Lock Registers

Address Register First Key Sequence Second Key
Sequence Third Key Sequence

1880h Watchdog Kick Lock Register 5555h AAAAh n/a
1884h Watchdog Start Value Lock Register 6666h BBBBh n/a
1888h Watchdog Enable Lock Register 7777h CCCCh DDDDh
188Ch Watchdog Prescale Lock Register 5A5Ah A5A5h n/a

Once the Start Value and Prescale register have been unlocked with their corresponding two word
sequence and programmed for the desired interval, the Watchdog is enabled by unlocking the Enable
Lock Register with a sequence of three words (7777h, CCCCh, and DDDDh) and writing a 1 on the EN bit
(bit 0) of the WDEN register. The Watchdog starts counting down by unlocking the Kick Lock register and
writing any value into the Kick register. At this time, the counter starts to count down from the programmed
start value. The Watchdog counts down by first decrement the Prescale register by one with each CPU
clock cycle. After the watchdog Prescale register reaches 0, the internal watchdog counter register is
decremented by one and the Prescale register restarts its countdown from its programmed value. The
counter will reach zero when the counter value and pre-scalar value are exhausted, consequently,
triggering a hardware reset of the device. To prevent the hardware reset from occurring, the Kick Lock
register must be unlocked and the Kick register bit 0 set to 1 to restart the countdown before the
countdown is exhausted.

Once the Watchdog is enabled, it can be disabled with software by unlocking the Enable Lock Register
with the three word sequence and setting the EN bit (bit 0) of the WDEN register to 0.

5.4 Reset Considerations
The timers will be reset upon a hardware reset.

When a hardware reset is asserted, all timer registers, including the TIAFR register, are set to their default
values.

5.5 Interrupt Support
The general-purpose timer has a timer interrupt signal. The timer interrupt request is sent to the CPU
when the main count register (TIMCNT1 and TIMCNT2) counts down to 0. The same interrupt signal is
also routed to the DMAs and can be used as a DMA trigger event.

The TIAFR latches each timer's interrupt signal when the timer counter expires. Using this register, the
programmer can determine which of the three timers generated the timer interrupt because the bits in the
TIAFR are OR'ed together and sent to the DSP as a single interrupt. Each timer interrupt flag needs to be
cleared by the CPU with a write of "1" to the corresponding flag bit.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

194 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

32-Bit Timer/Watchdog Timer

5.6 Registers
Table 5-2 through Table 5-6 list the memory mapped registers associated with the 3 Timers.

The timer registers can be accessed by the CPU at the 16-bit addresses.

Table 5-2. Watchdog Timer Registers

Offset Acronym Register Name Section
1880h WDKCKLK Watchdog Kick Lock Register Section 5.6.1
1882h WDKICK Watchdog Kick Register Section 5.6.2
1884h WDSVLR Watchdog Start Value Lock Register Section 5.6.3
1886h WDSVR Watchdog Start Value Register Section 5.6.4
1888h WDENLOK Watchdog Enable Lock Register Section 5.6.5
188Ah WDEN Watchdog Enable Register Section 5.6.6
188Ch WDPSLR Watchdog Prescale Lock Register Section 5.6.7
188Eh WDPS Watchdog Prescale Register Section 5.6.8
1810h TCR Timer 0 Control Register Section 5.6.9
1812h TIMPRD1 Timer 0 Period Register 1 Section 5.6.10
1813h TIMPRD2 Timer 0 Period Register 2 Section 5.6.11
1814h TIMCNT1 Timer 0 Counter Register 1 Section 5.6.12
1815h TIMCNT2 Timer 0 Counter Register 2 Section 5.6.13
1C14h TIAFR Timer Interrupt Aggregation Flag Register Section 5.6.14

Table 5-3. General-Purpose Timer 0 Registers

CPU Word
Address Acronym Register Description Section

1810h TCR Timer 0 Control Register Section 5.6.9
1812h TIMPRD1 Timer 0 Period Register 1 Section 5.6.10
1813h TIMPRD2 Timer 0 Period Register 2 Section 5.6.11
1814h TIMCNT1 Timer 0 Counter Register 1 Section 5.6.12
1815h TIMCNT2 Timer 0 Counter Register 2 Section 5.6.13

Table 5-4. General-Purpose Timer 1 Registers

CPU Word
Address Acronym Register Description Section

1850h TCR Timer 1 Control Register Section 5.6.9
1852h TIMPRD1 Timer 1 Period Register 1 Section 5.6.10
1853h TIMPRD2 Timer 1 Period Register 2 Section 5.6.11
1854h TIMCNT1 Timer 1 Counter Register 1 Section 5.6.12
1855h TIMCNT2 Timer 1 Counter Register 2 Section 5.6.13

Table 5-5. General-Purpose Timer 2 Registers

CPU Word
Address Acronym Register Description Section

1890h TCR Timer 2 Control Register Section 5.6.9
1892h TIMPRD1 Timer 2 Period Register 1 Section 5.6.10
1893h TIMPRD2 Timer 2 Period Register 2 Section 5.6.11
1894h TIMCNT1 Timer 2 Counter Register 1 Section 5.6.12
1895h TIMCNT2 Timer 2 Counter Register 2 Section 5.6.13

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

195SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

32-Bit Timer/Watchdog Timer

Table 5-6. Timer Interrupt Aggregation Register

CPU Word
Address Acronym Register Description Section
1C14h TIAFR Timer Interrupt Aggregation Flag Register Section 5.6.14

5.6.1 WDKCKLK Register
The watchdog kick lock register (WDKCKLK) is shown in Figure 5-3 and described in Table 5-7.

Figure 5-3. Watchdog Kick Lock Register (WDKCKLK)
15 0

KICKLOK
RW-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 5-7. WDKCKLK Register Field Descriptions

Bit Field Type Reset Description
15-0 KICKLOK R/W 0 0-FFFFh = Used to unlock the Watchdog Kick Register. A 2 word key

sequence must be written to this register. The following keys must be written
in this order: Key 1 = 5555h and Key 2 = AAAAh. When this is written, the
Kick register can now be written. When reading back the WDKCKLK
register, the value that is returned in bits [1:0] give the current state of the
lock state machine where 00 = Idle/waiting for Key 1; 01 = Waiting for key 2;
11 = unlocked.

5.6.2 WDKICK Register
The watchdog kick register (WDKICK) is shown in Figure 5-4 and described in Table 5-8.

Figure 5-4. WDKICK Register
15 0

KICK
RW-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 5-8. WDKICK Register Field Descriptions

Bit Field Type Reset Description
15-0 KICK R/W 0 0-FFFFh = A write to the kick register when it is unlocked causes the

Watchdog counter to be reloaded with the value in the WD Start Value
register and start counting down again. It does not matter what value is
written. Reading the register returns the current value of the counter.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

196 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

32-Bit Timer/Watchdog Timer

5.6.3 WDSVLR Register
The watchdog start value lock register (WDSVLR) is shown in Figure 5-5 and described in Table 5-9.

Figure 5-5. Watchdog Start Value Lock Register (WDSVLR)
15 0

STVALLOK
RW-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 5-9. WDSVLR Register Field Descriptions

Bit Field Type Reset Description
15-0 STVALLOK R/W 0 0-FFFFh = Used to unlock the Watchdog Start Value Register. A 2 word key

sequence must be written to this register. The following keys must be written
in this order: Key 1 = 6666h and Key 2 = BBBBh. When this is written, the
WD Start Value register can now be input. When reading back the WDSVLR
register, the value that is returned in bits [1:0] give the current state of the
lock state machine where 00 = Idle/waiting for Key 1; 01 = Waiting for key 2;
11 = unlocked.

5.6.4 WDSVR Register
The watchdog start value register (WDSVR) is shown in Figure 5-6 and described in Table 5-10.

Figure 5-6. Watchdog Start Value Register (WDSVR)
15 0

STRTVAL
RW-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 5-10. WDSVR Register Field Descriptions

Bit Field Type Reset Description
15-0 STRTVAL R/W 0 0-FFFFh = The value written to this register is what is loaded into the WD

counter when the kick register is written to. A read of this register will return
the Start Value for the counter.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

197SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

32-Bit Timer/Watchdog Timer

5.6.5 WDENLOK Register
The watchdog enable lock register (WDENLOK) is shown in Figure 5-7 and described in Table 5-11.

Figure 5-7. Watchdog Enable Lock Register (WDENLOK)
15 0

ENLOK
RW-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 5-11. WDENLOK Register Field Descriptions

Bit Field Type Reset Description
15-0 ENLOK R/W 0 0-FFFFh = Used to unlock the Watchdog Enable Register. A 3 word key

sequence must be written to this register. The following keys must be written
in this order: Key 1 = 7777h, Key 2 = CCCCh, and Key 3 = DDDDh. When
this is written, the WDENLOK register can now be input. When reading back
the WDENLOK register, the value that is returned in bits [1:0] give the
current state of the lock state machine where 00 = Idle/waiting for Key 1; 01
= Waiting for key 2; 10 = Waiting for Key 3; 11 = unlocked.

5.6.6 WDEN Register
The watchdog enable register (WDEN) is shown in Figure 5-8 and described in Table 5-12.

Figure 5-8. Watchdog Enable Register (WDEN)
15 1 0

Reserved EN
R-0 RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 5-12. WDEN Register Field Descriptions

Bit Field Type Reset Description
15-1 Reserved R 0 Reserved

0 EN R/W 0 Used to enable/disable the WD timer. When enabled, the counter begins counting
down when the Watchdog Kick register is written, if the counter is allowed to reach 0
the chip will be reset.
0 = Watchdog Timer is disabled
1 = Watchdog Timer is enabled.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

198 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

32-Bit Timer/Watchdog Timer

5.6.7 WDPSLR Register
The watchdog prescaler lock register (WDPSLR) is shown in Figure 5-9 and described in Table 5-13.

Figure 5-9. Watchdog Prescaler Lock Register (WDPSLR)
15 0

PSLOK
RW-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 5-13. WDPSLR Register Field Descriptions

Bit Field Type Reset Description
15-0 PSLOK R/W 0 0-FFFFh = Used to unlock the Watchdog Prescaler Register. A 2 word key

sequence must be written to this register. The following keys must be written
in this order: Key 1 = 5A5Ah and Key 2 = A5A5h. When this is written, the
WDPSLR register can now be loaded. When reading back the WDPSLR
register, the value that is returned in bits [1:0] give the current state of the
lock state machine where 00 = Idle/waiting for Key 1; 01 = Waiting for key 2;
11 = unlocked.

5.6.8 WDPS Register
The watchdog prescaler register (WDPS) is shown in Figure 5-10 and described in Table 5-14.

Figure 5-10. Watchdog Prescaler Register (WDPS)
15 0

PS
RW-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 5-14. WDPS Register Field Descriptions

Bit Field Type Reset Description
15-0 PS R/W 0 0-FFFFh = The WD Prescaler register stores the start value for the WD

Prescaler. Each time the PS register counts down to 0 the WD counter is
decremented by 1. A read will return the last value written to this register
(the Prescaler start value).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

199SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

32-Bit Timer/Watchdog Timer

5.6.9 TCR Register
The timer n control register (TCR) is shown in Figure 5-11 and described in Table 5-15.

Figure 5-11. Timer n Control Register (TCR)
15 14 6 5 2 1 0

TIMEN Reserved PSCDIV AUTORELOAD START
RW-0 R-0 RW-0 RW-0 RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 5-15. TCR Register Field Descriptions

Bit Field Type Reset Description
15 TIMEN R/W 0 This enables/disables both the Prescaler and the main counter.

0 = Timer counters are disabled
1 = Timer counters and prescaler are enabled

14-6 Reserved R 0 Reserved.
5-2 PSCDIV R/W 0 0-Fh = Prescaler divider. The range is 0000 = divide by 2 to 1100 = divide by 8192
1 AUTORELOAD R/W 0 Automatically reloads the counter when it reaches 0.

0 = Auto Reload is disabled
1 = Auto Reload is enabled

0 START R/W 0 When written to this bit loads and starts the counter.
0 = Stops the countdown
1 = Loads and starts the counter to counting down

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

200 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

32-Bit Timer/Watchdog Timer

5.6.10 TIMPRD1 Register
The timer n period register 1 (TIMPRD1) is shown in Figure 5-12 and described in Table 5-16.

Figure 5-12. Timer n Period Register 1 (TIMPRD1)
15 0

PRD1
RW-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 5-16. TIMPRD1 Register Field Descriptions

Bit Field Type Reset Description
15-0 PRD1 R/W 0 0-FFFFh = The Timer period register is 32 bits wide. This is the LSW for the

Timer period.

5.6.11 TIMPRD2 Register
The timer n period register 2 (TIMPRD2) is shown in Figure 5-13 and described in Table 5-17.

Figure 5-13. Timer n Period Register 2 (TIMPRD2)
15 0

PRD2
RW-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 5-17. TIMPRD2 Register Field Descriptions

Bit Field Type Reset Description
15-0 PRD2 R/W 0 0-FFFFh = The Timer period register is 32 bits wide. This is the MSW for the

Timer period.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

201SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

32-Bit Timer/Watchdog Timer

5.6.12 TIMCNT1 Register
The timer n counter register 1 (TIMCNT1) is shown in Figure 5-14 and described in Table 5-18.

Figure 5-14. Timer n Counter Register 1 (TIMCNT1)
15 0

TIM1
RW-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 5-18. TIMCNT1 Register Field Descriptions

Bit Field Type Reset Description
15-0 TIM1 R/W 0 0-FFFFh = The timer is 32bits wide. This is the LSW for the timer counter.

5.6.13 TIMCNT2 Register
The timer n counter register (TIMCNT2) is shown in Figure 5-15 and described in Table 5-19.

Figure 5-15. Timer n Counter Register (TIMCNT2)
15 0

TIM2
RW-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 5-19. TIMCNT2 Register Field Descriptions

Bit Field Type Reset Description
15-0 TIM2 R/W 0 0-FFFFh = The timer is 32bits wide. This is the MSW for the timer counter.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

202 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

32-Bit Timer/Watchdog Timer

5.6.14 TIAFR Register
The timer interrupt aggregation flag register latches each timer (Timer0, Timer1, and Timer2) interrupt
signal when the timer counter expires. Using this register, the programmer can determine which Timer
generated the single Timer CPU interrupt signal. Each Timer flag needs to be cleared by the CPU with a
write of '1' to the corresponding flag bit. Note that the corresponding Timer Interrupt Register must also be
cleared.

The Timer Interrupt Aggregation Flag Register (TIAFR) is shown in Figure 5-16 and described in Table 5-
20.

Figure 5-16. Timer Interrupt Aggregation Flag Register (TIAFR)
15 3 2 1 0

Reserved TIM2FLAG TIM1FLAG TIM0FLAG
R-0 R/W1C R/W1C R/W1C

LEGEND: R/W1C = Read/Write 1 to Clear; R = Read only; -n = value after reset

Table 5-20. TIAFR Register Field Descriptions

Bit Field Type Reset Description
15-3 Reserved R 0 Reserved.

2 TIM2FLAG R/W 1 Timer 2 interrupt flag bit. This bit latches the timer interrupt signal when the timer
counter expires. You can clear this flag bit by writing a 1 to it.
0 = Timer has not generated an interrupt.
1 = Timer interrupt has occurred.

1 TIM1FLAG R/W 1 Timer 1 interrupt flag bit. This bit latches the timer interrupt signal when the timer
counter expires. You can clear this flag bit by writing a 1 to it.
0 = Timer has not generated an interrupt.
1 = Timer interrupt has occurred.

0 TIM0FLAG R/W 1 Timer 0 interrupt flag bit. This bit latches the timer interrupt signal when the timer
counter expires. You can clear this flag bit by writing a 1 to it.
0 = Timer has not generated an interrupt.
1 = Timer interrupt has occurred.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

203SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

Chapter 6
SPRUH87H–August 2011–Revised April 2016

Embedded Multimedia Card (eMMC)/Secure Digital (SD)
Card Controller

This chapter describes the embedded multimedia card (eMMC) and secure digital (SD) card controller.

Topic ... Page

6.1 Introduction ... 204
6.2 Peripheral Architecture ... 205
6.3 Procedures for Common Operations... 221
6.4 Registers ... 231

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Introduction www.ti.com

204 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.1 Introduction
This document describes the Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller in
the digital signal processor (DSP).

6.1.1 Purpose of the Peripheral
The Embedded Multimedia Card (eMMC)/secure digital (SD) card is used in a number of applications to
provide removable data storage. The eMMC/SD card controller provides an interface to eMMC, SD and
SDHC external cards.

6.1.2 Features
The eMMC/SD card controller has the following features:
• Supports interface to Embedded Multimedia Cards (eMMC).
• Supports interface to secure digital (SD) memory cards.
• Supports the use of both eMMC/SD and SDIO protocols.
• Programmable clock frequency to control the timing of transfers between the eMMC/SD controller and

memory card.
• 256-bit read/write FIFO to lower system overhead.
• Signaling to support direct memory access (DMA) transfers (slave).

The device includes two independent eMMC/SD card controllers.

6.1.3 Functional Block Diagram
The eMMC/SD card controller transfers data between the CPU, DMA, and eMMC/SD as shown in
Figure 6-1. The CPU and DMA controller can read/write the data in the card by accessing the registers in
the eMMC/SD controller.

6.1.4 Supported Use Case Statement
The eMMC/SD card controller supports the following user cases:
• eMMC/SD card identification
• eMMC/SD single-block read using CPU
• eMMC/SD single-block read using DMA
• eMMC/SD single-block write using CPU
• eMMC/SD single-block write using DMA
• eMMC/SD multiple-block read using CPU
• eMMC/SD multiple-block read using DMA
• eMMC/SD multiple-block write using CPU
• eMMC/SD multiple-block write using DMA
• SDIO function

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Status
and

Registers

DMA Requests

Interrupts

CPU

FIFO

eMMC/SD
Interface

CLK
Divider

eMMC/SD
Card
Interface

www.ti.com Introduction

205SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

Figure 6-1. eMMC/SD Card Controller Block Diagram

6.1.5 Industry Standard(s) Compliance Statement
The eMMC/SD card controller will support the following industry standards (with the exception noted
below):
• Embedded Multimedia Card (eMMC) Specification V3.31.
• Secure Digital (SD) Physical Layer Specification V2.0.
• Secure Digital Input Output (SDIO) Specification V2.0.

The information in this document assumes the reader is familiar with these standards.

The eMMC/SD controller does not support the SPI mode of operation.

6.2 Peripheral Architecture
The eMMC/SD controller uses the eMMC/SD protocol to communicate with the eMMC/SD cards. The
eMMC/SD controller can be configured to work as an eMMC or SD controller, based on the type of card
with which the controller is communicating. Figure 6-2 summarizes the eMMC/SD mode interface.
Figure 6-3 illustrates how the controller is interfaced to the cards in eMMC/SD mode.

In the eMMC/SD mode, the controller supports one or more eMMC/SD cards. When multiple cards are
connected, the eMMC/SD controller selects one by using identification broadcast on the data line. The
following eMMC/SD controller pins are used:
• CMD: This pin is used for two-way communication between the connected card and the eMMC/SD

controller. The eMMC/SD controller transmits commands to the card and the memory card drives
responses to the commands on this pin.

• DAT0 or DAT0-3: eMMC cards use only one data line (DAT0) and SD cards use one or four data lines.
The number of DAT pins (the data bus width) is set by the WIDTH bit in the SD Control Register
(SDCTL), see Section 6.4.1).

• CLK: This pin provides the clock to the memory card from the eMMC/SD controller.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

SD_CLK

SD_CMD

SD_DATA0

SD_DATA1

SD_DATA2

SD_DATA3

eMMC/SD Controller eMMC and SD (1−Bit Mode)

CLK

CMD

DAT0

eMMC/SD Configuration

eMMC/SD Controller

SD_DATA0

SD_CMD

SD_CLK

DAT0

CMD

SD Card (4−Bit Mode)

CLK

SD_DATA2

SD_DATA3

SD_DATA1

SD Configuration

DAT1

DAT2

DAT3

Native Packets

Native
Signals

CMD

CLK

DAT0 or DAT0−3

eMMC/SD
Controller

CPU

DMA

Memory

eMMCs or SD Cards

Peripheral Architecture www.ti.com

206 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

Figure 6-2. MMC/SD Controller Interface Diagram

Figure 6-3. eMMC Configuration and SD Configuration Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

MMCCLK
(CLKRT)

Function Clock for
eMMC/SD Controller

eMMC/SD Controller

eMMC/SD
Input Clock Card

eMMC/SD

Memory Clock

on CLK Pin

www.ti.com Peripheral Architecture

207SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.2.1 Clock Control
The eMMC/SD controller has two clocks: the function clock and the memory clock (see Figure 6-4).

The function clock determines the operational frequency of the eMMC/SD controller and is the input clock
to the eMMC/SD controller on the device. The functional clock of MMCSD controller is capable of
operating up to system clock frequency.

The memory clock appears on the SD_CLK pin of the eMMC/SD controller interface. The memory clock
controls the timing of communication between the eMMC/SD controller and the connected memory card.
The memory clock is generated by dividing the function clock in the eMMC/SD controller. The divide-down
value is set by CLKRT bits in the SD memory clock control register (SDCLK) and is determined by the
equation:

memory clock frequency = function clock frequency/(2 * (CLKRT + 1))

Figure 6-4. eMMC/SD Controller Clocking Diagram

(1) Maximum memory clock frequency for eMMC card can be 20 MHz.
(2) Maximum memory clock frequency for SD card can be 50 MHz.

6.2.2 Signal Descriptions
Table 6-1 shows the eMMC/SD controller pins used in each mode. The eMMC/SD protocol uses the clock,
command (two-way communication between the eMMC controller and memory card), and data (DAT0 for
eMMC card, DAT0-3 for SD card) pins.

(1) I = input to the eMMC/SD controller; O = output from the eMMC/SD controller.

Table 6-1. eMMC/SD Controller Pins Used in Each Mode

Pin Type (1)

Function
eMMC Communications SD Communications

CLK O Clock line Clock line
CMD I/O Command line Command line
DAT0 I/O Data line 0 Data line 0
DAT1 I/O (Not used) Data line 1
DAT2 I/O (Not used) Data line 2
DAT3 I/O (Not used) Data line 3

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

2 CRC bytes
Busy
low

Start
bit

End
bit

Start
bit

End
bit

CMD

Data

CLK

Peripheral Architecture www.ti.com

208 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.2.3 Pin Multiplexing
The eMMC/SD card controller pins are multiplexed with other peripherals on the DSP. Before using the
controller, the DSP should be configured to route the eMMC/SD card controller signals to the multiplexed
Serial Port 0 or Serial Port 1 pins by writing to the External Bus Selection Register (EBSR). For more
information on pin multiplexing, see Section 1.1, System Control.

NOTE: Configuring the EBSR to route the eMMC/SD0 or eMMC/SD1 signals to Serial Port0 or
Serial Port1, respectively, also routes those eMMC/SD interrupts to the CPU.

6.2.4 Protocol Descriptions
The eMMC/SD controller follows the eMMC/SD protocol for completing any kind of transaction with the
Embedded Multimedia Card and secure digital cards. For detailed information, refer to the supported
eMMC and SD specifications in Section 6.1.5.

6.2.4.1 eMMC/SD Mode Write Sequence
Figure 6-5 and Table 6-2 show the signal activity when the eMMC/SD controller is in the eMMC/SD mode
and is writing data to a memory card. Before initiating a write transfer, ensure that the block length
definition in the eMMC/SD controller and the memory card are identical.
• The eMMC/SD controller sends a write command to the card.
• The card receives the command and sends responses to the command.
• The eMMC/SD controller sends a block of data to the card.
• The card sends the CRC status to the eMMC/SD controller.
• The card sends a low BUSY bit until all the data has been programmed into the flash memory inside

the card.

Figure 6-5. eMMC/SD Mode Write Sequence Timing Diagram

Table 6-2. eMMC/SD Mode Write Sequence

Portion of the
Sequence Description
WR CMD Write command: A 6-byte WRITE_BLOCK command token is sent from the CPU to the card.
CMD RSP Command response: The card sends a 6-byte response of type R1 to acknowledge the WRITE_BLOCK to the

CPU.
DAT BLK Data block: The CPU writes a block of data to the card. The data content is preceded by one start bit and is

followed by two CRC bytes and one end bit.
CRC STAT CRC status: The card sends a one byte CRC status information, which indicates to the CPU whether the data has

been accepted by the card or rejected due to a CRC error. The CRC status information is preceded by one start
bit and is followed by one end bit.

BUSY BUSY bit: The CRC status information is followed by a continuous stream of low busy bits until all of the data has
been programmed into the flash memory on the card.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Start
bit

End
bit

CMD

Data

CLK

1 transfer
source bit

2 CRC
bytes

www.ti.com Peripheral Architecture

209SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.2.4.2 eMMC/SD Mode Read Sequence
Figure 6-6 and Table 6-3 show the signal activity when the eMMC controller is in the eMMC/SD mode and
is reading data from a memory card. Before initiating a read transfer, ensure that the block length
definition in the eMMC/SD controller and the memory card are identical. In a successful read sequence,
the following steps occur:
• The eMMC/SD controller sends a read command to the card.
• The card drives responses to the command.
• The card sends a block of data to the CPU.

Figure 6-6. eMMC/SD Mode Read Sequence Timing Diagram

Table 6-3. eMMC/SD Mode Read Sequence

Portion of the
Sequence Description
RD CMD Read command: A 6-byte READ_SINGLE_BLOCK command token is sent from the CPU to the card.
CMD RSP Command response: The card sends a response of type R1 to acknowledge the READ_SINGLE_BLOCK

command to the CPU.
DAT BLK Data block: The card sends a block of data to the CPU. The data content is preceded by a start bit and is followed

by two CRC byte and an end bit.

6.2.5 Data Flow in the Input/Output FIFO
The eMMC/SD controller contains a single 256-bit FIFO that is used for both reading data from the
memory card and writing data to the memory card (see Figure 6-7). The FIFO is organized as 32 eight-bit
entries. The conversion from the 32-bit bus to the byte format of the FIFO follows the little-endian
convention (details are provided in later sections). The FIFO includes logic to generate DMA events and
interrupts based on the amount of data available in the FIFO. FIFO depth (threshold) is a programmable
number that describes how many bytes can be received/transmitted at a time. There are also flags set
when the FIFO is full or empty. A high-level operational description is:
• Data is written to the FIFO through the SD Data Transmit Registers (SDDXR1 and 2). Data is read

from the FIFO through the SD Data Receive Registers (SDDRR1 and 2).
• The ACCWD bits in the SD FIFO Control Register (SDFIFOCTL) determines the behavior of the FIFO

full (FIFOFUL) and FIFO empty (FIFOEMP) status flags in the SD Status Register 1 (SDST1):
– If ACCWD = 00b:

• FIFO full is active when the write pointer + 4 > read pointer
• FIFO empty is active when the write pointer - 4 < read pointer

– If ACCWD = 01b:
• FIFO full is active when the write pointer + 3 > read pointer
• FIFO empty is active when the write pointer - 3 < read pointer

– If ACCWD = 10b:
• FIFO full is active when the write pointer + 2 > read pointer
• FIFO empty is active when the write pointer - 2 < read pointer

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

CPU/DMA reads/writes

Write Read

32−bit DXR 32−bit DRR

32−bit DXR
shifter

32−bit DRR
shifter

DXR DRR

Transmission of data

Step 1: Reset FIFO

Step 2: Set FIFO direction

Step 6: CPU driven transaction:
Fill the FIFO by writing to

SDDXR (only first time)

Step 4: DMA sends xmit data

Step 5: If DXR ready is active,
32−bit DXR -> FIFO

Reception of data

Step 4:

Step 2:

Step 1: Reset FIFO

Set FIFO direction

FIFO-> 32-bit DRR

Step 6: DMA reads reception data

Step 3: DMA driven transaction

Step 5: DRRDYINT interrupt occur

Step 3: DMA driven transaction

or every 128 or 256−bits
transmitted and DXRDYINT

interrupt is generated

when FIFO every 128 or
256−bits of data received
by FIFO

FIFO

8−bit x 32

(256−bit)

FIFO

DMA event
128 or 256 bit

128 or 256 bit

DMA event

DMA event

the end of a

transfer

Pointer increment

or decrease

Pointer increment
or decrease

FIFO

DMA
request

is created

Peripheral Architecture www.ti.com

210 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

– If ACCWD = 11b:
• FIFO full is active when the write pointer + 1 > read pointer
• FIFO empty is active when the write pointer - 1 < read pointer

Figure 6-7. FIFO Operation Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

1st

2nd

3rd

4th

Byte 3

4th 3rd 2nd 1st

SDFIFOCTL:ACCWD = 0

3rd

2nd

1st 3rd 2nd 1st

1st

2nd

2nd 1st

1st 1st

Byte 0

FIFO
SDDRR or SDDXR registers:

1 (Bytes 0 and 1) and 2 (Bytes 2 and 3)

Byte 3 Byte 0

Byte 3 Byte 0

Byte 3 Byte 0

SDFIFOCTL:ACCWD = 1

SDFIFOCTL:ACCWD = 2

SDFIFOCTL:ACCWD = 3

www.ti.com Peripheral Architecture

211SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.2.6 Data Flow in the Data Registers (SDDRR and SDDXR)
The CPU can read 16 bits and the DMA controller can read 32 bits at a time from the FIFO by reading the
SD data receive registers (SDDRR1 and 2) and, similarly, write to the FIFO by writing to the SD data
transmit registers (SDDXR1 and 2). However, since the memory card is an 8-bit device, it transmits or
receives one byte at a time. Figure 6-8 and Figure 6-9 shows how the data-size difference is handled by
the data registers.

Figure 6-8. Little-Endian Access to SDDXR/SDDRR1 and 2 From the CPU or the DMA

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

1st

2nd

3rd

4th

Byte 3

4th3rd2nd1st

3rd

2nd

1st 3rd2nd1st

1st

2nd

2nd1st

1st 1st

Byte 0

FIFO

Byte 3 Byte 0

Byte 3 Byte 0

Byte 3 Byte 0

SDDRR or SDDXR registers:
1 (Bytes 0 and 1) and 2 (Bytes 2 and 3)

SDFIFOCTL:ACCWD = 0

SDFIFOCTL:ACCWD = 1

SDFIFOCTL:ACCWD = 2

SDFIFOCTL:ACCWD = 3

Peripheral Architecture www.ti.com

212 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

Figure 6-9. Big-Endian Access to SDDXR/SDDRR1 and 2 From the CPU or the DMA

6.2.7 FIFO Operation During Card Read Operation
The eMMC/SD controller supports 1-, 2-, 3-, or 4-byte reads as shown in and . The CPU makes 16-bit and
the DMA makes 32-bit accesses to the SDDRR registers.

6.2.7.1 DMA Reads
The FIFO controller manages the activities of reading the data in from the card and issuing DMA read
events. Each time a DMA read event is issued, a DMA read request interrupt is also generated.

Figure 6-10 provides details of the FIFO controllers operation. As data is received from the card, it is read
into the FIFO. When the number of bytes of data received is equal to the level set by the FIFOLEV bits in
SDFIFOCTL, a DMA read event is issued and new DMA events are disabled. Data is read from the FIFO
by way of SDDRR registers (SDDRR1 should be used as the destination address in the DMA
configuration). The FIFO controller continues to read in data from the card while checking for the DMA
event to occur or the FIFO to become full. Once the DMA event finishes, new DMA events are enabled. If
the FIFO fills up, the FIFO controller stops the eMMC/SD controller from reading anymore data until the
FIFO is no longer full.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Peripheral Architecture

213SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

A DMA read event is also generated when the last data arrives as determined by the SD block length
register (SDBLEN) and the SD number of blocks register (SDNBLK) settings. This DMA event enables the
FIFO to be flushed of all the data that was read from the card.

Each time a DMA read event is generated, an interrupt (DRRDYINT) is also generated (if enabled in the
SD Interrupt Mask Register (SDIM) register) and the DRRDY bit in the SD status register 0 (SDST0) is
also set.

6.2.7.2 CPU Reads
The system CPU can also directly read the card data by reading the SD data receive register (SDDRR 1
and/or 2) based on the ACCWD field in the SDFIFOCTL. Data is ready to be read when the DRRDYINT
interrupt is posted or when the DRRDY bit in the SDST0 register is set.

6.2.8 FIFO Operation During Card Write Operation
The eMMC/SD controller supports 1-, 2-, 3-, or 4-byte writes as shown in and . The CPU makes 16-bit and
the DMA makes 32-bit accesses to the SDDXR registers.

6.2.8.1 DMA Writes
The FIFO controller manages the activities of accepting data from the CPU or DMA and passing the data
to the eMMC/SD controller. The FIFO controller issues DMA write events as appropriate. However, the
first DMA event has to be manually generated by setting the DMATRIG bit in the eMMC Command
Register (eMMCSD2) after the desired write command is written to the eMMCSD1 register.

Figure 6-11 provides details of the FIFO controller's operation. Data is written by the DMA to the FIFO by
the way of SDDXR registers (SDDXR1 should be used as the destination address in the DMA
configuration). The FIFO then passes the data to the eMMC/SD controller which manages to write the
data to the card. When the number of bytes of data in the FIFO is less than the level set by the FIFOLEV
bits in SDFIFOCTL, a DMA write event is issued and new DMA events are disabled. The FIFO controller
continues to transfer data to the eMMC/SD controller while checking for the DMA event to finish or for the
FIFO to become empty. Once the DMA event completes, new DMA events are enabled. If the FIFO
becomes empty, the FIFO controller informs the eMMC/SD controller.

Each time a DMA write event is generated, an interrupt (DXRDYINT) is also generated (if enabled in the
SD Interrupt Mask Register (SDIM) register) and the DXRDY bit in the SD status register 0 (SDST0) is
also set.

6.2.8.2 CPU Writes
The system CPU can also directly write the card data by writing to the SD data transmit register (SDDXR
1 and/or 2) based on the ACCWD field in the SDFIFOCTL. Data is ready to be written when the
DXRDYINT interrupt is posted or when the DXRDY bit in the SDST0 register is set.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

FIFO Check1/Start

FIFO
full
?

Counter
=FIFOLEV

?

Yes

No

Capture data,
no DMA pending

Increment counter

No

Yes

Generate DMA

Reset counter

FIFO check 2

Yes

No

?
full

FIFO

No

=FIFOLEV
?

Counter

Increment counter

DMA
Capture data,

done
?

DMANo

Yes

Yes

Yes

Generate DMA

Reset counter

Idle, DMA pending

DMANo
done

?

Peripheral Architecture www.ti.com

214 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

Figure 6-10. FIFO Operation During Card Read Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

FIFO Check1/Start

FIFO
full
?

Counter
=FIFOLEV

?

Yes

No

Capture data,
no DMA pending

Increment counter

No

Yes

Generate DMA

Reset counter

FIFO check 2

Yes

No

?
full

FIFO

No

=FIFOLEV
?

Counter

Increment counter

DMA
Capture data,

done
?

DMANo

Yes

Yes

Yes

Generate DMA

Reset counter

Idle, DMA pending

DMANo
done

?

www.ti.com Peripheral Architecture

215SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

Figure 6-11. FIFO Operation During Card Write Diagram

6.2.9 Reset Considerations
The eMMC/SD controller has two reset sources: hardware reset and software reset.

6.2.9.1 Software Reset Considerations
A software reset (such as a reset generated by the emulator) will not cause the eMMC/SD controller
registers to be altered. After a software reset, the eMMC/SD controller continues to operate as it was
configured prior to the reset.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Peripheral Architecture www.ti.com

216 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.2.9.2 Hardware Reset Considerations
A hardware reset of the processor will cause the eMMC/SD controller registers to return to their default
values after reset.

6.2.10 Programming and Using the SD Controller

6.2.10.1 eMMC/SD Mode Initialization
The general procedure for initializing the eMMC/SD controller is given in the following steps. Details about
the registers or register bit fields to be configured in the eMMC/SD mode are in the subsequent
subsections.
1. Place the eMMC/SD controller in its reset state by setting the CMDRST bit and DATRST bit in the

SDCTL. After the reset, other bits in SDCTL can be set.
2. Write the required values to eMMC/SD controller registers to complete the eMMC/SD controller

configuration.
3. Clear the CMDRST bit and DATRST bit in SDCTL to release the eMMC/SD controller from its reset

state. It is recommended not to rewrite the values written to the other bits of SDCTL in step 1.
4. Enable the SD_CLK pin so that the memory clock is sent to the memory card by setting the CLKEN bit

in the SD memory clock control register (SDCLK).

NOTE: The External Bus Selection Register must be configured to enable eMMC/SD signals at the
pins as described in Section 6.2.3 before the controller can communicate with the eMMC/SD
card.

6.2.10.2 Initializing the SD Control Register (SDCTL)
When operating the eMMC/SD controller in the eMMC/SD mode, the bits in the SD control register
(SDCTL) affect the operation of the eMMC/SD controller. The subsections that follow help you decide how
to initialize each of the control register bits.

The DATEG bits in SDCTL enable or disable edge detection on the SD_DATA3 pin. If edge detection is
enabled and an edge is detected, the DATEG flag bit in the SD status register 0 (SDST0) is set. In
addition, if the EDATED bit in the SD interrupt mask register (SDIM) is set, an interrupt request is
generated.

In the eMMC/SD mode, the eMMC/SD controller must know how wide the data bus must be for the
memory card that is connected. If an eMMC card is connected, specify a 1-bit data bus (WIDTH = 0 in
SDCTL); if an SD card is connected, specify a 4-bit data bus (WIDTH = 1 in SDCTL).

To place the eMMC/SD controller in its reset state and disable it, set the CMDRST bit and DATRST bit in
SDCTL. The first step of the eMMC/SD controller initialization process is to disable both sets of logic.
When initialization is complete but before you enable the SD_CLK pin, enable the eMMC/SD controller by
clearing the CMDRST bit and DATRST bit in SDCTL.

6.2.10.3 Initializing the Clock Controller Registers (SDCLK)
A clock divider in the eMMC/SD controller divides-down the function clock to produce the memory clock.
Load the divide-down value into the CLKRT bits in the SD memory clock control register (SDCLK). The
divide-down value is determined by the equation:

memory clock frequency = function clock frequency/(2 * (CLKRT + 1))
The CLKEN bit in SDCLK determines whether the memory clock appears on the SD_CLK pin. If CLKEN is
cleared to 0, the memory clock is not provided except when required.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Peripheral Architecture

217SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.2.10.4 Initialize the Interrupt Mask Register (SDIM)
The bits in the SD interrupt mask register (SDIM) individually enable or disable the interrupt requests. To
enable the associated interrupt request, set the corresponding bit in SDIM. To disable the associated
interrupt request, clear the corresponding bit. Load zeros into the bits not used in the eMMC/SD mode.

6.2.10.5 Initialize the Time-Out Registers (SDTOR and SDTOD)
Specify the time-out period for responses using the SD response time-out register (SDTOR) and the time-
out period for reading data using the SD data read time-out register (SDTOD).

When the eMMC/SD controller sends a command to a memory card, it often must wait for a response.
The eMMC/SD controller can wait indefinitely or up to 255 memory clock cycles. If you load 0 into
SDTOR, the eMMC/SD controller waits indefinitely for a response. If you load a nonzero value into
SDTOR, the eMMC/SD controller stops waiting after the specified number of memory clock cycles and
then sets a response time-out flag (TOUTRS) in the SD status register 0 (SDST0). If the associated
interrupt request is enabled, the eMMC/SD controller also sends an interrupt request to the CPU.

When the eMMC/SD controller requests data from a memory card, it can wait indefinitely for that data or it
can stop waiting after a programmable number of cycles. If you load 0 into SDTOD, the eMMC/SD
controller waits indefinitely. If you load a nonzero value into SDTOD, the eMMC/SD controller waits the
specified number of memory clock cycles and then sets a read data time-out flag (TOUTRD) in SDST0. If
the associated interrupt request is enabled, the eMMC/SD controller also sends an interrupt request to the
CPU.

6.2.10.6 Initialize the Data Block Registers (SDBLEN and SDNBLK)
Specify the number of bytes in a data block in the SD block length register (SDBLEN) and the number of
blocks in a multiple-block transfer in the SD number of blocks register (SDNBLK).

In SDBLEN, you must define the size for each block of data transferred between the eMMC/SD controller
and a memory card. The valid size depends on the type of read/write operations. A length of 0 bytes is
prohibited.

For multiple-block transfers, you must specify how many blocks of data are to be transferred between the
eMMC/SD controller and a memory card. You can specify an infinite number of blocks by loading 0 into
SDNBLK. When SDNBLK = 0, the eMMC/SD controller continues to transfer data blocks until the
transferring is stopped with a STOP_TRANSMISSION command. To transfer a specific number of blocks,
load SDNBLK with a value from 1 to 65535.

For high capacity cards (2 GB and larger), by default the read/write block length of the card is 1024 bytes.
Note that CMD16 (SET_BLOCK_LEN) can only set the block length up to 512 bytes even for high
capacity cards. Therefore, if you want to change the block length of a high capacity card, you are limited
to 512 bytes. In this case, you should discard the block length read from the CSD register in the card and
set the block length up to 512 bytes.

6.2.10.7 Using the Command Registers (MMCSD1 and MMCSD2)
The MMCSD1 register can be programmed to choose the type command to be sent to the eMMC/SD card
and the expected outcome of the transaction. Any writes to this register triggers the controller to send a
command to the eMMC/SD card as programmed in the CMD field. This behavior makes it necessary to
program the whole register in a single write.

The DMATRIG field is a write-only field in the MMCSD2 register. It is only used for write operations
involving the DMA. Setting this bit field triggers the associated DMA channel to transfer data to the
controller FIFO while the eMMC/SD card prepares itself for the write operation. Subsequent DMA triggers
are automatically generated when the controller writes the data in the FIFO out to the eMMC/SD card and
do not need the DMATRIG bit to be set. This field should only be used for write operations involving the
DMA. Data read operations do not require this intervention.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Peripheral Architecture www.ti.com

218 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

NOTE: You must only write to the DMATRIG bit in MMCSD2 after the desired write command has
been written to the MMCSD1 register. If this bit is written to at any other time, the controller
will resend the last command (configured in the MMCSD1 register) to the card.

6.2.10.8 Monitoring Activity in the eMMC/SD Mode
This section describes registers and specific register bits that you use to obtain the status of the
eMMC/SD controller in the eMMC/SD mode. The status of the eMMC/SD controller is determined by
reading the bits in the SD status register 0 (SDST0) and SD status register 1 (SDST1).

6.2.10.8.1 Detecting Edges on the DAT3 Pin
The eMMC/SD controller sets the DATED bit in SDST0 if SD_DATA3 edge detection is enabled (DATEG
bits are nonzero in SDCTL) and the specified edge is detected. The CPU is also notified of the
SD_DATA3 by an interrupt if the interrupt request is enabled (EDATED = 1 in SDIM).

6.2.10.8.2 Detecting Level Changes on the DAT3 Pin
The DAT3ST bit in SDST1 monitors the signal level on the SD_DATA3 pin.

6.2.10.8.3 Determining Whether New Data is Available in SDDRR Registers
The eMMC/SD controller sets the DRRDY bit in SDST0 when data in the FIFO is greater than the
threshold set in SDFIFOCTL. The CPU is also notified of the event by an interrupt if the interrupt request
is enabled (EDRRDY = 1 in SDIM). The DRRDY flag is cleared by a read of SDDDR register.

6.2.10.8.4 Verifying that SDDXR is Ready to Accept New Data
The eMMC/SD controller sets the DXRDY bit in eMMCST0 when the amount of data in the FIFO is less
than the threshold set in SDFIFOCTL. The CPU is also notified of the event by an interrupt if the interrupt
request is enabled (EDXRDY = 1 in SDIM).

6.2.10.8.5 Checking for CRC Errors
The eMMC/SD controller sets the CRCRS, CRCRD, and CRCWR bits in SDST0 in response to the
corresponding CRC errors of command response, data read, and data write. The CPU is also notified of
the CRC error by an interrupt if the interrupt request is enabled (ECRCRS/ECRCRD/ECRCWR = 1 in
SDIM).

6.2.10.8.6 Checking for Time-Out Events
The eMMC/SD controller sets the TOUTRS and TOUTRD bits in SDST0 in response to the corresponding
command response or data read time-out event. The CPU is also notified of the event by an interrupt if the
interrupt request is enabled (ETOUTRS/ETOUTRD = 1 in SDIM).

6.2.10.8.7 Determining When a Response/Command is Done
The eMMC/SD controller sets the RSPDNE bit in SDST0 when the response is done or, in the case of
commands that do not require a response, when the command is done. The CPU is also notified of the
done condition by an interrupt if the interrupt request is enabled. (ERSPDNE = 1 in SDIM).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Peripheral Architecture

219SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.2.10.8.8 Determining Whether the Memory Card is Busy
The card sends a busy signal either when waiting for an R1b-type response or when programming the last
write data into its flash memory. The eMMC/SD controller has two flags to notify you whether the memory
card is sending a busy signal. The two flags are complements of each other:
• BSYDNE flag in SDST0 is set if the card did not send or is not sending a busy signal when the

eMMC/SD controller is expecting a busy signal (BSYEXP = 1 in eMMCSD). The interrupt by this bit is
enabled by a corresponding interrupt enable bit (EBSYDNE = 1 in SDIM).

• BUSY flag in SDST1 is set when a busy signal is received from the card.

6.2.10.8.9 Determining Whether a Data Transfer is Done
The eMMC/SD controller sets the DATDNE bit in SDST0 when all the bytes of a data transfer have been
transmitted/received. The DATDNE bit is polled to determine when to stop writing to the data transmit
register (for a write operation) or when to stop reading from the data receive register (for a read
operation). The CPU is also notified of the time-out event by an interrupt if the interrupt request is enabled
(EDATDNE = 1 in SDIM).

6.2.10.8.10 Determining When Last Data has Been Written to Card (SanDisk SD cards)
Some SanDisk brand SD™ cards exhibit a behavior that requires a multiple-block write command to be
terminated with a STOP (CMD12) command before the data write sequence is completed. To enable
support of this function, the transfer done interrupt (TRNDNE) is provided. The TRNDNE interrupt is
enabled by setting the ETRNDNE bit in SDIM. This interrupt is issued when the last byte of data (as
defined by SDNBLK and SDBLEN) is transferred from the FIFO to the output shift register. The CPU
should respond to this interrupt by sending a STOP command to the card. This interrupt differs from
DATDNE by timing. DATDNE does not occur until after the CRC and memory programming are
completed.

6.2.10.8.11 Checking For a Data Transmit Empty Condition
During transmission, a data value is passed from the SD data transmit registers (SDDXR1 and 2) to the
data transmit shift register. The data is then passed from the shift register to the memory card one bit at a
time. The DXEMP bit in SDST1 indicates when the shift register is empty.

Typically, the DXEMP bit is not used to control data transfers; rather, it is checked during recovery from an
error condition. There is no interrupt associated with the DXEMP bit.

6.2.10.8.12 Checking for a Data Receive Full Condition
During reception, the data receive shift register accepts a data value one bit at a time. The entire value is
then passed from the shift register to the SD data receive registers (SDDRR1 and 2). The DRFUL bit in
SDST1 indicates when the shift register is full; no new bits can be shifted in from the memory card.

Typically, the DRFUL bit is not used to control data transfers; rather, it is checked during recovery from an
error condition. There is no interrupt associated with the DRFUL bit.

6.2.10.8.13 Checking the Status of the SD_CLK Pin
Read the CLKSTP bit in SDST1 to determine whether the memory clock has been stopped on the
SD_CLK pin.

6.2.10.8.14 Checking the Remaining Block Count During a Multiple-Block Transfer
During a transfer of multiple data blocks, the SD number of blocks counter register (SDNBLC) indicates
how many blocks are remaining to be transferred. SDNBLC is a read-only register.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Peripheral Architecture www.ti.com

220 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.2.11 Interrupt Support

6.2.11.1 Interrupt Events and Requests
The eMMC/SD controller generates the interrupt requests described in Table 6-4. When an interrupt event
occurs, its flag bit is set in the SD status register 0 (SDST0). If the enable bits corresponding to each flag
are set in the SD interrupt mask register (SDIM), an interrupt request is generated. All such requests are
multiplexed to a single eMMC/SD interrupt request from the eMMC/SD controller to the CPU.

The eMMC/SD interrupts can be masked into the CPU by means of the 4 programmable interrupt sources.
This is accomplished through the External Bus Selection Register. Selecting Serial Port 0 or 1 Mode will
route the appropriate I2S or eMMC/SD interrupt to the CPU.

The interrupt service routine (ISR) for the SDIO0 interrupt can determine the event that caused the
interrupt by checking the bits in SDST0. When SDST0 is read (either by CPU or emulation), all of the
register bits are automatically cleared.

Table 6-4. Description of eMMC/SD Interrupt Requests

Interrupt
Request Interrupt Event
TRNDNEINT For read operations: The eMMC/SD controller has received the last byte of data (before CRC check).

For write operations: The eMMC/SD controller has transferred the last word of data to the output shift register.
DATEDINT An edge was detected on the DAT3 pin.
DRRDYINT SDDRR is ready to be read (data in FIFO is above threshold).
DXRDYINT SDDXR is ready to transmit new data (data in FIFO is less than threshold).
CRCRSINT A CRC error was detected in a response from the memory card.
CRCRDINT A CRC error was detected in the data read from the memory card.
CRCWRINT A CRC error was detected in the data written to the memory card.
TOUTRSINT A time-out occurred while the eMMC controller was waiting for a response to a command.
TOUTRDINT A time-out occurred while the eMMC controller was waiting for the data from the memory card.
RSPDNEINT For a command that requires a response: The eMMC controller has received the response without a CRC

error.
For a command that does not require a response: The eMMC controller has finished sending the command.

BSYDNEINT The memory card stops or is no longer sending a busy signal when the eMMC controller is expecting a busy
signal.

DATDNEINT For read operations: The eMMC controller has received data without a CRC error.
For write operations: The eMMC controller has finished sending data.

6.2.12 DMA Event Support
The eMMC/SD controller is capable of generating DMA events for both read and write operations in order
to request service from a DMA controller. Based on the FIFO threshold setting, the DMA event signals
would be generated every time 128-bit or 256-bit data is transferred from the FIFO.

6.2.13 Emulation Considerations
The eMMC/SD controller is not affected by emulation halt events (such as breakpoints).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Command
GO_IDLE_STATE Set all cards to idle state.

Equivalent to software reset.

ALL_SEND_CID
Command

Response
CARD IDENTIFICATION

SET_RELATIVE_ADDR
Command

Broadcast to all cards to send

their unique CID numbers.

Read CID of the card that has

responded to ALL_SEND_CID.

Assign the relative address

(RCA) to the responding card.

This address is used by the

controller to identify the card

in all future commands involving

that card.

eMMC Controller

Register Content

eMMC Controller

Register

www.ti.com Procedures for Common Operations

221SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.3 Procedures for Common Operations

6.3.1 Card Identification Operation
Before the eMMC/SD controller starts data transfers to or from memory cards in the eMMC/SD native
mode, it has to first identify how many cards are present on the bus and configure them. For each card
that responds to the ALL_SEND_CID broadcast command, the controller reads that card’s unique card
identification address (CID) and then assigns it a relative address (RCA). This address is much shorter
than the CID and is used by the eMMC/SD controller to identify the card in all future commands that
involve the card.

Only one card completes the response to ALL_SEND_CID at any one time. The absence of any response
to ALL_SEND_CID indicates that all cards have been identified and configured.

The procedure for a card identification operation is:
1. Use eMMCSD1 to send the GO_IDLE_STATE command to the cards. This puts all cards in the idle

state. The SEND_IF_COND command should be used next to check for SD card version, followed by
the SD_SEND_OP_COND command for host capacity support operating condition information
exchange to see if card is standard or high capacity (if card has been identified as ver2.0).

2. Use eMMCSD1 to send the ALL_SEND_CID command to the cards. This notifies all cards to identify
themselves.

3. Wait for a card to respond. If a card responds, go to step 4; otherwise, stop.
4. Read the CID from the eMMC response registers (SDRSP0–7) and assign a relative address to the

card by sending the SET_RELATIVE_ADDR command.

The sequence of events in this operation is shown in Figure 6-12.

Figure 6-12. Card Identification (Native eMMC/SD Mode)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Procedures for Common Operations www.ti.com

222 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.3.2 eMMC/SD Mode Single-Block Write Operation Using CPU
To perform a single-block write, the block length must be 512 bytes and the same length needs to be set
in both the eMMC/SD controller and the memory card. The procedure for this operation is:
1. Write the card’s relative address to the SD argument registers (SDARG1/SDARG2).
2. Use the eMMCSD1 to send the SELECT/DESELECT_CARD broadcast command. This selects the

addressed card and deselects the others.
3. Write the destination start address to the SD argument registers.
4. Read card CSD to determine the card’s maximum block length.
5. Use eMMCSD1 to send the SET_BLOCKLEN command (if the block length is different than the length

used in the previous operation). The block length must be a multiple of 512 bytes and less then the
maximum block length specified in the CSD.

6. Reset the FIFO by setting the FIFORST bit in SDFIFOCTL.
7. Bring the FIFO out of reset by clearing the FIFORST bit and set the FIFO direction to transmit

(FIFODIR bit in SDFIFOCTL).
8. Set the access width (ACCWD bits in SDFIFOCTL).
9. Enable the eMMC interrupt.
10. Enable DXRDYINT interrupt.
11. Write the first 32 bits of the data block to the data transmit register (SDDXR).
12. Use eMMCSD1 to send the WRITE_BLOCK command to the card.
13. Wait for the eMMC interrupt
14. Use the eMMC status register 0 (SDST0) to check for errors and the status of the FIFO. If all of the

data has not been written and if the FIFO is not full, go to step 15. If all of the data has been written,
stop.

15. Write the next n bytes (depends on setting of FIFOLEV in SDFIFOCTL:0 = 16 bytes , 1 = 32 bytes) of
the data block to the SD data transmit register (SDDXR) and go to step 13.

The sequence of events in this operation is shown in Figure 6-13.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

STATUS 0

NEXT DATA BYTE
DATA TX

eMMC controller

register content

eMMC controller

register

RCA ADDRESS SDARGH1/
SDARGH2

SEL/DESEL. CARD
COMMAND

Select one card with relative

card address (RCA) while

de−selecting the other cards

FIRST DATA BYTE

BLK ADDRESS

DATA TX

SDARGH1/
SDARGH2

WRITE BLOCK
COMMAND

Load starting block address
into the argument register.
Load the first byte of the transfer.
Start writing one block of data.
Only 512 byte block length
is permitted.

Is CRCWR = 1?

Is DATDNE = 1?

Is DXRDY = 1?

Check CRCWR bit for any

write CRC errors.

Check DATDNE bit to see if the

transfer is done. If not, then...

Check DXRDY bit to see the

data transmit register is ready

for the next byte.

Load the data transmit register
with the next byte.

www.ti.com Procedures for Common Operations

223SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

Figure 6-13. eMMC/SD Mode Single-Block Write Operation

6.3.3 eMMC/SD Mode Single-Block Write Operation Using DMA
To perform a single-block write, the block length must be 512 bytes and the same length needs to be set
in both the eMMC/SD controller and the card. The procedure for this operation is:
1. Write the card’s relative address to the eMMC argument registers (SDARG1/SDARG2).
2. Read card CSD to determine the card's maximum block length.
3. Use eMMCSD1 to send the SET_BLOCKLEN command (if the block length is different than the length

used in the previous operation). The block length must be a multiple of 512 bytes and less then the
maximum block length specified in the CSD.

4. Reset the FIFO (FIFORST bit in SDFIFOCTL).
5. Set the FIFO direction to transmit (FIFODIR bit in SDFIFOCTL).
6. Set the access width (ACCWD bits in SDFIFOCTL).
7. Set the FIFO threshold (FIFOLEV bit in SDFIFOCTL).
8. Set up DMA (DMA size needs to be greater than or equal to FIFOLEV setting).
9. Use eMMCSD1 to send the WRITE _BLOCK command to the card.
10. Use eMMCSD2 to trigger first DMA transfer to FIFO by setting the DMATRIG bit.
11. Wait for DMA sequence to complete or the DATADNE flag in the eMMC status register 0 (SDST0) is

set.
12. Use SDST0 to check for errors.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Procedures for Common Operations www.ti.com

224 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.3.4 eMMC/SD Mode Single-Block Read Operation Using CPU
To perform a single-block read, the same block length needs to be set in both the eMMC/SD controller
and the card. The procedure for this operation is:
1. Write the card’s relative address to the SD argument registers (SDARG1/SDARG2).
2. Use eMMCSD1 to send the SELECT/DESELECT_CARD broadcast command. This selects the

addressed card and deselects the others.
3. Write the source start address to the SD argument registers.
4. Read card CSD to determine the card's maximum block length.
5. Use eMMCSD1 to send the SET_BLOCKLEN command (if the block length is different than the length

used in the previous operation). The block length must be a multiple of 512 bytes and less then the
maximum block length specified in the CSD.

6. Reset the FIFO by setting the FIFORST bit in SDFIFOCTL.
7. Bring the FIFO out of reset by clearing the FIFORST bit and set the FIFO direction to receive

(FIFODIR bit in SDFIFOCTL).
8. Set the access width (ACCWD bits in SDFIFOCTL).
9. Set the FIFO threshold (FIFOLEV bit in SDFIFOCTL).
10. Enable the SD interrupt.
11. Enable DRRDYINT interrupt.
12. Use eMMCSD1 to send the READ_SINGLE_BLOCK command.
13. Wait for SD interrupt.
14. Use the SD status register 0 (SDST0) to check for errors and the status of the FIFO. If the FIFO is not

empty, go to step 14. If the all of the data has been read, stop.
15. Read the next n bytes of data (depends on setting of FIFOLEV in SDFIFOCTL: 0 = 16 bytes, 1 = 32

bytes) from the SD data receive register (SDDRR) and go to step 13.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

STATUS 0

NEXT DATA BYTE
DATA RX

eMMC controller

register content

eMMC controller

register

RCA ADDRESS SDARGH1/
SDARGH2

SEL/DESEL. CARD
COMMAND

Select one card with relative

card address (RCA) while

de−selecting the other cards

SET_BLOCKLEN

BLK ADDRESS

COMMAND

SDARGH1/
SDARGH2

Load starting block address

into the argument register.

Is CRCRD = 1?

Is DRRDY = 1?
Check CRCRD bit for any
write CRC errors.

Check DRRDY bit to see if a
new byte can be read from
the SDDRR register.

Load block length register.
Start the operation by loading
the READ_SINGLE_BLOCK
command into the command
register.

READ_SINGLE_BLOCK
COMMAND

www.ti.com Procedures for Common Operations

225SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

The sequence of events in this operation is shown in Figure 6-14.

Figure 6-14. eMMC/SD Mode Single-Block Read Operation

6.3.5 eMMC/SD Mode Single-Block Read Operation Using DMA
To perform a single-block read, the same block length needs to be set in both the eMMC/SD controller
and the card. The procedure for this operation is:
1. Write the card’s relative address to the SD argument registers (SDARG1/SDARG2).
2. Read card CSD to determine the card's maximum block length.
3. Use the eMMCSD1 to send the SET_BLOCKLEN command (if the block length is different than the

length used in the previous operation). The block length must be a multiple of 512 bytes and less then
the maximum block length specified in the CSD.

4. Reset the FIFO by setting the FIFORST bit in SDFIFOCTL.
5. Bring the FIFO out of reset by clearing the FIFORST bit and set the FIFO direction to receive

(FIFODIR bit in SDFIFOCTL).
6. Set the access width (ACCWD bits in SDFIFOCTL).
7. Set the FIFO threshold (FIFOLEV bit in SDFIFOCTL).
8. Set up DMA (DMA size needs to be greater than or equal to FIFOLEV setting).
9. Use eMMCSD1 to send the READ _BLOCK command to the card.
10. Wait for DMA sequence to complete.
11. Use the SD status register 0 (SDST0) to check for errors.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Procedures for Common Operations www.ti.com

226 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.3.6 eMMC/SD Mode Multiple-Block Write Operation Using CPU
To perform a multiple-block write, the same block length needs to be set in both the eMMC/SD controller
and the card.

NOTE: The procedure in this section uses a STOP_TRANSMISSION command to end the block
transfer. This assumes that the value in the SD number of blocks counter register (SDNBLK)
is 0. A multiple-block operation terminates itself if you load SDNBLK with the exact number
of blocks you want transferred.

The procedure for this operation is:
1. Write the card’s relative address to the SD argument registers (SDARG1/SDARG2).
2. Read card CSD to determine the card's maximum block length.
3. Use eMMCSD1 to send the SET_BLOCKLEN command (if the block length is different than the length

used in the previous operation). The block length must be a multiple of 512 bytes and less then the
maximum block length specified in the CSD.

4. Reset the FIFO by setting the FIFORST bit in SDFIFOCTL.
5. Bring the FIFO out of reset by clearing the FIFORST bit and set the FIFO direction to transmit

(FIFODIR bit in SDFIFOCTL).
6. Set the access width (ACCWD bits in SDFIFOCTL).
7. Set the FIFO threshold (FIFOLEV bit in SDFIFOCTL).
8. Enable the SD interrupt.
9. Enable DXRDYINT interrupt.
10. Write the first 32 bits of the data block to the eMMC data transmit register (SDDXR).
11. Use eMMCSD1 to send the WRITE_MULTI_BLOCK command to the card.
12. Wait for SD interrupt.
13. Use the eMMC status register 1 (SDST1) to check for errors and to determine the status of the FIFO.

If more bytes are to be written and the FIFO is not full, go to step 14. If the all of the data has been
written, go to step 15.

14. Write the next n bytes (depends on setting of FIFOLEV in SDFIFOCTL:0 = 16 bytes , 1 = 32 bytes) of
the data block to SDDXR, and go to step 12.

15. Use eMMCSD1 to send the STOP_TRANSMISSION command.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

STATUS 0

NEXT DATA BYTE
DATA TX

eMMC controller

register content

eMMC controller

register

RCA ADDRESS
ARGHL

SEL/DESEL. CARD
COMMAND

Select one card with relative

card address (RCA) while

de−selecting the other cards

FIRST DATA BYTE

BLK ADDRESS

DATA TX

ARGHL

WRITE_MULTI_ BLOCK
COMMAND

Load starting block address
into the argument register.
Load the first byte of the transfer.
Start writing multiple blocks of data.
Only 512 byte block length
is permitted.

Is CRCWR = 1?

Is DATDNE = 1?

Is DXRDY = 1?

Check CRCWR bit for any

write CRC errors.

Check DATDNE bit to see if the

transfer is done. If not, then...

Check DXRDY bit to see the

data transmit register is ready

for the next byte.

Load the data transmit register
with the next byte.

STOP_TRANSMISSION
COMMAND Terminate the multiple-block

write operation

www.ti.com Procedures for Common Operations

227SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

The sequence of events in this operation is shown in Figure 6-15.

Figure 6-15. eMMC/SD Multiple-Block Write Operation

6.3.7 eMMC/SD Mode Multiple-Block Write Operation Using DMA
To perform a multiple-block write, the same block length needs to be set in both the eMMC/SD controller
and the card. The procedure for this operation is:
1. Write the card’s relative address to the SD argument registers (SDARG1/SDARG2).
2. Read card CSD to determine the card's maximum block length.
3. Use eMMCSD1 to send the SET_BLOCKLEN command (if the block length is different than the length

used in the previous operation). The block length must be a multiple of 512 bytes and less then the
maximum block length specified in the CSD.

4. Reset the FIFO by setting the FIFORST bit in SDFIFOCTL.
5. Bring the FIFO out of reset by clearing the FIFORST bit and set the FIFO direction to transmit

(FIFODIR bit in SDFIFOCTL).
6. Set the FIFO threshold (FIFOLEV bit in SDFIFOCTL).
7. Set the access width (ACCWD bits in SDFIFOCTL).
8. Set up DMA (DMA size needs to be greater than or equal to FIFOLEV setting).
9. Use eMMCSD1 to send the WRITE_MULTI_BLOCK command to the card.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Procedures for Common Operations www.ti.com

228 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

10. Use eMMCSD2 to trigger first DMA transfer to FIFO by setting the DMATRIG bit.
11. Wait for DMA sequence to complete or the DATADNE flag in the eMMC status register 0 (SDST0) is

set.
12. Use SDST0 to check for errors.
13. Use eMMCSD1 to send the STOP_TRANSMISSION command.

6.3.8 eMMC/SD Mode Multiple-Block Read Operation Using CPU
To perform a multiple-block read, the same block length needs to be set in both the eMMC/SD controller
and the card.

NOTE: The procedure in this section uses a STOP_TRANSMISSION command to end the block
transfer. This assumes that the value in the SD number of blocks counter register (SDNBLK)
is 0. A multiple-block operation terminates itself if you load SDNBLK with the exact number
of blocks you want transferred.

The procedure for this operation is:
1. Write the card’s relative address to the SD argument registers (SDARG1/SDARG2).
2. Read card CSD to determine the card's maximum block length.
3. Use eMMCSD1 to send the SET_BLOCKLEN command (if the block length is different than the length

used in the previous operation). The block length must be a multiple of 512 bytes and less then the
maximum block length specified in the CSD.

4. Reset the FIFO by setting the FIFORST bit in SDFIFOCTL.
5. Bring the FIFO out of reset by clearing the FIFORST bit and set the FIFO direction to receive

(FIFODIR bit in SDFIFOCTL).
6. Set FIFO threshold (FIFOLEV bit in SDFIFOCTL).
7. Set the access width (ACCWD bits in SDFIFOCTL).
8. Enable the SD interrupt.
9. Enable DRRDYINT interrupt.
10. Use eMMCSD1 to send the READ_MULT_BLOCKS command.
11. Wait for SD interrupt.
12. Use the SD status register 1 (SDST1) to check for errors and to determine the status of the FIFO. If

FIFO is not empty and more bytes are to be read, go to step 13. If the all of the data has been read, go
to step 14.

13. Read n bytes (depends on setting of FIFOLEV in SDFIFOCTL:0 = 16 bytes , 1 = 32 bytes) of data
from the SD data receive register (SDDRR) and go to step 10.

14. Use eMMCSD1 to send the STOP_TRANSMISSION command.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

STATUS 0

NEXT DATA BYTE
DATA RX

eMMC controller
register content

eMMC controller
register

RCA ADDRESS
ARGHL

SEL/DESEL. CARD
COMMAND

Select one card with relative
card address (RCA) while
de−selecting the other cards.

SET_BLOCKLEN

BLK ADDRESS

COMMAND

ARGHL

READ_MULT_BLOCK
COMMAND

Is CRCRD = 1?
Is DRRDY = 1?

Load starting block address
into the argument register.
Load block length register
with the block length value.
Start the operation by loading
a READ_MULTIPLE_BLOCK
command into the command
register.

.

Check TOUTRD bit to verify
that the read operation has not
timed−out. Check CRCRD bit for
any read CRC errors. Check DRRDY
to see if a new byte is in the data

STOP_TRANSMISSION
COMMAND

Terminate the multiple−block
read operation.

Is TOUTRD = 1?

receive register.

www.ti.com Procedures for Common Operations

229SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

The sequence of events in this operation is shown in Figure 6-16.

Figure 6-16. eMMC/SD Mode Multiple-Block Read Operation

6.3.9 eMMC/SD Mode Multiple-Block Read Operation Using DMA
To perform a multiple-block read, the same block length needs to be set in both the eMMC/SD controller
and the card. The procedure for this operation is:
1. Write the card’s relative address to the SD argument registers (SDARG1/SDARG2).
2. Read card CSD to determine the card's maximum block length.
3. Use eMMCSD1 to send the SET_BLOCKLEN command (if the block length is different than the length

used in the previous operation). The block length must be a multiple of 512 bytes and less then the
maximum block length specified in the CSD.

4. Reset the FIFO by setting the FIFORST bit in SDFIFOCTL.
5. Bring the FIFO out of reset by clearing the FIFORST bit and set the FIFO direction to receive

(FIFODIR bit in SDFIFOCTL).
6. Set the FIFO threshold (FIFOLEV bit in SDFIFOCTL).
7. Set the access width (ACCWD bits in SDFIFOCTL).
8. Set up DMA (DMA size needs to be greater than or equal to FIFOLEV setting).
9. Use eMMCSD1 to send the READ_MULTI_BLOCK command to the card.
10. Wait for DMA sequence to complete.
11. Use the SD status register 0 (SDST0) to check for errors.
12. Use eMMCSD1 to send the STOP_TRANSMISSION command.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Procedures for Common Operations www.ti.com

230 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.3.10 SD High Speed Mode
To perform the high-speed mode operation the card need to be placed in high-speed mode. The
procedure for this operation is:
1. Follow the normal card identification procedure, since all the high-speed cards are by default initially

normal SD cards. Once card is successfully identified, it needs to be switched into high-speed mode.
2. Send CMD16 (SET_BLOCK_LEN) with argument as 8 (8 bytes) to set the block length in the card.
3. Set the block length as 8 bytes and number of blocks as 1 in SD controller registers SDBLEN and

MMNBLK, respectively.
4. Read the SCR register by sending ACMD51.
5. Parse the 64-bit response received from the card to check whether the card has support of SD spec

Ver1.10. The high-speed support is available only cards those are supporting SD VER 1.10.
6. Send CMD16 (SET_BLOCK_LEN) with argument as 64 (64 bytes) to set the block length in the card.
7. Set the block length as 64 bytes and number of blocks as 1 in SD controller registers SDBLEN and

MMNBLK, respectively.
8. Send CMD6 with Mode 0.
9. Parse the 512-bit response received from the card to check whether the card has high-speed function

support. If yes, check that the Maximum current consumption for this function is within the limit which is
specified in CSD register (CSD register bits 61:50, response for the CMD9, SEND_CSD).

10. Send CMD6 with Mode 1 to enable the high-speed function.
11. Parse the 512-bit response received from the card to check whether the card has successfully been

placed in high-speed mode.
12. Increase the SD clock rate up to 50 MHz.
13. Follow normal read/write operation.

6.3.11 SDIO Card Function
To support the SDIO card, the following features are available in the eMMC/SD controller:
• Read wait operation request.

When in 1-bit mode and the transfer clock (memory clock) is off, this peripheral cannot recognize an SDIO
interrupt from SD_DATA1 line. Two options are available to deal with this situation:
1. Do not turn off the memory clock in 1-bit mode. The clock is enabled by the CLKEN bit in the SD

memory clock control register (SDCLK).
2. If the memory clock needs to be turned off, physically connect a GPIO signal and SD_DATA1, and use

the GPIO as an external interrupt input. When the memory clock is enabled, disable the GPIO interrupt
and enable the SDIO interrupt. When the memory clock is disabled, enable the GPIO interrupt and
disable the SDIO interrupt by software.

6.3.11.1 SDIO Control Register (SDIOCTL)
The SDIO card control register (SDIOCTL) is used to configure the read wait operation using the
SD_DATA2 line.

6.3.11.2 SDIO Status Register 0 (SDIOST0)
The SDIO card status register 0 (SDIOST0) is used to check the status of the SD_DATA1 signal, check
the status of being in an interrupt period, or check the status of being in a read wait operation.

6.3.11.3 SDIO Interrupt Control Registers (SDIOIEN, SDIOIST)
The SDIO card controller issues an interrupt to the CPU when the read wait operation starts or when an
SDIO interrupt is detected on the SD_DATA1 line.

Interrupt flags of each case are checked with the SDIO interrupt status register (SDIOIST). To issue an
actual interrupt to CPU, enabling each interrupt in the SDIO interrupt enable register (SDIOIEN) is
required.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

231SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

When both interrupts are enabled, they are both reported to the CPU as a single interrupt (whether one or
both occurred). The interrupt(s) that occurred are determined by reading SDIOIST.

6.4 Registers
Table 6-5 list the memory-mapped registers associated with the two Multimedia Card/Secure Digital 0
(MMC/SD0) controllers and Table 6-6 list the memory-mapped registers associated with the two
Multimedia Card/Secure Digital 1 (MMC/SD1) controllers. Note that the CPU accesses all peripheral
registers through its I/O space. All other register addresses not listed should be considered as reserved
locations and the register contents should not be modified.

Table 6-5. Embedded Multimedia Card/Secure Digital 0 (eMMC/SD0) Card Controller Registers

CPU Word
Address

Acronym Register Description Section

3A00h SDCTL SD Control Register Section 6.4.1
3A04h SDCLK SD Memory Clock Control Register Section 6.4.2
3A08h SDST0 SD Status Register 0 Section 6.4.3
3A0Ch SDST1 SD Status Register 1 Section 6.4.4
3A10h SDIM SD Interrupt Mask Register Section 6.4.5
3A14h SDTOR SD Response Time-Out Register Section 6.4.6
3A18h SDTOD SD Data Read Time-Out Register Section 6.4.7
3A1Ch SDBLEN SD Block Length Register Section 6.4.8
3A20h SDNBLK SD Number of Blocks Register Section 6.4.9
3A24h SDNBLC SD Number of Blocks Counter Register Section 6.4.10
3A28h SDDRR1 SD Data Receive Register 1 Section 6.4.11
3A29h SDDRR2 SD Data Receive Register 2 Section 6.4.11
3A2Ch SDDXR1 SD Data Transmit Register 1 Section 6.4.12
3A2Dh SDDXR2 SD Data Transmit Register 2 Section 6.4.12
3A30h MMCSD1 eMMC Command Register 1 Section 6.4.13
3A31h MMCSD2 eMMC Command Register 2 Section 6.4.13
3A34h SDARG1 SD Argument Register 1 Section 6.4.14
3A35h SDARG2 SD Argument Register 2 Section 6.4.14
3A38h SDRSP0 SD Response Register 0 Section 6.4.15
3A39h SDRSP1 SD Response Register 1 Section 6.4.15
3A3Ch SDRSP2 SD Response Register 2 Section 6.4.15
3A3Dh SDRSP3 SD Response Register 3 Section 6.4.15
3A40h SDRSP4 SD Response Register 4 Section 6.4.15
3A41h SDRSP5 SD Response Register 5 Section 6.4.15
3A44h SDRSP6 SD Response Register 6 Section 6.4.15
3A45h SDRSP7 SD Response Register 7 Section 6.4.15
3A48h SDDRSP SD Data Response Register Section 6.4.16
3A50h SDCIDX SD Command Index Register Section 6.4.17
3A64h SDIOCTL SDIO Control Register Section 6.4.18
3A68h SDIOST0 SDIO Status Register 0 Section 6.4.19
3A6Ch SDIOIEN SDIO Interrupt Enable Register Section 6.4.20
3A70h SDIOIST SDIO Interrupt Status Register Section 6.4.21
3A74h SDFIFOCTL SD FIFO Control Register Section 6.4.22

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

232 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

Table 6-6. Embedded Multimedia Card/Secure Digital 1 (eMMC/SD1) Card Controller Registers

CPU Word
Address

Acronym Register Description Section

3B00h SDCTL SD Control Register Section 6.4.1
3B04h SDCLK SD Memory Clock Control Register Section 6.4.2
3B08h SDST0 SD Status Register 0 Section 6.4.3
3B0Ch SDST1 SD Status Register 1 Section 6.4.4
3B10h SDIM SD Interrupt Mask Register Section 6.4.5
3B14h SDTOR SD Response Time-Out Register Section 6.4.6
3B18h SDTOD SD Data Read Time-Out Register Section 6.4.7
3B1Ch SDBLEN SD Block Length Register Section 6.4.8
3B20h SDNBLK SD Number of Blocks Register Section 6.4.9
3B24h SDNBLC SD Number of Blocks Counter Register Section 6.4.10
3B28h SDDRR1 SD Data Receive Register 1 Section 6.4.11
3B29h SDDRR2 SD Data Receive Register 2 Section 6.4.11
3B2Ch SDDXR1 SD Data Transmit Register 1 Section 6.4.12
3B2Dh SDDXR2 SD Data Transmit Register 2 Section 6.4.12
3B30h MMCSD1 eMMC Command Register 1 Section 6.4.13
3B31h MMCSD2 eMMC Command Register 2 Section 6.4.13
3B34h SDARG1 SD Argument Register 1 Section 6.4.14
3B35h SDARG2 SD Argument Register 2 Section 6.4.14
3B38h SDRSP0 SD Response Register 0 Section 6.4.15
3B39h SDRSP1 SD Response Register 1 Section 6.4.15
3B3Ch SDRSP2 SD Response Register 2 Section 6.4.15
3B3Dh SDRSP3 SD Response Register 3 Section 6.4.15
3B40h SDRSP4 SD Response Register 4 Section 6.4.15
3B41h SDRSP5 SD Response Register 5 Section 6.4.15
3B44h SDRSP6 SD Response Register 6 Section 6.4.15
3B45h SDRSP7 SD Response Register 7 Section 6.4.15
3B48h SDDRSP SD Data Response Register Section 6.4.16
3B50h SDCIDX SD Command Index Register Section 6.4.17
3B64h SDIOCTL SDIO Control Register Section 6.4.18
3B68h SDIOST0 SDIO Status Register 0 Section 6.4.19
3B6Ch SDIOIEN SDIO Interrupt Enable Register Section 6.4.20
3B70h SDIOIST SDIO Interrupt Status Register Section 6.4.21
3B74h SDFIFOCTL SD FIFO Control Register Section 6.4.22

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

233SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.4.1 SD Control Register (SDCTL)
The SD control register (SDCTL) is used to enable or configure various modes of the SD controller. Set or
clear the DATRST and CMDRST bits at the same time to reset or enable the SD controller. SDCTL is
shown in Figure 6-17 and described in Table 6-7.

Figure 6-17. SD Control Register (SDCTL)
15 11 10 9 8

Reserved PERMDX PERMDR Reserved
R-0 R/W-0 R/W-0 R-0

7 6 5 3 2 1 0
DATEG Reserved WIDTH CMDRST DATRST
R/W-0 R-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6-7. SD Control Register (SDCTL) Field Descriptions

Bit Field Value Description
15-11 Reserved 0 Reserved.

10 PERMDX Endian select enable when writing.
0 Little Endian is selected.
1 Big Endian is selected.

9 PERMDR Endian select enable when reading.
0 Little Endian is selected.
1 Big Endian is selected.

8 Reserved 0 Reserved.
7-6 DATEG 0-3h DAT3 edge detection select.

0 DAT3 edge detection is disabled.
1h DAT3 rising-edge detection is enabled.
2h DAT3 falling-edge detection is enabled.
3h DAT3 rising-edge and falling-edge detections are enabled.

5-3 Reserved 0 Reserved.
2 WIDTH Data bus width (MMC mode only).

0 Data bus has 1 bit (only DAT0 is used).
1 Data bus has 4 bits (all DAT0-3 are used).

1 CMDRST CMD logic reset.
0 CMD line portion is enabled.
1 CMD line portion is disabled and in reset state.

0 DATRST DAT logic reset.
0 DAT line portion is enabled.
1 DAT line portion is disabled and in reset state.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

234 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.4.2 SD Memory Clock Control Register (SDCLK)
The SD memory clock control register (SDCLK) is used to:
• Select whether the CLK pin is enabled or disabled (CLKEN bit).
• Select how much the function clock is divided-down to produce the memory clock (CLKRT bits). When

the CLK pin is enabled, the SD controller drives the memory clock on this pin to control the timing of
communications with attached memory cards. For more details about clock generation, see
Section 6.2.1.

SDCLK is shown in Figure 6-18 and described in Table 6-8.

Figure 6-18. SD Memory Clock Control Register (SDCLK)
15 9 8 7 0

Reserved CLKEN CLKRT
R-0 R/W-0 R/W-FFh

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6-8. SD Memory Clock Control Register (SDCLK) Field Descriptions

Bit Field Value Description
15-9 Reserved 0 Reserved.

8 CLKEN CLK pin enable.
0 CLK pin is disabled and fixed low.
1 The CLK pin is enabled; it shows the memory clock signal.

7-0 CLKRT 0-FFh Clock rate. Use this field to set the divide-down value for the memory clock. The function clock is
divided down as follows to produce the memory clock:
memory clock frequency = function clock frequency/(2 * (CLKRT + 1)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

235SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.4.3 SD Status Register 0 (SDST0)
The SD status register 0 (SDST0) records specific events or errors. The transition from 0 to 1 on each bit
in SDST0 can cause an interrupt signal to be sent to the CPU. If an interrupt is desired, set the
corresponding interrupt enable bit in the SD interrupt mask register (SDIM).

When a status bit is read (by CPU or emulation) it is cleared. Additionally DRRDY bit and the DXRDY bit
are also cleared in response to the functional events described for them in Table 6-9, or in response to a
hardware reset.

SDST0 is shown in Figure 6-19 and described in Table 6-9.

Figure 6-19. SD Status Register 0 (SDST0)
15 13 12 11 10 9 8

Reserved TRNDNE DATED DRRDY DXRDY Reserved
R-0 RC-0 RC-0 R-0 R-0 R-0

7 6 5 4 3 2 1 0
CRCRS CRCRD CRCWR TOUTRS TOUTRD RSPDNE BSYDNE DATDNE

RC-0 RC-0 RC-0 RC-0 RC-0 RC-0 RC-0 RC-0
LEGEND: R = Read only; RC = Cleared to 0 when read; -n = value after reset

Table 6-9. SD Status Register 0 (SDST0) Field Descriptions

Bit Field Value Description
15-13 Reserved 0 Reserved. Any writes to these bit(s) must always have a value of 0.

12 TRNDNE Transfer done.
0 No data transfer is done.
1 Data transfer of specified length is done.

11 DATED DAT3 edge detected. DATED is cleared when read by CPU.
0 A DAT3 edge has not been detected.
1 A DAT3 edge has been detected.

10 DRRDY Data receive ready. DRRDY is cleared to 0 when the DAT logic is reset (DATRST = 1 in SDCTL), when
a command is sent with data receive/transmit clear (DCLR = 1 in MMCSD), or when data is read from
the MMC data receive registers (SDDRR1 and SDDRR2).

0 SDDRR is not ready.
1 SDDRR is ready. New data has arrived and can be read by the CPU or by the DMA controller.

9 DXRDY Data transmit ready. DXRDY is set to 1 when the DAT logic is reset (DATRST = 1 in SDCTL), when a
command is sent with data receive/transmit clear (DCLR = 1 in MMCSD), or when data is written to the
MMC data transmit register (MMCDXR).

0 SDDXR is not ready.
1 SDDXR is ready. The data in SDDXR has been transmitted; SDDXR can accept new data from the

CPU or from the DMA controller.
8 Reserved 0 Reserved.
7 CRCRS Response CRC error.

0 A response CRC error has not been detected.
1 A response CRC error has been detected.

6 CRCRD Read-data CRC error.
0 A read-data CRC error has not been detected.
1 A read-data CRC error has been detected.

5 CRCWR Write-data CRC error.
0 A write-data CRC error has not been detected.
1 A write-data CRC error has been detected.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

236 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

Table 6-9. SD Status Register 0 (SDST0) Field Descriptions (continued)
Bit Field Value Description
4 TOUTRS Response time-out event.

0 A response time-out event has not occurred.
1 A time-out event has occurred while the MMC controller was waiting for a response to a command.

3 TOUTRD Read-data time-out event.
0 A read-data time-out event has not occurred.
1 A time-out event has occurred while the MMC controller was waiting for data.

2 RSPDNE Command/response done.
0 No response is received.
1 Command has been sent without response or response has been received for the command sent.

1 BSYDNE Busy done.
0 No busy releasing is done.
1 Released from busy state or expected busy is not detected.

0 DATDNE Data done.
0 The data has not been fully transmitted.
1 The data has been fully transmitted.

NOTE: 1) As the command portion and the data portion of the SD controller are independent, any
command such as CMD0 (GO_IDLE_STATE) or CMD12 (STOP_TRANSMISSION) can be
sent to the card, even if during block transfer. In this situation, the data portion will detect this
and wait, releasing the busy state only when the command sent was R1b (to be specific,
command with BSYEXP bit), otherwise it will keep transferring data.

2) Bit 12 (TRNDNE) indicates that the last byte of a transfer has been completed. Bit 0
(DATDNE) occurs at end of a transfer but not until the CRC check and programming has
been completed.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

237SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.4.4 SD Status Register 1 (SDST1)
The SD status register 1 (SDST1) records specific events or errors. There are no interrupts associated
with these events or errors. SDST1 is shown in Figure 6-20 and described in Table 6-10.

Figure 6-20. SD Status Register 1 (SDST1)
15 8

Reserved
R-0

7 6 5 4 3 2 1 0
Reserved FIFOFUL FIFOEMP DAT3ST DRFUL DXEMP CLKSTP BUSY

R-0 R-0 R-0 R-0 R-0 R-0 R-1 R-0
LEGEND: R = Read only; -n = value after reset

Table 6-10. SD Status Register 1 (SDST1) Field Descriptions

Bit Field Value Description
15-7 Reserved 0 Reserved.

6 FIFOFUL FIFO is full.
0 FIFO is not full.
1 FIFO is full.

5 FIFOEMP FIFO is empty.
0 FIFO is not empty.
1 FIFO is empty.

4 DAT3ST DAT3 status.
0 The signal level on the DAT3 pin is a logic-low level.
1 The signal level on the DAT3 pin is a logic-high level.

3 DRFUL Data receive register (SDDRR) is full.
0 A data receive register full condition is not detected.
1 A data receive register full condition is detected.

2 DXEMP Data transmit register (MMCDXR) is empty.
0 A data transmit register empty condition is not detected. The data transmit shift register is not empty.
1 A data transmit register empty condition is detected. The data transmit shift register is empty. No bits

are available to be shifted out to the memory card.
1 CLKSTP Clock stop status.

0 CLK is active. The memory clock signal is being driven on the pin.
1 CLK is held low because of a manual stop (CLKEN = 0 in MMCCLK), receive shift register is full, or

transmit shift register is empty.
0 BUSY Busy.

0 No busy signal is detected.
1 A busy signal is detected (the memory card is busy).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

238 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.4.5 SD Interrupt Mask Register (SDIM)
The SD interrupt mask register (SDIM) is used to enable (bit = 1) or disable (bit = 0) status interrupts. If an
interrupt is enabled, the transition from 0 to 1 of the corresponding interrupt bit in the SD status register 0
(SDST0) can cause an interrupt signal to be sent to the CPU. SDIM is shown in Figure 6-21 and
described in Table 6-11.

Figure 6-21. SD Interrupt Mask Register (SDIM)
15 13 12 11 10 9 8

Reserved ETRNDNE EDATED EDRRDY EDXRDY Reserved
R-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0

7 6 5 4 3 2 1 0
ECRCRS ECRCRD ECRCWR ETOUTRS ETOUTRD ERSPDNE EBSYDNE EDATDNE

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6-11. SD Interrupt Mask Register (SDIM) Field Descriptions

Bit Field Value Description
15-13 Reserved 0 Reserved.

12 ETRNDNE Transfer done (TRNDNE) interrupt enable.
0 Transfer done interrupt is disabled.
1 Transfer done interrupt is enabled.

11 EDATED DAT3 edge detect (DATED) interrupt enable.
0 DAT3 edge detect interrupt is disabled.
1 DAT3 edge detect interrupt is enabled.

10 EDRRDY Data receive register ready (DRRDY) interrupt enable.
0 Data receive register ready interrupt is disabled.
1 Data receive register ready interrupt is enabled.

9 EDXRDY Data transmit register (MMCDXR) ready interrupt enable.
0 Data transmit register ready interrupt is disabled.
1 Data transmit register ready interrupt is enabled.

8 Reserved 0 Reserved.
7 ECRCRS Response CRC error (CRCRS) interrupt enable.

0 Response CRC error interrupt is disabled.
1 Response CRC error interrupt is enabled.

6 ECRCRD Read-data CRC error (CRCRD) interrupt enable.
0 Read-data CRC error interrupt is disabled.
1 Read-data CRC error interrupt is enabled.

5 ECRCWR Write-data CRC error (CRCWR) interrupt enable.
0 Write-data CRC error interrupt is disabled.
1 Write-data CRC error interrupt is disabled.

4 ETOUTRS Response time-out event (TOUTRS) interrupt enable.
0 Response time-out event interrupt is disabled.
1 Response time-out event interrupt is enabled.

3 ETOUTRD Read-data time-out event (TOUTRD) interrupt enable.
0 Read-data time-out event interrupt is disabled.
1 Read-data time-out event interrupt is enabled.

2 ERSPDNE Command/response done (RSPDNE) interrupt enable.
0 Command/response done interrupt is disabled.
1 Command/response done interrupt is enabled.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

239SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

Table 6-11. SD Interrupt Mask Register (SDIM) Field Descriptions (continued)
Bit Field Value Description
1 EBSYDNE Busy done (BSYDNE) interrupt enable.

0 Busy done interrupt is disabled.
1 Busy done interrupt is enabled.

0 EDATDNE Data done (DATDNE) interrupt enable.
0 Data done interrupt is disabled.
1 Data done interrupt is enabled.

6.4.6 SD Response Time-Out Register (SDTOR)
The SD response time-out register (SDTOR) defines how long the SD controller waits for a response from
a memory card before recording a time-out condition in the TOUTRS bit of the SD status register 0
(SDST0). If the corresponding ETOUTRS bit in the SD interrupt mask register (SDIM) is set, an interrupt is
generated when the TOUTRS bit is set in SDST0. If a memory card should require a longer time-out
period than SDTOR can provide, a software time-out mechanism can be implemented.

SDTOR is shown in Figure 6-22 and described in Table 6-12.

Figure 6-22. SD Response Time-Out Register (SDTOR)
15 8 7 0

TOD_23_16 TOR
R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6-12. SD Response Time-Out Register (SDTOR) Field Descriptions

Bit Field Value Description
15-8 TOD_23_16 0-1Fh Data read time-out count upper 8 bits. Used in conjunction with the TOD_15_0 bits in MMCTOD to

form a 24-bit count. See MMCTOD (Section 6.4.7).
7-0 TOR 0-FFh Time-out count for response.

0 No time out.
1-FFh 1 CLK memory clock cycle to 255 CLK memory clock cycles.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

240 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.4.7 SD Data Read Time-Out Register (SDTOD)
The SD data read time-out register (SDTOD) defines how long the SD controller waits for the data from a
memory card before recording a time-out condition in the TOUTRD bit of the SD status register 0
(SDST0). If the corresponding ETOUTRD bit in the SD interrupt mask register (SDIM) is set, an interrupt is
generated when the TOUTRD bit is set in SDST0. If a memory card should require a longer time-out
period than SDTOD can provide, a software time-out mechanism can be implemented.

SDTOD is shown in Figure 6-23 and described in Table 6-13.

Figure 6-23. SD Data Read Time-Out Register (SDTOD)
15 0

TOD_15_0
R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6-13. SD Data Read Time-Out Register (SDTOD) Field Descriptions

Bit Field Value Description
15-0 TOD_15_0 0-1F FFFFh Data read time-out count. Used in conjunction with the TOD_23_16 bits in MMCTOR to form a

24-bit count. See MMCTOR (Section 6.4.6).
0 No time out.

1-FFFFh 1 CLK clock cycle to 64,000 CLK clock cycles. When used in conjunction with TOD_23_16, the
value range will be 1-1F FFFF clock cycles.

6.4.8 SD Block Length Register (SDBLEN)
The SD block length register (SDBLEN) specifies the data block length in bytes. This value must match
the block length setting in the memory card. SDBLEN is shown in Figure 6-24 and described in Table 6-
14.

Figure 6-24. SD Block Length Register (SDBLEN)
15 12 11 0

Reserved BLEN
R-0 R/W-200h

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6-14. SD Block Length Register (SDBLEN) Field Descriptions

Bit Field Value Description
15-12 Reserved 0 Reserved.
11-0 BLEN 1h-FFFh Block length. This field is used to set the block length, which is the byte count of a data block. The

value 0 is prohibited.

NOTE: The BLEN bits value must be the same as the CSD register settings in the eMMC/SD card.
To be precise, it should match the value of the READ_BL_LEN field for read, or
WRITE_BL_LEN field for write.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

241SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.4.9 SD Number of Blocks Register (SDNBLK)
The SD number of blocks register (SDNBLK) specifies the number of blocks for a multiple-block transfer.
SDNBLK is shown in Figure 6-25 and described in Table 6-15.

Figure 6-25. SD Number of Blocks Register (SDNBLK)
15 0

NBLK
R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6-15. SD Number of Blocks Register (SDNBLK) Field Descriptions

Bit Field Value Description
15-0 NBLK 0-FFFFh Number of blocks. This field is used to set the total number of blocks to be transferred.

0 Infinite number of blocks. The MMC controller reads/writes blocks of data until a
STOP_TRANSMISSION command is written to the MMC command registers (MMCSD1 and
MMCSD2).

1h-FFFFh n blocks. The MMC controller reads/writes only n blocks of data, even if the
STOP_TRANSMISSION command has not been written to the MMC command registers
(MMCSD1 and MMCSD2).

6.4.10 SD Number of Blocks Counter Register (SDNBLC)
The SD number of blocks counter register (SDNBLC) is a down-counter for tracking the number of blocks
remaining to be transferred during a multiple-block transfer. SDNBLC is shown in Figure 6-26 and
described in Table 6-16.

Figure 6-26. SD Number of Blocks Counter Register (SDNBLC)
15 0

NBLC
R-FFFFh

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6-16. SD Number of Blocks Counter Register (SDNBLC) Field Descriptions

Bit Field Value Description
15-0 NBLC 0-FFFFh Read this field to determine the number of blocks remaining to be transferred.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

242 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.4.11 SD Data Receive Register (SDDRR1) and (SDDRR2)
The SD data receive registers (SDDRR1 and SDDRR2) are used for storing the data received from the
SD card. The CPU or the DMA controller can read data from this register. SDDRR1 and SDDRR2 expects
the data in little-endian format. SDDRR1 is shown in Figure 6-27 and described in Table 6-17. SDDRR2 is
shown in Figure 6-28 and described in Table 6-18.

Figure 6-27. SD Data Receive Register (SDDRR1)
15 0

DRR1
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 6-17. SD Data Receive Register (SDDRR1) Field Descriptions

Bit Field Value Description
15-0 DRR1 0-FFFFh Data receive 1.

Figure 6-28. SD Data Receive Register (SDDRR2)
15 0

DRR2
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 6-18. SD Data Receive Register (SDDRR2) Field Descriptions

Bit Field Value Description
15-0 DRR2 0-FFFFh Data receive 2.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

243SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.4.12 SD Data Transmit Registers (SDDXR1) and (SDDXR2)
The SD data transmit registers (SDDXR1 and SDDXR2) are used for storing the data to be transmitted
from the SD controller to the memory card. The CPU or the DMA controller can write data to this register
to be transmitted. SDDXR1 and SDDXR2 data is based on the endian setting in the SDCTL register.
SDDXR1 is shown in Figure 6-29 and described in Table 6-19. SDDXR2 is shown in Figure 6-30 and
described in Table 6-20.

Figure 6-29. SD Data Transmit Register (SDDXR)
15 0

DXR1
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 6-19. SD Data Transmit Register (SDDXR) Field Descriptions

Bit Field Value Description
15-0 DXR1 0-FFFFh Data transmit 1.

Figure 6-30. SD Data Transmit Register (SDDXR2)
15 0

DXR2
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 6-20. SD Data Transmit Register (SDDXR2) Field Descriptions

Bit Field Value Description
15-0 DXR2 0-FFFFh Data transmit 2.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

244 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.4.13 eMMC Command Registers (MMCSD1) and (MMCSD2)

NOTE: Writing to the eMMC command registers (MMCSD1 and MMCSD2) causes the eMMC
controller to send the programmed command. Therefore, the eMMC argument registers
(MMCARG1/MMCARG2) must be loaded properly before a write to MMCSD.

The eMMC command registers (MMCSD1 and 2) specifies the type of command to be sent and defines
the operation (command, response, additional activity) for the eMMC controller. The content of MMCSD is
kept after the transfer to the transmit shift register. MMCSD is shown in Figure 6-31 and described in
Table 6-21.

When the CPU writes to MMCSD1 and 2, the MMC controller sends the programmed commands,
including any arguments in the MMCARG1/MMCARG2 registers. For the format of a command (index,
arguments, and other bits), see Figure 6-33 and Table 6-23.

NOTE: Writes to MMCSD2 should only occur after a write command has been written to the
MMCSD1 register for DMA data transfers.

Figure 6-31. eMMC Command Register 1 (MMCSD1)
15 14 13 12 11 10 9 8

DCLR INITCK WDATX STRMTP DTRW RSPFMT BSYEXP
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

7 6 5 0
PPLEN Reserved CMD
R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6-21. eMMC Command Register 1 (MMCSD1) Field Descriptions

Bit Field Value Description
15 DCLR Data receive/transmit clear. Use this bit to clear the data receive ready (DRRDY) bit and the data

transmit ready (DXRDY) bit in the MMC status register 0 (MMCST0) before a new read or write
sequence. This clears any previous status.

0 Do not clear DRRDY and DXRDY bits in MMCST0.
1 Clear DRRDY and DXRDY bits in MMCST0.

14 INITCK Initialization clock cycles.
0 Do not insert initialization clock cycles.
1 Insert initialization clock cycles; insert 80 CLK cycles before sending the command specified in the CMD

bits. These dummy clock cycles are required for resetting a card after power on.
13 WDATX Data transfer indicator.

0 There is no data transfer associated with the command being sent.
1 There is data transfer associated with the command being sent.

12 STRMTP Stream transfer enable.
0 If WDATX = 1, the data transfer is a block transfer. The data transfer stops after the movement of the

programmed number of bytes (defined by the programmed block size and the programmed number of
blocks).

1 If WDATX = 1, the data transfer is a stream transfer. Once the data transfer is started, the data transfer
does not stop until the MMC controller issues a stop command to the memory card.

11 DTRW Data transfer write enable.
0 If WDATX = 1, the data transfer is a read operation.
1 If WDATX = 1, the data transfer is a write operation.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

245SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

Table 6-21. eMMC Command Register 1 (MMCSD1) Field Descriptions (continued)
Bit Field Value Description

10-9 RSPFMT 0-3h Response format (expected type of response to the command).
0 No response.
1h R1, R4, R5, or R6 response. 48 bits with CRC.
2h R2 response. 136 bits with CRC.
3h R3 response. 48 bits with no CRC.

8 BSYEXP Busy expected. If an R1b (R1 with busy) response is expected, set RSPFMT = 1h and BSYEXP = 1.
0 A busy signal is not expected.
1 A busy signal is expected.

7 PPLEN Push pull enable.
0 Push pull driver of CMD line is disabled (open drain).
1 Push pull driver of CMD line is enabled.

6 Reserved 0 Reserved.
5-0 CMD 0-3Fh Command index. This field contains the command index for the command to be sent to the memory

card.

Figure 6-32. eMMC Command Register 2 (MMCSD2)
15 1 0

Reserved DMATRIG
R-0 W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6-22. eMMC Command Register 2 (MMCSD2) Field Descriptions

Bit Field Value Description
15-1 Reserved 0 Reserved.

0 DMATRIG Generate a DMA event once to trigger the first DMA transfer for data write operations (subsequent DMA
events are automatically generated).

0 DMA transfer event generation is disabled.
1 Trigger a DMA transfer event for the first data transfer to the FIFO.

Figure 6-33. Command Format
47 46 45 40 39 24

Start Transmission Command index Argument, high part

23 8 7 1 0
Argument, low part CRC7 End

Table 6-23. Command Format

Bit Position of Command Register Description
47 - Start bit
46 - Transmission bit

45-40 MMCSD(5-0) Command index (CMD)
39-24 MMCARG1 Argument, high part
23-8 MMCARG2 Argument, low part
7-1 - CRC7
0 - End bit

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

246 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.4.14 SD Argument Registers (SDARG1) and (SDARG2)

NOTE: Do not modify the SD argument registers (SDARG1 and SDARG2) while they are being
used for an operation.

The SD argument registers (SDARG1 and SDARG2) specifies the arguments to be sent with the
command specified in the eMMC command register (MMCSD). Writing to MMCSD causes the eMMC
controller to send a command; therefore, SDARG1 and SDARG2 must be configured before writing to
MMCSD. The content of SDARG1 and SDARG2 are kept after the transfer to the shift register; however,
modification to SDARG1 and SDARG2 are not allowed during a sending operation. SDARG1 is shown in
Figure 6-34 and described in Table 6-24. SDARG2 is shown in Figure 6-35 and described in Table 6-25
For the format of a command, see Figure 6-33 and Table 6-23.

Figure 6-34. SD Data Transmit Register (SDARG1)
15 0

ARG1
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 6-24. SD Argument Register (SDARG1) Field Descriptions

Bit Field Value Description
15-0 ARG1 0-FFFFh Argument, high and low parts.

Figure 6-35. SD Data Transmit Register (SDARG2)
15 0

ARG2
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 6-25. SD Argument Register (SDARG2) Field Descriptions

Bit Field Value Description
15-0 ARG2 0-FFFFh Argument, high and low parts.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

247SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.4.15 SD Response Registers (SDRSP0-SDRSP7)
Each command has a preset response type. When the SD controller receives a response, it is stored in
some or all of the 4 SD response registers (SDRSP0-SDRSP7). The response registers are updated as
the responses arrive, even if the CPU has not read the previous contents.

As shown in Figure 6-36 through Figure 6-43, each of the SD response registers holds up to 16 bits.
Table 6-26 and Table 6-27 show the format for each type of response and which SD response registers
are used for the bits of the response. The first byte of the response is a command index byte and is stored
in the SD command index register (SDCIDX).

Figure 6-36. SD Response Register 0 (SDRSP0)
15 0

MMCRSP0
R-0

LEGEND: R = Read only; -n = value after reset

Figure 6-37. SD Response Register 1 (SDRSP1)
15 0

MMCRSP1
R-0

LEGEND: R = Read only; -n = value after reset

Figure 6-38. SD Response Register 2 (SDRSP2)
15 0

MMCRSP2
R-0

LEGEND: R = Read only; -n = value after reset

Figure 6-39. SD Response Register 3 (SDRSP3)
15 0

MMCRSP3
R-0

LEGEND: R = Read only; -n = value after reset

Figure 6-40. SD Response Register 4 (SDRSP4)
15 0

MMCRSP4
R-0

LEGEND: R = Read only; -n = value after reset

Figure 6-41. SD Response Register 5 (SDRSP5)
15 0

MMCRSP5
R-0

LEGEND: R = Read only; -n = value after reset

Figure 6-42. SD Response Register 6 (SDRSP6)
15 0

MMCRSP6
R-0

LEGEND: R = Read only; -n = value after reset

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

248 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

Figure 6-43. SD Response Register 7 (SDRSP7)
15 0

MMCRSP7
R-0

LEGEND: R = Read only; -n = value after reset

Table 6-26. R1, R3, R4, R5, or R6 Response (48 Bits)

Bit Position of Response Register
47-40 MMCCIDX
39-24 MMCRSP7
23-8 MMCRSP6
7-0 MMCRSP5
- MMCRSP4-0

Table 6-27. R2 Response (136 Bits)

Bit Position of Response Register
135-128 MMCCIDX
127-112 MMCRSP7
111-96 MMCRSP6
95-80 MMCRSP5
79-64 MMCRSP4
63-48 MMCRSP3
47-37 MMCRSP2
31-16 MMCRSP1
15-0 MMCRSP0

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

249SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.4.16 SD Data Response Register (SDDRSP)
After the SD controller sends a data block to a memory card, the CRC status from the memory card is
stored in the CRC status register, shown in Figure 6-44 and described in Table 6-28.

Figure 6-44. SD Data Response Register (SDDRSP)
15 8 7 0

Reserved DRSP
R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6-28. SD Data Response Register (SDDRSP) Field Descriptions

Bit Field Value Description
15-8 Reserved 0 Reserved.
7-0 DRSP 0-FFh During a write operation (see Section 6.2.4.1), the CRC status token is stored in DRSP.

6.4.17 SD Command Index Register (SDCIDX)
The SD command index register (SDCIDX) stores the first byte of a response from a memory card.
Table 6-26 and Table 6-27 show the format for each type of response. SDCIDX is shown in Figure 6-45
and described in Table 6-29.

Figure 6-45. SD Command Index Register (SDCIDX)
15 8 7 6 5 0

Reserved STRT XMIT CIDX
R-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6-29. SD Command Index Register (SDCIDX) Field Descriptions

Bit Field Value Description
15-8 Reserved 0 Reserved.

7 STRT 0-1 Start bit. When the MMC controller receives a response, the start bit is stored in STRT.
6 XMIT 0-1 Transmission bit. When the MMC controller receives a response, the transmission bit is stored in XMIT.

5-0 CIDX 0-3Fh Command index. When the MMC controller receives a response, the command index is stored in CIDX.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

250 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.4.18 SDIO Control Register (SDIOCTL)
The SDIO control register (SDIOCTL) is shown in Figure 6-46 and described in Table 6-30.

Figure 6-46. SDIO Control Register (SDIOCTL)
15 2 1 0

Reserved RDWTCR RDWTRQ
R-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6-30. SDIO Control Register (SDIOCTL) Field Descriptions

Bit Field Value Description
15-2 Reserved 0 Reserved.

1 RDWTCR Read wait enable for CRC error. To end the read wait operation, write 0 to RDWTRQ. (No need to clear
RDWTCR).

0 Read wait is disabled.
1 Automatically start read wait on CRC error detection during multiple block read access and not the last

block to be transferred. RDWTRQ is automatically set to 1.
0 RDWTRQ Read wait request. To end the read wait operation, write 0 to RDWTRQ.

0 End read wait operation and release DAT[2].
1 Set a read wait request. Read wait operation starts 2 clocks after the end of the read data block. MMC

interface asserts low level on DAT[2] until RDWTRQ is cleared to 0.

6.4.19 SDIO Status Register 0 (SDIOST0)
The SDIO status register 0 (SDIOST0) is shown in Figure 6-47 and described in Table 6-31.

Figure 6-47. SDIO Status Register 0 (SDIOST0)
15 2 1 0

Reserved RDWTST INTPRD DAT1
R-0 R-0 R-0 R-1

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6-31. SDIO Status Register 0 (SDIOST0) Field Descriptions

Bit Field Value Description
15-3 Reserved 0 Reserved.

2 RDWTST Read wait status.
0 Read wait operation not in progress.
1 Read wait operation in progress.

1 INTPRD Interrupt period.
0 Interrupt not in progress.
1 Interrupt in progress.

0 DAT1 This bit reflects the external state of the SD_DATA1 pin.
0 Logic-low level on the SD_DATA1 pin.
1 Logic-high level on the SD_DATA1 pin.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

251SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.4.20 SDIO Interrupt Enable Register (SDIOIEN)
The SDIO interrupt enable register (SDIOIEN) is shown in Figure 6-48 and described in Table 6-32.

Figure 6-48. SDIO Interrupt Enable Register (SDIOIEN)
15 2 1 0

Reserved RWSEN IOINTEN
R-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6-32. SDIO Interrupt Enable Register (SDIOIEN) Field Descriptions

Bit Field Value Description
15-2 Reserved 0 Reserved.

1 RWSEN Read wait interrupt enable.
0 Read wait interrupt is disabled.
1 Read wait interrupt is enabled.

0 IOINTEN SDIO card interrupt enable.
0 SDIO card interrupt is disabled.
1 SDIO card interrupt is enabled.

6.4.21 SDIO Interrupt Status Register (SDIOIST)
The SDIO interrupt status register (SDIOIST) is shown in Figure 6-49 and described in Table 6-33.

Figure 6-49. SDIO Interrupt Status Register (SDIOIST)
15 2 1 0

Reserved RWS IOINT
R-0 R/W1C-0 R/W1C-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6-33. SDIO Interrupt Status Register (SDIOIST) Field Descriptions

Bit Field Value Description
15-2 Reserved 0 Reserved.

1 RWS Read wait interrupt status. Write a 1 to clear this bit.
0 Read wait interrupt did not occur.
1 Read wait interrupt occurred. Read wait operation starts and read wait interrupt is enabled (RWSEN = 1

in SDIOIEN).
0 IOINT SDIO card interrupt status. Write a 1 to clear this bit.

0 SDIO card interrupt did not occur.
1 SDIO card interrupt occurred. SDIO card interrupt is detected and SDIO card interrupt is enabled

(IOINTEN = 1 in SDIOIEN).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

252 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller

6.4.22 SD FIFO Control Register (SDFIFOCTL)
The MMC FIFO control register (MMCFIFOCTL) is shown in Figure 6-50 and described in Table 6-34.

Figure 6-50. SD FIFO Control Register (SDFIFOCTL)
15 8

Reserved
R-0

7 5 4 3 2 1 0
Reserved ACCWD FIFOLEV FIFODIR FIFORST

R-0 R/W-0 R/W-0 R/W-0 W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6-34. SD FIFO Control Register (SDFIFOCTL) Field Descriptions

Bit Field Value Description
15-5 Reserved 0 Reserved
4-3 ACCWD 0-3h Access width. Used by FIFO control to determine full/empty flag.

0 CPU/DMA access width of 4 bytes
1h CPU/DMA access width of 3 bytes
2h CPU/DMA access width of 2 bytes
3h CPU/DMA access width of 1 byte

2 FIFOLEV FIFO level. Sets the threshold level that determines when the DMA request and the FIFO threshold
interrupt are triggered.

0 DMA request every 128 bits sent/received.
1 DMA request every 256 bits sent/received.

1 FIFODIR FIFO direction. Determines if the FIFO is being written to or read from.
0 Read from FIFO.
1 Write to FIFO.

0 FIFORST FIFO reset. Resets the internal state of the FIFO.
0 FIFO reset is disabled.
1 FIFO reset is enabled.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

253SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

Chapter 7
SPRUH87H–August 2011–Revised April 2016

Universal Asynchronous Receiver/Transmitter (UART)

This chapter describes the features and operations of the universal asynchronous receiver/transmitter
(UART) in the device.

Topic ... Page

7.1 Introduction ... 254
7.2 Peripheral Architecture ... 257
7.3 Registers ... 268

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Introduction www.ti.com

254 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

7.1 Introduction
The following sections describe the features of the universal asynchronous receiver/transmitter (UART)
peripheral.

7.1.1 Purpose of the Peripheral
The UART performs serial-to-parallel conversions on data received from a peripheral device and parallel-
to-serial conversion on data received from the CPU. The CPU can read the UART status at any time. The
UART includes control capability and a processor interrupt system that can be tailored to minimize
software management of the communications link.

The UART includes a programmable baud generator capable of dividing the UART input clock by divisors
from 1 to 65,535 and producing a 16 x reference clock for the internal transmitter and receiver logic. For
detailed timing and electrical specifications for the UART, see the device-specific data manual.

The UART peripheral is based on the industry standard TL16C550 asynchronous communications
element, which in turn is a functional upgrade of the TL16C450. Functionally similar to the TL16C450 on
power up (single character or TL16C450 mode), the UART can be placed in an alternate FIFO
(TL16C550) mode. This relieves the CPU of excessive software overhead by buffering received and
transmitted characters. The receiver and transmitter FIFOs store up to 16 bytes including three additional
bits of error status per byte for the receiver FIFO.

7.1.2 Features
The UART peripheral has the following features:
• Programmable baud rates (frequency pre-scale values from 1 to 65535).
• Fully programmable serial interface characteristics:

– 5, 6, 7, or 8-bit characters.
– Even, odd, or no PARITY bit generation and detection.
– 1, 1.5, or 2 STOP bit generation.

• 16-byte depth transmitter and receiver FIFOs:
– The UART can be operated with or without the FIFOs.
– 1, 4, 8, or 14 byte selectable receiver FIFO trigger level for autoflow control and DMA.

• DMA signaling capability for both received and transmitted data.
• CPU interrupt capability for both received and transmitted data.
• False START bit detection.
• Line break generation and detection.
• Internal diagnostic capabilities:

– Loopback controls for communications link fault isolation.
– Break, parity, overrun, and framing error simulation.

• Programmable autoflow control using CTS and RTS signals.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Introduction

255SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

Table 7-1 summarizes the capabilities supported on the UART.

Table 7-1. UART Supported Features/Characteristics by Instance

Feature Support
5, 6, 7 or 8-bit characters Supported
Even, odd, or no PARITY bit Supported
1, 1.5, or 2 STOP bit generation Supported
Line break generation and detection Supported
Internal loop back Supported
DMA sync events for both received and transmitted data Supported
1, 4, 8, or 14 byte selectable receiver FIFO trigger level Supported
Polling/Interrupt Supported
Modem control functions using CTS and RTS Supported
Autoflow control using CTS and RTS Supported
DTR and DSR Not supported
Ring indication Not supported
Carrier detection Not supported
Single-character transfer mode (mode 0) in DMA mode Not supported

7.1.3 Functional Block Diagram
A functional block diagram of the UART is shown in Figure 7-1.

7.1.4 Industry Standard(s) Compliance Statement
The UART peripheral is based on the industry standard TL16C550 asynchronous communications
element, which is a functional upgrade of the TL16C450. Any deviations in supported functions are
indicated in Table 7-1.

The information in this document assumes the reader is familiar with these standards.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

8

Receiver
Buffer

Register

Divisor
Latch (LS)

Divisor
Latch (MS)

Baud
Generator

Receiver
FIFO

Line
Status

Register

Transmitter
Holding
Register

Modem
Control
Register

Line
Control
Register

Transmitter
FIFO

Interrupt
Enable

Register

Interrupt
Identification

Register

FIFO
Control
Register

Interrupt/
Event

Control
Logic

S
e
l
e
c
t

Data
Bus

Buffer

URXD

UTXD

Peripheral
Bus

S
e
l
e
c
t

Receiver
Shift

Register

Receiver
Timing and

Control

Transmitter
Timing and

Control

Transmitter
Shift

Register

Control
Logic

16

8

8

8

8

8

Interrupt to CPU

16

8

pin

pin

8

88

8

Power and
Emulation

Control
Register

Event to DMA controller

Introduction www.ti.com

256 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

Figure 7-1. UART Block Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

DLH:DLL

UART
input
clock

UART Module

Receiver
timing and

control

Transmitter
timing and

control

Baud
generator

BCLK

Other logic

External
Input
Clock

R
T

C

C
ry

s
ta

l

CLKSEL

PCGCR1[UARTCG]

Clock
Generator

SYSCLKSEL

DSP
system
clock

Divisor�
UART input clock frequency

Desired baud rate� 16

www.ti.com Peripheral Architecture

257SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

7.2 Peripheral Architecture

7.2.1 Clock Generation and Control
The UART bit clock is derived from the internal system clock. Figure 7-2 is a conceptual clock generation
diagram for the UART. The clock generator receives either the real-time clock (RTC) or a signal from an
external clock source and produces DSP system clock. This clock is used by the DSP CPU and
peripherals.

The UART contains a programmable baud generator that takes the UART input clock and divides it by a
divisor in the range between 1 and (216 - 1) to produce a baud clock (BCLK). The frequency of BCLK is
sixteen times (16 ×) the baud rate; each received or transmitted bit lasts 16 BCLK cycles. When the UART
is receiving, the bit is sampled in the 8th BCLK cycle. The formula to calculate the divisor is:

Two 8-bit register fields (DLH and DLL), called divisor latches, hold this 16-bit divisor. DLH holds the most
significant bits of the divisor, and DLL holds the least significant bits of the divisor. For information about
these register fields, see Section 7.3. These divisor latches must be loaded during initialization of the
UART in order to ensure desired operation of the baud generator. Writing to the divisor latches results in
two wait states being inserted during the write access while the baud generator is loaded with the new
value.

Figure 7-2 summarizes the relationship between the transferred data bit, BCLK, and the UART input clock.

Example baud rates and divisor values relative to a 50-50-, 60- and 100-MHz UART input clock are shown
in Table 7-2, Table 7-3 and Table 7-4 respectively. Refer to the device-specific data sheet to determine
the maximum baud rate supported on the DSP.

The device DSP includes logic which can be used to gate the clock to its on-chip peripherals. The UART
input clock can be enabled and disabled through the peripheral clock gating configuration register 1
(PCGCR1).

Figure 7-2. UART Clock Generation Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

BCLK

Each bit lasts 16 BCLK cycles.
When receiving, the UART samples the bit in the 8th cycle.

D0

UTXD
URXD

D1 D2

PARITYD7D6D5 STOP2STOP1D1 D4D2 D3START D0UTXD
URXD

UART input clock

n nUART input clock cycles, where
= divisor in DLH:DLL

n

BCLK

Peripheral Architecture www.ti.com

258 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

Figure 7-3. Relationship between Data Bit, BCLK, and UART Input Clock

Table 7-2. Baud Rate Examples for 50-MHz UART Input Clock

Baud Rate Divisor Value Actual Baud Rate Error (%)
2400 1302 2400.15 0.006
4800 651 4800.31 0.006
9600 326 9585.89 -0.147
19200 163 19171.78 -0.147
38400 81 38580.25 0.469
56000 56 55803.57 -0.351
128000 24 130208.33 1.725

Table 7-3. Baud Rate Examples for 60-MHz UART Input Clock

Baud Rate Divisor Value Actual Baud Rate Error (%)
2400 1563 2399.23 -0.032
4800 781 4801.54 0.032
9600 391 9590.79 -0.096
19200 195 19230.77 0.16
38400 98 38265.31 -0.351
56000 67 55970.15 -0.053
128000 29 129310.34 1.024

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Peripheral Architecture

259SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

Table 7-4. Baud Rate Examples for 100-MHz UART Input Clock

Baud Rate Divisor Value Actual Baud Rate Error (%)
2400 2604 2400.15 0.006
4800 1302 4800.31 0.006
9600 651 9600.61 0.006

19200 326 19171.78 -0.147
38400 163 38343.56 -0.147
56000 112 55803.57 -0.351
128000 49 127551.02 -0.351

7.2.2 Signal Descriptions
The UARTs utilize a minimal number of signal connections to interface with external devices. The UART
signal descriptions are included in Table 7-5.

Table 7-5. UART Signal Descriptions

Signal Name Signal Type Function
UTXD Output Serial data transmit
URXD Input Serial data receive
UCTS Input Clear-to-Send handshaking signal
URTS Output Request-to-Send handshaking signal

7.2.3 Pin Multiplexing
The UART pins are multiplexed with other peripherals on the DSP device. To enable UART pin
functionality, software must set the parallel port mode bits of the external bus selection register (EBSR) to
either 001b, 100b, or 101b. For more information on the pin multiplexing options of the device DSP,
please refer to the device-specific data manual.

7.2.4 Protocol Description

7.2.4.1 Transmission
The UART transmitter section includes a transmitter hold register (THR) and a transmitter shift register
(TSR). When the UART is in the FIFO mode, THR is a 16-byte FIFO. Transmitter section control is a
function of the UART line control register (LCR). Based on the settings chosen in LCR, the UART
transmitter sends the following to the receiving device:
• 1 START bit.
• 5, 6, 7, or 8 data bits.
• 1 PARITY bit (optional).
• 1, 1.5, or 2 STOP bits.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Peripheral Architecture www.ti.com

260 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

7.2.4.2 Reception
The UART receiver section includes a receiver shift register (RSR) and a receiver buffer register (RBR).
When the UART is in the FIFO mode, RBR is a 16-byte FIFO. Receiver section control is a function of the
UART line control register (LCR). Based on the settings chosen in LCR, the UART receiver accepts the
following from the transmitting device:
• 1 START bit.
• 5, 6, 7, or 8 data bits.
• 1 PARITY bit (optional).
• 1 STOP bit (any other STOP bits transferred with the above data are not detected).

7.2.4.3 Data Format
The UART transmits in the following format:

1 START bit, 5, 6, 7, or 8 data bits, depending on the data width selection. 1 PARITY bit, if parity is
selected; 1, 1.5, or 2 STOP bits, depending on the STOP bit selection.

The UART receives in the following format:

1 START bit, 5, 6, 7, or 8 data bits, depending on the data width selection. 1 PARITY bit, if parity is
selected; 1 STOP bit.

Examples of different protocol formats are shown in Figure 7-4.

Figure 7-4. UART Example Protocol Formats

D0 D1 D2 D3 D4 PARITY STOP1

Transmit/Receive for 5-bit data, parity Enable, 1 STOP bit

D0 D1 D2 D3 D4 D5 PARITY STOP1

Transmit/Receive for 6-bit data, parity Enable, 1 STOP bit

D0 D1 D2 D3 D4 D5 D6 PARITY STOP1

Transmit/Receive for 7-bit data, parity Enable, 1 STOP bit

D0 D1 D2 D3 D4 D5 D6 D7 PARITY STOP1

Transmit/Receive for 8-bit data, parity Enable, 1 STOP bit

7.2.5 Operation

7.2.5.1 Transmission
The UART transmitter section includes a transmitter hold register (THR) and a transmitter shift register
(TSR). When the UART is in the FIFO mode, THR is a 16-byte FIFO. Transmitter section control is a
function of the UART line control register (LCR). Based on the settings chosen in LCR, the UART
transmitter sends the following to the receiving device:
• 1 START bit.
• 5, 6, 7, or 8 data bits.
• 1 PARITY bit (optional).
• 1, 1.5, or 2 STOP bits.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Peripheral Architecture

261SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

THR receives data from the internal data bus, and when TSR is ready, the UART moves the data from
THR to TSR. The UART serializes the data in TSR and transmits the data on the TX pin. In the non-FIFO
mode, if THR is empty and the THR empty interrupt is enabled in the interrupt enable register (IER), an
interrupt is generated. This interrupt is cleared when a character is loaded into THR. In the FIFO mode,
the interrupt is generated when the transmitter FIFO is empty, and it is cleared when at least one byte is
loaded into the FIFO.

7.2.5.2 Reception
The UART receiver section includes a receiver shift register (RSR) and a receiver buffer register (RBR).
When the UART is in the FIFO mode, RBR is a 16-byte FIFO. Timing is supplied by the receiver clock.
Receiver section control is a function of the UART line control register (LCR). Based on the settings
chosen in LCR, the UART receiver accepts the following from the transmitting device:
• 1 START bit.
• 5, 6, 7, or 8 data bits.
• 1 PARITY bit (optional).
• 1 STOP bit (any other STOP bits transferred with the above data are not detected).

RSR receives the data bits from the RX pin. Then RSR concatenates the data bits and moves the
resulting value into RBR (or the receiver FIFO). The UART also stores three bits of error status
information next to each received character, to record a parity error, framing error, or break.

In the non-FIFO mode, when a character is placed in RBR and the receiver data-ready interrupt is enabled
in the interrupt enable register (IER), an interrupt is generated. This interrupt is cleared when the character
is read from RBR. In the FIFO mode, the interrupt is generated when the FIFO is filled to the trigger level
selected in the FIFO control register (FCR), and it is cleared when the FIFO contents drop below the
trigger level.

7.2.5.3 FIFO Modes
The following two modes can be used for servicing the receiver and transmitter FIFOs:
• FIFO interrupt mode. The FIFO is enabled and the associated interrupts are enabled. Interrupts are

sent to the CPU to indicate when specific events occur.
• FIFO poll mode. The FIFO is enabled but the associated interrupts are disabled. The CPU polls status

bits to detect specific events.

Because the receiver FIFO and the transmitter FIFO are controlled separately, either one or both can be
placed into the interrupt mode or the poll mode.

7.2.5.3.1 FIFO Interrupt Mode
When the receiver FIFO is enabled in the FIFO control register (FCR) and the receiver interrupts are
enabled in the interrupt enable register (IER), the interrupt mode is selected for the receiver FIFO. The
following are important points about the receiver interrupts:
• The receiver data-ready interrupt is issued to the CPU when the FIFO has reached the trigger level

that is programmed in FCR. It is cleared when the CPU or the DMA controller reads enough characters
from the FIFO such that the FIFO drops below its programmed trigger level.

• The receiver line status interrupt is generated in response to an overrun error, a parity error, a framing
error, or a break. This interrupt has higher priority than the receiver data-ready interrupt. For details,
see Section 7.2.9.

• The data-ready (DR) bit in the line status register (LSR) indicates the presence or absence of
characters in the receiver FIFO. The DR bit is set when a character is transferred from the receiver
shift register (RSR) to the empty receiver FIFO. The DR bit remains set until the FIFO is empty again.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Peripheral Architecture www.ti.com

262 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

• A receiver time-out interrupt occurs if all of the following conditions exist:
– At least one character is in the FIFO,
– The most recent character was received more than four continuous character times ago. A

character time is the time allotted for 1 START bit, n data bits, 1 PARITY bit, and 1 STOP bit,
where n depends on the word length selected with the WLS bits in the line control register (LCR).
See Table 7-6.

– The most recent read of the FIFO has occurred more than four continuous character times before.
• Character times are calculated by using the baud rate.
• When a receiver time-out interrupt has occurred, it is cleared and the time-out timer is cleared when

the CPU or the DMA controller reads one character from the receiver FIFO. The interrupt is also
cleared if a new character is received in the FIFO or if the URRST bit is cleared in the power and
emulation management register (PWREMU_MGMT).

• If a receiver time-out interrupt has not occurred, the time-out timer is cleared after a new character is
received or after the CPU or DMA reads the receiver FIFO.

NOTE: If the interrupt is caused by the time-out timer, the interrupt can be cleared when a start bit is
received. The user must also check the receive data when the time-out interrupt is cleared.

When the transmitter FIFO is enabled in FCR and the transmitter holding register empty interrupt is
enabled in IER, the interrupt mode is selected for the transmitter FIFO. The transmitter holding register
empty interrupt occurs when the transmitter FIFO is empty. It is cleared when the transmitter hold register
(THR) is loaded (1 to 16 characters may be written to the transmitter FIFO while servicing this interrupt).

Table 7-6. Character Time for Word Lengths

Word Length (n) Character Time Four Character Times
5 Time for 8 bits Time for 32 bits
6 Time for 9 bits Time for 36 bits
7 Time for 10 bits Time for 40 bits
8 Time for 11 bits Time for 44 bits

7.2.5.3.2 FIFO Poll Mode
When the receiver FIFO is enabled in the FIFO control register (FCR) and the receiver interrupts are
disabled in the interrupt enable register (IER), the poll mode is selected for the receiver FIFO. Similarly,
when the transmitter FIFO is enabled and the transmitter interrupts are disabled, the transmitter FIFO is in
the poll mode. In the poll mode, the CPU detects events by checking bits in the line status register (LSR):
• The RXFIFOE bit indicates whether there are any errors in the receiver FIFO.
• The TEMT bit indicates that both the transmitter holding register (THR) and the transmitter shift

register (TSR) are empty.
• The THRE bit indicates when THR is empty.
• The BI (break), FE (framing error), PE (parity error), and OE (overrun error) bits specify which error or

errors have occurred.
• The DR (data-ready) bit is set as long as there is at least one byte in the receiver FIFO.

Also, in the FIFO poll mode:
• The interrupt identification register (IIR) is not affected by any events because the interrupts are

disabled.
• The UART does not indicate when the receiver FIFO trigger level is reached or when a receiver time-

out occurs.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

RX

RTS

Start Start StartStopStopBits N Bits N+1Start Stop

RTS

Receiver
FIFO

D[7:0]

UART

Serial to
Parallel

Flow
Control

Transmitter
FIFO

Parallel to
Serial

Flow
Control

Parallel to
Serial

Flow
Control

Serial to
Parallel

Flow
Control

UART

Transmitter
FIFO

Receiver
FIFO

D[7:0]

DMP Off-chip

TX

CTS

RX

RX

RTS

TX

CTS

www.ti.com Peripheral Architecture

263SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

7.2.5.4 Autoflow Control
The UART can employ autoflow control by connecting the CTS and RTS signals. The CTS input must be
active before the transmitter FIFO can transmit data. The RTS becomes active when the receiver needs
more data and notifies the sending device. When RTS is connected to CTS, data transmission does not
occur unless the receiver FIFO has space for the data. Therefore, when two UARTs are connected as
shown in Figure 7-5 with autoflow enabled, overrun errors are eliminated.

Figure 7-5. UART Interface Using Autoflow Diagram

7.2.5.4.1 RTS Behavior
RTS data flow control originates in the receiver block (see Figure 7-1). When the receiver FIFO level
reaches a trigger level of 1, 4, 8, or 14 (see Figure 7-6), RTS is deasserted. The sending UART may send
an additional byte after the trigger level is reached (assuming the sending UART has another byte to
send), because it may not recognize the deassertion of RTS until after it has begun sending the additional
byte. For trigger level 1, 4, and 8, RTS is automatically reasserted once the receiver FIFO is emptied. For
trigger level 14, RTS is automatically reasserted once the receiver FIFO drops below the trigger level.

Figure 7-6. Autoflow Functional Timing Waveforms for RTS

(1) N = Receiver FIFO trigger level.
(2) The two blocks in dashed lines cover the case where an additional byte is sent.

7.2.5.4.2 CTS Behavior
The transmitter checks CTS before sending the next data byte. If CTS is active, the transmitter sends the
next byte. To stop the transmitter from sending the following byte, CTS must be released before the
middle of the last STOP bit that is currently being sent (see Figure 7-7). When flow control is enabled,
CTS level changes do not trigger interrupts because the device automatically controls its own transmitter.
Without autoflow control, the transmitter sends any data present in the transmitter FIFO and a receiver
overrun error may result.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

TX

CTS

Start StopBits0−7 Start StopBits 0−7 Start StopBits 0−7

Peripheral Architecture www.ti.com

264 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

Figure 7-7. Autoflow Functional Timing Waveforms for CTS

(1) When CTS is active (low), the transmitter keeps sending serial data out.
(2) When CTS goes high before the middle of the last STOP bit of the current byte, the transmitter finishes

sending the current byte but it does not send the next byte.
(3) When CTS goes from high to low, the transmitter begins sending data again.

7.2.5.5 Loopback Control
The UART can be placed in the diagnostic mode using the LOOP bit in the modem control register (MCR),
which internally connects the UART output back to the UART input. In this mode, the transmit and receive
data paths, the transmitter and receiver interrupts, and the modem control interrupts can be verified
without connecting to another UART.

7.2.6 Exception Processing

7.2.6.1 Divisor Latch Not Programmed
Since the processor reset signal has no effect on the divisor latch, the divisor latch will have an unknown
value after power up. If the divisor latch is not programmed after power up, the baud clock (BCLK) will not
operate and will instead be set to a constant logic 1 state.

The divisor latch values should always be reinitialized following a processor reset.

7.2.6.2 Changing Operating Mode During Busy Serial Communication
Since the serial link characteristics are based on how the control registers are programmed, the UART will
expect the control registers to be static while it is busy engaging in a serial communication. Therefore,
changing the control registers while the module is still busy communicating with another serial device will
most likely cause an error condition and should be avoided.

7.2.7 Reset Considerations
The UART peripheral has two reset sources: software reset and hardware reset.

7.2.7.1 Software Reset Considerations
The UART peripheral can be reset by software through the transmitter reset (UTRST) and the receiver
reset (URRST) bits of the UART power and emulation management register (PWREMU_MGMT) or
through the UART_RST bit in the peripheral reset control register (PRCR).

The UTRST bit controls the transmitter part of the UART only. When UTRST is cleared to 0, the
transmitter is disabled and placed in reset. When UTRST is set to 1, the transmitter is enabled. The
URRST bit controls the receiver portion of the UART in a similar fashion. In each case, placing the
receiver and/or transmitter in reset will reset the state machine of the affected portion but does not affect
the UART registers.

When PG4_RST in the peripheral reset control register (PRCR) is set to 1, a hardware reset is forced on
the UART. The effects of a hardware reset are described in the next section. Please note that the UART
input clock must be enabled when using UART_RST (see Section 7.2.1). Refer to the device-specific data
manual for more details on PRCR.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Peripheral Architecture

265SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

7.2.7.2 Hardware Reset Considerations
A hardware reset is always initiated during a full chip reset. Alternatively, software can force an UART
hardware reset through the PG4_RST bit of the peripheral reset control register (PRCR). See the device
data manual for more details on PRCR.

NOTE: PRCR resets other peripherals besides the UART. For more details on this bit and register,
refer to the device-specific data manual.

When a hardware reset occurs, all the registers of the UART peripheral are set to their default values and
the UART peripheral remains disabled until the transmitter reset (UTRST) and the receiver reset (URRST)
bits of the UART power and emulation management register (PWREMU_MGMT) are changed to 1.

7.2.8 Initialization
The following steps are required to initialize the UART:
1. Perform the necessary device pin multiplexing setup (see Section 7.2.3 for more details).
2. Ensure the UART is out of reset by waiting until UART_RST = 0 in the peripheral reset control register

(PRCR).
3. Enable the UART input clock by setting UARTCG to 0 in the peripheral clock gating configuration

register (PCGCR1). See the device-specific data manual for more information on PCGCR1.
4. Place the UART transmitter and receiver in reset by setting UTRST and URRST to 0 in the UART

power and emulation management register (PWREMU_MGMT).
5. Set the desired baud rate by writing the appropriate clock divisor values to the divisor latch registers

(DLL and DLH).
6. Select the desired trigger level and enable the FIFOs by writing the appropriate values to the FIFO

control register (FCR) if the FIFOs are used. The FIFOEN bit in FCR must be set first, before the other
bits in FCR are configured. Be sure to set the DMAMODE1 bit to 1 as required for proper operation
between the DMA and UART.

7. Choose the desired protocol settings by writing the appropriate values to the line control register
(LCR).

8. Write appropriate values to the modem control register (MCR) if autoflow control is desired. Note that
all UARTs do not support autoflow control, see the device-specific data manual for supported features.

9. Choose the desired response to emulation suspend events by setting the UTRST and URRST bits in
the power and emulation management register (PWREMU_MGMT).

7.2.9 Interrupt Support

7.2.9.1 Interrupt Events and Requests
The UART generates the interrupt requests described in Table 7-7. All requests are multiplexed through
an arbiter to a single UART interrupt request to the CPU, as shown in Figure 7-8. Each of the interrupt
requests has an enable bit in the interrupt enable register (IER) and is recorded in the interrupt
identification register (IIR).

If an interrupt occurs and the corresponding enable bit is set to 1, the interrupt request is recorded in IIR
and is forwarded to the CPU. If an interrupt occurs and the corresponding enable bit is cleared to 0, the
interrupt request is blocked. The interrupt request is neither recorded in IIR nor forwarded to the CPU.

Table 7-7. UART Interrupt Requests Descriptions

UART Interrupt
Request Interrupt Source Comment
THREINT THR-empty condition: The transmitter holding register

(THR) or the transmitter FIFO is empty. All of the data
has been copied from THR to the transmitter shift
register (TSR).

If THREINT is enabled in IER, by setting the ETBEI
bit, it is recorded in IIR.
As an alternative to using THREINT, the CPU can poll
the THRE bit in the line status register (LSR).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

UART interrupt
request to CPU

IER(ETBEI)

IER(ERBI)

Transmitter holding
register empty

Receiver data ready

THREINT

RDRINT

Overrun error

IER(ELSI)

RTOINT

Conditions Enable bits UART interrupt requests

Arbiter

Parity error

Framing error

Break

RLSINT

Receiver time-out

Peripheral Architecture www.ti.com

266 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

Table 7-7. UART Interrupt Requests Descriptions (continued)
UART Interrupt
Request Interrupt Source Comment
RDAINT Receive data available in non-FIFO mode or trigger

level reached in the FIFO mode.
If RDAINT is enabled in IER, by setting the ERBI bit,
it is recorded in IIR.
As an alternative to using RDAINT, the CPU can poll
the DR bit in the line status register (LSR). In the
FIFO mode, this is not a functionally equivalent
alternative because the DR bit does not respond to
the FIFO trigger level. The DR bit only indicates the
presence or absence of unread characters.

RTOINT Receiver time-out condition (in the FIFO mode only):
No characters have been removed from or input to
the receiver FIFO during the last four character times
(see Table 7-6), and there is at least one character in
the receiver FIFO during this time.

The receiver time-out interrupt prevents the UART
from waiting indefinitely, in the case when the receiver
FIFO level is below the trigger level and thus does not
generate a receiver data-ready interrupt.
If RTOINT is enabled in IER, by setting the ERBI bit,
it is recorded in IIR.
There is no status bit to reflect the occurrence of a
time-out condition.

RLSINT Receiver line status condition: An overrun error, parity
error, framing error, or break has occurred.

If RLSINT is enabled in IER, by setting the ELSI bit, it
is recorded in IIR.
As an alternative to using RLSINT, the CPU can poll
the following bits in the line status register (LSR):
overrun error indicator (OE), parity error indicator
(PE), framing error indicator (FE), and break indicator
(BI).

Figure 7-8. UART Interrupt Request Enable Paths

7.2.9.2 Interrupt Multiplexing
The UART has a dedicated interrupt signal to the CPU that is not multiplexed with any other interrupt
source.

7.2.10 DMA Event Support
In the FIFO mode, the UART generates the following two DMA events:
• Receive event (URXEVT): The trigger level for the receiver FIFO (1, 4, 8, or 14 characters) is set with

the RXFIFTL bit in the FIFO control register (FCR). Every time the trigger level is reached or a receiver
time-out occurs, the UART sends a receive event to the DMA controller. In response, the DMA
controller reads the data from the receiver FIFO by way of the receiver buffer register (RBR).

• Transmit event (UTXEVT): When the transmitter FIFO is empty (when the last byte in the transmitter
FIFO has been copied to the transmitter shift register), the UART sends an UTXEVT signal to the DMA
controller. In response, the DMA controller refills the transmitter FIFO by way of the transmitter holding
register (THR). The UTXEVT signal is also sent to the DMA controller when the UART is taken out of

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Peripheral Architecture

267SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

reset using the UTRST bit in the power and emulation management register (PWREMU_MGMT).

Activity in DMA channels can be synchronized to these events. In the non-FIFO mode, the UART
generates no DMA events. Any DMA channel synchronized to either of these events must be enabled at
the time the UART event is generated. Otherwise, the DMA channel will miss the event and, unless the
UART generates a new event, no data transfer will occur.

7.2.11 Power Management
The UART peripheral can be clock-gated to conserve power during periods of no activity. The input clock
of the UART can be turned off by using the peripheral clock gating configuration register (PCGCR). For
detailed information on PCGCR, see the device-specific data manual.

7.2.12 Emulation Considerations
Note also that emulator accesses are essentially transparent to UART operation. Emulator read
operations do not affect any register contents, status bits, or operating states. Emulator writes, however,
may affect register contents and may affect UART operation, depending on what register is accessed and
what value is written.

The UART registers can be read from or written to during emulation suspend events, even if the UART
activity has stopped.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

268 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

7.3 Registers
The system programmer has access to and control over any of the UART registers that are listed in
Table 7-8. These registers, which control UART operations, receive data, and transmit data, and can be
accessed by the CPU at the word address specified in Table 7-8. Note that the CPU accesses all
peripheral registers through its I/O space. All other addresses not listed in Table 7-8 should be considered
as reserved locations and the register contents should not be modified.

The following registers share one address:
• RBR, THR, and DLL. When the DLAB bit in LCR is 0, reading from the address gives the content of

RBR, and writing to the address modifies THR. When DLAB = 1, all accesses at the address read or
modify DLL. DLL can also be accessed by the CPU at word address 1B10h.

• IER and DLH. When DLAB = 0, all accesses read or modify IER. When DLAB = 1, all accesses read
or modify DLH. DLH can also be accessed by the CPU at word address 1B12h.

• IIR and FCR share one address. Regardless of the value of the DLAB bit, reading from the address
gives the content of IIR, and writing modifies FCR.

Table 7-8. UART Registers

Offset Acronym Register Name Section
1B00h RBR Receiver Buffer Register Section 7.3.1
1B00h THR Transmitter Holding Register Section 7.3.2
1B02h IER Interrupt Enable Register Section 7.3.3
1B04h IIR Interrupt Identification Register Section 7.3.4
1B04h FCR FIFO Control Register Section 7.3.5
1B06h LCR Line Control Register Section 7.3.6
1B08h MCR Modem Control Register Section 7.3.7
1B0Ah LSR Line Status Register Section 7.3.8
1B0Eh SCR Scratch Register Section 7.3.9
1B10h DLL Divisor LSB Latch Register Section 7.3.10
1B12h DLH Divisor MSB Latch Register Section 7.3.10
1B18h PWREMU_MGMT Power and Emulation Management Register Section 7.3.12

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

269SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

7.3.1 RBR Register
The receiver buffer register (RBR) is shown in Figure 7-9 and described in Table 7-9.

The UART receiver section consists of a receiver shift register (RSR) and a receiver buffer register (RBR).
When the UART is in the FIFO mode, RBR is a 16-byte FIFO. Timing is supplied by the 16x receiver
clock. Receiver section control is a function of the line control register (LCR).

RSR receives serial data from the RX pin. Then RSR concatenates the data and moves it into RBR (or the
receiver FIFO). In the non-FIFO mode, when a character is placed in RBR and the receiver data-ready
interrupt is enabled (DR = 1 in IER), an interrupt is generated. This interrupt is cleared when the character
is read from RBR. In the FIFO mode, the interrupt is generated when the FIFO is filled to the trigger level
selected in the FIFO control register (FCR), and it is cleared when the FIFO contents drop below the
trigger level.

Access considerations:
RBR, THR, and DLL share one address. To read RBR, write 0 to the DLAB bit in LCR, and read from the
shared address. When DLAB = 0, writing to the shared address modifies THR. When DLAB = 1, all
accesses at the shared address read or modify DLL.

DLL also has a dedicated address. If you use the dedicated address, you can keep DLAB = 0, so that
RBR and THR are always selected at the shared address.

Figure 7-9. Receiver Buffer Register
15 8 7 0

Reserved DATA
R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 7-9. RBR Register Field Descriptions

Bit Field Type Reset Description
15-8 Reserved R 0 Reserved
7-0 DATA R 0 Received data, value 0-FFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

270 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

7.3.2 THR Register
The transmitter holding register (THR) is shown in Figure 7-10 and described in Table 7-10.

The UART transmitter section consists of a transmitter hold register (THR) and a transmitter shift register
(TSR). When the UART is in the FIFO mode, THR is a 16-byte FIFO. Transmitter section control is a
function of the line control register (LCR).

THR receives data from the internal data bus and when TSR is idle, the UART moves the data from THR
to TSR. The UART serializes the data in TSR and transmits the data on the TX pin. In the non-FIFO
mode, if THR is empty and the THR empty (THRE) interrupt is enabled (ETBEI = 1 in IER), an interrupt is
generated. This interrupt is cleared when a character is loaded into THR. In the FIFO mode, the interrupt
is generated when the transmitter FIFO is empty, and it is cleared when at least one byte is loaded into
the FIFO.

Access considerations:
RBR, THR, and DLL share one address. To load THR, write 0 to the DLAB bit of LCR, and write to the
shared address. When DLAB = 0, reading from the shared address gives the content of RBR. When
DLAB = 1, all accesses at the address read or modify DLL.

DLL also has a dedicated address. If you use the dedicated address, you can keep DLAB = 0, so that
RBR and THR are always selected at the shared address.

Figure 7-10. Transmitter Holding Register
15 8 7 0

Reserved DATA
R-0 W-0

LEGEND: R = Read only; W = Write only; -n = value after reset

Table 7-10. THR Register Field Descriptions

Bit Field Type Reset Description
15-8 Reserved R 0 Reserved
7-0 DATA W 0 Data to transmit, value 0-FFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

271SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

7.3.3 IER Register
The interrupt enable register (IER) is used to individually enable or disable each type of interrupt request
that can be generated by the UART. Each interrupt request that is enabled in IER is forwarded to the
CPU. IER is shown in Figure 7-11 and described in Table 7-11.

Access considerations:
IER and DLH share one address. To read or modify IER, write 0 to the DLAB bit in LCR. When DLAB = 1,
all accesses at the shared address read or modify DLH.

DLH also has a dedicated address. If you use the dedicated address, you can keep DLAB = 0, so that IER
is always selected at the shared address.

Figure 7-11. IER Register
15 4 3 2 1 0

Reserved Rsvd ELSI ETBEI ERBI
R-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 7-11. IER Register Field Descriptions

Bit Field Type Reset Description
15-4 Reserved R 0 Reserved

3 Reserved R/W 0 Reserved. This bit must always be written with a 0.
2 ELSI R/W 0 Receiver line status interrupt enable.

0 = Receiver line status interrupt is disabled.
1 = Receiver line status interrupt is enabled.

1 ETBEI R/W 0 Transmitter holding register empty interrupt enable.
0 = Transmitter holding register empty interrupt is disabled.
1 = Transmitter holding register empty interrupt is enabled.

0 ERBI R/W 0 Receiver data available interrupt and character timeout indication interrupt enable.
0 = Receiver data available interrupt and character timeout indication interrupt is
disabled.
1 = Receiver data available interrupt and character timeout indication interrupt is
enabled.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

272 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

7.3.4 IIR Register
The interrupt identification register (IIR) is a read-only register at the same address as the FIFO control
register (FCR), which is a write-only register. When an interrupt is generated and enabled in the interrupt
enable register (IER), IIR indicates that an interrupt is pending in the IPEND bit and encodes the type of
interrupt in the INTID bits. IIR is shown in Figure 7-12 and described in Figure 7-12.

The UART has an on-chip interrupt generation and prioritization capability that permits flexible
communication with the CPU. The UART provides three priority levels of interrupts:
• Priority 1 - Receiver line status (highest priority)
• Priority 2 - Receiver data ready or receiver timeout
• Priority 3 - Transmitter holding register empty

The FIFOEN bit in IIR can be checked to determine whether the UART is in the FIFO mode or the non-
FIFO mode.

Access consideration:
IIR and FCR share one address. Regardless of the value of the DLAB bit in LCR, reading from the
address gives the content of IIR, and writing to the address modifies FCR.

Figure 7-12. Interrupt Identification Register
15 8 7 6 5 4 3 1 0

Reserved FIFOEN Reserved INTID IPEND
R-0 R-0 R-0 R-0 R-1

LEGEND: R = Read only; -n = value after reset

Table 7-12. IIR Register Field Descriptions

Bit Field Type Reset Description
15-8 Reserved R 0 Reserved
7-6 FIFOEN R 0 FIFOs enabled.

0 = Non-FIFO mode.
1h-2h = Reserved.
3h = FIFOs are enabled. FIFOEN bit in the FIFO control register (FCR) is set to 1.

5-4 Reserved R 0 Reserved.
3-1 INTID R 0 Interrupt type. See Interrupt Identification and Interrupt Clearing Information.

0 = Reserved.
1h = Transmitter holding register empty (priority 3).
2h = Receiver data available (priority 2).
3h = Receiver line status (priority 1, highest).
4h-5h = Reserved.
6h = Character timeout indication (priority 2).
7h = Reserved.

0 IPEND R 1 Interrupt pending. When any UART interrupt is generated and is enabled in IER,
IPEND is forced to 0. IPEND remains 0 until all pending interrupts are cleared or until
a hardware reset occurs. If no interrupts are enabled, IPEND is never forced to 0.
0 = Interrupts pending.
1 = No interrupts pending.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

273SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

Table 7-13. Interrupt Identification and Interrupt Clearing Information

Priority
Level

IIR Bits
Interrupt Type Interrupt Source Event That Clears Interrupt3 2 1 0

None 0 0 0 1 None None None
1 0 1 1 0 Receiver line status Overrun error, parity error, framing

error, or break is detected.
For an overrun error, reading the line
status register (LSR) clears the
interrupt. For a parity error, framing
error, or break, the interrupt is cleared
only after all the erroneous data have
been read.

2 0 1 0 0 Receiver data-ready Non-FIFO mode: Receiver data is
ready.

Non-FIFO mode: The receiver buffer
register (RBR) is read.

FIFO mode: Trigger level reached. If
four character times (see Table 7-6)
pass with no access of the FIFO, the
interrupt is asserted again.

FIFO mode: The FIFO drops below the
trigger level. (1)

2 1 1 0 0 Receiver time-out FIFO mode only: No characters have
been removed from or input to the
receiver FIFO during the last four
character times (see Table 7-6), and
there is at least one character in the
receiver FIFO during this time.

One of the following events:
• A character is read from the

receiver FIFO. (1)

• A new character arrives in the
receiver FIFO.

• The URRST bit in the power and
emulation management register
(PWREMU_MGMT) is loaded with
0.

3 0 0 1 0 Transmitter holding
register empty

Non-FIFO mode: Transmitter holding
register (THR) is empty.
FIFO mode: Transmitter FIFO is empty.

A character is written to the transmitter
holding register (THR).

(1) In the FIFO mode, the receiver data-ready interrupt or receiver time-out interrupt is cleared by the CPU
or by the DMA controller, whichever reads from the receiver FIFO first.

7.3.5 FCR Register
The FIFO control register (FCR) is a write-only register at the same address as the interrupt identification
register (IIR), which is a read-only register. Use FCR to enable and clear the FIFOs and to select the
receiver FIFO trigger level FCR is shown in Figure 7-13 and described in Table 7-14. The FIFOEN bit
must be set to 1 before other FCR bits are written to or the FCR bits are not programmed.

Access consideration:
IIR and FCR share one address. Regardless of the value of the DLAB bit, reading from the address gives
the content of IIR, and writing to the address modifies FCR.

CAUTION
For proper communication between the UART and the DMA controller, the
DMAMODE1 bit must be set to 1. Always write a 1 to the DMAMODE1 bit, and
after a hardware reset, change the DMAMODE1 bit from 0 to 1.

Figure 7-13. FIFO Control Register
15 8

Reserved
R-0

7 6 5 4 3 2 1 0
RXFIFTL Reserved DMAMODE1 TXCLR RXCLR FIFOEN

W-0 R-0 W-0 W1C-0 W1C-0 W-0
LEGEND: R = Read only; W = Write only; W1C = Write 1 to clear (writing 0 has no effect); -n = value after reset

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

274 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

Table 7-14. FCR Register Field Descriptions

Bit Field Type Reset Description
15-8 Reserved R 0 Reserved.
7-6 RXFIFTL W 0 Receiver FIFO trigger level. RXFIFTL sets the trigger level for the receiver FIFO.

When the trigger level is reached, a receiver data-ready interrupt is generated (if the
interrupt request is enabled). Once the FIFO drops below the trigger level, the
interrupt is cleared.
0 = 1 byte
1h = 4 bytes
2h = 8 bytes
3h = 14 bytes

5-4 Reserved R 0 Reserved.
3 DMAMODE1 W 0 DMA mode enable. Always write 1 to DMAMODE1. After a hardware reset, change

DMAMODE1 from 0 to 1. DMAMODE1 = 1 is a requirement for proper communication
between the UART and the DMA controller.
0 = DMA mode is disabled.
1 = DMA mode is enabled.

2 TXCLR W1C 0 Transmitter FIFO clear. Write a 1 to TXCLR to clear the bit.
0 = No effect.
1 = Clears transmitter FIFO and resets the transmitter FIFO counter. The shift register
is not cleared.

1 RXCLR W1C 0 Receiver FIFO clear. Write a 1 to RXCLR to clear the bit.
0 = No effect.
1 = Clears receiver FIFO and resets the receiver FIFO counter. The shift register is
not cleared.

0 FIFOEN W 0 Transmitter and receiver FIFOs mode enable. FIFOEN must be set before other FCR
bits are written to or the FCR bits are not programmed. Clearing this bit clears the
FIFO counters.
0 = Non-FIFO mode. The transmitter and receiver FIFOs are disabled, and the FIFO
pointers are cleared.
1 = FIFO mode. The transmitter and receiver FIFOs are enabled.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

275SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

7.3.6 LCR Register
The line control register (LCR) is shown in Figure 7-14 and described in Table 7-15.

The system programmer controls the format of the asynchronous data communication exchange by using
LCR. In addition, the programmer can retrieve, inspect, and modify the content of LCR; this eliminates the
need for separate storage of the line characteristics in system memory.

Figure 7-14. Line Control Register (LCR)
15 8 7 6 5 4 3 2 1 0

Reserved DLAB BC SP EPS PEN STB WLS
R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 7-15. LCR Register Field Descriptions

Bit Field Type Reset Description
15-8 Reserved 0 R Reserved

7 DLAB 0 R/W Divisor latch access bit. The divisor latch registers (DLL and DLH) can be accessed at
dedicated addresses or at addresses shared by RBR, THR, and IER. Using the
shared addresses requires toggling DLAB to change which registers are selected. If
you use the dedicated addresses, you can keep DLAB = 0.
0 = Allows access to the receiver buffer register (RBR), the transmitter holding register
(THR), and the interrupt enable register (IER) selected. At the address shared by
RBR, THR, and DLL, the CPU can read from RBR and write to THR. At the address
shared by IER and DLH, the CPU can read from and write to IER.
1 = Allows access to the divisor latches of the baud generator during a read or write
operation (DLL and DLH). At the address shared by RBR, THR, and DLL, the CPU
can read from and write to DLL. At the address shared by IER and DLH, the CPU can
read from and write to DLH.

6 BC 0 R/W Break control.
0 = Break condition is disabled.
1 = Break condition is transmitted to the receiving UART. A break condition is a
condition where the UART_TX signal is forced to the spacing (cleared) state.

5 SP 0 R/W Stick parity. The SP bit works in conjunction with the EPS and PEN bits. The
relationship between the SP, EPS, and PEN bits is summarized in Relationship
Between ST, EPS, and PEN Bits in LCR.
0 = Stick parity is disabled.
1 = Stick parity is enabled.
When odd parity is selected (EPS = 0), the PARITY bit is transmitted and checked as
set.
When even parity is selected (EPS = 1), the PARITY bit is transmitted and checked as
cleared.

4 EPS 0 R/W Even parity select. Selects the parity when parity is enabled (PEN = 1). The EPS bit
works in conjunction with the SP and PEN bits. The relationship between the SP,
EPS, and PEN bits is summarized in Relationship Between ST, EPS, and PEN Bits in
LCR.
0 = Odd parity is selected (an odd number of logic 1s is transmitted or checked in the
data and PARITY bits).
1 = Even parity is selected (an even number of logic 1s is transmitted or checked in
the data and PARITY bits).

3 PEN 0 R/W Parity enable. The PEN bit works in conjunction with the SP and EPS bits. The
relationship between the SP, EPS, and PEN bits is summarized in Relationship
Between ST, EPS, and PEN Bits in LCR.
0 = No PARITY bit is transmitted or checked.
1 = Parity bit is generated in transmitted data and is checked in received data between
the last data word bit and the first STOP bit.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

276 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

Table 7-15. LCR Register Field Descriptions (continued)
Bit Field Type Reset Description
2 STB 0 R/W Number of STOP bits generated. STB specifies 1, 1.5, or 2 STOP bits in each

transmitted character. When STB = 1, the WLS bit determines the number of STOP
bits. The receiver clocks only the first STOP bit, regardless of the number of STOP
bits selected. The number of STOP bits generated is summarized in Number of STOP
Bits Generated.
0 = 1 STOP bit is generated.
1 = WLS bit determines the number of STOP bits:
When WLS = 0, 1.5 STOP bits are generated.
When WLS = 1h, 2h, or 3h, 2 STOP bits are generated.

1-0 WLS 0 R/W Word length select. Number of bits in each transmitted or received serial character.
When STB = 1, the WLS bit determines the number of STOP bits.
0 = 5 bits
1h = 6 bits
2h = 7 bits
3h = 8 bits

Table 7-16. Relationship Between ST, EPS, and PEN Bits in LCR

ST Bit EPS Bit PEN Bit Parity Option
x x 0 Parity disabled: No PARITY bit is transmitted or checked.
0 0 1 Odd parity selected: Odd number of logic 1s.
0 1 1 Even parity selected: Even number of logic 1s.
1 0 1 Stick parity selected with PARITY bit transmitted and checked as set.
1 1 1 Stick parity selected with PARITY bit transmitted and checked as cleared.

Table 7-17. Number of STOP Bits Generated

STB Bit WLS Bits
Word Length Selected

With WLS Bits
Number of STOP Bits

Generated
Baud Clock (BCLK)

Cycles
0 x Any word length 1 16
1 0h 5 bits 1.5 24
1 1h 6 bits 2 32
1 2h 7 bits 2 32
1 3h 8 bits 2 32

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

277SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

7.3.7 MCR Register
The modem control register (MCR) is shown in Figure 7-15 and described in Table 7-18. The modem
control register provides the ability to enable/disable the autoflow functions, and enable/disable the
loopback function for diagnostic purposes.

Figure 7-15. MCR Register
15 6 5 4 3 2 1 0

Reserved AFE LOOP Reserved RTS Rsvd
R-0 R/W-0 R/W-0 R-0 R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 7-18. MCR Register Field Descriptions

Bit Field Type Reset Description
15-6 Reserved R 0 Reserved

5 AFE R/W 0 Autoflow control enable. Autoflow control allows the RTS and CTS signals to provide
handshaking between UARTs during data transfer. When AFE = 1, the RTS bit
determines the autoflow control enabled.
0 = Autoflow control is disabled.
1 = Autoflow control is enabled:
When RTS = 0, CTS is only enabled.
When RTS = 1, RTS and CTS are enabled.

4 LOOP R/W 0 Loop back mode enable. LOOP is used for the diagnostic testing using the loop back
feature.
0 = Loop back mode is disabled.
1 = Loop back mode is enabled. When LOOP is set, the following occur:
The UART_TX signal is set high.
The UART_RX pin is disconnected.
The output of the transmitter shift register (TSR) is lopped back in to the receiver shift
register (RSR) input.

3-2 Reserved R 0 Reserved
1 RTS R/W 0 RTS control. When AFE = 1, the RTS bit determines the autoflow control enabled.

0 = RTS is disabled, CTS is only enabled.
1 = RTS and CTS are enabled.

0 Reserved R 0 Reserved

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

278 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

7.3.8 LSR Register
The line status register (LSR) is shown in Figure 7-16 and described in Table 7-19. LSR provides
information to the CPU concerning the status of data transfers. LSR is intended for read operations only;
do not write to this register. Bits 1 through 4 record the error conditions that produce a receiver line status
interrupt.

Figure 7-16. LSR Register
15 8 7 6 5 4 3 2 1 0

Reserved RXFIFOE TEMT THRE BI FE PE OE DR
R-0 R-0 R-1 R-1 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 7-19. LSR Register Field Descriptions

Bit Field Type Reset Description
15-8 Reserved 0 0 Reserved.

7 RXFIFOE 0 R Receiver FIFO error.
In non-FIFO mode:
0 = There has been no error, or RXFIFOE was cleared because the CPU read the
erroneous character from the receiver buffer register (RBR).
1 = There is a parity error, framing error, or break indicator in the receiver buffer
register (RBR).
In FIFO mode:
0 = There has been no error, or RXFIFOE was cleared because the CPU read the
erroneous character from the receiver FIFO and there are no more errors in the
receiver FIFO.
1 = At least one parity error, framing error, or break indicator in the receiver FIFO.

6 TEMT 1 R Transmitter empty (TEMT) indicator.
In non-FIFO mode:
0 = Either the transmitter holding register (THR) or the transmitter shift register (TSR)
contains a data character.
1 = Both the transmitter holding register (THR) and the transmitter shift register (TSR)
are empty.
In FIFO mode:
0 = Either the transmitter FIFO or the transmitter shift register (TSR) contains a data
character.
1 = Both the transmitter FIFO and the transmitter shift register (TSR) are empty.

5 THRE 1 R Transmitter holding register empty (THRE) indicator. If the THRE bit is set and the
corresponding interrupt enable bit is set (ETBEI = 1 in IER), an interrupt request is
generated.
In non-FIFO mode:
0 = Transmitter holding register (THR) is not empty. THR has been loaded by the
CPU.
1 = Transmitter holding register (THR) is empty (ready to accept a new character).
The content of THR has been transferred to the transmitter shift register (TSR).
In FIFO mode:
0 = Transmitter FIFO is not empty. At least one character has been written to the
transmitter FIFO. You can write to the transmitter FIFO if it is not full.
1 = Transmitter FIFO is empty. The last character in the FIFO has been transferred to
the transmitter shift register (TSR).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

279SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

Table 7-19. LSR Register Field Descriptions (continued)
Bit Field Type Reset Description
4 BI 0 R Break indicator. The BI bit is set whenever the receive data input (RX) was held low

for longer than a full-word transmission time. A full-word transmission time is defined
as the total time to transmit the START, data, PARITY, and STOP bits. If the BI bit is
set and the corresponding interrupt enable bit is set (ELSI = 1 in IER), an interrupt
request is generated.
In non-FIFO mode:
0 = No break has been detected, or the BI bit was cleared because the CPU read the
erroneous character from the receiver buffer register (RBR).
1 = A break has been detected with the character in the receiver buffer register (RBR).
In FIFO mode:
0 = No break has been detected, or the BI bit was cleared because the CPU read the
erroneous character from the receiver FIFO and the next character to be read from the
FIFO has no break indicator.
1 = A break has been detected with the character at the top of the receiver FIFO.

3 FE 0 R Framing error (FE) indicator. A framing error occurs when the received character does
not have a valid STOP bit. In response to a framing error, the UART sets the FE bit
and waits until the signal on the RX pin goes high. Once the RX signal goes high, the
receiver is ready to detect a new START bit and receive new data. If the FE bit is set
and the corresponding interrupt enable bit is set (ELSI = 1 in IER), an interrupt request
is generated.
In non-FIFO mode:
0 = No framing error has been detected, or the FE bit was cleared because the CPU
read the erroneous data from the receiver buffer register (RBR).
1 = A framing error has been detected with the character in the receiver buffer register
(RBR).
In FIFO mode:
0 = No framing error has been detected, or the FE bit was cleared because the CPU
read the erroneous data from the receiver FIFO and the next character to be read
from the FIFO has no framing error.
1 = A framing error has been detected with the character at the top of the receiver
FIFO.

2 PE 0 R Parity error (PE) indicator. A parity error occurs when the parity of the received
character does not match the parity selected with the EPS bit in the line control
register (LCR). If the PE bit is set and the corresponding interrupt enable bit is set
(ELSI = 1 in IER), an interrupt request is generated.
In non-FIFO mode:
0 = No parity error has been detected, or the PE bit was cleared because the CPU
read the erroneous data from the receiver buffer register (RBR).
1 = A parity error has been detected with the character in the receiver buffer register
(RBR).
In FIFO mode:
0 = No parity error has been detected, or the PE bit was cleared because the CPU
read the erroneous data from the receiver FIFO and the next character to be read
from the FIFO has no parity error.
1 = A parity error has been detected with the character at the top of the receiver FIFO.

1 OE 0 R Overrun error (OE) indicator. An overrun error in the non-FIFO mode is different from
an overrun error in the FIFO mode. If the OE bit is set and the corresponding interrupt
enable bit is set (ELSI = 1 in IER), an interrupt request is generated.
In non-FIFO mode:
0 = No overrun error has been detected, or the OE bit was cleared because the CPU
read the content of the line status register (LSR).
1 = Overrun error has been detected. Before the character in the receiver buffer
register (RBR) could be read, it was overwritten by the next character arriving in RBR.
In FIFO mode:
0 = No overrun error has been detected, or the OE bit was cleared because the CPU
read the content of the line status register (LSR).
1 = Overrun error has been detected. If data continues to fill the FIFO beyond the
trigger level, an overrun error occurs only after the FIFO is full and the next character
has been completely received in the shift register. An overrun error is indicated to the
CPU as soon as it happens. The new character overwrites the character in the shift
register, but it is not transferred to the FIFO.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

280 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

Table 7-19. LSR Register Field Descriptions (continued)
Bit Field Type Reset Description
0 DR 0 R Data-ready (DR) indicator for the receiver. If the DR bit is set and the corresponding

interrupt enable bit is set (ERBI = 1 in IER), an interrupt request is generated.
In non-FIFO mode:
0 = Data is not ready, or the DR bit was cleared because the character was read from
the receiver buffer register (RBR).
1 = Data is ready. A complete incoming character has been received and transferred
into the receiver buffer register (RBR).
In FIFO mode:
0 = Data is not ready, or the DR bit was cleared because all of the characters in the
receiver FIFO have been read.
1 = Data is ready. There is at least one unread character in the receiver FIFO. If the
FIFO is empty, the DR bit is set as soon as a complete incoming character has been
received and transferred into the FIFO. The DR bit remains set until the FIFO is empty
again.

7.3.9 SCR Register
The scratch register (SCR) is intended for programmer’s use as a scratch pad in the sense that it
temporarily holds programmer’s data without affecting UART operation. The SCR is described is shown in
Figure 7-17 and described in Table 7-20.

Figure 7-17. Scratch Register
15 8 7 0

Reserved DATA
R-0 R/W-0

LEGEND: R = Read only; W = Write only; -n = value after reset

Table 7-20. SCR Register Field Descriptions

Bit Field Type Reset Description
15-8 Reserved R 0 Reserved.

7-0 DATA R/W 0 Scratch pad data, value = 0-FFh.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

281SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

7.3.10 DLL Register
Two 8-bit register fields (DLL and DLH), called divisor latches, store the 16-bit divisor for generation of the
baud clock in the baud generator. The latches are in DLH and DLL. DLH holds the most-significant bits of
the divisor, and DLL holds the least-significant bits of the divisor. These divisor latches must be loaded
during initialization of the UART in order to ensure desired operation of the baud generator. Writing to the
divisor latches results in two wait states being inserted during the write access while the baud generator is
loaded with the new value.

Access considerations:
• RBR, THR, and DLL share one address. When DLAB = 1 in LCR, all accesses at the shared address

are accesses to DLL. When DLAB = 0, reading from the shared address gives the content of RBR, and
writing to the shared address modifies THR.

• IER and DLH share one address. When DLAB = 1 in LCR, accesses to the shared address read or
modify to DLH. When DLAB = 0, all accesses at the shared address read or modify IER.

DLL and DLH also have dedicated addresses. If you use the dedicated addresses, you can keep the
DLAB bit cleared, so that RBR, THR, and IER are always selected at the shared addresses.

The divisor LSB latch (DLL) is shown in Figure 7-18 and described in Table 7-21. The divisor MSB latch
(DLH) is shown in and described in .

Figure 7-18. Divisor LSB Latch
15 8 7 0

Reserved DLL
R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 7-21. DLL Register Field Descriptions

Bit Field Type Reset Description
15-8 Reserved R 0 Reserved.
7-0 DLL R/W 0 The 8 least-significant bits (LSBs) of the 16-bit divisor for generation of the baud clock

in the baud rate generator, value = 0-FFh.

7.3.11 DLH Register
Two 8-bit register fields (DLL and DLH), called divisor latches, store the 16-bit divisor for generation of the
baud clock in the baud generator. The latches are in DLH and DLL. DLH holds the most-significant bits of
the divisor, and DLL holds the least-significant bits of the divisor. These divisor latches must be loaded
during initialization of the UART in order to ensure desired operation of the baud generator. Writing to the
divisor latches results in two wait states being inserted during the write access while the baud generator is
loaded with the new value.

Access considerations:
• RBR, THR, and DLL share one address. When DLAB = 1 in LCR, all accesses at the shared address

are accesses to DLL. When DLAB = 0, reading from the shared address gives the content of RBR, and
writing to the shared address modifies THR.

• IER and DLH share one address. When DLAB = 1 in LCR, accesses to the shared address read or
modify to DLH. When DLAB = 0, all accesses at the shared address read or modify IER.

DLL and DLH also have dedicated addresses. If you use the dedicated addresses, you can keep the
DLAB bit cleared, so that RBR, THR, and IER are always selected at the shared addresses.

The divisor LSB latch (DLL) is shown in Figure 7-18 and described in Table 7-21. The divisor MSB latch
(DLH) is shown in and described in .

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

282 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

Figure 7-19. Divisor MSB Latch
15 8 7 0

Reserved DLH
R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 7-22. DLH Register Field Descriptions

Bit Field Type Reset Description
15-8 Reserved R 0 Reserved.
7-0 DLH R/W 0 The 8 most-significant bits (MSBs) of the 16-bit divisor for generation of the baud clock

in the baud rate generator, value = 0-FFh..

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

283SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Asynchronous Receiver/Transmitter (UART)

7.3.12 PWREMU_MGMT Register
The power and emulation management register (PWREMU_MGMT) is shown in Figure 7-20 and
described in Table 7-23.

Figure 7-20. Power and Emulation Management Register
15 14 13 12 1 0

Rsvd UTRST URRST Reserved Rsvd
R/W-0 R/W-0 R/W-0 R-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 7-23. PWREMU_MGMT Register Field Descriptions

Bit Field Type Reset Description
15 Reserved R/W 0 Reserved. This bit must always be written with a 0.
14 UTRST R/W 0 UART transmitter reset. Resets and enables the transmitter.

0 = Transmitter is disabled and in reset state.
1 = Transmitter is enabled.

13 URRST R/W 0 UART receiver reset. Resets and enables the receiver.
0 = Receiver is disabled and in reset state.
1 = Receiver is enabled.

12-1 Reserved R 0 1 = Reserved.
0 Reserved R/W 0 Reserved. This bit must always be written with a 0.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

284 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

Chapter 8
SPRUH87H–August 2011–Revised April 2016

Serial Peripheral Interface (SPI)

This chapter describes the features and operations of the serial peripheral interface (SPI).

Topic ... Page

8.1 Introduction ... 285
8.2 Serial Peripheral Interface Architecture ... 287
8.3 Interfacing the SPI to an SPI EEPROM .. 295
8.4 SPI Registers ... 300

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

SPICCR

SPICDR

Clock
Generator

SPIDCR1

SPIDCR2

SPICMD1

SPICMD2

Sequencer

SPISTAT1

SPISTAT2

SPIDAT2 SPIDAT1

SPI
Interrupt to

CPU

SPI_CLK

SPI_CS

SPI_RX

SPI_TX

www.ti.com Introduction

285SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

8.1 Introduction
The following sections describe the serial peripheral interface (SPI) in the digital signal processor (DSP).

8.1.1 Purpose of the Peripheral
The SPI is a high-speed synchronous serial input/output port that allows a serial bit stream of programmed
length (1 to 32 bits) to be shifted into and out of the device at a programmed bit-transfer rate. The SPI
supports multi-chip operation of up to four SPI slave devices. The SPI can operate as a master device
only.

The SPI is normally used for communication between the DSP and external peripherals. Typical
applications include an interface to external I/O or peripheral expansion via devices such as shift registers,
display drivers, SPI EEPROMs, and analog-to-digital converters.

8.1.2 Features
The SPI has the following features:
• Programmable divider for serial data clock generation.
• Four pin interface (SPI_CLK, SPI_CSn, SPI_TX and SPI_RX).
• Programmable data length (1 to 32 bits).
• 4 external chip select signals.
• Programmable transfer or frame size (1 to 4096 characters).
• Optional interrupt generation on character completion or frame completion.
• Programmable SPI_CSn to SPI_TX delay insertion from 0 to 3 SPI_CLK cycles.
• Programmable signal polarities.
• Programmable active clock edge.
• Internal loopback mode for testing.

The SPI can only operate in master mode only, slave mode is not supported.

8.1.3 Functional Block Diagram
Figure 8-1 illustrates the main components of the SPI.

Figure 8-1. Serial Peripheral Interface (SPI) Block Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

DSP

SPI_CLK

SPI_TX

SPI_RX

SPI_CSn

SPI-Compliant
Slave

SCK

MOSI

MISO

SS

Introduction www.ti.com

286 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

8.1.4 Supported Use Case Statement
The SPI is intended for communication between the DSP and up to four SPI-complaint slave devices.
Typical applications include an interface to external I/O or peripheral expansion via devices such as shift
registers, display drivers, SPI EEPROMs, and analog-to-digital converters. The programmable
configuration capability of the SPI allows it to interface to a variety of SPI format devices without the need
for glue logic.

A typical SPI interface with a single slave device is shown in Figure 8-2. The DSP controls the flow of
communication by providing shift-clock (SPI_CLK) and slave-select signals (SPI_CSn).

Figure 8-2. Typical SPI Interface

8.1.5 Industry Standard(s) Compliance Statement
The SPI does not conform to a specific industry standard.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

÷
SPI Input

Clock Driver

External
Input
Clock

SPI Module

SPI_CLK

CLKSEL

RTC

Crystal

PCGCR1[SPICG]DSP
System Clock

Clock
Generator

SYSCLKSEL

SPI Input Clock

www.ti.com Serial Peripheral Interface Architecture

287SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

8.2 Serial Peripheral Interface Architecture

8.2.1 Clock Control
As shown in Figure 8-3, the clock generator receives either the real-time clock (RTC) or a signal from an
external clock source and produces the DSP system clock. This internal clock is used by the DSP CPU
and peripherals. A programmable clock divider in the SPI module divides down the SPI input clock to
produce the SPI interface output clock (SPI_CLK). For proper device operation, the frequency of the SPI
input clock must be at least four times greater than the frequency of SPI_CLK.

The DSP device includes logic which can be used to gate the clock to its on-chip peripherals, including the
SPI. The input clock to the SPI can be enabled and disabled through the peripheral clock gating
configuration register 1 (PCGCR1).

Figure 8-3. Clocking Diagram for the SPI

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Serial Peripheral Interface Architecture www.ti.com

288 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

8.2.2 Signal Descriptions
Table 8-1 shows the SPI pins used to interface to external devices. A typical SPI interface with a single
slave device is shown in Figure 8-2.

Table 8-1. Serial Peripheral Interface (SPI) Pins

Pin Type Function
SPI_CLK Output Serial clock output pin (also referred to as SCK)
SPI_TX Output Serial data output pin (also referred to as Master Output - Slave Input, or MOSI)
SPI_RX Input Serial data input pin (also referred to Master Input - Slave Output, or MISO)
SPI_CS0 Output Slave 0 chip select pin (also referred to as Slave Select, or SS)
SPI_CS1 Output Slave 1 chip select pin (also referred to as Slave Select, or SS)
SPI_CS2 Output Slave 2 chip select pin (also referred to as Slave Select, or SS)
SPI_CS3 Output Slave 3 chip select pin (also referred to as Slave Select, or SS)

8.2.3 Units of Data: Characters and Frames
This documentation describes SPI module communication using two terms: characters and frames.
Characters are the smallest unit of data that can be transferred by the SPI module. During a transfer, the
SPI generates enough clock cycles to send a character of data. The length of the character is specified by
the CLEN bits of SPICMD2. The character length can be from 1 to 32 bits and can be of different size
each time the SPI initiates a character transfer.

The total number of characters transmitted by the SPI module is referred to as a frame. At the beginning
of a frame, the SPI module will assert the chip select pin specified by the chip select bits (CSNUM) of
SPICMD2 and transfer a character of data. The SPI module will keep the chip select pin asserted until all
the characters in the frame have been transferred. The frame length bits (FLEN) of SPICMD1 define the
total number of characters in a frame. A frame can have up to 4096 characters. Please note that you
should complete a frame transfer before using a different chip select pin.

The character count bits (CCNT) of SPISTAT2 keep track of the total number of times a character has
been transferred by the SPI module. The character count is not affected by the size of the character. For
example, a transmission of an 8-bit character followed by a 16-bit character increments CCNT by two.

The frame complete bit (FC) of SPISTAT1 is set after all the requested characters in a frame have been
transferred. This bit is reset when SPISTAT1 is read or when a new SPI transfer is initiated via a write of a
read or write command to CMD in SPICMD2.

8.2.4 Chip Select Control
The SPI module initiates a slave access by asserting one of its four chip select pins. The chip select pin
remains asserted until an entire frame of data has been transferred. You can specify which chip select pin
is activated through the chip select bits (CSNUM) of SPICMD2. Please note that writing to SPICMD2
immediately initiates a slave access; therefore you should only write to CSNUM when you are ready to
initiate a slave access. Also, after initiating an access to a particular slave, you must complete the entire
frame transfer to that slave before activating a different chip select pin.

The polarity of each of the four chip select pins can be configured through the CSPn bits of SPIDCR1 and
SPIDCR2. Setting CSPn = 0 configures the corresponding SPI_CSn pin as active low while setting CSPn
= 1 configures the SPI_CSn pin as active high.

8.2.5 Clock Polarity and Phase
Before communication between the SPI module and a slave can begin, you must specify the clock polarity
and clock phase to be used. Together, the clock polarity and clock phase specify on which clock edge
data is shifted in and out as well as the default state of the clock signal.

The configuration of the clock polarity and clock phase is referred to as the SPI mode. There are a total of
four SPI modes (see Table 8-2), all which are supported by the SPI module. The clock polarity and clock
phase must be configured correctly for successful communication between the SPI module and slave.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

B6

B7

SPI_CSn/SS

SPI_TX/MOSI

SPI_CLK/SCK

SPI_RX/MISO B7

B6

B5

B5

B4

B4

B3

B3

B2

B2

B1

B1

B0

B0

B6

B7

SPI_CSn/SS

SPI_TX/MOSI

SPI_CLK/SCK

SPI_RX/MISO B7

B6

B5

B5

B4

B4

B3

B3

B2

B2

B1

B1

B0

B0

B6

B7

SPI_CSn/SS

SPI_TX/MOSI

SPI_CLK/SCK

SPI_RX/MISO B7

B6

B5

B5

B4

B4

B3

B3

B2

B2

B1

B1

B0

B0

www.ti.com Serial Peripheral Interface Architecture

289SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

The clock polarity and phase can be specified through the CKPn and CKPHn bits of the SPI device
configuration register (SPIDC). You can program a different clock polarity and phase for each slave.

Table 8-2. Definition of SPI Modes

SPI Mode Clock Polarity Clock Phase
0 Active low (base value of clock is low) Data shifted out on the falling edge, input captured on the rising edge.
1 Active low (base value of clock is low) Data shifted out on the rising edge, input captured on the falling edge.
2 Active high (base value of clock is high) Data shifted out on the rising edge, input captured on the falling edge.
3 Active high (base value of clock is high) Data shifted out on the falling edge, input captured on the rising edge.

The timing diagrams for the four possible SPI modes are shown in Figure 8-4 through Figure 8-7. Please
note the following about these figures:
• Although the timing diagrams show an 8-bit character transfer, the character length can be set to 1

through 32 bits. The character length is selected with the CLEN bits SPICMD2.
• The number of characters transferred during one slave access is specified through the FLEN bits of

SPICMD1. The figures show the case of FLEN = 0 (1 character).
• The polarity of the chip select pins (SPI_CSn) can be configured through the CSPn bits of SPIDCR1

and SPIDCR2. The figures show a chip select polarity of active low.
• The SPI module automatically delays the first clock edge with respect to the activation of the SPI_CSn

pin by half a SPI_CLK cycle plus a system clock cycle. Additional clock delay cycles can be added
using the data delay bits (DDn) of SPIDCR1 and SPIDCR2. The figures below show the case of DDn =
0 (zero data delay) and CLKDV is odd.

Figure 8-4. SPI Mode 0 Transfer (CKPn = 0, CKPHn = 0)

Figure 8-5. SPI Mode 1 Transfer (CKPn = 0, CKPHn = 1)

Figure 8-6. SPI Mode 2 Transfer (CKPn = 1, CKPHn = 0)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

B4

SPI_RX/MISO or
SPI_TX/MOSI
Data delay 2

SPI_RX/MISO or
SPI_TX/MOSI
Data delay 1

SPI_RX/MISO or
SPI_TX/MOSI
Data delay 0

SPI_CS /n SS

SPI_CLK/SCK

2-Bit Data Delay

B7 B6 B2

B3B5B7

B4B6

SPI_RX/MISO or
SPI_TX/MOSI
Data delay 3

B5

3-Bit Data Delay

B5

B6

B7

B7

0-Bit Data Delay

1-Bit Data Delay

B3

B4

B5

B6

SPI_CLK/SCK
Data Delay 1

SPI_CLK/SCK
Data Delay 2

SPI_CLK/SCK
Data Delay 3

B6

B7

SPI_CSn/SS

SPI_TX/MOSI

SPI_CLK/SCK

SPI_RX/MISO B7

B6

B5

B5

B4

B4

B3

B3

B2

B2

B1

B1

B0

B0

Serial Peripheral Interface Architecture www.ti.com

290 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

Figure 8-7. SPI Mode 3 Transfer (CKPn = 1, CKPHn = 1)

8.2.6 Data Delay
As described in the previous section, the SPI module automatically delays the first clock edge with respect
to the activation of the SPI_CSn pin by half a SPI_CLK cycle plus a system clock cycle. You can program
the SPI module to insert additional clock delay cycles using the data delay bits (DDn) of SPIDCR1 and
SPIDCR2 to determine the number of clock delay cycles to insert. The data delay can be specified from
zero to three clock cycles (DDn = 00b - 11b). Figure 8-8 below shows the effect of the data delay bits.
Please note the following about Figure 8-8:
• The data transferred is an 8-bit character with bits labeled B7, B6, B5, and so on. The character length

can be set to 1 through 32 bits through the CLEN bits of the SPICMD2).
• The polarity of the chip select pins (SPI_CSn) can be configured through the CSPn bits of SPIDCR1

and SPIDCR2. The figures show a chip select polarity of active low.
• The clock polarity and clock phase can be configured through the CKPn and CKPHn bits of SPIDCR1

and SPIDCR2. Figure 8-8 shows an example CKPn = 0 and CKPHn = 1 (SPI Mode 1).
• The first clock edge is automatically delayed by half a SPI_CLK cycle plus a system clock cycle by the

SPI module.

Figure 8-8. Range of Programmable Data Delay

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Data Out

15 0

SPIDAT2

Data In

15 0

SPIDAT1

www.ti.com Serial Peripheral Interface Architecture

291SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

8.2.7 Data Input and Output
The data registers (SPIDAT1 and SPIDAT2) hold the data that is either shifted in or shifted out during a
slave access. The SPIDAT1 and SPIDAT2 registers are treated as a single 32-bit shift register. Data
received by the SPI is shifted into the least-significant bit of SPIDAT1 and the contents of both registers
are shifted to the left. Similarly, data transferred by the SPI is shifted out of the most-significant bit of
SPIDAT2 and the contents of both registers are shifted to the left. This process is illustrated in Figure 8-9.

The CLEN bits of SPICMD2 determine the length of the character. The character length can be set to any
value between 1 and 32 bits.

The data registers are not cleared between reads or writes, and old may exist in the registers. Therefore,
you must : (1) clear the data registers prior to initiating a read; and (2) mask off any unneeded data upon
completing the read.

Figure 8-9. Data Shift Process

8.2.8 Loopback Mode
The SPI includes a loopback mode which can be used for testing purposes. In the loopback mode, the
SPI_TX and SPI_RX are internally connected to each other. All SPI modes are usable when loopback
mode is enabled.

8.2.9 Monitoring SPI Activity
The status registers (SPISTAT1 and SPISTAT2) contain indicators that allow you to monitor the
progression of a frame transfer. These bits are described in Table 8-3. Additionally, the SPI module can
be configured to generate interrupts after a frame or character has been transferred. These interrupts are
described in Section 8.2.13.

Table 8-3. SPI Module Status Bits

Status Bit Register Description
FC SPISTAT1 The frame complete bit. This bit is set after all the requested characters in a frame have been

transferred. This bit is reset when SPISTAT1 is read or when a new SPI transfer is initiated via a write
of a read or write command to CMD in SPICMD2.

CC SPISTAT1 Character complete bit. This bit is set after each transfer is completed. This bit is reset when
SPISTAT1 is read or when a new SPI transfer is initiated via a write of a read or write command to
CMD in SPICMD2.

CCNT SPISTAT2 Character count bits. These bits keep track of the total number of times a character has been
transferred by the SPI module. The CCNT bits are not affected by the size of the character. For
example, a transmission of an 8-bit character followed by a 16-bit character increments CCNT by two.
These bits are reset upon completion of a frame. These bits should only be read after determining CC
= 1.

BUSY SPISTAT1 Busy bit. This bit is set during an active character transfer. Between characters this bit will be cleared
to signal that the data registers can be accessed.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Serial Peripheral Interface Architecture www.ti.com

292 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

8.2.10 Slave Access
After you have initialized the SPI following the steps outlined in Section 8.2.12, you can follow these steps
to initiate a slave access.
1. Specify the total number of characters you intend to transfer by setting the FLEN bits of SPICMD1.

You must finish transferring this number of characters before initiating transfers with a different slave.
2. For writes, load the output data value into SPIDAT1 and SPIDAT2. For reads, clear SPIDAT1 and

SPIDAT2. The SPI module will shift data out starting with the most-significant bit of SPIDAT2.
Similarly, the SPI will shift data in starting at the least-significant bit of SPIDAT1. The amount of bits
the SPI module shifts in or out is determined by the CLEN bits of SPICMD2.

3. Write to the command register (SPICMD2) to start the SPI access. The value you write SPICMD2 must
set CSNUM, CLEN, and CMD to the chip select, character length, and command to be used.

4. Poll SPISTAT1 until CC = 1 or wait for the character complete interrupt (CIRQ).
5. Poll SPISTAT1 until BUSY = 0. This ensures that a character is not being transferred.
6. For reads, the data is loaded into SPIDAT1 and SPIDAT2. You must mask off any invalid bits when

reading SPIDAT1 and SPIDAT2. The number of valid bits is determined by CLEN in SPICMD2.
7. Repeat steps 2 though 5 until all the characters have been transferred.

Please note the following points:
• The chip select pin specified in SPICMD2 will be activated as soon as the first character transfer is

initiated. The chip select pin will remain activated until all the characters specified by FLEN have been
transferred.

• SPIDAT1 and SPIDAT2 are treated as a 32-bit shift register where SPIDAT2 holds the most-significant
word and SPIDAT1 holds the least-significant word. During writes, data is shifted out starting with the
most-significant bit of SPIDAT2. For reads, data is shifted in starting at the least-significant bit of
SPIDAT1.

• It is important for you to always load SPIDAT1 and SPIDAT2 with the values you intend to shift out
before initiating an SPI write. It is equally important to always mask off invalid bits after reading values
from SPIDAT1 and SPIDAT2 after every SPI read.

• You must finish transferring the number of characters specified by FLEN in SPICMD1 before initiating
transfers with a different slave.

• SPI_CLK will only be activated while data is being shifted out.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Start

Set FLEN Equal to the
Number of Characters to

Be Transfered

Read or
Write

?

Load SPIDAT1 and
SPIDAT2 With Output

Data

Clear SPIDAT1
and SPIDAT2

Initiate Access By
Writing to SPICMD2

Write Read

CC = 1
?

No

Yes

BUSY = 0
?

No

Yes

Reads
?

Yes

No

Read/Mask Data From
SPIDAT1

and SPIDAT2

All
Characters
Transferred

?

Yes
Done

No

www.ti.com Serial Peripheral Interface Architecture

293SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

Figure 8-10 illustrates the steps described above.

Figure 8-10. Flow Diagram for SPI Read or Write

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

SPI_RX/MISO

SPI_TX//MOSI

SPI_CSn/SS

SPI_CLK/SCK

N N-1 0 N N-1 0

N N-1 0

Write to SPICMD2 Write to SPICMD2 Write to SPICMD2

Serial Peripheral Interface Architecture www.ti.com

294 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

Figure 8-11 illustrates the activity at the pins of the SPI module.

Figure 8-11. SPI Access

8.2.11 Reset Considerations
The SPI module has two reset sources: software reset and hardware reset.

8.2.11.1 Software Reset Considerations
The SPI module can be reset by software through the RST bit in the clock control register (SPICCR) or
through the PG4_RST bit in the peripheral reset control register (PRCR).

When RST is set to 1, the SPI module is reset.

The entire SPI module may also be reset through the PG4_RST bit of PRCR. When this reset is asserted,
all SPI registers are set to their default values. The SPI remains inactive until programmed by software.
Note that from the SPI perspective, this reset appears as a hardware reset.

NOTE: The PG4_RST bit of PRCR resets other peripherals besides the SPI. For more details on
this bit and register, refer to the device-specific data manual.

8.2.11.2 Hardware Reset Considerations
When the SPI is reset due to a device reset, all the SPI registers are set to their default values. The SPI
module remains inactive until programmed by software.

8.2.12 Initialization
The following initialization procedure describes the basic setup of the SPI module. Please note that the
exact configuration will depend on the characteristics of the slave device. For specific examples, please
refer to Section 8.3.
1. Ensure the SPI is out reset by setting SPI_RST = 0 in the peripheral reset control register (PRCR).

See the device-specific data manual for more information on PRCR.
2. Enable the SPI input clock by setting SPICG to 0 in the peripheral clock gating configuration register

(PCGCR1). See the device-specific data manual for more information on PCGCR1.
3. Set CLKEN = 0 to disable SPI_CLK. The CLKEN bit is part of SPICCR.
4. Set CLKDV in SPICDR to provide the appropriate SPI_CLK frequency. Note that for proper device

operation, CLKDV must be greater than or equal to 3. Also, note that the clock frequency selected in
this step applies to all slave devices. If a different frequency is required for each slave, you must
reprogram the clock register each time you access a different slave.

5. Set CLKEN = 1 to enable SPI_CLK.
6. Program the device configuration registers (SPIDCR1 and SPIDCR2) with the required clock phase,

clock polarity, chip select pin polarity, and data delay settings for each slave.
7. Program the SPI module to generate an interrupt after a frame of characters has been transferred

(FIRQ = 1) or after a single character has been transferred (CIRQ = 1), If you want to use interrupts.
The FIRQ and CIRQ bits are located in SPICMD1.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Serial Peripheral Interface Architecture

295SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

Enable the SPI pins through the external bus selection register (EBSR). EBSR controls the pin
multiplexing options of the device. Refer to the device-specific data manual for more information on
EBSR.

8.2.13 Interrupt Support

8.2.13.1 Interrupt Events and Requests
The SPI module is capable of interrupting the CPU after every character transfer and after every frame
transfer. The SPI interrupts are enabled through the FIRQ and CIRQ bits of the command register 1
(SPICMD1).

8.2.13.2 Interrupt Multiplexing
The SPI module generates a single interrupt to the CPU. The SPI interrupt is not multiplexed with any
other interrupt source.

8.2.14 DMA Event Support
The SPI module does not generate any DMA events; it must be fully serviced by the CPU. Furthermore,
none of the device DMA controllers have access to the SPI memory-mapped registers.

8.2.15 Power Management
The SPI module can be clock-gated to conserve power during periods of no activity. The SPI input clock
can be turned off by using the peripheral clock gating configuration register (PCGCR). For detailed
information on PCGCR, see the device-specific data manual.

8.2.16 Emulation Considerations
The SPI module is not interrupted by emulation events such as an emulation breakpoint.

8.3 Interfacing the SPI to an SPI EEPROM
The SPI module can be used to communicate with an SPI EEPROM. This section gives an example of
interfacing the SPI a 256K-bit SPI EEPROM from Catalyst Semiconductor (CAT25C256). Software
sequences for common tasks such as data block reads and writes are also included.

8.3.1 Operational Description
The SPI module is totally controlled by the CPU. The SPI initiates transfers with SPI devices when the
CPU writes to the SPICMD2 register. The SPI can interrupt the CPU when it has completed a character
transfer and/or when it has completed a frame transfer. Alternatively, the CPU can poll the SPI status
registers. The SPI cannot generate DMA events; therefore, it is the task of the CPU to move data to and
from the SPI data registers.

Communication with SPI EEPROM is carried out completely by the SPI module. The SPI module drives
the chip select pin of the memory device and allows the clocks to shift data in and out.

The SPI clock is derived from the chip system clock. The clock divider bits (CLKDV) of SPICDR are used
to configure the frequency of the SPI clock (SPI_CLK) as follows:

SPI_CLK frequency = SPI module input clock / (CLKDV + 1)

The number of characters sent or received by the SPI module is specified through the FLEN bits of
SPICMD1. During communication with a SPI device, the SPI module will assert the chip select pin until all
the characters specified through FLEN have been transferred.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

DSP

SPI_CLK

SPI_TX

SPI_RX

SPI_CS0

CAT25C256

SCK

SI

SO

CS

WP

HOLD

Interfacing the SPI to an SPI EEPROM www.ti.com

296 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

8.3.2 Hardware Interface
Figure 8-12 shows the required hardware interface. Please note the following:
• The WP pin is shown as tied high (write-protect feature disabled); however, you can choose to tie the

WP pin high or low depending on whether or not you want to use the write-protect feature of the
CAT25C256 device.

• The HOLD pin is not used in this example and is pulled high.
• The example described in this section assumes chip-select 0 is used; however, you can use any other

chip select.

Figure 8-12. Hardware Interface

8.3.3 SW Configuration
The following sections describe the software sequence for common tasks such as data block writes and
data block reads.

8.3.3.1 Basic Initialization
The following procedure describes the basic steps required to setup the SPI module for communication
with the CAT25C256 device.
1. Ensure the SPI is out reset by setting SPI_RST=0 in the peripheral reset control register (PRCR). See

the device-specific data manual for more information on PRCR.
2. Enable the SPI input clock by setting SPICG to 0 in the peripheral clock gating configuration register

(PCGCR1). See the device-specific data manual for more information on PCGCR1.
3. Set CLKEN = 0 to disable SPI_CLK. The CLKEN bit is part of SPICCR .
4. Set CLKDV in SPICDR to provide the appropriate SPI_CLK frequency. Note that for proper device

operation, CLKDV must be greater than or equal to 3 .
5. Set CLKEN = 1 to enable SPI_CLK.
6. The CAT25C256 device latches input data on the rising edge of the clock and shifts out data on the

falling edge of the clock. Therefore, the SPI must be programmed to shift out data on the falling edge
of the clock and shift in data on the rising edge of the clock. According to Table 8-2, this corresponds
to SPI mode 0. To enable SPI mode 0, set CKP0 = 0 and CKPH0 = 0 in SPIDCR1. Also, the data
delay field should be programmed such that the chip select setup requirement of the CAT25C256 is
met. A 1-bit data delay is recommended when running the SPI_CLK at frequencies greater than 2.5
MHz; otherwise a 0-bit data delay can be used.

7. Program the SPI module to generate an interrupt after a frame of characters has been transferred
(FIRQ = 1) or after a single character has been transferred (CIRQ = 1), If you want to use interrupts.
The FIRQ and CIRQ bits are located in SPICMD1. This example assumes interrupts are not used.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Interfacing the SPI to an SPI EEPROM

297SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

8. Enable the SPI pins through the external bus selection register (EBSR). EBSR controls the pin
multiplexing options of the device. The SPI pins are multiplexed with other peripherals on the device
and the pin multiplexing configuration you choose will depend on your use-case scenario. Refer to the
device-specific data manual for more information on EBSR.

8.3.3.2 Reading the SPI EEPROM Status Register
The status register of the CAT25C256 device provides useful information including the write status and
write protect feature status. The SPI module can be easily used to read the contents of this register by
following these steps:
1. Ensure the SPI is not busy with another transfer by polling the CC and BUSY bits in SPISTAT1.
2. Reading the EEPROM status register requires 8 clock cycles for the read status register command

(RDSR) and eight cycles for the actual data. Therefore, set FLEN = 1 (2 character transfer) in
SPICMD1.

3. Load the opcode for the read status register command (05h) into the upper byte of SPIDAT2.
4. Write to the command register (SPICMD2) to start the SPI write. The value you write SPICMD2 must

set CSNUM = 0 (chip-select 0 active), CLEN = 7 (8-bit character length), and CMD = 10b (write).
5. Poll SPISTAT1 until CC = 1 or wait for the character complete interrupt (CIRQ).
6. Poll SPISTAT1 until BUSY = 0. This ensures that a character is not being transferred.
7. Prepare SPIDAT1 and SPIDAT2 for data reception by loading both registers with 0000h.
8. Write to SPICMD2 to start an SPI read. The value you write SPICMD2 must set CSNUM = 0 (chip-

select 0 active), CLEN = 7 (8-bit character length), and CMD = 01b (read).
9. Poll SPISTAT1 until CC = 1 or wait for the character complete interrupt (CIRQ).
10. Poll SPISTAT1 until BUSY = 0. This ensures that a character is not being transferred.
11. Read the value shifted out by the SPI EEPROM from the lower byte of SPIDAT1 (mask lower byte in

data read from SPIDAT1).

8.3.3.3 Enabling and Disabling Writes
Before writing data to the CAT25C256 device, writes must be enabled. Similarly, to prevent inadvertent
writes, writes should be disabled. Writes can be enabled by sending the write enable command (WREN)
and writes can be disabled by sending the write disable command (WRDI). Both of these commands can
be easily sent to the SPI EEPROM using the SPI module.
1. Ensure the SPI is not busy with another transfer by polling the CC and BUSY bits in SPISTAT1.
2. Sending the WREN or WRDI command to the EEPROM requires a total of 8 clock cycles. Therefore,

set FLEN = 0 (1 character transfer) in SPICMD1.
3. Load the opcode for either WREN (06h) or WRDI (04h) into the upper byte of SPIDAT2.
4. Write to the command register (SPICMD2) to start the SPI write. The value you write SPICMD2 must

set CSNUM = 0 (chip-select 0 active), CLEN = 7 (8-bit character length), and CMD = 10b (write).
5. Poll SPISTAT1 until CC = 1 or wait for the character complete interrupt (CIRQ).
6. Poll SPISTAT1 until BUSY = 0. This ensures that a character is not being transferred.

You can read the EEPROM status register to verify the WREN or WRDI commands were received
successfully. See Section 8.3.3.2 for more details on reading the status register of the SPI EEPROM.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Interfacing the SPI to an SPI EEPROM www.ti.com

298 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

8.3.3.4 Writing a Block of Data to a SPI EEPROM
Once the CAT25C256 device has been configured to accept writes, you can use the write data memory
command (WRITE) to program the contents of the device. Please note that the CAT25C256 device allows
for a page write sequence in which you are allowed to write up to 64 bytes (a page) while the EEPROM
automatically increments its address counter. The only restriction during page writes is that page
boundaries must not be crossed. If the edge of a page boundary is reached, the address counter rolls
over to the beginning of the page. The following steps outline the procedure for conducting a page write to
the SPI EEPROM.
1. Configure the SPI EEPROM to allow writes through the use of the WREN command. See

Section 8.3.3.3 for more details.
2. Ensure the SPI is not busy with another transfer by polling the CC and BUSY bits in SPISTAT1.
3. Writing a page of data to the EEPROM requires 8 clock cycles for the WRITE command, 16 clock

cycles for the address, and eight cycles for each data byte. Therefore, set FLEN = 1 + 2 + N – 1,
where N is the number of data bytes to be written. For example, if you want to write 64 data bytes, set
FLEN = 66.

4. Load the opcode for the WRITE command (02h) into the upper byte of SPIDAT2.
5. Write to the command register (SPICMD2) to start the SPI write. The value you write SPICMD2 must

set CSNUM = 0 (chip-select 0 active), CLEN = 7 (8-bit character length), and CMD = 10b (write).
6. Poll SPISTAT1 until CC = 1 or wait for the character complete interrupt (CIRQ).
7. Poll SPISTAT1 until BUSY = 0. This ensures that a character is not being transferred.
8. Load the most-significant byte of the SPI EEPROM address into the upper byte of SPIDAT2.
9. Write to the command register (SPICMD2) to start the SPI write. The value you write SPICMD2 must

set CSNUM = 0 (chip-select 0 active), CLEN = 7 (8-bit character length), and CMD = 10b (write).
10. Poll SPISTAT1 until CC = 1 or wait for the character complete interrupt (CIRQ).
11. Poll SPISTAT1 until BUSY = 0. This ensures that a character is not being transferred.
12. Load the least-significant byte of the SPI EEPROM address into the upper byte of SPIDAT2.
13. Write to the command register (SPICMD2) to start the SPI write. The value you write SPICMD2 must

set CSNUM = 0 (chip-select 0 active), CLEN = 7 (8-bit character length), and CMD = 10b (write).
14. Poll SPISTAT1 until CC = 1 or wait for the character complete interrupt (CIRQ).
15. Poll SPISTAT1 until BUSY = 0. This ensures that a character is not being transferred.
16. Load the data byte to be written to the upper byte of SPIDAT2. The SPI module will shift data out

starting with the most-significant bit of SPIDAT2.
17. Write to SPICMD2 to start an SPI write. The value you write SPICMD2 must set CSNUM = 0 (chip-

select 0 active), CLEN = 7 (8-bit character length), and CMD = 10b (write).
18. Poll SPISTAT1 until CC = 1 or wait for the character complete interrupt (CIRQ).
19. Poll SPISTAT1 until BUSY = 0. This ensures that a character is not being transferred.
20. Repeat steps 16 through 19 for the remainder of the bytes.

At the end of this sequence, you can poll the RDY bit in the SPI EEPROM status register (see
Section 8.3.3.2) to determine when the EEPROM has completed the writes. At that time, you can restart
this sequence to write more bytes to the EEPROM at a different address.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Interfacing the SPI to an SPI EEPROM

299SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

8.3.3.5 Reading a Block of Data from a SPI EEPROM
Unlike a page write, the CAT25C256 device allows you to read the entire memory contents without regard
for page boundaries. The read data from memory command (READ) is used to read data from the SPI
EEPROM. The following steps outline the procedure required to read a block of data from the memory
device.
1. Ensure the SPI is not busy with another transfer by polling the CC and BUSY bits in SPISTAT1.
2. Reading a block of data from the EEPROM requires 8 clock cycles for the READ command, 16 clock

cycles for the address, and eight cycles for each data byte. Therefore, set FLEN = 1 + 2 + N – 1,
where N is the number of bytes to be read. For example, if you want to read 64 bytes, set FLEN = 66.

3. Load the opcode for the READ command (03h) into the upper byte of SPIDAT2.
4. Write to the command register (SPICMD2) to start the SPI write. The value you write SPICMD2 must

set CSNUM = 0 (chip-select 0 active), CLEN = 7 (8-bit character length), and CMD = 10b (write).
5. Poll SPISTAT1 until CC = 1 or wait for the character complete interrupt (CIRQ).
6. Poll SPISTAT1 until BUSY = 0. This ensures that a character is not being transferred.
7. Load the most-significant byte of the SPI EEPROM address into the upper byte of SPIDAT2.
8. Write to the command register (SPICMD2) to start the SPI write. The value you write SPICMD2 must

set CSNUM = 0 (chip-select 0 active), CLEN = 7 (8-bit character length), and CMD = 10b (write).
9. Poll SPISTAT1 until CC = 1 or wait for the character complete interrupt (CIRQ).
10. Poll SPISTAT1 until BUSY = 0. This ensures that a character is not being transferred.
11. Load the least-significant byte of the SPI EEPROM address into the upper byte of SPIDAT2.
12. Write to the command register (SPICMD2) to start the SPI write. The value you write SPICMD2 must

set CSNUM = 0 (chip-select 0 active), CLEN = 7 (8-bit character length), and CMD = 10b (write).
13. Poll SPISTAT1 until CC = 1 or wait for the character complete interrupt (CIRQ).
14. Poll SPISTAT1 until BUSY = 0. This ensures that a character is not being transferred.
15. Prepare SPIDAT1 and SPIDAT2 for data reception by loading both registers with 0000h.
16. Write to SPICMD2 to start an SPI read. The value you write SPICMD2 must set CSNUM = 0 (chip-

select 0 active), CLEN = 7 (8-bit character length), and CMD = 01b (read).
17. Poll SPISTAT1 until CC = 1 or wait for the character complete interrupt (CIRQ).
18. Poll SPISTAT1 until BUSY = 0. This ensures that a character is not being transferred.
19. Read the value shifted out by the SPI EEPROM from the lower byte of (mask lower byte in data read

from SPIDAT1) SPIDAT1.
20. Repeat steps 15 through 19 for the remainder of the bytes.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

SPI Registers www.ti.com

300 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

8.4 SPI Registers
Table 8-4 lists the memory-mapped registers associated with the SPI module of the device DSP. The SPI
registers can be accessed by the CPU at the 16-bit addresses specified in Table 8-4. Note that the CPU
accesses all peripheral registers through its I/O space. All other register addresses not listed in Table 8-4
should be considered as reserved locations and the register contents should not be modified.

Table 8-4. SPI Registers

Offset Acronym Register Name Section
3000h SPICDR Clock Divider Register Section 8.4.1
3001h SPICCR Clock Control Register Section 8.4.1
3002h SPIDCR1 Device Configuration Register 1 Section 8.4.3
3003h SPIDCR2 Device Configuration Register 2 Section 8.4.3
3004h SPICMD1 Command Register 1 Section 8.4.5
3005h SPICMD2 Command Register 2 Section 8.4.5
3006h SPISTAT1 Status Register 1 Section 8.4.7
3007h SPISTAT2 Status Register 2 Section 8.4.7
3008h SPIDAT1 Data Register 1 Section 8.4.9
3009h SPIDAT2 Data Register 2 Section 8.4.9

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com SPI Registers

301SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

8.4.1 SPICDR Register
The SPI includes two registers for controlling the SPI interface clock (SPI_CLK). The SPI input clock is
divided down to generate a SPI_CLK. The clock divider register (SPICDR) specifies the clock divider
value for the SPI input clock. The clock control register (SPICCR) is used to enable the clock output and
to initiate a soft reset to the SPI module.

Figure 8-13. Clock Divider Register(SPICDR)
15 0

CLKDV
RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 8-5. SPICDR Register Field Descriptions

Bit Field Type Reset Description
15-0 CLKDV R/W 0 0 = Clock divider bits, value 0 to 3FFFh. The SPI input clock is divided down to

generate the SPI interface clock (SPI_CLK). You can specify the divider value
through the CLKDV bits. The frequency SPI_CLK is:
SPI_CLK frequency = (SPI input clock frequency) / (CLKDV + 1)
The duty cycle of SPI_CLK depends on the value of CLKDV + 1. When CLKDIV+1
is even, the duty cycle is 50%.
When CLKDIV+1 is odd, the clock high and low times depend on the clock polarity.
Low clock polarity:
%high = (CLKDIV/2)/(CLK_DIV+1).
%low = ((CLK_DIV/2)+1)/(CLK_DIV+1).
High clock polarity:
%low = (CLKDIV/2)/(CLK_DIV+1).
%high = ((CLK_DIV/2)+1)/(CLK_DIV+1).
NOTE: For proper device operation CLKDV must be greater than or equal to 3.
See Clock Polarity and Phase for more information on the SPI modes.

8.4.2 SPICCR Register

Figure 8-14. Clock Control Register (SPICCR)
15 14 13 0

CLKEN RST Reserved
RW-0 W-0 R-xxxx

LEGEND: R/W = Read/Write; W = Write only; R = Read only; -n = value after reset

Table 8-6. SPICCR Register Field Descriptions

Bit Field Type Reset Description
15 CLKEN R/W 0 Clock enable bit. This bit is used to enable and disable the SPI interface clock

(SPI_CLK).
0 = SPI_CLK is disabled and held at the logic value specified by the clock polarity bit
of SPIDC.
1 = SPI_CLK is enabled.

14 RST W 0 Soft reset bit. Writing a 1 to this bit will reset the SPI module. This bit is self-clearing
and will deactivate the soft reset on the next SPI input clock cycle after this bit is set to
1.
0 = Soft reset is released.
1 = Soft reset is asserted.

13-0 Reserved R 0 0 = Reserved.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

SPI Registers www.ti.com

302 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

8.4.3 SPIDCR1 Register
The device configuration registers (SPIDCR1) are used to specify the clock phase, clock polarity, and data
delay for each SPI slave connected to the SPI chip select pins. Together, the clock phase and clock
polarity determine the SPI mode (refer to Section 8.2.5 for more details).

Figure 8-15. Device Configuration Register 1 (SPIDCR1)
15 13 12 11 10 9 8 7 5 4 3 2 1 0

Reserved DD1 CKPH1 CSP1 CKP1 Reserved DD0 CKPH0 CSP0 CKP0

R-0 RW-0 RW-0 RW-0 RW-0 R-0 RW-0 RW-0 RW-0 RW-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 8-7. SPIDCR1 Register Field Descriptions

Bit Field Type Reset Description
15-13 Reserved R 0 0 = Reserved.
12-11 DD1 R/W 0 Data delay for chip select 1 pin (SPI_CS1), value 0 to 3h.

0 = First SPI_CLK edge is delayed 0.5 clock cycles from SPI_CS1 assertion.
1h = First SPI_CLK edge is delayed 1.5 SPI clock cycles from SPI_CS1 assertion.
2h = First SPI_CLK edge is delayed 2.5 SPI clock cycles from SPI_CS1 assertion.
3h = First SPI_CLK edge is delayed 3.5 SPI clock cycles from SPI_CS1 assertion.

10 CKPH1 R/W 0 Clock phase for chip select 1 pin (SPI_CS1). The clock phase bit, in conjunction with the clock
polarity bit (CKP1), controls the clock-data relationship between master and slave.
0 = When CKP1 = 0, data shifted out on falling edge, input captured on rising edge. When
CKP1 = 1, data shifted out on rising edge, input captured on falling edge.
1 = When CKP1 = 0, data shifted out on rising edge, input captured on falling edge. When
CKP1 = 1, data shifted out on falling edge, input captured on rising edge.

9 CSP1 R/W 0 Polarity for chip select 1 pin (SPI_CS1).
0 = Active low.
1 = Active high.

8 CKP1 R/W 0 Clock polarity inactive state for the clock pin during accesses to chip select 1.
0 = When data is not being transferred, a steady state low value is produced at the SPI_CLK
pin.
1 = When data is not being transferred, a steady state high value is produced at the SPI_CLK
pin.

7-5 Reserved R 0 0 = Reserved.
4-3 DD0 R/W 0 Data delay for chip select 0 pin (SPI_CS0), value 0 to 3h.

0 = First SPI_CLK edge is delayed 0.5 clock cycles from SPI_CS0 assertion.
1h = First SPI_CLK edge is delayed 1.5 clock cycles from SPI_CS0 assertion.
2h = First SPI_CLK edge is delayed 2.5 clock cycles from SPI_CS0 assertion.
3h = First SPI_CLK edge is delayed 3.5 clock cycles from SPI_CS0 assertion.

2 CKPH0 R/W 0 Clock phase for chip select 0 pin (SPI_CS0). The clock phase bit, in conjunction with the clock
polarity bit (CKP0), controls the clock-data relationship between master and slave.
0 = When CKP0 = 0, data shifted out on falling edge, input captured on rising edge. When
CKP0 = 1, data shifted out on rising edge, input captured on falling edge.
1 = When CKP0 = 0, data shifted out on rising edge, input captured on falling edge. When
CKP0 = 1, data shifted out on falling edge, input captured on rising edge.

1 CSP0 R/W 0 Polarity for chip select 0 pin (SPI_CS0).
0 = Active low.
1 = Active high.

0 CKP0 R/W 0 Clock polarity inactive state for the clock pin during accesses to chip select 0.
0 = When data is not being transferred, a steady state low value is produced at the SPI_CLK
pin.
1 = When data is not being transferred, a steady state high value is produced at the SPI_CLK
pin.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com SPI Registers

303SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

8.4.4 SPIDCR2 Register
The device configuration register (SPIDCR2) are used to specify the clock phase, clock polarity, and data
delay for each SPI slave connected to the SPI chip select pins. Together, the clock phase and clock
polarity determine the SPI mode (refer to Section 8.2.5 for more details). The loopback mode of the SPI
can also be enabled through SPIDCR2.

Figure 8-16. Device Configuration Register 2 (SPIDCR2)
15 14 13 12 11 10 9 8 7 5 4 3 2 1 0

LPBK Reserved DD3 CKPH3 CSP3 CKP3 Reserved DD2 CKPH2 CSP2 CKP2

RW-0 R-0 RW-0 RW-0 RW-0 RW-0 R-0 RW-0 RW-0 RW-0 RW-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 8-8. SPIDCR2 Register Field Descriptions

Bit Field Type Reset Description
15 LPBK R/W 0 Loopback mode.

0 = Loopback mode is disabled.
1 = Loopback mode is enabled.

14-13 Reserved R 0 0 = Reserved
12-11 DD3 R/W 0 Data delay for chip select 3 pin (SPI_CS3), value 0 to 3h.

0 = First SPI_CLK edge is delayed 0.5 clock cycles from SPI_CS3 assertion.
1h = First SPI_CLK edge is delayed 1.5 clock cycles from SPI_CS3 assertion.
2h = First SPI_CLK edge is delayed 2.5 clock cycles from SPI_CS3 assertion.
3h = First SPI_CLK edge is delayed 3.5 clock cycles from SPI_CS3 assertion.

10 CKPH3 R/W 0 Clock phase for chip select 3 pin (SPI_CS3). The clock phase bit, in conjunction with the clock
polarity bit (CKP3), controls the clock-data relationship between master and slave.
0 = When CKP3 = 0, data shifted out on falling edge, input captured on rising edge. When
CKP3 = 1, data shifted out on rising edge, input captured on falling edge.
1 = When CKP3 = 0, data shifted out on rising edge, input captured on falling edge. When
CKP3 = 1, data shifted out on falling edge, input captured on rising edge.

9 CSP3 R/W 0 Polarity for chip select 3 pin (SPI_CS3).
0 = Active low.
1 = Active high.

8 CKP3 R/W 0 Clock polarity inactive state for the clock pin during accesses to chip select 3.
0 = When data is not being transferred, a steady state low value is produced at the SPI_CLK
pin.
1 = When data is not being transferred, a steady state high value is produced at the SPI_CLK
pin.

7-5 Reserved R 0 0 = Reserved
4-3 DD2 R/W 0 Data delay for chip select 2 pin (SPI_CS2), value 0 to 3h.

0 = First SPI_CLK edge is delayed 0.5 clock cycles from SPI_CS2 assertion.
1h = First SPI_CLK edge is delayed 1.5 clock cycles from SPI_CS2 assertion.
2h = First SPI_CLK edge is delayed 2.5 clock cycles from SPI_CS2 assertion.
3h = First SPI_CLK edge is delayed 3.5 clock cycles from SPI_CS2 assertion.

2 CKPH2 R/W 0 Clock phase for chip select 2 pin (SPI_CS2). The clock phase bit, in conjunction with the clock
polarity bit (CKP2), controls the clock-data relationship between master and slave.
0 = When CKP2 = 0, data shifted out on falling edge, input captured on rising edge. When
CKP2 = 1, data shifted out on rising edge, input captured on falling edge.
1 = When CKP2 = 0, data shifted out on rising edge, input captured on falling edge. When
CKP2 = 1, data shifted out on falling edge, input captured on rising edge.

1 CSP2 R/W 0 Polarity for chip select 2 pin (SPI_CS2).
0 = Active low.
1 = Active high.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

SPI Registers www.ti.com

304 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

Table 8-8. SPIDCR2 Register Field Descriptions (continued)
Bit Field Type Reset Description
0 CKP2 R/W 0 Clock polarity inactive state for the clock pin during accesses to chip select 2.

0 = When data is not being transferred, a steady state low value is produced at the SPI_CLK
pin.
1 = When data is not being transferred, a steady state high value is produced at the SPI_CLK
pin.

8.4.5 SPICMD1 Register
The command registers (SPICMD1) are used to control several aspects of an SPI access. You can use
SPICMD1 to enable character and frame complete interrupts and to specify the number of characters in a
frame.

Figure 8-17. Command Register 1 (SPICMD1)
15 14 13 12 11 0

FIRQ CIRQ Reserved FLEN
RW-0 RW-0 R-0 RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 8-9. SPICMD1 Register Field Descriptions

Bit Field Type Reset Description
15 FIRQ R/W 0 Frame count interrupt enable.

0 = No interrupt generated at the end of the frame count.
1 = Interrupt generated at the end of the frame count.

14 CIRQ R/W 0 Character interrupt enable.
0 = No interrupt generated at the end of the character transfer.
1 = Interrupt generated at the end of the character transfer.

13-12 Reserved R 0 0 = Reserved.
11-0 FLEN R/W 0 Frame length bits. These bits are used to specify the length of entire transfer, value 0

to FFFh.
The total number of characters transferred equals FLEN + 1.
For example, if FLEN = 63, a frame consists of a total of 64 characters.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com SPI Registers

305SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

8.4.6 SPICMD2 Register
The command register (SPICMD2) are used to control several aspects of an SPI access. The command to
use (read or write), character length, and chip select pin used during SPI transfers are specified through
SPICMD2. Writing to SPICMD2 will cause the SPI to execute the command specified by the transfer
command bits (CMD).

Figure 8-18. Command Register 2 (SPICMD2)
15 14 13 12 11 8 7 3 2 1 0
Reserved CSNUM Reserved CLEN RSV CMD

R-0 RW-0 R-0 RW-0 R-0 RW-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 8-10. SPICMD2 Register Field Descriptions

Bit Field Type Reset Description
15-14 Reserved R 0 Reserved.
13-12 CSNUM R/W 0 Device select. Sets the active chip select for the transfer, value 0 to 3h.

0 = Chip select 0 is active.
1h = Chip select 1 is active.
2h = Chip select 2 is active.
3h = Chip select 3 is active.

11-8 Reserved R 0 0 = Reserved.
7-3 CLEN R/W 0 Character length. Sets the transfer size of the individual transfer elements from 1 to 32

bits, value 0 to 1Fh.
The character length is set to CLEN + 1.
For example, if CLEN = 7, the character length is set to 8 bits.

2 Reserved R 0 0 = Reserved.
1-0 CMD R/W 0 Transfer command bits. These bits specify the type of transaction being used, value 0

to 3h.
0 = Reserved.
1h = Read.
2h = Write.
3h = Reserved.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

SPI Registers www.ti.com

306 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

8.4.7 SPISTAT1 Register
The status registers (SPISTAT1) contain indicators to allow monitoring of the progression of a frame
transfer. The character complete (CC) and frame complete (FC) bits are used as stimulus for generating
interrupts. Setting the corresponding interrupt enable bits in the SPICMD1 command register allows these
events to generate an interrupt. The CC and FC bits are reset every time (1) SPISTAT1 is read, or (2) a
new SPI transfer is initiated via a write of a read or write command to CMD in the SPICMD2 command
register.

Figure 8-19. Status Register 1 (SPISTAT1)
15 3 2 1 0

Reserved FC CC BUSY

R-0 R-0 R-0 R-0
LEGEND: R = Read only; -n = value after reset

Table 8-11. SPISTAT1 Register Field Descriptions

Bit Field Type Reset Description
15-3 Reserved R 0 Reserved

2 FC R 0 Frame complete. This bit is set after all the requested characters have been
transferred. This bit is reset when SPISTAT1 is read or when a new SPI transfer is
initiated via a write of a read or write command to CMD in SPICMD2.
0 = Transfer is not complete.
1 = All characters have been transferred.

1 CC R 0 Character complete. This bit is set after each character transfer is completed. This bit
is reset when SPISTAT1 is read or when a new SPI transfer is initiated via a write of a
read or write command to CMD in SPICMD2.
0 = Character transfer is not complete.
1 = Character transfer is complete.

0 BUSY R 0 Busy bit. This bit is set during an active character transfer. Between characters this bit
will be cleared to signal that the data registers can be accessed.
0 = Idle, no character transfers in progress.
1 = Active, a character transfer is in progress.

8.4.8 SPISTAT2 Register
The status registers (SPISTAT2) contain indicators to allow monitoring of the progression of a frame
transfer. The character complete (CC) and frame complete (FC) bits are used as stimulus for generating
interrupts. Setting the corresponding interrupt enable bits in the SPICMD1 command register allows these
events to generate an interrupt. The CC and FC bits are reset every time (1) SPISTAT1 is read, or (2) a
new SPI transfer is initiated via a write of a read or write command to CMD in the SPICMD2 command
register.

Figure 8-20. Status Register 2 (SPISTAT2)
15 12 11 0

Reserved CCNT
R–0 R-0

LEGEND: R = Read only; -n = value after reset

Table 8-12. SPISTAT2 Register Field Descriptions

Bit Field Type Reset Description
15-12 Reserved R 0 Reserved.
11-0 CCNT R 0 Character count. These bits reflect the total number of characters transferred,

value 0 to FFFh.
For example, when CCNT = 64, a total of 64 characters have been transferred.
These bits are reset upon completion of a frame. and should only be read after
determining CC = 1.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com SPI Registers

307SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Serial Peripheral Interface (SPI)

8.4.9 SPIDAT1 Register
The data registers (SPIDAT1) are treated as a 32-bit shift register. Data received by the SPI is shifted into
the least-significant bit of SPIDAT1 and the contents of both registers are shifted to the left. Similarly, data
transferred by the SPI is shifted out of the most-significant bit of SPIDAT2 and the contents of both
registers are shifted to the left. This process is illustrated in the Data Shift process.

The data registers are not cleared between reads or writes. Old data may exist in the register and it is the
responsibility of the user to mask off any unneeded data on a read.

Figure 8-21. Data Register 1 (SPIDAT1)
15 0

DATA
RW-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 8-13. SPIDAT1 Register Field Descriptions

Bit Field Type Reset Description
15-0 DATA R/W 0 Low part of data during read and write operations, value 0 to FFFFh.

8.4.10 SPIDAT2 Register
The data registers (SPIDAT2) are treated as a 32-bit shift register. Data received by the SPI is shifted into
the least-significant bit of SPIDAT1 and the contents of both registers are shifted to the left. Similarly, data
transferred by the SPI is shifted out of the most-significant bit of SPIDAT2 and the contents of both
registers are shifted to the left. This process is illustrated in the Data Shift process.

The data registers are not cleared between reads or writes. Old data may exist in the register and it is the
responsibility of the user to mask off any unneeded data on a read.

Figure 8-22. Data Register 2 (SPIDAT2)
15 0

DATA
RW-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 8-14. SPIDAT2 Register Field Descriptions

Bit Field Type Reset Description
15-0 DATA R/W 0 High part of data during read and write operations, value 0 to FFFFh.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

308 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

Chapter 9
SPRUH87H–August 2011–Revised April 2016

Inter-Integrated Circuit (I2C) Peripheral

This chapter describes the features and operations of the inter-integrated circuit (I2C) peripheral.

Topic ... Page

9.1 Introduction ... 309
9.2 Peripheral Architecture ... 311
9.3 I2C Registers ... 324

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Introduction

309SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

9.1 Introduction
Described in the following sections is the operation of the inter-integrated circuit (I2C) peripheral. The
scope of this document assumes that you are familiar with the Philips Semiconductors Inter-IC bus (I2C-
bus) specification version 2.1.

9.1.1 Purpose of the Peripheral
The I2C peripheral provides an interface between the DSP and other devices that are compliant with the
I2C-bus specification and connected by way of an I2C-bus. External components that are attached to this
two-wire serial bus can transmit and receive data that is up to eight bits wide both to and from the DSP
through the I2C peripheral.

9.1.2 Features
The I2C peripheral has the following features:
• Compliance with the Philips Semiconductors I2C-bus specification (version 2.1):

– Support for byte format transfer.
– 7-bit and 10-bit addressing modes.
– General call.
– START byte mode.
– Support for multiple master-transmitters and slave-receivers mode.
– Support for multiple slave-transmitters and master-receivers mode.
– Combined master transmit/receive and receive/transmit mode.
– I2C data transfer rate of from 10 kbps up to 400 kbps (Philips I2C rate).

• 2 to 8 bit format transfer.
• Free data format mode.
• One read DMA event and one write DMA event that the DMA can use.
• Seven interrupts that the CPU can use.
• Peripheral enable/disable capability.

9.1.2.1 Features Not Supported
The I2C peripheral does not support the following features:
• High-speed mode.
• CBUS-compatibility mode.
• The combined format in 10-bit addressing mode (the I2C sends the slave address the second byte

every time it sends the slave address the first byte).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

ICXSR ICDXR

ICRSR ICDRR

Clock
synchronizer

Prescaler

Noise filters

Arbitrator

I2C INT

ICREVT

Peripheral data bus

Interrupt
to CPU

Sync events to
DMA controller2

SDA

SCL

Control/status
registers

CPU

DMA2

I2C peripheral

ICXEVT

Introduction www.ti.com

310 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

9.1.3 Functional Block Diagram
A block diagram of the I2C peripheral is shown in Figure 9-1. Refer to Section 9.2 for detailed information
about the architecture of the I2C peripheral.

Figure 9-1. I2C Peripheral Block Diagram

A Out of the four DMA controllers included in the DSP, only DMA controller 2 (DMA2) can access the I2C peripheral
registers and use its DMA events.

9.1.4 Industry Standard(s) Compliance Statement
The I2C peripheral is compliant with the Philips Semiconductors Inter-IC bus (I2C-bus) specification
version 2.1.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

TI device
I2C

I2C
EPROM

I2C
controller

TI device
I2C

VDD

Pull-up
resistors

Serial data (SDA)
Serial clock (SCL)

www.ti.com Peripheral Architecture

311SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

9.2 Peripheral Architecture
The I2C peripheral consists of the following primary blocks:
• A serial interface: one data pin (SDA) and one clock pin (SCL).
• Data registers to temporarily hold receive data and transmit data traveling between the SDA pin and

the CPU or the DMA2 controller.
• Control and status registers.
• A peripheral data bus interface to enable the CPU and the DMA2 controller to access the I2C

peripheral registers.
• A clock synchronizer to synchronize the I2C input clock (from the processor clock generator) and the

clock on the SCL pin, and to synchronize data transfers with masters of different clock speeds.
• A prescaler to divide down the input clock that is driven to the I2C peripheral.
• A noise filter on each of the two pins, SDA and SCL.
• An arbitrator to handle arbitration between the I2C peripheral (when it is a master) and another master.
• Interrupt generation logic, so that an interrupt can be sent to the CPU.
• DMA event generation logic, so that activity in the DMA2 controller can be synchronized to data

reception and data transmission in the I2C peripheral.

Figure 9-1 shows the four registers used for transmission and reception. The CPU or the DMA controller
writes data for transmission to ICDXR and reads received data from ICDRR. When the I2C peripheral is
configured as a transmitter, data written to ICDXR is copied to ICXSR and shifted out on the SDA pin one
bit at a time. When the I2C peripheral is configured as a receiver, received data is shifted into ICRSR and
then copied to ICDRR.

9.2.1 Bus Structure
Figure 9-1 shows how the I2C peripheral is connected to the I2C bus. The I2C bus is a multi-master bus
that supports a multi-master mode. This allows more than one device capable of controlling the bus that is
connected to it. A unique address recognizes each I2C device. Each I2C device can operate as either
transmitter or receiver, depending on the function of the device. Devices that are connected to the I2C bus
can be considered a master or slave when performing data transfers, in addition to being a transmitter or
receiver.

NOTE: A master device is the device that initiates a data transfer on the bus and generates the
clock signals to permit that transfer. Any device that is addressed by this master is
considered a slave during this transfer.

An example of multiple I2C modules that are connected for a two-way transfer from one device to other
devices is shown in Figure 9-2.

Figure 9-2. Multiple I2C Modules Connected

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Crystal

RTC

External
input
clock

CLKSEL

÷
I2C

prescaler

Register bits
(ICPSC[IPSC])

Prescaled module clock.
MUST be set to 6.7 - 13.3 MHz

÷
I2C clock
dividers

Register bits
(ICCLKL[ICCL]),
(ICCLKH[ICCH])

To I2C bus

I2C module

I2C serial clock on SCL pin

Clock
generator

SYSCLKSEL

PCGCR1[I2CCG]DSP
system clock

I2C input clock

SCL low period =
(A)

(SYSCLK period) * (IPSC + 1) * (ICCL + d)

Where d depends on IPSC value in I2CPSC:

IPSC value

0

1

2h-FFh

d

7

6

5

SCL high period =
(A)

(SYSCLK period) * (IPSC + 1) * (ICCH + d)

Peripheral Architecture www.ti.com

312 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

9.2.2 Clock Generation
As shown in Figure 9-3, the clock generator receives either the real-time clock (RTC) or a signal from an
external clock source and produces the DSP system clock. This clock is used by the DSP CPU and
peripherals. A programmable prescaler (IPSC bit in ICPSC) in the I2C module divides down the I2C input
clock to produce a prescaled module clock. The prescaled module clock must be operated within the
range of 6.7 to 13.3 MHz. The I2C clock dividers divide-down the high (ICCH bit in ICCLKH) and low
portions (ICCL bit in ICCLKL) of the prescaled module clock signal to produce the I2C serial clock, which
appears on the SCL pin when the I2C module is configured to be a master on the I2C bus.

The DSP includes logic which can be used to gate the clock to its on-chip peripherals. The I2C input clock
can be enabled and disabled through the peripheral clock gating configuration register 1 (PCGCR1).

Figure 9-3. Clocking Diagram for the I2C Peripheral

A The period defined does not include rise and fall time and latency of the synchronizer inside the peripheral. The actual
transfer rate will be slower than the value calculated from the formula for the SCL period. Due to the nature of SCL
synchronization, the SCL period could change if SCL synchronization occurs.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Wait
state

Start HIGH
period

SCL from
device #1

SCL from
device #2

Bus line
SCL

www.ti.com Peripheral Architecture

313SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

CAUTION
Prescaled Module Clock Frequency Range:

The I2C module must be operated with a prescaled module clock frequency of
6.7 to 13.3 MHz. The I2C prescaler register (ICPSC) must be configured to this
frequency range.

The prescaler (IPSC bit in ICPSC) must only be initialized while the I2C module is in the reset state
(IRS = 0 in ICMDR). The prescaled frequency only takes effect when the IRS bit in ICMDR is changed to
1. Changing the IPSC bit in ICPSC while IRS = 1 in ICMDR has no effect. Likewise, you must configure
the I2C clock dividers (ICCH bit in ICCLKH and ICCL bit in ICCLKL) while the I2C module is still in reset
(IRS = 0 in ICMDR).

9.2.3 Clock Synchronization
Under normal conditions a master device generates its own clock signal on the SCL pin. However, when
there are two or more masters connected to the I2C bus the clock must be synchronized such that bit-by-
bit arbitration (described in Section 9.2.10) can take place. Figure 9-4 illustrates the clock synchronization.
The wired-AND property of SCL means that a device that first generates a low period on SCL (device #1)
overrules the other devices. At this high-to-low transition, the clock generators of the other devices are
forced to start their own low period. The SCL is held low by the device with the longest low period. The
other devices that finish their low periods must wait for SCL to be released before starting their high
periods. Using this approach, a synchronized signal on SCL is obtained where the slowest device
determines the length of the low period and the fastest device determines the length of the high period.

If a device pulls down the clock line for a longer time, the result is that all clock generators must enter the
wait state. This way, a slave slows down a fast master and the slow device creates enough time to store a
received data word or to prepare a data word that you are going to transmit.

Figure 9-4. Synchronization of Two I2C Clock Generators

9.2.4 Signal Descriptions
The I2C peripheral has a serial data pin (SDA) and a serial clock pin (SCL) for data communication, as
shown in Figure 9-1. These two pins carry information between the device and other devices that are
connected to the I2C-bus. The SDA and SCL pins both are bi-directional. They each must be connected to
a positive supply voltage using a pull-up resistor. When the bus is free, both pins are high. The driver of
these two pins has an open-drain configuration to perform the required wired-AND function.

See the device-specific data manual for additional timing and electrical specifications for these pins.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

SDA

SCL

START
condition (S)

STOP
condition (P)

Data line
stable data

Change of data
allowed

SDA

SCL

Peripheral Architecture www.ti.com

314 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

9.2.4.1 Input and Output Voltage Levels
The master device generates one clock pulse for each data bit that is transferred. Due to a variety of
different technology devices that can be connected to the I2C-bus, the levels of logic 0 (low) and logic 1
(high) are not fixed and depend on the associated power supply level. See the device-specific data
manual for more information.

9.2.4.2 Data Validity
The data on SDA must be stable during the high period of the clock (see Figure 9-5). The high or low
state of the data line, SDA, can change only when the clock signal on SCL is low.

Figure 9-5. Bit Transfer on the I2C-Bus

9.2.5 START and STOP Conditions
The I2C peripheral can generate START and STOP conditions when the peripheral is configured to be a
master on the I2C-bus, as shown in Figure 9-6:
• The START condition is defined as a high-to-low transition on the SDA line while SCL is high. A

master drives this condition to indicate the start of a data transfer.
• The STOP condition is defined as a low-to-high transition on the SDA line while SCL is high. A master

drives this condition to indicate the end of a data transfer.

The I2C bus is considered busy after a START condition and before a subsequent STOP condition. The
bus busy (BB) bit of ICSTR is 1 during the busy state. The bus is considered free between a STOP
condition and the next START condition, but the current master should wait for additional tBUF time
before attempting to start a new transfer. The BB bit of ICSTR is 0 during the free state.

The user must set to 1 the master mode (MST) and START condition (STT) bits in the ICMDR register for
the I2C peripheral to generate a data transfer with a START condition. The STOP condition (STP) bit must
be 1 for the I2C peripheral to end a data transfer with a STOP condition. A repeated START condition
occurs when the BB and STT bits are set to 1.

Note: BB goes low before MST goes low. The program must wait for MST to go low before starting a new
condition.

Figure 9-6. I2C Peripheral START and STOP Conditions

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

S Slave address R/W ACK Data ACK Data ACK P

7 n n1 1 1 1 1 1

SDA

SCL

MSB

Acknowledgement
bit from slave

1 2 7 8
R/W

9
ACK

1 2 8 9
ACK

Slave address

START
condition (S)

STOP
condition (P)

Data

www.ti.com Peripheral Architecture

315SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

9.2.6 Serial Data Formats
Figure 9-7 shows an example of a data transfer on the I2C-bus. The I2C peripheral supports 2-bit to 8-bit
data values. Figure 9-7 shows a typical I2C data transfer using (BC = 000 in ICMDR). Each bit put on the
SDA line is equivalent to one pulse on the SCL line. The data is always transferred with the most-
significant bit (MSB) first. The number of data values that can be transmitted or received is unrestricted;
however, in most systems, the transmitter and receiver have agreed upon the number of data values to
transfer before transfer begins.

The I2C peripheral supports the following data formats:
• 7-bit addressing mode.
• 10-bit addressing mode.
• Free data format mode.

Figure 9-7. I2C Peripheral Data Transfer

9.2.6.1 7-Bit Addressing Format
In the 7-bit addressing format (Figure 9-8), the first byte after a START condition (S) consists of a 7-bit
slave address followed by a R/W bit. The R/W bit determines the direction of the data.
• R/W = 0: The master writes (transmits) data to the addressed slave.
• R/W = 1: The master reads (receives) data from the slave.

An extra clock cycle dedicated for acknowledgment (ACK) is inserted after the R/W bit. If the slave inserts
the ACK bit, n bits of data from the transmitter (master or slave, depending on the R/W bit) follow it. n is a
number from 2 to 8 that the bit count (BC) bits of ICMDR determine. The receiver inserts an ACK bit after
the data bits have been transferred.

Write a 0 to the expanded address enable (XA) bit of ICMDR to select the 7-bit addressing format.

Figure 9-8. I2C Peripheral 7-Bit Addressing Format (FDF = 0, XA = 0 in ICMDR)

n = The number of data bits (from 2 to 8) specified by the bit count (BC) field of ICM DR.

9.2.6.2 10-Bit Addressing Format
The 10-bit addressing format (Figure 9-9) is like the 7-bit addressing format, but the master sends the
slave address in two separate byte transfers. The first byte consists of 11110b, the two MSBs of the 10-bit
slave address, and R/W = 0 (write). The second byte is the remaining 8 bits of the 10-bit slave address.
The slave must send acknowledgment (ACK) after each of the two byte transfers. Once the master has
written the second byte to the slave, the master can either write data or use a repeated START condition
to change the data direction. (For more information about using 10-bit addressing, see the Philips
Semiconductors I2C-bus specification.)

Write 1 to the XA bit of ICMDR to select the 10-bit addressing format.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

1 7 n 7 n1 1 1 1 1 1 1 1

S Slave address R/W ACK Data ACK Sr Slave address R/W ACK Data ACK P

1
Any

number
1 Any number

DataDataS

1

DataACK ACK ACK P

1n n n 111

S

1

1 1 1 1 0 A A

7

A A A A A A A AACK0

11 8

ACK

1

Data

n

ACK

1

P

1

A A = 2 MSBs R/W 8 LSBs of slave address

Peripheral Architecture www.ti.com

316 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

Figure 9-9. I2C Peripheral 10-Bit Addressing Format With Master-Transmitter Writing to Slave-Receiver
(FDF = 0, XA = 1 in ICMDR)

n = The number of data bits (from 2 to 8) specified by the bit count (BC) field of ICMDR.

9.2.6.3 Free Data Format
In the free data format (Figure 9-10), the first bits after a START condition (S) are a data word. An ACK bit
is inserted after each data word, which can be from 2 to 8 bits, depending on the bit count (BC) bits of
ICMDR. No address or data-direction bit is sent. Therefore, the transmitter and the receiver must both
support the free data format, and the direction of the data must be constant throughout the transfer.

To select the free data format, write 1 to the free data format (FDF) bit of ICMDR.

Figure 9-10. I2C Peripheral Free Data Format (FDF = 1 in ICMDR)

n = The number of data bits (from 2 to 8) specified by the bit count (BC) field of ICMDR.

9.2.6.4 Using a Repeated START Condition
The repeated START condition can be used with the 7-bit addressing, 10-bit addressing, and free data
formats. An example of using the repeated START condition (Sr) in the 7-bit addressing format is shown
in Figure 9-11. At the end of each data word, the master can drive another START condition. Using this
capability, a master can transmit/receive any number of data words before driving a STOP condition. The
length of a data word can be from 2 to 8 bits and is selected with the bit count (BC) bits of ICMDR.

Figure 9-11. I2C Peripheral 7-Bit Addressing Format With Repeated START Condition
(FDF = 0, XA = 0 in ICMDR)

n = The number of data bits (from 2 to 8) specified by the bit count (BC) field of ICMDR.

9.2.7 Operating Modes
The I2C peripheral has four basic operating modes to support data transfers as a master and as a slave.
See Table 9-1 for the names and descriptions of the modes.

If the I2C peripheral is a master, it begins as a master-transmitter and, typically, transmits an address for a
particular slave. When giving data to the slave, the I2C peripheral must remain a master-transmitter. In
order to receive data from a slave, the I2C peripheral must be changed to the master-receiver mode.

If the I2C peripheral is a slave, it begins as a slave-receiver and, typically, sends acknowledgment when it
recognizes its slave address from a master. If the master will be sending data to the I2C peripheral, the
peripheral must remain a slave-receiver. If the master has requested data from the I2C peripheral, the
peripheral must be changed to the slave-transmitter mode.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Peripheral Architecture

317SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

Table 9-1. Operating Modes of the I2C Peripheral

Operating Mode Description
Slave-receiver mode The I2C peripheral is a slave and receives data from a master. All slave modules begin in this

mode. In this mode, serial data bits received on SDA are shifted in with the clock pulses that are
generated by the master. As a slave, the I2C peripheral does not generate the clock signal, but it
can hold SCL low while the intervention of the processor is required (RSFULL = 1 in ICSTR) after
data has been received.

Slave-transmitter mode The I2C peripheral is a slave and transmits data to a master. This mode can only be entered from
the slave-receiver mode; the I2C peripheral must first receive a command from the master. When
you are using any of the 7-bit/10-bit addressing formats, the I2C peripheral enters its slave-
transmitter mode if the slave address is the same as its own address (in ICOAR) and the master
has transmitted R/W = 1. As a slave-transmitter, the I2C peripheral then shifts the serial data out
on SDA with the clock pulses that are generated by the master. While a slave, the I2C peripheral
does not generate the clock signal, but it can hold SCL low while the intervention of the processor
is required (XSMT = 0 in ICSTR) after data has been transmitted.

Master-receiver mode The I2C peripheral is a master and receives data from a slave. This mode can only be entered
from the master-transmitter mode; the I2C peripheral must first transmit a command to the slave.
When you are using any of the 7-bit/10-bit addressing formats, the I2C peripheral enters its
master-receiver mode after transmitting the slave address and R/W = 1. Serial data bits on SDA
are shifted into the I2C peripheral with the clock pulses generated by the I2C peripheral on SCL.
The clock pulses are inhibited and SCL is held low when the intervention of the processor is
required (RSFULL = 1 in ICSTR) after data has been received.

Master-transmitter mode The I2C peripheral is a master and transmits control information and data to a slave. All master
modules begin in this mode. In this mode, data assembled in any of the 7-bit/10-bit addressing
formats is shifted out on SDA. The bit shifting is synchronized with the clock pulses generated by
the I2C peripheral on SCL. The clock pulses are inhibited and SCL is held low when the
intervention of the processor is required (XSMT = 0 in ICSTR) after data has been transmitted.

9.2.8 NACK Bit Generation
When the I2C peripheral is a receiver (master or slave), it can acknowledge or ignore bits sent by the
transmitter. To ignore any new bits, the I2C peripheral must send a no-acknowledge (NACK) bit during the
acknowledge cycle on the bus. Table 9-2 summarizes the various ways the I2C peripheral sends a NACK
bit.

Table 9-2. Ways to Generate a NACK Bit

NACK Bit Generation
I2C Peripheral
Condition Basic Optional
Slave-receiver mode • Disable data transfers (STT = 0 in ICSTR).

• Allow an overrun condition (RSFULL = 1 in
ICSTR).

• Reset the peripheral (IRS = 0 in ICMDR).

Set the NACKMOD bit of ICMDR before the rising
edge of the last data bit you intend to receive.

Master-receiver mode
AND
Repeat mode
(RM = 1 in ICMDR)

• Generate a STOP condition (STOP = 1 in
ICMDR).

• Reset the peripheral (IRS = 0 in ICMDR).

Set the NACKMOD bit of ICMDR before the rising
edge of the last data bit you intend to receive.

Master-receiver mode
AND
Nonrepeat mode
(RM = 0 in ICMDR)

• If STP = 1 in ICMDR, allow the internal data
counter to count down to 0 and force a STOP
condition.

• If STP = 0, make STP = 1 to generate a
STOP condition.

• Reset the peripheral (IRS = 0 in ICMDR).

Set the NACKMOD bit of ICMDR before the rising
edge of the last data bit you intend to receive.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

1

0 0 01

0 0 0

1 1

111

0

Device #1 lost arbitration

and switches off

Bus line

SCL

Data from

device #1

Data from

device #2

Bus line

SDA

Peripheral Architecture www.ti.com

318 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

9.2.9 NACK Response

9.2.9.1 Hardware Response to a NACK
The following steps detail the hardware response to a NACK.
1. Clear ICMDR.STP.
2. Hold SCL low.
3. Set ICSTR.NACK.

9.2.9.2 User Response to a NACK
The user must perform the following steps when responding to a NACK.
1. Set ICMDR.STP, which sends a STOP bit and releases SCL.
2. Set ICSTR.NACK=1 to clear the flag.
3. Wait for ICMDR.MST to self-clear before initiating further I2C transactions.

When the MST bit clears, the controller has finished sending the STOP bit. Verify the MST bit clears by
checking if ICMDR.MST is equal to 0 at the start of the function. This check allows the processor time
to perform other tasks but not start a new transaction until ICMDR.MST has cleared.

9.2.10 Arbitration
If two or more master-transmitters simultaneously start a transmission on the same bus, an arbitration
procedure is invoked. The arbitration procedure uses the data presented on the serial data bus (SDA) by
the competing transmitters. Figure 9-12 illustrates the arbitration procedure between two devices. The first
master-transmitter, which drives SDA high, is overruled by another master-transmitter that drives SDA low.
The arbitration procedure gives priority to the device that transmits the serial data stream with the lowest
binary value. Should two or more devices send identical first bytes, arbitration continues on the
subsequent bytes.

If the I2C peripheral is the losing master, it switches to the slave-receiver mode, sets the arbitration lost
(AL) flag, and generates the arbitration-lost interrupt.

If during a serial transfer the arbitration procedure is still in progress when a repeated START condition or
a STOP condition is transmitted to SDA, the master-transmitters involved must send the repeated START
condition or the STOP condition at the same position in the format frame. Arbitration is not allowed
between:
• A repeated START condition and a data bit.
• A STOP condition and a data bit.
• A repeated START condition and a STOP condition.

Figure 9-12. Arbitration Procedure Between Two Master-Transmitters

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Peripheral Architecture

319SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

9.2.11 Reset Considerations
The I2C peripheral has two reset sources: software reset and hardware reset.

9.2.11.1 Software Reset Considerations
The I2C peripheral can be reset by software through the I2C reset (IRS) bit in the I2C mode register
(ICMDR) or through the I2C_RST bit in the peripheral reset control register (PRCR).

When IRS is cleared to 0, all status bits in the I2C interrupt status register (ICSTR) are forced to their
default values, and the I2C peripheral remains disabled until IRS is changed to 1. The SDA and SCL pins
are in the high-impedance state.

NOTE: If the IRS bit is cleared to 0 during a transfer, this can cause the I2C bus to hang (SDA and
SCL are in the high-impedance state).

When I2C_RST is set to 1, a hardware reset is forced on the I2C. The effects of a hardware reset are
described in the next section. Please note that the I2C input clock must be enabled when using I2C_RST
(see Section 9.2.2).

9.2.11.2 Hardware Reset Considerations
A hardware reset is always initiated during a full chip reset. Alternatively, software can force an I2C
hardware reset through the I2C_RST bits of the peripheral reset control register (PRCR). See the device-
specific data manual for more details on PRCR.

When a hardware reset occurs, all the registers of the I2C peripheral are set to their default values and
the I2C peripheral remains disabled until the I2C reset (IRS) bit in the I2C mode register (ICMDR) is
changed to 1.

NOTE: The IRS bit must be cleared to 0 while you configure/reconfigure the I2C peripheral. Forcing
IRS to 0 can be used to save power and to clear error conditions.

9.2.12 Initialization
Proper I2C initialization is required prior to starting communication with other I2C device(s). Unless a fully
fledged software driver is in place, you need to determine the required I2C configuration needed (for
example, Master Receiver) and configure the I2C controller with the desired settings. Enabling the I2C
input clock should be the first task. With the I2C controller still in reset, you are now ready to configure the
I2C controller. Once configuration is done, you need to enable the I2C controller by releasing the
controller from reset. Prior to starting communication, you need to make sure that all status bits are
cleared and no pending interrupts exist. Once the bus is determined to be available (the bus is not busy),
the I2C is ready to proceed with the desired communication.

9.2.12.1 Configuring the I2C in Master Receiver Mode and Servicing Receive Data via CPU
The following initialization procedure is for the I2C controller configured in Master Receiver mode. The
CPU is used to move data from the I2C receive register to internal DSP memory.
1. Ensure the I2C is out of reset by setting I2C-RST=0 in the peripheral reset control register (PRCR).

See the device-specific data manual for more information on PRCR.
2. Enable the I2C input clock by setting I2CCG to 1 in the peripheral clock gating configuration register

(PCGCR1). See the device-specific data manual for more information on PCGCR1.
3. Place I2C in reset (clear IRS = 0 in ICMDR).
4. Configure ICMDR:

• Configure I2C as Master (MST = 1).
• Indicate the I2C configuration to be used; for example, Data Receiver (TRX = 0).
• Indicate 7-bit addressing is to be used (XA = 0).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Peripheral Architecture www.ti.com

320 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

• Disable repeat mode (RM = 0).
• Disable loopback mode (DLB = 0).
• Disable free data format (FDF = 0).
• Optional: Disable start byte mode if addressing a fully fledged I2C device (STB = 0).
• Set number of bits to transfer to be 8 bits (BC = 0).
• Optional: Enable the receive interrupt (ICRINT) by setting ICRRDY = 1 in ICIMR.

5. Specify the slave address of the I2C device that will be accessed using ICSAR. For 7-bit addressing
mode, only the first seven bits of ICSAR are used.

6. Configure the peripheral clock operation frequency (ICPSC). This value should be selected in such a
way that the frequency is between 6.7 and 13.3 MHz.

7. Configure I2C master clock frequency:
• Configure the low-time divider value (ICCLKL).
• Configure the high-time divider value (ICCLKH).

8. Make sure the interrupt status register (ICSTR) and interrupt vector register (ICIVR) are cleared:
• Read ICSTR and write back the same value (writing a 1 to the bits of ICSTR clears them).
• Read ICIVR until it is zero.

9. Take I2C controller out of reset by setting IRS = 1 in ICMDR.
10. Wait until bus busy bit is cleared (BB = 0 in ICSTR).
11. Start the transfer by setting STT = 1 in ICMDR. The I2C controller will start the transfer using the 7-bit

addressing format as described in Section 9.2.6.1.
12. Wait until data is received.

• If using polling method, wait until ICRRDY = 1 in ICSTR.
• If using interrupt method, wait until the I2C controller generates an interrupt, read the ICIVR

register to determine if a receive interrupt (ICRINT) has been generated, then clear the interrupt
flag by writing a 1 to it.

13. Read the received data from ICDRR.
14. Repeat steps 11 and 12 until last data byte has been received.
15. End transfer/release bus when transfer is done by generating a STOP event (set STP = 1 in ICMDR).

9.2.12.2 Configuring the I2C in Slave Receiver and Transmitter Mode
The following initialization procedure is for the I2C controller configured in Slave Receiver and Transmitter
mode.
1. Enable I2C clock from PSC Level. Do this so that you will be able to configure the I2C registers.
2. Place I2C in Reset (Clear IRS bit).

• ICMDR.IRS=0.
3. Assign the Address (7-bit or 10-bit address) to which the I2C Controller will be responding. This is the

Address that the Master is going to broadcast when attempting to start communication with this slave
device; I2C Controller.
• If the I2C is able to respond to 7-bit Addressing: Configure ICMDR.XA=0.
• If the I2C is able to respond to 10-bit Addressing: Configure ICMDR.XA=1.
• Program ICOAR=Assigned Address (7-bit or 10-bit address).

4. Enable the desired interrupt you need to receive by setting the desired interrupt bit field within ICIMR to
enable the particular Interrupt.
• ICIMR.AAS=1; Expect an interrupt when Master's Address matches yours (ICOAR programmed

value).
• ICIMR.ICRRDY=1; Expect a receive interrupt when a byte worth data sent from the master is

ready to be read.
• ICIMR.ICXRDY=1; Expect to receive interrupt when the transmit register is ready to be written with

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Peripheral Architecture

321SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

a new data that is to be sent to the master.
• ICIMR.SCD=1; Expect to receive interrupt when Stop Condition is detected.

5. Configure the I2C Controller Operating frequency; this is not the serial clock frequency. This should be
between 6.7 and 13.3 MHz. Program IPSC to generate a 6.7 to 13.3 MHz operating frequency.
• Prescaled Module Clock Frequency = PLL1 Output Frequency / (IPSC + 1).

6. Configure the I2C Serial Clock Frequency. It is advised to configure this frequency to operate at 400
kHz. This will allow the slave device to be able to attend to all Master speeds. Program ICCH and
ICCL.
• 400 kHz = I2C Operating Frequency (6.7-13.3 MHz from Step 5) / [(ICCH+5) + (ICCL+5)].
• If ICCL==ICCH ≥ 400 kHz = Prescaled Module Clock Frequency / [2×ICCH+10].

7. Configure the Mode Register.
• ICMDR.MST=0; Configure the I2C Controller to operate as SLAVE.
• ICMDR.FDF=0; Free Data Format is disabled.
• ICMDR.BC=0; Set data width to 8 bytes.
• ICMDR.DLB=0; Disable Loopback Mode.
• ICMDR.STB=0; I2C Controller can detect Start condition via H/W.
• ICMDR.RM=1, STP=0, STT=1. See Table 16. (No Activity case).
• Configure remaining bits other than ICMDR.IRS to 0.

8. Release I2C from Reset.
• ICMDR.IRS=1; Make sure you do not over write your previous configurations.

9. Make sure Interrupt Status Register is cleared.
• ICSTR=ICSTR; Clear Interrupt fields that require writing '1' requirements.
• While (ICIVR != 0) Read ICIVR; Read until it is cleared to Zero.

10. Instruct I2C Controller to detect START Condition and Its Own Address.
• ICMDR.STT=1; Make sure you do not over write your previous configurations.
MASTER desires to perform a write transfer.

11. If Master requests a Write, i.e, I2C needs to receive data, perform the following:
• Wait for Receive Interrupt to be received, i.e, ICSTR.ICRRDY=1.
• Read Data.

12. Perform Step 11 until one of the two happens:
• Master generates a STOP Condition (ICSTR.STP=1) or
• I2C Slave desires to end receive transfer.

If the latter, then the I2C needs to Not Acknowledge the last byte to be received from the Master.
After reading the byte prior from the last byte, set NACKMOD bit so that the I2C automatically
NACKs the following received data byte, which is the last data byte.

• ICMDR.NACKMOD=1; set this field on the 2nd data prior from the last.
Master desires to perform a read transfer.

13. If Master requests a Read, i.e, I2C needs to transmit data, perform the following.
• Write Data.
• Wait for Transmit Interrupt to be received, i.e, ICSTR.ICXRDY=1.

14. Perform step 13 until a STOP condition is detected, i.e. (ICSTR.STP=1).

9.2.13 Interrupt Support
The I2C is capable of interrupting the CPU. The CPU can determine which I2C events caused the
interrupt by reading the I2C interrupt vector register (ICIVR). ICIVR contains a binary-coded interrupt
vector type to indicate which interrupt has occurred. Reading ICIVR clears the interrupt flag; if other
interrupts are pending, a new interrupt is generated. If there is more than one pending interrupt flag,
reading ICIVR clears the highest-priority interrupt flag.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Peripheral Architecture www.ti.com

322 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

9.2.13.1 Interrupt Events and Requests
The I2C peripheral can generate the interrupts described in Table 9-3. Each interrupt has a flag bit in the
I2C interrupt status register (ICSTR) and a mask bit in the interrupt mask register (ICIMR). When one of
the specified events occurs, its flag bit is set. If the corresponding mask bit is 0, the interrupt request is
blocked; if the mask bit is 1, the request is forwarded to the CPU as an I2C interrupt.

Table 9-3. Descriptions of the I2C Interrupt Events

I2C Interrupt Initiating Event
Arbitration-lost interrupt (AL) Generated when the I2C arbitration procedure is lost or illegal START/STOP conditions

occur.
No-acknowledge interrupt (NACK) Generated when the master I2C does not receive any acknowledge from the receiver.
Registers-ready-for-access interrupt
(ARDY)

Generated by the I2C when the previously programmed address, data and command have
been performed and the status bits have been updated. This interrupt is used to let the
controlling processor know that the I2C registers are ready to be accessed.

Receive interrupt/status (ICRINT
and ICRRDY)

Generated when the received data in the receive-shift register (ICRSR) has been copied into
the ICDRR. The ICRRDY bit can also be polled by the CPU to read the received data in the
ICDRR.

Transmit interrupt/status (ICXINT
and ICXRDY)

Generated when the transmitted data has been copied from ICDXR to the transmit-shift
register (ICXSR) and shifted out on the SDA pin. This bit can also polled by the CPU to write
the next transmitted data into the ICDXR. Note that since ICXINT is generated during the
copy of ICDXR to ICXSR, ICXINT will be generated even if no slave acknowledges the value
being shifted out of ICXSR.

Stop-Condition-Detection interrupt
(SCD)

Generated when a STOP condition has been detected.

Address-as-Slave interrupt (AAS) Generated when the I2C has recognized its own slave address or an address of all (8)
zeros.

9.2.13.2 Interrupt Multiplexing
The I2C interrupt to the CPU is not multiplexed with any other interrupt source.

9.2.14 DMA Events Generated by the I2C Peripheral
The I2C peripheral generates two DMA events. Activity in the DMA controller can be synchronized to
these events. Note that out of the four DMA controllers included in the device, only DMA controller 2
(DMA2) can synchronize its activity using the I2C events.
• Receive event (ICREVT): When receive data has been copied from the receive shift register (ICRSR)

to the data receive register (ICDRR), the I2C peripheral sends an REVT signal to the DMA controller.
In response, the DMA controller can read the data from ICDRR.

• Transmit event (ICXEVT): When transmit data has been copied from the data transmit register
(ICDXR) to the transmit shift register (ICXSR), the I2C peripheral sends an XEVT signal to the DMA
controller. In response, the DMA controller can write the next transmit data value to ICDXR. Note that
since ICXEVT is generated during the copy of ICDXR to ICXSR, ICXEVT will be generated even if no
slave acknowledges the value being shifted out of ICXSR.

9.2.15 Power Management
There are several ways to reduce the power consumption of the I2C peripheral. First, the I2C peripheral
can be clock-gated to conserve power during periods of no activity. The I2C peripheral clock can be
turned off by using the peripheral clock gating configuration register (PCGCR). Second, the I2C peripheral
clock and output clock (SCL) can be reduced to the minimal possible value allowed by the system. As
described in Section 9.2.2, Clock Generation, these two clocks are controlled through the ICPSC,
ICCLKH, ICCLKL registers. Note that the I2C peripheral clock must be maintained between 7 and 12
MHz. For detailed information on PCGCR, see the device-specific data manual.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Peripheral Architecture

323SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

9.2.16 Emulation Considerations
The response of the I2C events to emulation suspend events (such as halts and breakpoints) is controlled
by the FREE bit in the I2C mode register (ICMDR). The I2C peripheral either stops exchanging data
(FREE = 0) or continues to run (FREE = 1) when an emulation suspend event occurs. How the I2C
peripheral terminates data transactions is affected by whether the I2C peripheral is acting as a master or a
slave. For more information, see the description of the FREE bit in ICMDR (see Section 9.3.10).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

I2C Registers www.ti.com

324 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

9.3 I2C Registers
Table 9-4 lists the memory-mapped registers for the inter-integrated circuit (I2C) peripheral. The I2C
registers can be accessed by the CPU and DMA controller at the absolute 16-bit addresses specified in
Table 9-4. Note that the CPU accesses all peripheral registers through its I/O space. All other register
addresses not listed in Table 9-4 should be considered as reserved locations and the register contents
should not be modified.

Table 9-4. I2C Registers

Offset Acronym Register Name Section
1A00h ICOAR ICOAR Register Section 9.3.1
1A04h ICIMR ICIMR Register Section 9.3.2
1A08h ICSTR ICSTR Register Section 9.3.3
1A0Ch ICCLKL ICCLKL Register Section 9.3.4
1A10h ICCLKH ICCLKH Register Section 9.3.5
1A14h ICCNT ICCNT Register Section 9.3.6
1A18h ICDRR ICDRR Register Section 9.3.7
1A1Ch ICSAR ICSAR Register Section 9.3.8
1A20h ICDXR ICDXR Register Section 9.3.9
1A24h ICMDR ICMDR Register Section 9.3.10
1A28h ICIVR ICIVR Register Section 9.3.11
1A2Ch ICEMDR ICEMDR Register Section 9.3.12
1A30h ICPSC ICPSC Register Section 9.3.13
1A34h ICPID1 ICPID1 Register Section 9.3.14
1A38h ICPID2 ICPID2 Register Section 9.3.15

9.3.1 ICOAR Register
The I2C own address register (ICOAR) is used to specify its own slave address, which distinguishes it
from other slaves connected to the I2C-bus. If the 7-bit addressing mode is selected (XA = 0 in ICMDR),
only bits 6-0 are used; bits 9-7 are ignored.

The I2C own address register (ICOAR) is shown in Figure 9-13 and described in Table 9-5.

Figure 9-13. ICOAR Register
15 10 9 0

Reserved OADDR
R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 9-5. ICOAR Register Field Descriptions

Bit Field Type Reset Description
15-10 Reserved R 0 These reserved bit locations are always read as zeros. A value written to this field has

no effect.
9-0 OADDR R/W 0 Own slave address. Provides the slave address of the I2C. Value is 0 to 3FFh.

In 7-bit addressing mode (XA = 0 in ICMDR): bits 6-0 provide the 7-bit slave address
of the I2C. Bits 9-7 are ignored.
In 10-bit addressing mode (XA = 1 in ICMDR): bits 9-0 provide the 10-bit slave
address of the I2C.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com I2C Registers

325SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

9.3.2 ICIMR Register
The I2C interrupt mask register (ICIMR) is used to individually enable or disable I2C interrupt requests.

The I2C interrupt mask register (ICIMR) is shown in Figure 9-14 and described Table 9-6.

Figure 9-14. ICIMR Register
15 8

Reserved
R-0

7 6 5 4 3 2 1 0
Reserved AAS SCD ICXRDY ICRRDY ARDY NACK AL

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 9-6. ICIMR Register Field Descriptions

Bit Field Type Reset Description
15-7 Reserved R 0 These reserved bit locations are always read as zeros. A value written to this field has

no effect.
6 AAS R/W 0 Address-as-slave interrupt enable bit.

0 = Interrupt request is disabled.
1 = Interrupt request is enabled.

5 SCD R/W 0 Stop condition detected interrupt enable bit.
0 = Interrupt request is disabled.
1 = Interrupt request is enabled.

4 ICXRDY R/W 0 Transmit-data-ready interrupt enable bit.
0 = Interrupt request is disabled.
1 = Interrupt request is enabled.

3 ICRRDY R/W 0 Receive-data-ready interrupt enable bit.
0 = Interrupt request is disabled.
1 = Interrupt request is enabled.

2 ARDY R/W 0 Register-access-ready interrupt enable bit.
0 = Interrupt request is disabled.
1 = Interrupt request is enabled.

1 NACK R/W 0 No-acknowledgment interrupt enable bit.
0 = Interrupt request is disabled.
1 = Interrupt request is enabled.

0 AL R/W 0 Arbitration-lost interrupt enable bit
0 = Interrupt request is disabled.
1 = Interrupt request is enabled.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

I2C Registers www.ti.com

326 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

9.3.3 ICSTR Register
The I2C interrupt status register (ICSTR) is used to determine which interrupt has occurred and to read
status information.

The I2C interrupt status register (ICSTR) is shown in Figure 9-15 and described in Table 9-7.

Figure 9-15. ICSTR Register
15 14 13 12 11 10 9 8

Reserved SDIR NACKSNT BB RSFULL XSMT AAS AD0
R-0 R/W1C-0 R/W1C-0 R/W1C-0 R-0 R-1 R-0 R-0

7 6 5 4 3 2 1 0
Reserved SCD ICXRDY ICRRDY ARDY NACK AL

R-0 R/W1C-0 R/W1C-1 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0
LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear (writing 0 has no effect); -n = value after reset

Table 9-7. ICSTR Register Field Descriptions

Bit Field Type Reset Description
15 Reserved R 0 These reserved bit locations are always read as zeros. A value written to this field has

no effect.
14 SDIR R/W1C 0 Slave direction bit. In digital-loopback mode (DLB), the SDIR bit must be manually

cleared by writing 1.
0 = I2C is acting as a master-transmitter/receiver or a slave-receiver. SDIR is cleared
by one of the following events:
• A STOP or a START condition.
• SDIR is manually cleared. To clear this bit, write a 1 to it.
1 = I2C is acting as a slave-transmitter.

13 NACKSNT R/W1C 0 No-acknowledgment sent bit. NACKSNT bit is used when the I2C is in the receiver
mode. One instance in which NACKSNT is affected is when the NACK mode is used
(see the description for NACKMOD in Section 9.3.10).
0 = NACK is not sent. NACKSNT is cleared by one of the following events:
• NACKSNT is manually cleared. To clear this bit, write a 1 to it.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when 1 is

written to the I2C_RST bit of PRCR).
1 = NACK is sent. A no-acknowledge bit was sent during the acknowledge cycle on
the I2C-bus.

12 BB R/W1C 0 Bus busy bit. BB bit indicates whether the I2C bus is busy or free.
0 = Bus is free. BB is cleared by one of the following events:
• The I2C receives or transmits a STOP bit (bus free).
• BB is manually cleared. To clear this bit, write a 1 to it.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when 1 is

written to the I2C_RST bit of PRCR).
1 = Bus is busy. When the STT bit in ICMDR is set to 1, a restart condition is
generated. BB is set by one of the following events:
• The I2C has received or transmitted a START bit on the bus.
• SCL is in a low state and the IRS bit in ICMDR is 0.

11 RSFULL R 0 Receive shift register full bit. RSFULL indicates an overrun condition during reception.
Overrun occurs when the receive shift register (ICRSR) is full with new data but the
previous data has not been read from the data receive register (ICDRR). The new
data will not be copied to ICDRR until the previous data is read. As new bits arrive
from the SDA pin, they overwrite the bits in ICRSR.
0 = No overrun is detected. RSFULL is cleared by one of the following events:
• ICDRR is read.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when 1 is

written to the I2C_RST bit of PRCR).
1 = Overrun is detected.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com I2C Registers

327SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

Table 9-7. ICSTR Register Field Descriptions (continued)
Bit Field Type Reset Description
10 XSMT R 0 Transmit shift register empty bit. XSMT indicates that the transmitter has experienced

underflow. Underflow occurs when the transmit shift register (ICXSR) is empty but the
data transmit register (ICDXR) has not been loaded since the last ICDXR-to-ICXSR
transfer. The next ICDXR-to-ICXSR transfer will not occur until new data is in ICDXR.
If new data is not transferred in time, the previous data may be re-transmitted on the
SDA pin.
0 = Underflow is detected.
1 = No underflow is detected. XSMT is set by one of the following events:
• Data is written to ICDXR.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when 1 is

written to the I2C_RST bit of PRCR).
9 AAS R 0 Addressed-as-slave bit.

0 = The AAS bit has been cleared by a repeated START condition or by a STOP
condition.
1 = AAS is set by one of the following events:
• I2C has recognized its own slave address or an address of all zeros (general call).
• The first data word has been received in the free data format (FDF = 1 in ICMDR).

8 AD0 R 0 Address 0 bit.
0 = AD0 has been cleared by a START or STOP condition.
1 = An address of all zeros (general call) is detected.

7-6 Reserved R 0 These reserved bit locations are always read as zeros. A value written to this field has
no effect.

5 SCD R/W1C 0 Stop condition detected bit. SCD indicates when a STOP condition has been detected
on the I2C bus. The STOP condition could be generated by the I2C or by another I2C
device connected to the bus.
0 = No STOP condition has been detected. SCD is cleared by one of the following
events:
• By reading the INTCODE bits in ICIVR as 110b. Reading ICIVR also clears the

corresponding status bit in ICSTR except ARDY, ICRRDY, ICXRDY, and AAS.
• SCD is manually cleared. To clear this bit, write a 1 to it.
1 = A STOP condition has been detected.

4 ICXRDY R/W1C 1 Transmit-data-ready interrupt flag bit. ICXRDY indicates that the data transmit register
(ICDXR) is ready to accept new data because the previous data has been copied from
ICDXR to the transmit shift register (ICXSR). The CPU can poll ICXRDY or use the
XRDY interrupt request.
0 = ICDXR is not ready. ICXRDY is cleared by one of the following events:
• Data is written to ICDXR.
• ICXRDY is manually cleared. To clear this bit, write a 1 to it.
1 = ICDXR is ready. Data has been copied from ICDXR to ICXSR. ICXRDY is forced
to 1 when the I2C is reset.

3 ICRRDY R/W1C 0 Receive-data-ready interrupt flag bit. ICRRDY indicates that the data receive register
(ICDRR) is ready to be read because data has been copied from the receive shift
register (ICRSR) to ICDRR. The CPU can poll ICRRDY or use the RRDY interrupt
request.
0 = ICDRR is not ready. ICRRDY is cleared by one of the following events:
• ICDRR is read.
• ICRRDY is manually cleared. To clear this bit, write a 1 to it.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when 1 is

written to the I2C_RST bit of PRCR).
1 = ICDRR is ready. Data has been copied from ICRSR to ICDRR.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

I2C Registers www.ti.com

328 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

Table 9-7. ICSTR Register Field Descriptions (continued)
Bit Field Type Reset Description
2 ARDY R/W1C 0 Register-access-ready interrupt flag bit (only applicable when the I2C is in the master

mode). ARDY indicates that the I2C registers are ready to be accessed because the
previously programmed address, data, and command values have been used. The
CPU can poll ARDY or use the ARDY interrupt request.
0 = The registers are not ready to be accessed. ARDY is cleared by one of the
following events:
• The I2C starts using the current register contents.
• ARDY is manually cleared. To clear this bit, write a 1 to it.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when 1 is

written to the I2C_RST bit of PRCR).
1 = The registers are ready to be accessed. This bit is set after the slave address
appears on the I2C bus.
• In the nonrepeat mode (RM = 0 in ICMDR): If STP = 0 in ICMDR, ARDY is set

when the internal data counter counts down to 0. If STP = 1, ARDY is not affected
(instead, the I2C generates a STOP condition when the counter reaches 0).

• In the repeat mode (RM = 1): ARDY is set at the end of each data word transmitted
from ICDXR.

1 NACK R/W1C 0 No-acknowledgment interrupt flag bit. NACK applies when the I2C is a transmitter
(master or slave). NACK indicates whether the I2C has detected an acknowledge bit
(ACK) or a no-acknowledge bit (NACK) from the receiver. The CPU can poll NACK or
use the NACK interrupt request.
0 = ACK received/NACK is not received. NACK is cleared by one of the following
events:
• NACK is manually cleared. To clear this bit, write a 1 to it.
• The CPU reads the interrupt vector register (ICIVR) when the register contains the

code for a NACK interrupt.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when 1 is

written to the I2C_RST bit of PRCR).
1 = NACK bit is received. The hardware detects that a no-acknowledge (NACK) bit
has been received.
Note: While the I2C performs a general call transfer, NACK is 1, even if one or more
slaves send acknowledgment.

0 AL R/W1C 0 Arbitration-lost interrupt flag bit (only applicable when the I2C is a master-transmitter).
AL primarily indicates when the I2C has lost an arbitration contest with another
master-transmitter. The CPU can poll AL or use the AL interrupt request.
0 = Arbitration is not lost. AL is cleared by one of the following events:
• AL is manually cleared. To clear this bit, write a 1 to it.
• The CPU reads the interrupt vector register (ICIVR) when the register contains the

code for an AL interrupt.
• The I2C is reset (either when 0 is written to the IRS bit of ICMDR or when 1 is

written to the I2C_RST bit of PRCR).
1 = Arbitration is lost. AL is set by one of the following events:
• The I2C senses that it has lost an arbitration with two or more competing

transmitters that started a transmission almost simultaneously.
• The I2C attempts to start a transfer while the BB (bus busy) bit is set to 1.
When AL is set to 1, the MST and STP bits of ICMDR are cleared, and the I2C
becomes a slave-receiver.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com I2C Registers

329SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

9.3.4 ICCLKL Register
For each I2C serial clock cycle, ICCL determines the amount of time the signal is low. ICCLKL must be
configured while the I2C is still in reset (IRS = 0 in ICMDR).

When the I2C is a master, the prescaled module clock is divided down for use as the I2C serial clock on
the SCL pin. The shape of the I2C serial clock depends on two divide-down values, ICCL and ICCH. For
detailed information on how these values are programmed, see Section 9.2.2.

The I2C clock low-time divider register (ICCLKL) is shown in Figure 9-16 and described in Table 9-8.

Figure 9-16. ICCLKL Register
15 0

ICCL
R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 9-8. ICCLKL Register Field Descriptions

Bit Field Type Reset Description
15-0 ICCL R/W 0 Clock low-time divide-down value of 1-65536. The period of the module clock is

multiplied by (ICCL + d) to produce the low-time duration of the I2C serial on the
SCL pin, value = 0-FFFFh.

9.3.5 ICCLKH Register
For each I2C serial clock cycle, ICCH determines the amount of time the signal is high. ICCLKH must be
configured while the I2C is still in reset (IRS = 0 in ICMDR).

When the I2C is a master, the prescaled module clock is divided down for use as the I2C serial clock on
the SCL pin. The shape of the I2C serial clock depends on two divide-down values, ICCL and ICCH. For
detailed information on how these values are programmed, see Section 9.2.2.

The I2C clock high-time divider register (ICCLKH) is shown in Figure 9-17 and described in Table 9-9.

Figure 9-17. ICCLKH Register
15 0

ICCH
R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 9-9. ICCLKH Register Field Descriptions

Bit Field Type Reset Description
15-0 ICCH R/W 0 Clock high-time divide-down value of 1-65536. The period of the module clock is

multiplied by (ICCH + d) to produce the high-time duration of the I2C serial on the
SCL pin. Value is 0 to FFFFh.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

I2C Registers www.ti.com

330 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

9.3.6 ICCNT Register
The I2C data count register (ICCNT) is used to indicate how many data words to transfer when the I2C is
configured as a master-transmitter (MST = 1 and TRX = 1 in ICMDR) and the repeat mode is off (RM = 0
in ICMDR). In the repeat mode (RM = 1), ICCNT is not used.

The value written to ICCNT is copied to an internal data counter. The internal data counter is decremented
by 1 for each data word transferred (ICCNT remains unchanged). If a STOP condition is requested
(STP = 1 in ICMDR), the I2C terminates the transfer with a STOP condition when the countdown is
complete (that is, when the last data word has been transferred).

The data count register (ICCNT) is shown in Figure 9-18 and described in Table 9-10.

Figure 9-18. ICCNT Register
15 0

ICDC
R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 9-10. ICCNT Register Field Descriptions

Bit Field Type Reset Description
15-0 ICDC R/W 0 Data count value. When RM = 0 in ICMDR, ICDC indicates the number of data

words to transfer in the nonrepeat mode. When RM = 1 in ICMDR, the value in
ICCNT is a don't care. If STP = 1 in ICMDR, a STOP condition is generated when
the internal data counter counts down to 0.
0h =The start value loaded to the internal data counter is 65536.
1h-FFFFh = The start value loaded to internal data counter is 1-65535.

9.3.7 ICDRR Register
The I2C data receive register (ICDRR) is used to read the receive data. The ICDRR can receive a data
value of up to 8 bits; data values with fewer than 8 bits are right-aligned in the D bits and the remaining D
bits are undefined. The number of data bits is selected by the bit count bits (BC) of ICMDR. The I2C
receive shift register (ICRSR) shifts in the received data from the SDA pin. Once data is complete, the I2C
copies the contents of ICRSR into ICDRR. The CPU and the DMA controller cannot access ICRSR.

The I2C data receive register (ICDRR) is shown in Figure 9-19 and described in Table 9-11.

Figure 9-19. ICDRR Register
15 8 7 0

Reserved D
R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 9-11. ICDRR Register Field Descriptions

Bit Field Type Reset Description
15-8 Reserved R 0 These reserved bit locations are always read as zeros. A value written to this field has

no effect.
7-0 D R 0-FFh Receive data.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com I2C Registers

331SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

9.3.8 ICSAR Register
The I2C slave address register (ICSAR) contains a 7-bit or 10-bit slave address. When the I2C is not
using the free data format (FDF = 0 in ICMDR), it uses this address to initiate data transfers with a slave
or slaves. When the address is nonzero, the address is for a particular slave. When the address is 0, the
address is a general call to all slaves. If the 7-bit addressing mode is selected (XA = 0 in ICMDR), only
bits 6-0 of ICSAR are used; bits 9-7 are ignored. The I2C slave address register (ICSAR) is shown in
Figure 9-20 and described in Table 9-12.

Figure 9-20. ICSAR Register
15 10 9 0

Reserved SADDR
R-0 R/W-3FFh

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 9-12. ICSAR Register Field Descriptions

Bit Field Type Reset Description
15-10 Reserved R 0 These reserved bit locations are always read as zeros. A value written to this field has

no effect.
9-0 SADDR R/W 0 Slave address. Provides the slave address that the I2C transmits when it is in master-

transmitter mode. In 7-bit addressing mode (XA = 0 in ICMDR): bits 6-0 provide the 7-
bit slave address that the I2C transmits when it is in the master-transmitter mode. Bits
9-7 are ignored. In 10-bit addressing mode (XA = 1 in ICMDR): Bits 9-0 provide the 10-
bit slave address that the I2C transmits when it is in the master-transmitter mode.
Value is 0 to 3FFh.

9.3.9 ICDXR Register
The CPU or DMA writes transmit data to the I2C data transmit register (ICDXR). The ICDXR can accept a
data value of up to 8 bits. When writing a data value with fewer than 8 bits, the written data must be right-
aligned in the D bits. The number of data bits is selected by the bit count bits (BC) of ICMDR. Once data
is written to ICDXR, the I2C copies the contents of ICDXR into the I2C transmit shift register (ICXSR). The
ICXSR shifts out the transmit data from the SDA pin. The CPU and the DMA controller cannot access
ICXSR.

The I2C data transmit register (ICDXR) is shown in Figure 9-21 and described in Table 9-13.

Figure 9-21. ICDXR Register
15 8 7 0

Reserved D
R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 9-13. ICDXR Register Field Descriptions

Bit Field Type Reset Description
15-8 Reserved R 0 These reserved bit locations are always read as zeros. A value written to this field has

no effect.
7-0 D R/W 0 Transmit data. Value is 0 to FFh.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

I2C Registers www.ti.com

332 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

9.3.10 ICMDR Register
The I2C mode register (ICMDR) contains the control bits of the I2C.

The I2C mode register (ICMDR) is shown in shown in Figure 9-22 and described in Table 9-14.

Figure 9-22. ICMDR Register
15 14 13 12 11 10 9 8

NACKMOD FREE STT Reserved STP MST TRX XA
R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0

7 6 5 4 3 2 0
RM DLB IRS STB FDF BC

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 9-14. ICMDR Register Field Descriptions

Bit Field Type Reset Description
15 NACKMOD R/W 0 No-acknowledge (NACK) mode bit (only applicable when the I2C is a receiver).

0 = In slave-receiver mode: The I2C sends an acknowledge (ACK) bit to the
transmitter during the each acknowledge cycle on the bus. The I2C only sends a no-
acknowledge (NACK) bit if you set the NACKMOD bit.
In master-receiver mode: The I2C sends an ACK bit during each acknowledge cycle
until the internal data counter counts down to 0. When the counter reaches 0, the I2C
sends a NACK bit to the transmitter. To have a NACK bit sent earlier, you must set
the NACKMOD bit.
1 = In either slave-receiver or master-receiver mode: The I2C sends a NACK bit to the
transmitter during the next acknowledge cycle on the bus. Once the NACK bit has
been sent, NACKMOD is cleared.
To send a NACK bit in the next acknowledge cycle, you must set NACKMOD before
the rising edge of the last data bit.

14 FREE R/W 0 This emulation mode bit is used to determine the state of the I2C when a breakpoint is
encountered in the high-level language debugger.
0 = When I2C is master: If SCL is low when the breakpoint occurs, the I2C stops
immediately and keeps driving SCL low, whether the I2C is the transmitter or the
receiver. If SCL is high, the I2C waits until SCL becomes low and then stops.
When I2C is slave: A breakpoint forces the I2C to stop when the current
transmission/reception is complete.
1 = The I2C runs free; that is, it continues to operate when a breakpoint occurs.

13 STT R/W 0 START condition bit (only applicable when the I2C is a master). The RM, STT, and
STP bits determine when the I2C starts and stops data transmissions (see Table 9-
15). Note that the STT and STP bits can be used to terminate the repeat mode.
0 = In master mode, STT is automatically cleared after the START condition has been
generated.
In slave mode, if STT is 0, the I2C does not monitor the bus for commands from a
master. As a result, the I2C performs no data transfers.
1 = In master mode, setting STT to 1 causes the I2C to generate a START condition
on the I2C-bus.
In slave mode, if STT is 1, the I2C monitors the bus and transmits/receives data in
response to commands from a master.

12 Reserved R 0 These reserved bit locations are always read as zeros. A value written to this field has
no effect.

11 STP R/W 0 STOP condition bit (only applicable when the I2C is a master). The RM, STT, and
STP bits determine when the I2C starts and stops data transmissions (see Table 9-
15). Note that the STT and STP bits can be used to terminate the repeat mode.
0 = STP is automatically cleared after the STOP condition has been generated.
1 = STP has been set to generate a STOP condition when the internal data counter of
the I2C counts down to 0.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com I2C Registers

333SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

Table 9-14. ICMDR Register Field Descriptions (continued)
Bit Field Type Reset Description
10 MST R/W 0 Master mode bit. MST determines whether the I2C is in the slave mode or the master

mode. MST is automatically changed from 1 to 0 when the I2C master generates a
STOP condition.
0 = Slave mode. The I2C is a slave and receives the serial clock from the master.
1 = Master mode. The I2C is a master and generates the serial clock on the SCL pin.

9 TRX R/W 0 Transmitter mode bit. When relevant, TRX selects whether the I2C is in the transmitter
mode or the receiver mode. Table 9-16 summarizes when TRX is used and when it is
a don't care.
0 = Receiver mode. The I2C is a receiver and receives data on the SDA pin.
1 = Transmitter mode. The I2C is a transmitter and transmits data on the SDA pin.

8 XA R/W 0 Expanded address enable bit.
0 = 7-bit addressing mode (normal address mode). The I2C transmits 7-bit slave
addresses (from bits 6-0 of ICSAR), and its own slave address has 7 bits (bits 6-0 of
ICOAR).
1 = 10-bit addressing mode (expanded address mode). The I2C transmits 10-bit slave
addresses (from bits 9-0 of ICSAR), and its own slave address has 10 bits (bits 9-0 of
ICOAR).

7 RM R/W 0 Repeat mode bit (only applicable when the I2C is a master-transmitter). The RM, STT,
and STP bits determine when the I2C starts and stops data transmissions (see
Table 9-15). If the I2C is configured in slave mode, the RM bit is don't care.
0 = Nonrepeat mode. The value in the data count register (ICCNT) determines how
many data words are received/transmitted by the I2C.
1 = Repeat mode. Data words are continuously received/transmitted by the I2C
regardless of the value in ICCNT until the STP bit is manually set to 1.

6 DLB R/W 0 Digital loopback mode bit (only applicable when the I2C is a master-transmitter). This
bit disables or enables the digital loopback mode of the I2C. The effects of this bit are
shown in Figure 9-23. Note that DLB mode in the free data format mode (DLB = 1 and
FDF = 1) is not supported.
0 = Digital loopback mode is disabled.
1 = Digital loopback mode is enabled. In this mode, the MST bit must be set to 1 and
data transmitted out of ICDXR is received in ICDRR after n clock cycles by an internal
path, where:
n = ((I2C input clock frequency/prescaled module clock frequency) × 8)
The transmit clock is also the receive clock. The address transmitted on the SDA pin
is the address in ICOAR.

5 IRS R/W 0 I2C reset bit. Note that if IRS is reset during a transfer, it can cause the I2C bus to
hang (SDA and SCL are in a high-impedance state).
0 = The I2C is in reset/disabled. When this bit is cleared to 0, all status bits (in ICSTR)
are set to their default values.
1 = The I2C is enabled.

4 STB R/W 0 START byte mode bit (only applicable when the I2C is a master). As described in
version 2.1 of the Philips I2C-bus specification, the START byte can be used to help a
slave that needs extra time to detect a START condition. When the I2C is a slave, the
I2C ignores a START byte from a master, regardless of the value of the STB bit.
0 = The I2C is not in the START byte mode.
1 = The I2C is in the START byte mode. When you set the START condition bit (STT),
the I2C begins the transfer with more than just a START condition. Specifically, it
generates:
1. A START condition
2. A START byte (0000 0001b)
3. A dummy acknowledge clock pulse
4. A repeated START condition
The I2C sends the slave address that is in ICSAR.

3 FDF R/W 0 Free data format mode bit. Note that DLB mode in the free data format mode (DLB =
1 and FDF = 1) is not supported. See Table 9-16.
0 = Free data format mode is disabled. Transfers use the 7-/10-bit addressing format
selected by the XA bit.
1 = Free data format mode is enabled.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

I2C Registers www.ti.com

334 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

Table 9-14. ICMDR Register Field Descriptions (continued)
Bit Field Type Reset Description
2-0 BC R/W 0 Bit count bits. BC defines the number of bits (2 to 8) in the next data word that is to be

received or transmitted by the I2C. The number of bits selected with BC must match
the data size of the other device. Note that when BC = 0, a data word has 8 bits.
If the bit count is less than 8, receive data is right aligned in the D bits of ICDRR and
the remaining D bits are undefined. Also, transmit data written to ICDXR must be right
aligned.
0 = 8 bits per data word
1 = Reserved
2 = 2 bits per data word
3 = 3 bits per data word
4 = 4 bits per data word
5 = 5 bits per data word
6 = 6 bits per data word
7 = 7 bits per data word

Table 9-15. Master-Transmitter/Receiver Bus Activity Defined by RM, STT, and STP Bits

ICMDR Bit
RM STT STP Bus Activity (1) Description
0 0 0 None No activity
0 0 1 P STOP condition
0 1 0 S-A-D..(n)..D START condition, slave address, n data words (n = value in ICCNT)
0 1 1 S-A-D..(n)..D-P START condition, slave address, n data words, STOP condition (n = value in ICCNT)
1 0 0 None No activity
1 0 1 P STOP condition
1 1 0 S-A-D-D-D.. Repeat mode transfer: START condition, slave address, continuous data transfers

until STOP condition or next START condition
1 1 1 None Reserved bit combination (No activity

(1) A = Address; D = Data word; P = STOP condition; S = START condition

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

ICDRR ICRSR
0

1

ICSAR

ICOAR

0

1

ICDXR

ICXSR

0

1 0

0

DLB

SCL_IN

SCL_OUT

Address/data

To internal I2C logic

From internal I2C logic

To internal I2C logic

To CPU or DMA2

From CPU or DMA2

From CPU or DMA2

From CPU or DMA2

SCL

SDA

I2C peripheral

DLB

DLB

www.ti.com I2C Registers

335SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

Table 9-16. How the MST and FDF Bits Affect the Role of TRX Bit

ICMDR Bit
MST FDF I2C State Function of TRX Bit

0 0 In slave mode but not free data format
mode

TRX is a don't care. Depending on the command from the master, the I2C
responds as a receiver or a transmitter.

0 1 In slave mode and free data format
mode

The free data format mode requires that the transmitter and receiver be fixed. TRX
identifies the role of the I2C:
TRX = 0: The I2C is a receiver.
TRX = 1: The I2C is a transmitter.

1 0 In master mode but not free data
format mode

TRX identifies the role of the I2C:

TRX = 0: The I2C is a receiver.
TRX = 1: The I2C is a transmitter.

1 1 In master mode and free data format
mode

The free data format mode requires that the transmitter and receiver be fixed. TRX
identifies the role of the I2C:
TRX = 0: The I2C is a receiver.
TRX = 1: The I2C is a transmitter.

Figure 9-23. Block Diagram Showing the Effects of the Digital Loopback Mode (DLB) Bit

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

I2C Registers www.ti.com

336 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

9.3.11 ICIVR Register
The I2C interrupt vector register (ICIVR) is used by the CPU to determine which event generated the I2C
interrupt. If an interrupt is pending, the corresponding interrupt flag is set in the interrupt status register
(ISR). If a new interrupt occurs, reading ICIVR clears the highest priority interrupt flag in ISR. Reading
ICIVR also clears the corresponding status bit in ICSTR except ARDY, ICRRDY, ICXRDY, and AAS.

Note: You must read and clear ICIVR before starting a new interrupt; otherwise, ICIVR could contain an
incorrect (old interrupt flags) value. The highest priority interrupts should also check the status register to
verify if a lower priority interrupt occurred and changed the status register.

The I2C interrupt vector register (ICIVR) is shown in Figure 9-24 and described in Table 9-17.

Figure 9-24. ICIVR Register
15 3 2 0

Reserved INTCODE
R-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 9-17. ICIVR Register Field Descriptions

Bit Field Type Reset Description
15-3 Reserved R 0 These reserved bit locations are always read as zeros. A value written to this field has

no effect.
2-0 INTCODE R 0 Interrupt code bits. The binary code in INTCODE indicates which event generated an

I2C interrupt.
0 = None
1 = Arbitration-lost interrupt (AL)
2 = No-acknowledgment interrupt (NACK)
3 = Register-access-ready interrupt (ARDY)
4 = Receive-data-ready interrupt (ICRRDY)
5 = Transmit-data-ready interrupt (ICXRDY)
6 = Stop condition detected interrupt (SCD)
7 = Address-as-slave interrupt (AAS)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com I2C Registers

337SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

9.3.12 ICEMDR Register
The I2C extended mode register (ICEMDR) is used to indicate which condition generates a transmit data
ready interrupt.

The I2C extended mode register (ICEMDR) is shown in Figure 9-25 and described in Table 9-18.

Figure 9-25. ICEMDR Register
15 2 1 0

Reserved IGNACK BCM
R-0 R/W-0 R/W-1

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 9-18. ICEMDR Register Field Descriptions

Bit Field Type Reset Description
15-2 Reserved R 0 These reserved bit locations are always read as zeros. A value written to this field has

no effect.
1 IGNACK R/W 0 Ignore NACK mode.

0 = Master transmitter operates normally, that is, it discontinues the data transfer and
sets the ARDY and NACK bits in ICSTR when receiving a NACK from the slave.
1 = Master transmitter ignores a NACK from the slave.

0 BCM R/W 0 Backward compatibility mode bit. Determines which condition generates a transmit
data ready interrupt.
The BCM bit only has an effect when the I2C is operating as a slave-transmitter.
0 = The transmit data ready interrupt is generated when the master requests more
data by sending an acknowledge signal after the transmission of the last data.
1 = The transmit data ready interrupt is generated when the data in ICDXR is copied
to ICXSR.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

I2C Registers www.ti.com

338 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

9.3.13 ICPSC Register
The I2C prescaler register (ICPSC) is used for dividing down the I2C input clock to obtain the desired
prescaled module clock for the operation of the I2C.

The IPSC bits must be initialized while the I2C is in reset (IRS = 0 in ICMDR). The prescaled frequency
takes effect only when the IRS bit is changed to 1. Changing the IPSC value while IRS = 1 has no effect.

The I2C prescaler register (ICPSC) is shown in Figure 9-26 and described in Table 9-19.

Figure 9-26. ICPSC Register
15 8 7 0

Reserved IPSC
R-0 R/W-0

LEGEND: R = Read only; -n = value after reset

Table 9-19. ICPSC Register Field Descriptions

Bit Field Type Reset Description
15-8 Reserved R 0 These reserved bit locations are always read as zeros. A value written to this field has

no effect.
7-0 IPSC R/W 0 I2C prescaler divide-down value. Value is 0 to FFh. IPSC determines how much the

I2C input clock is divided to create the I2C prescaled module clock:
I2C clock frequency = I2C input clock frequency/(IPSC + 1)
Note: IPSC must be initialized while the I2C is in reset (IRS = 0 in ICMDR).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com I2C Registers

339SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-Integrated Circuit (I2C) Peripheral

9.3.14 ICPID1 Register
The I2C peripheral identification registers (ICPID1) contain identification data (class, revision, and type) for
the peripheral.

The I2C peripheral identification register (ICPID1) is shown in Figure 9-27 and described in Table 9-20.

Figure 9-27. ICPID1 Register
15 8 7 0

Class Revision
R-01h R-06h

LEGEND: R = Read only; -n = value after reset

Table 9-20. ICPID1 Register Field Descriptions

Bit Field Type Reset Description
15-8 Class R 0 Identifies class of peripheral.

Serial port. Value is 01h.
7-0 Revision R 0 Identifies revision of peripheral.

Current revision of peripheral. Value is 06h.

9.3.15 ICPID2 Register
The I2C peripheral identification register (ICPID2) is shown in Figure 9-28 and described in Table 9-21.

Figure 9-28. ICPID2 Register
15 8 7 0

Reserved TYPE
R-0 R-05h

LEGEND: R = Read only; -n = value after reset

Table 9-21. ICPID2 Register Field Descriptions

Bit Field Type Reset Description
15-8 Reserved R 0 These reserved bit locations are always read as zeros. A value written to this field has

no effect.
7-0 TYPE R 0 Identifies type of peripheral.

I2C. Value is 05h.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

340 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

Chapter 10
SPRUH87H–August 2011–Revised April 2016

Inter-IC Sound (I2S) Bus

This chapter describes the features and operation of Inter-IC Sound (I2S) Bus.

Topic ... Page

10.1 Introduction .. 341
10.2 Architecture ... 343
10.3 Registers ... 358

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Introduction

341SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

10.1 Introduction
The following sections describe the features and operation of Inter-IC Sound (I2S) Bus. This peripheral
allows serial transfer of full duplex streaming data, usually streaming audio, between DSP and an external
I2S peripheral such as an audio codec.

10.1.1 Purpose of the Peripheral
The I2S bus is used as an interface for full-duplex serial ports such as those found in audio or voice-band
analog to digital converters (ADC) to acquire audio signals or digital-to analog converters (DAC) to drive
speakers and headphones.

10.1.2 Features
The I2S bus supports the following features:
• Full-duplex (transmit and receive) communication.
• Double buffered data registers that allow for continuous data stream.
• Most significant bit (MSB) - first data transfers.
• I2S/Left-justified and DSP serial data communication formats with a data delay of 1 or 2 bits.
• Data word-lengths of 8, 10, 12, 14, 16, 18, 20, 24, or 32 bits.
• Ability to sign-extend received data samples for easy use in signal processing algorithms.
• Ability to pack multiple data words into CPU or DMA accessible data registers to reduce interrupts for

more efficient operation.
• Programmable polarity for both frame synchronization and bit-serial clocks.
• Digital loopback of data from transmit to receive data register(s) for application code debug.
• Stereo (in I2S/Left-justified or DSP data formats) or mono (in DSP data format) mode.
• Programmable divider for serial data clock (bit-clock) generation when I2S bus is used as a master

device.
• Programmable divider for frame sync clock generation when I2S bus is used as the master device.
• Detection of over-run, under-run, and frame-synchronization error conditions.

The DSP includes four independent I2S modules.

10.1.3 Functional Block Diagram
Figure 10-1 is a functional block diagram of the I2S bus illustrating the different control, data transfer,
clock generation and event management blocks and their interactions. The I2S peripheral has a set of
control and data registers which the CPU can access through its I/O space. The DMA can also make 32-
bit accesses to receive and transmit data registers for efficient data transfer.

The bus is configured by writing to the I2Sn Serializer Control Register (I2SSCTRL) bit fields. The bit fields
in this register determine the communication protocol over the I2S bus and the arrangement of data in the
data registers.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Transmit Shift

Register

I2S Module

Receive Shift

Register

Event

Generation

Logic

Syncronizer

Clock

Generation

Logic

I2S Registers

I2S RX

(Data)

I2S FS

(Clock)

I2S CLK

(Clock)

I2S DX

(Data)

External

Pins

1

1

Interrupt Flag Register

Interrupt Register

Sample Rate Generator

Register

Control Register

Pack

Sign Extend

Word Length

Format

Data Delay

Mono

Transmit Left/Right
Data 1/0 Registers

DMA Sync

Events

32

32

Format

FSPol

CLKPol

Receive Buffer

Register

Loopback

Enable

Logic to Add Pack,

Sign Extend
formatting

Logic to Remove
Pack, Sign Extend

formatting

Word Length

Serial

Receive

Logic

Serial

Transmit

Logic

Word
Length

Word
Length

1

1

1

1

Interrupt

Logic

CPU

Interrupts

System

Clock

Transmit Buffer

Register

Receive Left/Right
Data 1/0 Registers

Introduction www.ti.com

342 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

Figure 10-1. Functional Block Diagram

Data on the I2Sn_RX pin is shifted serially into the Receive Shift Register and then copied into the
Receive Buffer Register. The data is then copied to I2Sn Receive Left/Right Data n Registers. For each
channel (left and right), these registers can be accessed as two 16-bit registers by the CPU or as a 32-bit
register by the DMA. Similarly, the I2Sn Transmit Left/Right Data n Registers store the data to be
transmitted out of the I2S peripheral. The CPU or DMA writes the transmit data to the I2Sn Transmit
Left/Right Data n Registers which is then copied to the Transmit Shift Register via the Transmit Buffer
Register and shifted serially out to I2Sn_DX pin. This structure allows internal data movement and
external data communications simultaneously. Data handling and movement is discussed in further detail
in later sections.

The control block consists of internal clock generation, frame synchronization signal generation, and their
control. The I2Sn Sample Rate Generator Register (I2SSRATE) contains fields to configure the frame-
synchronization and bit-clock dividers to drive the I2Sn_FS and I2Sn_CLK clocks when the I2S peripheral
is configured as a master device. When configured as a slave device, the internal clock generation logic is
disabled and frame synchronization is performed on the clocks generated by the external master I2S
device (see Section 10.2.2). The polarities of the bit-clock and the frame-synchronization can be set by the
CLKPOL bit and FSPOL bit respectively in the I2SSCTRL register. The I2S supports a data delay of 1 bit
or 2 bits as configured by the DATADLY bit in the I2SSCTRL register.

The I2S peripheral can be configured to interrupt the CPU by writing to the I2Sn Interrupt Mask Register
(I2SINTMASK). When interrupts are enabled, the event-generation block posts a transmit interrupt when
transmit data registers are empty and a receive interrupt when receive data registers are full. The
corresponding flag is set in the I2Sn Interrupt Flag Register (I2SINTFL). In addition to data transaction
interrupts, error events are also flagged in this register. Error events are not connected to interrupts on the
CPU. The I2S also sends synchronization events corresponding to the transmit and receive events to the
DMA controller associated with the I2S module. The I2SINTMASK register has no effect on DMA sync
signal generation events. (See Section 10.2.10, Section 10.2.11, Section 10.3.7 and Section 10.3.8)

10.1.4 Industry Standard(s) Compliance
This Inter-IC Sound (I2S) Bus is compliant to industry I2S Bus Standard.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

RTC

Crystal

DSP

CLKSEL

External
Input
Clock

I2S _CLKn

I2S _FSn (I2SSRATE[FSDIV])

(I2SSRATE[CLKDIV])

SYSCLKSEL

PCGCR1[I2S CG]n

Clock
Generator

DSP
System
Clock

www.ti.com Architecture

343SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

10.2 Architecture

10.2.1 Clock Control
As shown in Figure 10-2, the I2S bus is driven by the system clock. Unused I2S modules can be
independently idled (clock-gated) via the peripheral clock gating configuration register 1 (PCGCR1) for
power dissipation savings. Each I2S bus should be brought out of idle before being programmed. For
more details, see Section 10.2.12.

Figure 10-2. Inter-IC Sound Clock Control Diagram

If the I2S bus is configured as the master device, the DSP clock generator may need to be programmed to
achieve an appropriate system clock so that the I2S clock dividers can generate the required clock rates.
For more information on the DSP clock generation options, see Chapter 1, System Control.

10.2.2 I2S Clock Generator
The I2Sn Sample Rate Generator Register (I2SSRATE) controls the clock generation logic in the I2S bus.
In slave mode (MODE = 0 in I2SSCTRL - see Section 10.3.1), the required clock signals (I2Sn_CLK and
I2Sn_FS) are generated by the external master I2S device and the internal I2S clock generator is not
used. Configuring the I2SSRATE register has no effect in this mode. However, when configured as a
master device (MODE = 1), the I2S module generates these clocks by dividing the system clock by a
value calculated from the CLKDIV and FSDIV fields programmed in the I2SSRATE register (see
Section 10.3.2). The clocks can be calculated as shown below:

I2Sn_CLK = SystemClock / (2CLKDIV+1)

I2Sn_FS = I2Sn_CLK / (2FSDIV+3)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Architecture www.ti.com

344 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

I2Sn_CLK is the bit-clock that determines the rate at which data bits are transferred on the serial I2S bus.
I2Sn_FS is referred to as the frame-sync clock or word clock and is the rate at which a data word is
transferred to and/or from the I2S module. This can also be seen as the frequency at which data (audio
from a microphone for example) is sampled by an analog-to-digital converter (ADC) or an audio codec.

The clock divide-by value, 2FSDIV+3, that derives the frame-sync clock from the bit-clock (as shown above),
gives the number of data bits (bit-clocks) in one cycle of the frame-sync clock. Since one cycle of the
frame-sync clock should accommodate two data words (one left and one right channel data word) for
stereo operation and one data word (one left channel only) for mono operation, the following restrictions
apply while choosing an appropriate setting for FSDIV:

2FSDIV+3 ≥ 2 * WDLNGTH (for stereo mode)

2FSDIV+3 ≥ WDLNGTH (for mono mode)

For example, to achieve a particular sampling rate of I2Sn_FS = 48000 Hz with stereo operation of data
length of 16 bits, the value of the FSDIV bit in the I2SSRATE register should be first chosen such that:

2FSDIV+3 ≥ 2*16 = 32.

If we choose

FSDIV = 2 (010 binary)

the resultant I2Sn_CLK can be calculated as:

I2Sn_CLK = I2Sn_FS * (2FSDIV+3) = 48000 * 32 = 1.536 MHz.

Based on application requirements, if the DSP needs to be run at a minimum system clock or DSP clock
of 45 MHz, the CLKDIV bit in the I2SSRATE register can be chosen such that,

SystemClock ≥ I2Sn_CLK * 2CLKDIV+1 ≥ 45 MHz

Hence we should choose:

CLKDIV = 4 (100 binary)

Which will give us,

SystemClock = 1.536 MHz * 2 4+1 = 49.15 MHz

As a result, the DSP clock generator should be configured to generate the required clock of 49.15 MHz.
Due to limitations/restrictions of the DSP clock generator, it may not be possible to generate the exact
system clock required, in which case I2Sn_FS will deviate from the expected value. While it is sufficient to
choose a setting for FSDIV such that 2FSDIV+3 is equal to the required number of data bits per frame-
sync clock (as shown in example above), it may sometimes be necessary to choose a higher setting so
that a faster bit-clock can be achieved. For a given system clock, this expedites transfer of data bits of the
programmed word length on the I2S bus. As a result, the interrupts/events occur earlier in the frame-sync
cycle, providing more time for the CPU/DMA to service the interrupt/event before the next interrupt/event.
This is a particularly useful technique when the I2S uses CPU to handle data transfers to/from its data
registers.

NOTE: I2S peripheral clock generator should only be configured if the I2S is configured as a master
device. When the I2S is configured as the slave, the external master device supplies the
required clocks.

10.2.3 Signal and Pin Descriptions
The I2S bus is a four-wire interface with two clock pins, bit-serial clock (I2Sn_CLK) and frame-
synchronization or word clock (I2Sn_FS), and two data pins, serial data transmit (I2Sn_DX) and serial
data receive (I2Sn_RX), for data communication as shown in Figure 10-1. The I2Sn_CLK and I2Sn_FS
pins are bi-directional based on whether the I2S peripheral is configured as a master or slave device.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

DSP
AIC32 or
any I2S

Codec

I2S _CLKn

I2S _FSn

I2S _DXn

I2S _RXn

CLK

WCLK

DIN

DOUT

www.ti.com Architecture

345SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

Table 10-1. I2S Signal Descriptions

Name Signal Description
I2Sn_CLK INPUT /OUTPUT I2S Clock
I2Sn_FS INPUT /OUTPUT I2S Frame Sync Clock
I2Sn_DX OUTPUT I2S Data Transmit
I2Sn_RX INPUT I2S Data Receive

The diagram below is a typical connection between I2S interface to an audio or voice-band Codec.

Figure 10-3. Block Diagram of I2S Interface to Audio/Voice Band Codec

10.2.3.1 Pin Multiplexing
Depending on the I2S bus being used, the DSP should be configured to route those I2S signals to the
multiplexed Serial Port 0, Serial Port 1, or Parallel Port pins by writing to the External Bus Selection
Register (EBSR). For more information on pin multiplexing, see Chapter 1, System Control.

NOTE: Configuring the EBSR to route I2S0 or I2S1 signals to Serial Port0 or Serial Port1
respectively also routes those I2S interrupts to the CPU (see Section 10.2.10).

10.2.4 Frame Clock Timing Requirement in Slave Mode
When configured as the slave, frame clock (I2S_FS) is required to be latched on both edges of the bit
clock (I2S_CLK), which are generated by the external master device. This imposes an additional
constraint on the timing of I2S_FS as illustrated in Figure 10-4. The generated frame clock should meet
the specified setup and hold requirements with respect to the sampling edge of the generated bit clock.
For actual timing requirements, see the I2S section of the datasheet. These constraints imply that the
frame clock transitions should occur in the time window as indicated by the shaded region in the figure.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

I2S_CLK

I2S_FS

Tdelay

I2S_FS

10 9 10

Time interval available for
frame clock transitions

I2S_CLK
(CLKPOL = 1)

I2S_CLK
(CLKPOL = 0)

Architecture www.ti.com

346 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

Figure 10-4. I2S Frame Clock Timing Constraint in Slave Mode

No. Parameter Description
9 tsu(FSV-CLKH) Minimum setup time, I2S_FS valid before I2S_CLK high (CLKPOL = 0)

tsu(FSV-CLKL) Minimum setup time, I2S_FS valid before I2S_CLK low (CLKPOL = 1)
10 th(CLKH-FSV) Minimum hold time, I2S_CLK high to I2S_FS (CLKPOL = 0)

th(CLKL-FSV) Minimum hold time, I2S_CLK low to I2S_FS (CLKPOL = 1)

Devices (ADCs, DACS and audio/voice-band codecs) that interface to the I2S module usually only specify
a maximum delay for the frame clock transition from the falling edge of the bit clock in master mode as
indicated by parameter Tdelay in Figure 10-5.

Figure 10-5. Typical Frame Clock Timing Specification

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

CLK I2S _CLKn

WDCLK

DIN

DOUT

I2S _FSn

I2S _DXn

I2S _RXn

External
Master

I2S
Device

Slave
I2S
Port
on

DSP

R
C

www.ti.com Architecture

347SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

Synchronization issues may occur if the frame clock transitions close to the falling edge of the bit clock
violating the previously described hold requirement resulting in incorrect data transfer. In these
circumstances, the frame clock should be delayed with respect to the bit clock by introducing a time delay
in its signal path as shown in Figure 10-6. The RC circuit delays the frame clock by a value given by the
relation Trc = RC.

Figure 10-6. Delaying I2S Frame Clock to Overcome Synchronization Problems

NOTE: Signal should be probed as close to the device pins as possible for better results.

10.2.5 Protocol Description
The I2S bus communicates with a corresponding external I2S peripheral in a series of 1’s and 0’s. This
series has a hierarchical organization that can be described in terms of bits, words, and frames.

A bit is the smallest entity in the serial stream. A "1" is represented by logic high on the data pin for the
entire duration of a single bit clock. A "0" is represented by a logic low for the entire duration of a single bit
clock.

A word is a group of bits that make up the data being transmitted or received. The length of the word is
programmed by the user in the WDLNGTH field in the I2Sn Serializer Control Register (I2SSCTRL).

A frame is a group of words (usually one – mono or two – stereo) that make up the data being transmitted
or received. The number of bit clocks per frame and the frame rate (sampling frequency) is programmed
by the user in the I2Sn Sample Rate Generator Register (I2SSRATE).

I2S supports two serial data communication formats with external I2S devices: I2S/Left-justified format and
DSP format. The I2S format is a specialized case of the more general left-justified data format. In DSP
mode, the frame is marked between two consecutive pulses of the frame sync signal. On I2S, the frame is
marked by a whole clock cycle of the frame sync signal with 50% duty cycle.

10.2.5.1 I2S/Left-Justified Format
In the left-justified format, the frame-synchronization or word clock has a 50% duty cycle indicating dual
channel data fields with left channel data transferred during one half of the cycle and right channel data
transferred during the other half. The MSB-first data is transferred serially, left justified in its own field with
appropriate bit delays.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

LD(n) LD(n+1)

I2S_FS

I2S_CLK

DATA -
1

-
2

-
3

2 1 03 -
1

-
2

-
3

2 1 03 -
1

-
2

N N N N N N N N N
-
3

3

RD(n)

LEFT CHANNEL RIGHT CHANNEL

LD(n) = n'th sample of left channel data RD(n) = n'th sample of right channel data

LD(n) LD(n+1)

I2S FS

I2S_CLK

DATA -
1

-
2

-
3

2 1 03 -
1

-
2

-
3

2 1 03 -
1

-
2

N N N N N N N N N
-
3

3

RD(n)

LEFT CHANNEL RIGHT CHANNEL

LD(n) = n'th sample of left channel data RD(n) = n'th sample of right channel data

LD(n) LD(n+1)

I2S FS

I2S CLK

DATA -
1

-
2

-
3

2 1 03 -
1

-
2

-
3

2 1 03 -
1

-
2

N N N N N N N N N
-
3

RD(n)

LEFT CHANNEL RIGHT CHANNEL

LD(n) = n'th sample of left channel data RD(n) = n'th sample of right channel data

Architecture www.ti.com

348 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

As shown in Figure 10-7, the typical I2S format utilizes left-justified format with a data delay of one bit and
low frame synchronization pulse for left channel data and high pulse for right channel data. Serial data
sent by the transmitter may be synchronized with either the trailing or the leading edge of serial clock
I2Sn_CLK. However, the serial data must be latched by the receiver on the leading edge of I2Sn_CLK. In
this format, the MSB of the left channel is valid on the second leading edge of the bit-clock, I2Sn_CLK
after the trailing edge of the frame-synchronization clock, I2Sn_FS. Similarly the MSB of the right channel
is valid on the second leading edge of I2Sn_CLK after the leading edge of I2Sn_FS.

Figure 10-7. Timing Diagram for Left-Justified Mode with Inverse Frame-Sync Polarity and One-Bit Delay

Figure 10-8. Timing Diagram for I2S Mode

Figure 10-9. Timing Diagram for I2S Mode with Inverse Bit-Clock Polarity

10.2.5.2 DSP Format
In DSP format, the trailing edge of the frame-synchronization pulse, I2Sn_FS, starts the data transfer with
the left channel data first and immediately followed by the right channel data. Each data bit is valid on the
trailing edge of the bit-clock, I2Sn_CLK. The first data sample can be delayed by 1 bit or 2 bits after the
trailing edge of I2Sn_FS. With one bit delay, the MSB coincides with the trailing edge of I2Sn_FS. With
two bit delay, the MSB follows the trailing edge of I2Sn_FS after one I2Sn_CLK. Figure 10-10 illustrates
DSP format operation with a one-bit data delay.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

LD(n) LD(n+1)

I2S_CLK

DATA -
1

-
2

-
3

2 1 03 -
1

-
2

-
3

03 2 1 -
1

-
2

N N N N N N N N N
-
3

RD(n)

I2S_FS
LEFT CHANNEL RIGHT CHANNEL

LD(n) = n'th sample of left channel data RD(n) = n'th sample of right channel data

www.ti.com Architecture

349SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

Figure 10-10. Timing Diagram for DSP Mode With One-Bit Delay

NOTE:
• The I2Sn_DX and I2Sn_RX pins are tri-stated during unused bit clocks in a frame.
• In I2S/Left-justified format:

– Mono operation is not supported due to the 50% duty cycle restriction on the frame-
synchronization clock.

– The number of I2Sn_CLKs should be greater than or equal to twice the configured
data word-length.

• In DSP format:

– The number of I2Sn_CLKs should be greater than or equal to twice the configured
data word-length for stereo operation.

– The number of I2Sn_CLKs should be greater than or equal to the configured data
word-length for mono operation.

10.2.6 I2S Data Transfer and Control Behavior
When the I2S module is enabled, MSB-first data transfer starts when the appropriate level is detected on
the frame-sync clock. Data in the Transmit Shift Register is shifted out serially to the I2Sn_DX while data
bits are shifted in serially from the I2Sn_RX pin to the Receive Shift Register on the falling or leading edge
of the bit-clock as programmed in the CLKPOL field of the I2SSCTRL. Data for the left channel is
transferred first followed by the right channel data.

The module generates the transmit interrupt/event to indicate that the Transmit Left/Right Data1/0
registers should be filled with valid data for the next set of transfers. The transmit and receive interrupts
should be enabled in the I2SINTMASK register if CPU transfers are desired; if DMA is used to transfer
data these interrupts should be disabled. See Section 10.2.10, Interrupt Support, and Section 10.2.11,
DMA Event Support.

The CPU or DMA servicing the transmit interrupt/event writes the next valid data to the above mentioned
registers. Failure to do so before the next frame-sync cycle will result in the OUERROR being flagged in
the I2SINTFL register (assuming that error detection has been enabled in the I2SINTMASK register). At
the next frame-sync cycle, data from the Transmit Left/Right Data 1/0 registers is copied into the Transmit
Buffer register and then to the Transmit Shift register. See Figure 10-1, Functional Block Diagram.

NOTE: Data should be written into the Transmit Left/Right Data1/0 registers only on a transmit
interrupt. Data can not be preloaded into these registers before enabling the I2S module or
before receiving the first transmit interrupt.

When the required number of data words is received in the Receive Shift register (one for mono or two for
stereo), the data is moved into the Receive Buffer register and ultimately into the Receive Left/Right
Data1/0 registers. A receive interrupt/event is generated at this point. The CPU or DMA servicing this
interrupt reads the register into memory. Failure to do so before the next frame-sync cycle will result in the
OUERROR being flagged in the I2SINTFL register (assuming that error detection has been enabled in the
I2SINTMASK register).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Architecture www.ti.com

350 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

Transmit and receive interrupts/events are continuously generated after every transfer from the transmit
data registers to the transmit buffer register and from the receive buffer register to the receive data
registers respectively. If packed mode is enabled (PACK = 1 in I2SSCTRL), interrupts/events are
generated after all the required number of data words have been transmitted/received (see
Section 10.2.8).

10.2.7 I2S Data Transfer Latency
Due to the buffered nature of the I2S module, there exists some latency in the transmit and receive paths
(from the Transmit Data registers to the I2S_DX pin and I2S_RX pin to Receive Data registers) which is
dependent on the desired configuration of the module. The latency may not be of consequence when the
I2S module in its intended scope of a streaming audio peripheral. However, it is documented here in the
interests of completeness. It will also help explain observed loopback data (LOOPBACK=1 in I2SSCTRL)
as the latency is also present in loopback mode.

10.2.7.1 Transmit Path Latency
After the I2S is enabled, the first valid data sample on the I2Sn_DX pin will appear after:
• Five frame-sync clocks if PACK mode is used (PACK=1 in I2SSCTRL) or,
• Three frame-sync clocks if PACK mode is not used (PACK=0 in I2SSCTRL)

Hence there is a latency of three or five samples (for each channel) before the first data sample that is
written to the Transmit Left/Right Data 1/0 registers after the first transmit interrupt/event. During this time,
the I2S transmits zeros that should be discarded or ignored.

10.2.7.2 Receive Path Latency
After the I2S is enabled, the receive path starts receiving data after:
• 1 or 2 frame-sync clocks for 8-, 18-, 20-, 24-, or 32-bit data depending on other configuration
• 1, 2 or 3 frame-sync clocks for 10-, 12-, 14-, or 16-bit data depending on other configuration

10.2.7.3 Loopback Path Latency
The internal loopback mode (LOOPBACK=1 in I2SSCTRL) can be used as a debug tool to verify the
user's program to service I2S interrupts/events. This is different from an external loopback which would
require the I2Sn_DX pin to be connected to the I2Sn_RX pin. In the internal loopback mode, data from the
Transmit Shift register is directly routed to the Receive Shift register, changing the data latency as given
below:
• If pack mode is used (PACK=1 in I2SSCTRL)

– Ignore the first 6 samples received for 8-bit data and FSDIV=000 in I2SSRATE
– Ignore the first 5 samples received for 8-bit data and FSDIV > 000 in I2SSRATE
– Ignore the first 6 samples received for 10-, 12-, 14- or 16-bit data

• If pack mode is not used (PACK=0 in I2SSCTRL), ignore the first 2 samples received.

10.2.8 Data Packing and Sign Extension Options
The I2S bus supports the use of packed (multiple) and/or sign extended data words in its data registers to
reduce software overheads in servicing interrupts for every data sample and for ease of data handling in
software algorithms.

NOTE: Using the Pack or Sign Extend options does not affect transmission of data samples over the
serial I2S bus; it only affects how data words are arranged in the Receive and Transmit Data
Registers.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

0x1230 0x0000

0x1230

0x0000

0x1230 0x4560

0x1230

0x4560

0x7890 0x4560

0x1230

0x4560

0x7890 0xABC0

0x1230

0x4560

0x7890

0xABC0

Receive Left Data 1/0 Register Receive Left Data 1/0 Register Receive Left Data 1/0 Register Receive Left Data 1/0 Register

DMA

Transfer

DMA

Transfer

On-chip

Memory

On-chip

Memory

On-chip

Memory

On-chip

Memory

1
st

Receive Event

2
nd

Receive Event

Receive Event

Not Generated

Receive Event

Not Generated

0x1230 0x0000

0x1230

0x0000

0x4560 0x0000

0x1230

0x0000

0x4560

0x0000

0x7890 0x0000

0x1230

0x0000

0x0000

0x7890

0x4560

0x0000

0xABC0 0x0000

0x1230

0x0000

0x0000

0xABC0

0x0000

0x7890

0x4560

0x0000

Receive Left Data 1/0 Register Receive Left Data 1/0 Register Receive Left Data 1/0 Register Receive Left Data 1/0 Register

DMA

Transfer

DMA

Transfer

DMA

TransferDMA

Transfer

On-chip

Memory

On-chip

Memory

On-chip

Memory

On-chip

Memory

1
st

Receive Event

1
st

Receive Event

3
rd

Receive Event

2
nd

Receive Event

4
th

Receive Event

www.ti.com Architecture

351SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

10.2.8.1 Data Pack Mode
Setting the PACK bit field in the I2SSCTRL register enables data packing in the 32-bit I2S data registers
for word-lengths of 8, 10, 12, 14 and 16 bits. This mode can be used in the following scenario:
• Using DMA to transfer data samples to make better use of data buffers.
• Using CPU to transfer data samples to reduce interrupt overheads.

During the receive operation, the I2S bus puts successive data samples into the I2Sn Receive Left/Right
Data n Registers (Data 1 register first, Data 0 register next) before generating the interrupt/event. The
transmit data is expected in a similar format in the I2Sn Transmit Left/Right Data n Registers. Four 8-bit
data samples or two 10, 12, 14 or 16-bit data samples can be packed in the data registers, as shown in
Section 10.2.8.3.

The advantages of using the PACK mode can be seen as given below:
• Reduces the number of I2S interrupts/events, which results in reducing interrupt overheads and the

better use of bus bandwidth.
• Efficient use of internal/on-chip memory if DMA is used for transferring data between I2S and main

memory. Since the DMA transfers a double-word (all 32-bits of the I2Sn Transfer Left/Right Data n
Registers) during each transaction, using packed I2Sn Receive/Transmit Left/Right Data n Registers
results in efficient transfer of data samples. Hence, for a given number of samples, size of data buffers
is reduced by a factor of two for 10-, 12-, 14- or 16-bit word length or by a factor of four for 8-bit word
length.

Figure 10-11 and Figure 10-12 illustrate packed and unpacked data receive behavior for mono
transmission of four 12-bit data samples (sign extension is not enabled). When pack mode is not used, the
I2S module stores 12-bit data left-justified in MSW (with trailing zeros) and generates DMA event resulting
in zeros stored in alternate memory locations. When pack mode is used, the module packs 12-bit data left-
justified in MSW first and then LSW (with trailing zeros) and generates DMA event once every two
transfers resulting in better utilization of memory.

Figure 10-11. Example of Unpacked 12-Bit Data Receive

Figure 10-12. Example of Packed 12-Bit Data Receive

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Architecture www.ti.com

352 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

10.2.8.2 Data Sign Extend Mode
The I2S peripherals can be configured to work with sign extended data samples for ease of use in
commonly used S16 or S32 data representations in signal processing algorithms. Data words of lengths 8-
, 10-, 12- or 14-bits are sign-extended (right-justified) to 16 bits (8-bit data cannot be sign extended in
packed mode as four samples are packed into the 32-bit data registers). Data of word lengths 18-, 20- or
24-bits are sign extended (right-justified) to 32 bits.

The choice of PACK, SIGN_EXT and WDLNGTH bit options in the I2SSCTRL register affects the
arrangement of received data in the I2Sn Receive Left/Right Data n Registers. Similarly, the I2S
peripheral expects data to be arranged in a similar fashion in the I2Sn Transmit Left/Right Data n
Registers for the correct data value to be shifted out to the I2Sn_DX pin.

Table 10-2 illustrates sign extension behavior with an example.

Table 10-2. Example of Sign Extension Behavior

Data Register With
SIGN_EXT=0

Data Register With
SIGN_EXT=1

Word Length Data on I2S Bus
Data 1

Register
Data 0

Register
Data 1

Register
Data 0

Register
8 0xA1 0xA100 0x0000 0xFFA1 0x0000
10 0x2B7 0xAD80 0x0000 0xFEB7 0x0000
12 0x6AA 0x6AA0 0x0000 0x06AA 0x0000
14 0x3999 0xE666 0x0000 0xF999 0x0000
16 0x29CC 0x29CC 0x0000 0x29CC 0x0000
18 0x19EFA 0x67BE 0x8000 0x0001 0x9EFA
20 0x7ADE1 0x7ADE 0x1000 0x0007 0xADE1
24 0x98A311 0x98A3 0x1100 0xFF98 0xA311
32 0xD16AEE09 0xD16A 0xEE09 0xD16A 0xEE09

10.2.8.3 PACK and Sign Extend Data Arrangement for Various Word Lengths
The tables in this section describe sign extended and packed data arrangement for each configurable
word length. Data samples are indicated by x[0], x[1], x[2] and x[3] in increasing temporal order (x[3] is the
most recent sample).

10.2.8.3.1 8-Bit Word Length

Table 10-3. PACK and Sign Extend Data Arrangement for 8-Bit Word Length

I2S Receive/Transmit Left or
Right Data 1 Register

I2S Receive/Transmit Left or
Right Data 0 Register

PACK = 0
SIGN_EXT = 0

15 8 7 0 15 0
x(0) 0 0

PACK = 0
SIGN_EXT = 1

15 8 7 0 15 0
Sign Bits (Bit #7) x(0) 0

PACK = 1
SIGN_EXT = 0

15 8 7 0 15 8 7 0
x(0) x(1) x(2) x(3)

PACK = 1
SIGN_EXT = 1

15 8 7 0 15 8 7
x(0) x(1) x(2) x(3)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Architecture

353SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

10.2.8.3.2 10-Bit Word Length

Table 10-4. PACK and Sign Extend Data Arrangement for 10-Bit Word Length

I2S Receive/Transmit Left or
Right Data 1 Register

I2S Receive/Transmit Left or
Right Data 0 Register

PACK = 0
SIGN_EXT = 0

15 6 5 0 15 0
x(0) 0 0

PACK = 0
SIGN_EXT = 1

15 10 9 0 15 0
Sign Bits (Bit #9) x(0) 0

PACK = 1
SIGN_EXT = 0

15 6 5 0 15 6 5 0
x(0) 0 x(1) 0

PACK = 1
SIGN_EXT = 1

15 10 9 0 15 10 9
Sign Bits (Bit #9) x(0) Sign Bits (Bit #9) x(1)

10.2.8.3.3 12-Bit Word Length

Table 10-5. PACK and Sign Extend Data Arrangement for 12-Bit Word Length

I2S Receive/Transmit Left or
Right Data 1 Register

I2S Receive/Transmit Left or
Right Data 0 Register

PACK = 0
SIGN_EXT = 0

15 4 3 0 15 0
x(0) 0 0

PACK = 0
SIGN_EXT = 1

15 12 11 0 15 0
Sign Bits (Bit #11) x(0) 0

PACK = 1
SIGN_EXT = 0

15 4 3 0 15 4 3 0
x(0) 0 x(1) 0

PACK = 1
SIGN_EXT = 1

15 12 11 0 15 12 11
Sign Bits (Bit #11) x(0) Sign Bits (Bit #11) x(1)

10.2.8.3.4 14-Bit Word Length

Table 10-6. PACK and Sign Extend Data Arrangement for 14-Bit Word Length

I2S Receive/Transmit Left or
Right Data 1 Register

I2S Receive/Transmit Left or
Right Data 0 Register

PACK = 0
SIGN_EXT = 0

15 2 1 0 15 0
x(0) 0 0

PACK = 0
SIGN_EXT = 1

15 14 13 0 15 0
Sign Bits (Bit #13) x(0) 0

PACK = 1
SIGN_EXT = 0

15 2 1 0 15 2 1 0
x(0) 0 x(1) 0

PACK = 1
SIGN_EXT = 1

15 14 13 0 15 14 13
Sign Bits (Bit #13) x(0) Sign Bits (Bit #13) x(1)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Architecture www.ti.com

354 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

10.2.8.3.5 16-Bit Word Length

Table 10-7. PACK and Sign Extend Data Arrangement for 16-Bit Word Length

I2S Receive/Transmit Left or
Right Data 1 Register

I2S Receive/Transmit Left or
Right Data 0 Register

PACK = 0
SIGN_EXT = 0

15 0 15 0
x(0) 0

PACK = 0
SIGN_EXT = 1

15 0 15 0
x(0) 0

PACK = 1
SIGN_EXT = 0

15 0 15 0
x(0) x(1)

PACK = 1
SIGN_EXT = 1

15 0 15
x(0) x(1)

10.2.8.3.6 18-Bit Word Length

Table 10-8. PACK and Sign Extend Data Arrangement for 18-Bit Word Length

I2S Receive/Transmit Left or
Right Data 1 Register

I2S Receive/Transmit Left or
Right Data 0 Register

PACK = 0
SIGN_EXT = 0

15 0 15 14 13 0
x(0) Bits[17-2] x(0) Bits[1-0] 0

PACK = 0
SIGN_EXT = 1

15 2 1 0 15 0
Sign Bits(Bit #17) x(0) Bits[17-16] x(0) Bits[15-0]

PACK = 1
SIGN_EXT = 0 Not Supported Not Supported

PACK = 1
SIGN_EXT = 1 Not Supported Not Supported

10.2.8.3.7 20-Bit Word Length

Table 10-9. PACK and Sign Extend Data Arrangement for 20-Bit Word Length

I2S Receive/Transmit Left or
Right Data 1 Register

I2S Receive/Transmit Left or
Right Data 0 Register

PACK = 0
SIGN_EXT = 0

15 0 15 12 11 0
x(0) Bits[19-4] x(0) Bits[3-0] 0

PACK = 0
SIGN_EXT = 1

15 4 3 0 15 0
Sign Bits(Bit #19) x(0) Bits[19-16] x(0) Bits[15-0]

PACK = 1
SIGN_EXT = 0 Not Supported Not Supported

PACK = 1
SIGN_EXT = 1 Not Supported Not Supported

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Architecture

355SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

10.2.8.3.8 24-Bit Word Length

Table 10-10. PACK and Sign Extend Data Arrangement for 24-Bit Word Length

I2S Receive/Transmit Left or
Right Data 1 Register

I2S Receive/Transmit Left or
Right Data 0 Register

PACK = 0
SIGN_EXT = 0

15 0 15 8 7 0
x(0) Bits[23-8] x(0) Bits[7-0] 0

PACK = 0
SIGN_EXT = 1

15 8 7 0 15 0
Sign Bits(Bit #23) x(0) Bits[23-16] x(0) Bits[15-0]

PACK = 1
SIGN_EXT = 0 Not Supported Not Supported

PACK = 1
SIGN_EXT = 1 Not Supported Not Supported

10.2.8.3.9 32-Bit Word Length

Table 10-11. PACK and Sign Extend Data Arrangement for 32-Bit Word Length

I2S Receive/Transmit Left or
Right Data 1 Register

I2S Receive/Transmit Left or
Right Data 0 Register

PACK = 0
SIGN_EXT = 0

15 0 15 0
x(0) Bits[32-16] x(0) Bits[15-0]

PACK = 0
SIGN_EXT = 1

15 0 15 0
x(0) Bits[32-16] x(0) Bits[15-0]

PACK = 1
SIGN_EXT = 0 Not Supported Not Supported

PACK = 1
SIGN_EXT = 1 Not Supported Not Supported

10.2.9 Reset Considerations
The I2S bus has two reset sources: software reset and hardware reset.

10.2.9.1 Software Reset Considerations
The I2S bus can be reset by software through the Peripheral Reset Control Register (PRCR). The
software reset is very similar to hardware reset with the only exception being that the data in shift registers
are not reset. For more details on PRCR, see the device-specific DSP system guide.

10.2.9.2 Hardware Reset Considerations
A hardware reset is always initiated during a full chip reset. When a hardware reset occurs, all the
registers of the I2S bus are set to their default values.

10.2.10 Interrupt Support
Every I2S bus supports transmit and receive data-transfer interrupts/events to CPU or DMA and flags two
error conditions. These are enabled or disabled by writing to the I2SINTMASK register. There are
separate data-transfer interrupt mask bits for stereo or mono operating modes. The interrupts are also
flagged in the I2SINTFL.

For Stereo operating mode (MONO=0 in I2SSCTRL) and with the corresponding STEREO interrupts
enabled, transmit/receive interrupts are generated after the right channel data has been transferred (since
right channel data is always transmitted/received last). In Mono mode (MONO=1 in I2SSCTRL) , only left
channel data is transferred, hence the interrupts are generated after the transmit/receive of left channel
data. Mono mode can only be used with DSP format (FRMT = 1 in I2SSCRTL).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Architecture www.ti.com

356 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

NOTE: I2S bus behavior is not defined if stereo and mono interrupts are simultaneously enabled.
The I2S module flags an OUERROR (if enabled in I2SINTMASK) incorrectly when the
module is enabled for the first time. The user program should ignore this error.

10.2.10.1 Interrupt Multiplexing
Interrupts to the CPU of two I2S peripherals, I2S0 and I2S1, are multiplexed with MMC/SD0 and
MMC/SD1 interrupts. Configuring Serial Port 0 or Serial Port 1 fields in the External Bus Selection register
to route I2S signals to the external pins also routes the corresponding I2S interrupts to the CPU. For
details, see Chapter 1, System Control.

10.2.11 DMA Event Support
Each I2S bus has access to one of the four DMA peripherals on the DSP as shown in Table 10-12. To
enable seamless transfers using the DMA, the I2S bus generates data-transfer events to DMA irrespective
of the value configured in the I2SINTMASK register. Hence, it is recommended to disable CPU data-
transfer interrupts in the I2SINTMASK register when using the DMA for data transfers. For Stereo
operating mode (MONO=0 in I2SSCTRL), transmit/receive events are generated after the right channel
data has been transferred (since right channel data is always transmitted/received last). In Mono mode
(MONO=1 in I2SSCTRL) , only left channel data is transferred, hence the events are generated after the
transmit/receive of left channel data. Mono mode can only be used with DSP format (FRMT = 1 in
I2SSCRTL). For details on DMA configurations options, see Chapter 1, System Control.

Table 10-12. DMA Access to I2S

DMA Engine I2S Bus
DMA0 I2S0
DMA1 I2S2
DMA2 I2S3
DMA3 I2S1

NOTE: The DMA can be used to transfer data samples in single double-word bursts from the I2S to:
• On-chip memory (DARAM/SARAM)

10.2.12 Power Management
The I2S peripherals can be put into idle condition to save power consumption. This is achieved by gating
the system clock to the I2S peripherals via individual fields in the Peripheral Clock Gating Configuration
registers described in Chapter 1, System Control.

10.2.13 Emulation Considerations
An emulation halt will not stop I2S operation and an over-run/under-run error condition will be flagged (if
enabled) in the I2SINTFL register if the CPU or DMA is unable to service I2S interrupts/events as a result
of the emulation halt.

Refreshing CPU registers or memory contents in Code Composer Studio when the I2S is running could
result in the DSP missing real-time operation due to JTAG communication overheads over the internal
data buses. This would result in over-run/under-run errors being flagged (if enabled) in the I2SINTFL
register.

10.2.14 Steps for I2S Configuration and I2S Interrupt Service Routine (ISR)
A sequence of steps for configuring an I2S bus and servicing interrupts in an interrupt service routine
(ISR) are given below:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Architecture

357SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

10.2.14.1 Initialization and Configuration Steps
• Bring I2S out of idle.
• If using DMA, reset DMA and MPORT idle bit-fields and run idle instruction to force MPORT out of idle.
• Disable DSP global interrupts.
• Clear DSP interrupt flag registers and enable appropriate I2S/DMA interrupts.
• If using DMA, configure DMA and sync DMA channel(s) to I2S sync event(s).
• Configure external I2S-compatible device.
• Enable DSP global interrupts.
• I2S Configuration:

– Route I2S signals to external pins.
– If I2S is the master device, configure the I2SSRATE register.
– If using CPU interrupts, configure I2SINTMASK register to enable stereo receive/transmit interrupts

for stereo mode operation or mono receive/transmit interrupts for mono mode operation (Peripheral
behavior is not defined if both stereo and mono interrupts are enabled).
• If the software/application is designed to respond to the detection of the error condition, enable

error interrupts (disregard first OUERROR that is generated).
• Do not enable stereo/mono TX or RX interrupts if DMA is used for data transfers.

– Write desired configuration value to I2Sn Serializer Control Register (I2SSCTRL) (If writing to
individual bit fields, enable the I2S by setting the ENABLE bit in I2SSCTRL last.
• The I2S bus now starts data conversion.
• If configured as master device, I2S bus will generate interrupts/events even if external I2S-

compatible device is not configured correctly and hence not executing data transfers.
• If configured as a slave device, interrupt/event generation depends on proper operation of the

external master device.
• If CPU is not performing other operations, the CPU can now be idled for power savings (if DMA is used

for data transfers and software/application requires detection of error conditions, CPU may read the
I2Sn Interrupt Flag Register (I2SINTFL) at regular intervals to check the error flag). For more
information on the CPU idle mode, see Chapter 1, System Control.

• An I2S (or DMA) interrupt will indicate completion of data transfer(s) and CPU is automatically brought
of idle and the interrupt is taken.

10.2.14.2 ISR Steps (for CPU transfers)
Transmit and receive interrupts should have distinct interrupt service routines. A common framework is
given below:
• Read the I2SINTFL register to reset the flags and if error detection is required, check for error flags.
• Read or write the I2Sn Receive/Transmit Left/Right Data n Registers for receive and transmit interrupts

respectively based on the I2S configuration (Mono, PACK, Sign Extend, Word Length options).
• Return from interrupt.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

358 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

10.3 Registers
Table 10-13 through Table 10-16 lists the registers of the Inter-IC Sound (I2S) Bus. Refer to the sections
listed for detailed information on each register.

Table 10-13. I2S0 Register Mapping Summary

CPU Word
Address Acronym Description

2800h I2SSCTRL I2S Serializer Control Register Section 10.3.1
2804h I2SSRATE I2S Sample Rate Generator Register Section 10.3.2
2808h I2STXLT0 I2S Transmit Left Data 0 Register Section 10.3.3
2809h I2STXLT1 I2S Transmit Left Data 1 Register Section 10.3.4
280Ch I2STXRT0 I2S Transmit Right Data 0 Register Section 10.3.5
280Dh I2STXRT1 I2S Transmit Right Data 1 Register Section 10.3.6
2810h I2SINTFL I2S Interrupt Flag Register Section 10.3.7
2814h I2SINTMASK I2S Interrupt Mask Register Section 10.3.8
2828h I2SRXLT0 I2S Receive Left Data 0 Register Section 10.3.9
2829h I2SRXLT1 I2S Receive Left Data 1 Register Section 10.3.10
282Ch I2SRXRT0 I2S Receive Right Data 0 Register Section 10.3.11
282Dh I2SRXRT1 I2S Receive Right Data 1 Register Section 10.3.12

Table 10-14. I2S1 Register Mapping Summary

CPU Word
Address Acronym Description

2900h I2SSCTRL I2S Serializer Control Register Section 10.3.1
2904h I2SSRATE I2S Sample Rate Generator Register Section 10.3.2
2908h I2STXLT0 I2S Transmit Left Data 0 Register Section 10.3.3
2909h I2STXLT1 I2S Transmit Left Data 1 Register Section 10.3.4
290Ch I2STXRT0 I2S Transmit Right Data 0 Register Section 10.3.5
290Dh I2STXRT1 I2S Transmit Right Data 1 Register Section 10.3.6
2910h I2SINTFL I2S Interrupt Flag Register Section 10.3.7
2914h I2SINTMASK I2S Interrupt Mask Register Section 10.3.8
2928h I2SRXLT0 I2S Receive Left Data 0 Register Section 10.3.9
2929h I2SRXLT1 I2S Receive Left Data 1 Register Section 10.3.10
292Ch I2SRXRT0 I2S Receive Right Data 0 Register Section 10.3.11
292Dh I2SRXRT1 I2S Receive Right Data 1 Register Section 10.3.12

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

359SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

Table 10-15. I2S2 Register Mapping Summary

CPU Word
Address Acronym Description
2A00h I2SSCTRL I2S Serializer Control Register Section 10.3.1
2A04h I2SSRATE I2S Sample Rate Generator Register Section 10.3.2
2A08h I2STXLT0 I2S Transmit Left Data 0 Register Section 10.3.3
2A09h I2STXLT1 I2S Transmit Left Data 1 Register Section 10.3.4
2A0Ch I2STXRT0 I2S Transmit Right Data 0 Register Section 10.3.5
2A0Dh I2STXRT1 I2S Transmit Right Data 1 Register Section 10.3.6
2A10h I2SINTFL I2S Interrupt Flag Register Section 10.3.7
2A14h I2SINTMASK I2S Interrupt Mask Register Section 10.3.8
2A28h I2SRXLT0 I2S Receive Left Data 0 Register Section 10.3.9
2A29h I2SRXLT1 I2S Receive Left Data 1 Register Section 10.3.10
2A2Ch I2SRXRT0 I2S Receive Right Data 0 Register Section 10.3.11
2A2Dh I2SRXRT1 I2S Receive Right Data 1 Register Section 10.3.12

Table 10-16. I2S3 Register Mapping Summary

CPU Word
Address Acronym Description
2B00h I2SSCTRL I2S Serializer Control Register Section 10.3.1
2B04h I2SSRATE I2S Sample Rate Generator Register Section 10.3.2
2B08h I2STXLT0 I2S Transmit Left Data 0 Register Section 10.3.3
2B09h I2STXLT1 I2S Transmit Left Data 1 Register Section 10.3.4
2B0Ch I2STXRT0 I2S Transmit Right Data 0 Register Section 10.3.5
2B0Dh I2STXRT1 I2S Transmit Right Data 1 Register Section 10.3.6
2B10h I2SINTFL I2S Interrupt Flag Register Section 10.3.7
2B14h I2SINTMASK I2S Interrupt Mask Register Section 10.3.8
2B28h I2SRXLT0 I2S Receive Left Data 0 Register Section 10.3.9
2B29h I2SRXLT1 I2S Receive Left Data 1 Register Section 10.3.10
2B2Ch I2SRXRT0 I2S Receive Right Data 0 Register Section 10.3.11
2B2Dh I2SRXRT1 I2S Receive Right Data 1 Register Section 10.3.12

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

360 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

10.3.1 I2Sn Serializer Control Register (I2SSCTRL)
The I2Sn serializer control register (I2SSCTRL) is shown in Figure 10-13 and described in Table 10-17.

Figure 10-13. I2Sn Serializer Control Register (I2SSCTRL)
15 14 13 12 11 10 9 8

ENABLE Reserved MONO LOOPBACK FSPOL CLKPOL DATADLY
R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

7 6 5 2 1 0
PACK SIGN_EXT WDLNGTH MODE FRMT
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 10-17. I2Sn Serializer Control Register (I2SSCTRL) Field Descriptions

Bit Field Type Reset Description
15 ENABLE R/W 0 Resets or enables the serializer transmission or reception.

0 = The I2S Bus (Data XFR, clock generation, and event gen logic) is disabled and
held in reset state.
1 = I2S enabled.

14-13 Reserved R 0 Reserved.
12 MONO R/W 0 Sets I2S into mono or Stereo mode.

0 = Stereo mode.
1 = Mono mode. Valid only when bit 0, FRMT=1 (DSP Format).

11 LOOPBACK R/W 0 Routes data from transmit shift register back to receive shift register for internal digital
loopback.
0 = Normal operation, no loopback.
1 = Digital Loopback mode enabled.

10 FSPOL R/W 0 Inverts I2S frame-synchronization polarity.
0 = The following:
FRMT (bit 0): Function
0: (I2S/LJ) Frame-synchronization pulse is low for left word and high for right word
1: (DSP) Frame-synchronization is pulsed high

1 = The following:
FRMT (bit 0): Function
0: (I2S/LJ) Frame-synchronization pulse is high for left word and low for right word
1: (DSP)Frame-synchronization is pulsed low

9 CLKPOL R/W 0 Controls I2S clock polarity.
0 = The following:
FRMT (bit 0): Function
0: (I2S/LJ) Receive data is sampled on the rising edge and transmit data shifted on
the falling edge of the bit clock.
1: (DSP) Receive data is sampled on the falling edge and transmit data shifted on the
rising edge of the bit clock.

1 = The following:
FRMT (bit 0): Function
0: (I2S/LJ) Receive data is sampled on the falling edge and transmit data shifted on
the rising edge of the bit clock.
1: (DSP) Receive data is sampled on the rising edge and transmit data falling on the
rising edge of the bit clock.

8 DATADLY R/W 0 Sets the I2S receive/transmit data delay.
0 = 1-bit data delay.
1 = 2-bit data delay.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

361SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

Table 10-17. I2Sn Serializer Control Register (I2SSCTRL) Field Descriptions (continued)
Bit Field Type Reset Description
7 PACK R/W 0 Enable data packing. Divides down the generation of interrupts so that data is packed

into the 32-bit receive/transmit word registers for each channel (left/right).
0 = Data packing mode disabled.
1 = Data packing mode enabled.
For more information about data packing, see Section 10.2.8.

6 SIGN_EXT R/W 0 Enable sign extension of words.
0 = No sign extension.
1 = Received data is sign extended. Transmit data is expected to be sign extended.
For more information about sign extension, see Section 10.2.8.

5-2 WDLNGTH R/W 0 Choose serializer word length.
0 = 8-bit data word.
1h = 10-bit data word.
2h = 12-bit data word.
3h = 14-bit data word.
4h = 16-bit data word.
5h = 18-bit data word.
6h = 20-bit data word.
7h = 24-bit data word.
8h = 32-bit data word.
9 to Fh = Reserved.

1 MODE R/W 0 Sets the serializer in master or slave mode.
0 = Serializer is configured as a slave. I2Sn_CLK and I2Sn_FS pins are configured as
inputs. The bit-clock and frame-synchronization signals are derived from an external
source and are provided directly to the I2S synchronizer without being further divided.
1 = Serializer is configured as a master. I2Sn_CLK and I2Sn_FS pins are configured
as outputs and driven by the clock generators. The bit-clock and frame-
synchronization signals are derived from the internal CPU clock.

0 FRMT R/W 0 Sets the serializer data format.
0 = I2S/left-justified format.
1 = DSP format.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

362 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

10.3.2 I2Sn Sample Rate Generator Register (I2SSRATE)
The I2Sn sample rate generator register (I2SSRATE) shown below controls the operation and various
features of the sample rate generator. In master mode, the serializer generates the required clock signals
by dividing the input clock by CLKDIV and additionally by FSDIV bit values programmed in the I2SSRATE
register. In slave mode, the clocks are externally derived and fed directly to the serializer without division.
Hence, this register is ignored in slave mode.

The I2Sn sample rate generator register (I2SSRATE) is shown in Figure 10-14 and described in Table 10-
18.

Figure 10-14. I2Sn Sample Rate Generator Register (I2SSRATE)
15 6 5 3 2 0

Reserved FSDIV CLKDIV
R-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 10-18. I2Sn Sample Rate Generator Register (I2SSRATE) Field Descriptions

Bit Field Reset Description
15-6 Reserved 0 Reserved.
5-3 FSDIV 0 Divider to generate I2Sn_FS (frame-synchronization clock). The I2Sn_CLK is divided down by the

configured value to generate the frame-synchronization clock. (Has no effect when I2S is
configured as slave device).
0 = Divide by 8
1h = Divide by 16
2h = Divide by 32
3h = Divide by 64
4h = Divide by 128
5h = Divide by 256
6h = Reserved
7h = Reserved

2-0 CLKDIV 0 Divider to generate I2Sn_CLK (bit-clock). The system clock (or DSP clock) to the I2S is divided
down by the configured value to generate the bit clock. (Has no effect when I2S is configured as
slave device).
0 = Divide by 2.
1h = Divide by 4.
2h = Divide by 8.
3h = Divide by 16.
4h = Divide by 32.
5h = Divide by 64.
6h = Divide by 128.
7h = Divide by 256.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

363SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

10.3.3 I2Sn Transmit Left Data 0 Register (I2STXLT0)
The I2Sn transmit left data 0 register (I2STXLT0) is shown in Figure 10-15 and described in Table 10-19.

Each I2S module has two double-word (32-bit) transmit data registers to hold left and right channel data
respectively. Each double-word register is accessible as two 16-bit registers by the CPU or as a single
double-word register by the DMA for efficient data transfer.

Figure 10-15. I2Sn Transmit Left Data 0 Register (I2STXLT0)
15 0

DATA
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 10-19. I2Sn Transmit Left Data 0 Register (I2STXLT0) Field Descriptions

Bit Field Type Reset Description
15-0 DATA R/W 0 Transmit left data lower 16 bits, value 0 to FFFFh.

10.3.4 I2Sn Transmit Left Data 1 Register (I2STXLT1)
The I2Sn transmit left data 1 register (I2STXLT1) is shown in Figure 10-16 and described in Table 10-20.

Figure 10-16. I2Sn Transmit Left Data 1 Register (I2STXLT1)
15 0

DATA
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 10-20. I2Sn Transmit Left Data 1 Register (I2STXLT1) Field Descriptions

Bit Field Type Reset Description
15-0 DATA R/W 0 Transmit left data upper 16 bits, value 0 to FFFFh.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

364 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

10.3.5 I2Sn Transmit Right Data 0 Register (I2STXRT0)
TheI2Sn transmit right data 0 register (I2STXRT0) is shown in Figure 10-17 and described in Table 10-21.

Figure 10-17. I2Sn Transmit Right Data 0 Register (I2STXRT0)
15 0

DATA
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 10-21. I2Sn Transmit Right Data 0 Register (I2STXRT0) Field Descriptions

Bit Field Type Reset Description
15-0 DATA R/W 0 Transmit right data lower 16 bits, value 0 to FFFFh.

10.3.6 I2Sn Transmit Right Data 1 Register (I2STXRT1)
The I2Sn transmit right data 1 register (I2STXRT1) is shown in Figure 10-18 and described in Table 10-
22.

Figure 10-18. I2Sn Transmit Right Data 1 Register (I2STXRT1)
15 0

DATA
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 10-22. I2Sn Transmit Right Data 1 Register (I2STXRT1) Field Descriptions

Bit Field Type Reset Description
15-0 DATA R/W 0 Transmit right data upper 16 bits, value 0 to FFFFh.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

365SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

10.3.7 I2Sn Interrupt Flag Register (I2SINTFL)
The I2Sn interrupt flag register (I2SINTFL) is shown in Figure 10-19 and described in Table 10-23.

Figure 10-19. I2Sn Interrupt Flag Register (I2SINTFL)
15 8

Reserved
R-0

7 6 5 4 3 2 1 0
Reserved XMITSTFL XMITMONFL RCVSTFL RCVMONFL FERRFL OUERR

R-0 R-0 R-0 R-0 R-0 R-0 R-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 10-23. I2Sn Interrupt Flag Register (I2SINTFL) Field Descriptions

Bit Field Type Reset Description
15-6 Reserved R 0 Reserved.

5 XMITSTFL R 0 Stereo data transmit flag. Used only when the MONO bit 12 in the I2SSCTRL register
= 0 (Stereo mode). This bit is cleared on read.
0 = No pending stereo transmit interrupt.
1 = Stereo transmit interrupt pending. Write new data value to I2S Transmit Left and
Right data 0 and 1 registers.

4 XMITMONFL R 0 Mono data transmit flag. Used only when the MONO bit 12 in the I2SSCTRL register =
1 (Mono mode). This bit is cleared on read.
0 = No pending mono transmit interrupt.
1 = Mono transmit interrupt pending. Write new data value to Transmit Left Data 0 and
1 registers.

3 RCVSTFL R 0 Stereo data receive flag. Used only when the MONO bit 12 in the I2SSCTRL register
= 0 (Stereo mode). This bit is cleared on read.
0 = No pending stereo receive interrupt.
1 = Stereo receive interrupt pending. Read Receive Left and Right data 0 and 1
registers.

2 RCVMONFL R 0 Mono data receive flag. Used only when the MONO bit 12 in the I2SSCTRL register =
1 (Mono mode). This bit is cleared on read.
0 = No pending mono receive interrupt.
1 = Mono receive interrupt pending. Read Receive Left data 0 and 1 registers.

1 FERRFL R 0 Frame-synchronization error flag. This bit is cleared on read.
0 = No frame-synchronization errors.
1 = Frame-synchronization error(s) occurred.

0 OUERRFL R 0 Overrun or Underrun condition. This bit is cleared on read.
0 = No overrun/under-run errors.
1 = The data registers were not read from or written to before the receive/transmit
buffer was overwritten.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

366 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

10.3.8 I2Sn Interrupt Mask Register (I2SINTMASK)
The I2Sn interrupt mask register (I2SINTMASK) is shown in Figure 10-20 and described in Table 10-24.

Figure 10-20. I2Sn Interrupt Mask Register (I2SINTMASK)
15 8

Reserved
R-0

7 6 5 4 3 2 1 0
Reserved XMITST XMITMON RCVST RCVMON FERR OUERR

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 10-24. I2Sn Interrupt Mask Register (I2SINTMASK) Field Descriptions

Bit Field Type Reset Description
15-6 Reserved R 0 Reserved.

5 XMITST R/W 0 Enable stereo left/right transmit data interrupt. Used only when the MONO bit 12 in the
I2SSCTRL register = 0 (Stereo mode).
0 = Disable stereo TX data interrupt.
1 = Enable stereo TX data interrupt.

4 XMITMON R/W 0 Enable mono left transmit data interrupt. Used only when the MONO bit 12 in the
I2SSCTRL register = 1 (Mono mode).
0 = Disable mono TX data interrupt.
1 = Enable mono TX data interrupt.

3 RCVST R/W 0 Enable stereo left/right receive data interrupt. Used only when the MONO bit 12 in the
I2SSCTRL register = 0 (Stereo mode).
0 = Disable stereo RX data interrupt.
1 = Enable stereo RX data interrupt.

2 RCVMON R/W 0 Enable mono left receive data interrupt. Used only when the MONO bit 12 in the
I2SSCTRL register = 1 (Mono mode).
0 = Disable mono RX data interrupt.
1 = Enable mono RX data interrupt.

1 FERR R/W 0 Enable frame sync error.
0 = Disable frame-synchronization error interrupt.
1 = Enable frame-synchronization error interrupt.

0 OUERR R/W 0 Enable overrun or underrun condition.
0 = Disable overrun/underrun error interrupt.
1 = Enable overrun/underrun error interrupt.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

367SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

10.3.9 I2Sn Receive Left Data 0 Register (I2SRXLT0)
The I2Sn receive left data 0 register (I2SRXLT0) is shown in Figure 10-21 and described in Table 10-25.

Each I2S module has two double-word (32-bit) receive data registers to hold left and right channel data
respectively. Each double-word register is accessible as two 16-bit registers by the CPU or as a single
double-word register by the DMA for efficient data transfer.

Figure 10-21. I2Sn Receive Left Data 0 Register (I2SRXLT0)
15 0

DATA
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 10-25. I2Sn Receive Left Data 0 Register (I2SRXLT0) Field Descriptions

Bit Field Type Reset Description
15-0 DATA R/W 0 Receive left data lower 16 bits, value 0 to FFFFh.

10.3.10 I2Sn Receive Left Data 1 Register (I2SRXLT1)
The I2Sn receive left data 1 register (I2SRXLT1) is shown in Figure 10-22 and described in Table 10-26.

Figure 10-22. I2Sn Receive Left Data 1 Register (I2SRXLT1)
15 0

DATA
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 10-26. I2Sn Receive Left Data 1 Register (I2SRXLT1) Field Descriptions

Bit Field Type Reset Description
15-0 DATA R/W 0 Receive left data upper 16 bits, value 0 to FFFFh.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

368 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Inter-IC Sound (I2S) Bus

10.3.11 I2Sn Receive Right Data 0 Register (I2SRXRT0)
The I2Sn receive right data 0 register (I2SRXRT0) is shown in Figure 10-23 and described in Table 10-27.

Figure 10-23. I2Sn Receive Right Data 0 Register (I2SRXRT0)
15 0

DATA
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 10-27. I2Sn Receive Right Data 0 Register (I2SRXRT0) Field Descriptions

Bit Field Type Reset Description
15-0 DATA R/W 0 Receive right data lower 16 bits, value 0 to FFFFh.

10.3.12 I2Sn Receive Right Data 1 Register (I2SRXRT1)
The I2Sn receive right data 1 register (I2SRXRT1) is shown in Figure 10-24 and described in Table 10-28.

Figure 10-24. I2Sn Receive Right Data 1 Register (I2SRXRT1)
15 0

DATA
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 10-28. I2Sn Receive Right Data 1 Register (I2SRXRT1) Field Descriptions

Bit Field Type Reset Description
15-0 DATA R/W 0 Receive right data upper 16 bits, value 0 to FFFFh.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

369SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Successive Approximation (SAR) Analog-to-Digital Converter (ADC)

Chapter 11
SPRUH87H–August 2011–Revised April 2016

Successive Approximation (SAR) Analog-to-Digital
Converter (ADC)

This following sections provide an overview of the Successive Approximation Register (SAR) analog-to-
digital Converter (ADC) on the digital signal processor (DSP). The SAR is a 10-bit ADC using a switched
capacitor architecture that converts an analog input signal to a digital value at a maximum rate of 64 ksps
for use by the DSP. This SAR module supports six channels that are connected to four general purpose
analog pins (GPAIN [3:0]), which can also be used as general-purpose digital outputs.

Topic ... Page

11.1 Introduction ... 370
11.2 SAR Architecture.. 372
11.3 SAR Registers.. 379

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Introduction www.ti.com

370 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Successive Approximation (SAR) Analog-to-Digital Converter (ADC)

11.1 Introduction
This following sections provide an overview of the successive approximation (SAR) analog-to-digital
converter (ADC) on the digital signal processor (DSP).

11.1.1 Purpose of the 10-bit SAR
The SAR in the device is a 10-bit ADC using a switched capacitor architecture that converts an analog
input signal to a digital value at a maximum rate of 64 kilo samples per second (ksps) for use by the DSP.
This SAR module supports six channels that are connected to four general-purpose analog pins (GPAIN
[3:0]) that can be used as general-purpose outputs.

11.1.2 Features
• Up to 64 ksps
• Single conversion and continuous back-to-back conversion modes
• Interrupt driven or polling conversion or DMA event generation
• Internal configurable reference voltages of: VDD_ANA or bandgap_1.0V or bandgap_0.8V
• Software controlled power down
• Individually configurable general-purpose digital outputs

NOTE: In C5545 device, SAR module supports three general purpose analog pins (GPAIN[3:1])
which can also be used as general purpose outputs.

11.1.3 Supported Use Case Statement
• Measure battery voltage, internal analog voltage (VDDA_ANA), and volume control by measuring across a

potentiometer
• 4-wire resistive touch screen coordinate pair measurement and pen down interrupt
• General-purpose outputs that can be driven high or low (except for GPAIN0, which only drives low)
• General-purpose voltage measurement

11.1.4 Industry Standard(s) Compliance Statement
This peripheral is not intended to conform to any specific industry standard.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

SAR
ADC

GPO3EN

GPO3DATA

GPO3EN

GPO3DATA

VDD_ANA

GPO2EN

GPO2DATA

GPO2EN

GPO2DATA

GPAIN0
3.6 V Tolerant

GPAIN1

GPAIN2

GPAIN3

280kΩ

40kΩ

500kΩ
90kΩ

PENIRQ

PENIRQEN

AMUX

Vref +

11 10 01 00

Bandgap
Reference

Half

If using the GPAIN pins as GPO (general purpose outputs),
extreme care must be taken to avoid contention which could
cause currents as high as 100mA from V . And if the

ANA_LDO is used to supply V then will cause it to

shutdown and the POR will reset the DSP!

DD_ANA

DD_ANA

CH5_SEL

CH5_SEL

Vref -

VSS

1
.0

 V

0
.8

 V

{RefAvddSel,
Ref1Sel}

VDD_ANA

VDD_ANA

GPO1EN

GPO1DATA

GPO0EN

GPO1

GPO0EN

GPO0DATA

CH4_SEL

CH4_SEL

CH3_SEL

CH3_SEL

A
V

D
D

M
E

A
S

P
E

N
IR

Q
E

N

CH2_SELHV

CH1_SEL

CH0_SEL

Either NoHV or GndSwOn must be ‘1’ to measure
channels 0 or 1. NoHV must be ‘1’ to measure ch2.
If these conditions are not met then the ADC will

measure GND.

NMOS pass gates
won’t pass signals with

voltage greater than
VDD_ANA – Vt.

GNDSWON

NoHV

When NoHV is high and Ch0 > (– Vt), the GNDSW turns ON

to protect channels 0, 1, and channel 2’s transmission gate is shut off
to protect it against high viltage (ie: greater than) getting to the SAR ADC.

V

V

DD_ANA

DD_ANA

CH2_SEL

www.ti.com Introduction

371SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Successive Approximation (SAR) Analog-to-Digital Converter (ADC)

11.1.5 Functional Block Diagram

Figure 11-1. SAR Converter

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

SAR Architecture www.ti.com

372 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Successive Approximation (SAR) Analog-to-Digital Converter (ADC)

11.2 SAR Architecture
The 10-bit successive approximation analog-to-digital module in the device converts an analog input
signal to a digital value for use by the DSP. The SAR module supports six channels, VIN[5:0]. These
channels are connected to four general purpose analog pins, GPAIN[3:0]. (See Figure 11-1.) All general
purpose analog pins can be used as general-purpose outputs by setting the corresponding GPIO bits in
the SAR A/D Pin Control Register.

Once a conversion is initiated, the programmer must wait until the conversion completes before selecting
another channel or initiating a new conversion. To indicate that a conversion is in progress, the ADCBUSY
bit field is set. After the conversion completes, the ADCBUSY bit field changes from 1 to 0, indicating that
the conversion data is available. The DSP can then read the data from the ADCDAT bits in the SAR A/D
Data Register (SARDATA). The value of the CHSEL bit in SAR A/D Control Register (SARCTRL) is
reproduced in the CHAN bit of the SARDATA register, so that the DSP can identify which samples were
acquired from which channel.

A DMA event is also generated at the end of every conversion.

11.2.1 SAR Clock Control
The SAR A/D module can operate at a maximum clock rate of 2 MHz (500 ns) and takes 32 clocks cycles
to convert a value. This results in a maximum sample rate of 64 ksps. The following equations describe
the relationship between the A/D programmable control registers:

SAR A/D Clock Frequency = (System Clock Frequency) / (SystemClkDivisor + 1) ≤ 2 MHz

SAR A/D Conversion Time = (SAR A/D Clock Period * 32)

11.2.2 Memory Map

Table 11-1. SAR Memory Map

Address Acronym Description
7012h SARCTRL SAR A/D Control Register
7014h SARDATA SAR A/D Data Register
7016h SARCLKCTRL SAR A/D Clock Control Register
7018h SARPINCTRL SAR A/D Reference and Pin Control Register
701Ah SARGPOCTRL SAR A/D GPO Control Register

11.2.3 Signal Descriptions
The device's GPAIN[3:0] pins can be configured as inputs to the SAR ADCs or they can be configured as
general-purpose outputs that can be driven high or low (excluding GPAIN0 that can only be driven low).
The SAR inputs can be used for battery measurement, internal voltage measurement, volume control, and
touch screen control. GPAIN[0] is capable of accepting analog input voltage from 0 V up to 3.6 V while
GPAIN[1:3] can accept a range of 0 V to VDDA_ANA.

11.2.4 Battery Measurement
The SAR can be configured to measure a battery using GPAIN0.

To measure a battery that has less than 3.6 V, first connect the battery to GPAIN0 and set the ground
switch (GNDON) bit of SAR channel 0. Next, calibrate the measurement by sampling the voltage at SAR
Channel 0 (set CHAN to Channel 0). Channel 0 should now be tied to ground with GNDON set to 1. If
there is an offset on Channel 0, this needs to be applied to the battery reading that can be obtained by
switching to channel 1 and sampling the battery voltage through the voltage divider. The voltage divider
divides the value from channel 1 by a factor of 8 (see data manual for limits) before being sampled by the
SAR ADC. (See Figure 11-2.) After measuring the battery, the ground switch transistor should be shut off
to eliminate current draw from the battery.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

ADC Channel 3

GPAIN1 =

AV CAP /

TS X+ /

GPO1

DD

AVDD

500 kΩ

A
V

D
D

M
E

A
S

On

Measure

CEXT >

20 nF

GPO1EN = 0

AVDDMEAS = 1

PENIRQEN = 0

HALF = 1

REFAVDDSEL = 0

REV1VSEL = 0

CHSEL = 3

ADC Channel 2 (Disabled)

GPO0ENGPO0

GPAIN0 =
BATTERY /

TS X– /
GPO0

ADC Channel 1

ADC Channel 0

GNDON

280 kΩ

40 kΩ

Battery
<= 3.6V

On

Measure
(Battery)

Measure
(Calibration)

GPO0EN = 0
NOHV = 0

GNDON = 1
HALF = 0

REFAVDDSEL = 0
CHSEL = 1 (0 for calibration)

www.ti.com SAR Architecture

373SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Successive Approximation (SAR) Analog-to-Digital Converter (ADC)

Figure 11-2. Battery Measurement

11.2.5 Internal Voltage Measurement
Using GPAIN1, the SAR can measure the internal voltage of VDDA_ANA on AVDDMEAS channel 3 of the
SAR.

To measure the internal AVDD, set the internal voltage reference by setting in SAR A/D Reference and Pin
Control Register (SARPINCTRL). A 20 nF cap is recommended to be connected between GPAIN1 and
GND to provide low pass filtering and less measurement noise. Next, sample SAR channel 3. Selecting
HALF = 1 has the effect of reducing the ADC’s input sampled voltage in half. Therefore, with AVDD (that is,
VDDA_ANA) at its max of 1.43 V, divided by two is 0.715 V. Then, with the ADC’s VREF set to bandgap_0.8
V, the dynamic range is optimum. See Figure 11-3.

Figure 11-3. Voltage Measurement

11.2.6 Volume Control
The SAR can be used to sample a volume control potentiometer connected across GPAIN2 and GPAIN3.
Note that other combinations of the GPAIN[3:0] could be used to perform this function. We have chosen
GPAIN2 and GPAIN3 for this example.

To use the SAR for volume control, place a potentiometer across GPAIN3 and GPAIN2, then ground
GPAIN2 by clearing GPO2 and sample SAR channel 5 voltage. Use the settings in Figure 11-4.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

AVDD

GPO3EN

GPO3

ADC Channel 5

GPAIN3 =
Volume In /

TS Y+ /
GPO3

GPO3EN

GPO3

Off

Off

Measure

AVDD

RTOTAL <= 200 kΩ
(See Note)

AVDD

GPO2EN

GPO2

ADC Channel 4

GPAIN2 =
Volume GND /

TS Y– /
GPO2

GPO2EN

GPO2

Off

On

GPO3EN = 0
GPO2EN = 1

GPO2 = 0
HALF = 0

REFAVDDSEL = 1
CHSEL = 5

SAR Architecture www.ti.com

374 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Successive Approximation (SAR) Analog-to-Digital Converter (ADC)

Figure 11-4. Voltage Control

11.2.7 Touch Screen Digitizing
Using all 4 GPAIN pins, the SAR can be used for digitizing touch screen coordinates. With GPAIN3 as Y+,
GPAIN2 as Y-, GPAIN1 as X+, and GPAIN0 as X-.

To measure Y position, enable GPAIN3 and GPAIN2 as general-purpose outputs using GPO3EN=1 and
GPO2EN=1. Then, ground GPAIN2 by clearing GPO2 and drive GPAIN3 high by setting GPO3. Let the
touch panel settle (duration depends on the bypass caps you have at the X+, X-, Y+, Y- terminals of the
touch screen) and measure the voltage at GPAIN1 using SAR channel 3.

NOTE: It is recommended that an external LDO be used to supply power to VDDA_ANA rather than
using ANA_LDO. When ANA_LDO is used to supply power to VDDA_ANA, the pins GPAIN[3:1]
cannot be used as general-purpose outputs (driving high) since the maximum current
capability of the ANA_LDO can be exceeded. The ISD parameter of the ANA_LDO is too low
to drive any realistic load on the GPAIN[3:1] pins while also supplying the PLL through
VDDA_PLL and the SAR through VDDA_ANA. Using ANA_LDO to supply power to VDDA_ANA in such a
case may result in the on-chip power-on reset (POR) resetting the chip.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

GPAIN0 /
X-

GPAIN1
/X+

GPAIN2 /
Y-

GPAIN3 /
Y+

Y+

Y-

X+
X-

Transparent
Conductor (ITO)
On Bottom Side

Conductive Bar

Transparent
Conductor (ITO)

On Top Side

ITO = Indium Tin Oxide

Insulating Material (Glass)

OFF

VDDA_ANA

Touchscreen – Measuring the X Position

ON

OFF

OFF

OFF

OFF

OFF OFF

OFF

ON

OFF

OFF

ON

OFF

OFF

OFF

VDDA_ANA

VDDA_ANA

GPAIN0 /
X-

GPAIN1
/X+

GPAIN2 /
Y-

GPAIN3 /
Y+

Y+

Y-

X+
X-

Transparent
Conductor (ITO)
On Bottom Side

Conductive Bar

Transparent
Conductor (ITO)

On Top Side

ITO = Indium Tin Oxide

Insulating Material (Glass)

ON

VDDA_ANA

Touchscreen – Measuring the Y Position

OFF

OFF

ON

OFF

OFF

OFF OFF

ON

OFF

OFF

ON

OFF

VDDA_ANA

VDDA_ANA

OFF

OFF

OFF

www.ti.com SAR Architecture

375SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Successive Approximation (SAR) Analog-to-Digital Converter (ADC)

Figure 11-5. Y Position

To measure X position, enable GPAIN1 and GPAIN0 using GPO1EN=1 and GPO0EN=1. Then, ground
GPAIN0 by clearing GPO0 and drive GPAIN1 high by setting GPO1. Let the touch panel settle, then
measure the voltage at GPAIN3 using SAR channel 5.

Figure 11-6. X Position

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

GPAIN0 /
X-

GPAIN1
/X+

GPAIN2 /
Y-

GPAIN3 /
Y+

Y+

Y-

X+
X-

Transparent
Conductor (ITO)
On Bottom Side

Conductive Bar

Transparent
Conductor (ITO)

On Top Side

ITO = Indium Tin Oxide

Insulating Material (Glass)

OFF

VDDA_ANA

Touchscreen – Pen Interrupt
(Detecting Pen/Finger Press)

OFF

OFF

ON

ON

OFF

OFF ON

OFF

OFF

OFF

OFF

VDDA_ANA

VDDA_ANA

VSS

OFF

OFF

OFF

OFF

SAR Architecture www.ti.com

376 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Successive Approximation (SAR) Analog-to-Digital Converter (ADC)

11.2.8 Touch Screen : Pen Press Interrupts
To detect when the touch screen is touched, the SAR peripheral has a PENIRQ feature. This feature
makes it possible to detect touch events without continuous ADC polling.

The SAR should be configured as shown in Figure 11-7.

Figure 11-7. Pen Interrupt

The DSP should be configured to allow SAR interrupts. When the touch screen is not pressed, a pullup
resistor biases the PENIRQ buffer high so that an interrupt is not generated. When the touch screen is
pressed it creates a path to ground that is lower impedance than the pullup resistor. Therefore, the
PENIRQ buffer generates an interrupt and the DSP can then take the steps necessary to digitize the X &
Y coordinates.

11.2.9 General-Purpose Output
GPAIN[3:0] can be configured as general-purpose outputs. This is accomplished by enabling the GPAIN
pin as an output in the SAR A/D GPO Control Register (SARGPOCTRL). After enabling the GPO you can
set the output as grounded or driven high. In the case where VDDA_ANA is supplied by the ANA_LDOO, care
must be taken to avoid shorting GPAIN pins to ground as this will cause the maximum current of the
ANA_LDOO to be exceeded and the POR circuit to reset the DSP. The total current from all GPAIN[3:0]
pins to ground should never exceed Imax of the ANA_LDOO. For more information, see the device-
specific data manual. In the case where VDDA_ANA is supplied by some source other than the on-chip
ANA_LDO, this is not an issue.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com SAR Architecture

377SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Successive Approximation (SAR) Analog-to-Digital Converter (ADC)

11.2.10 Reset Considerations
The SAR can only be reset by a hardware reset.

11.2.10.1 Software Reset Considerations
A software reset (such as a reset generated by the emulator) will not cause the SAR controller registers to
be altered. After a software reset, the SAR controller continues to operate as it was configured prior to the
reset.

There is no peripheral reset for the SAR.

11.2.10.2 Hardware Reset Considerations
A hardware reset of the processor causes the SAR controller registers to return to their default values
after reset.

11.2.11 A/D Conversion
To start an analog to digital conversion the following steps must be executed:
1. Set SAR clock to be less than or equal to 2 MHz in the SAR A/D clock Control Register

(SARCLKCTRL) for fastest conversion rate and operation of the A/D module.
A/D function clock = (Sys Clk)/(ADCCLKDIV+1)

2. Write to the SARPINCTRL register (7018h) to power up the SAR circuits and select the SAR reference
voltage.

3. Write a 1 to the ADCSTRT bit in the SARCTRL register and the desired channel for the conversion in
the CHSEL bit field.

4. Read the ADCBUSY bit in the SARDATA register to ensure it is set to 1 to indicate the start of
conversion. Due to delays between the CPU write instruction and the actual write to the SAR A/D
registers the ADCBUSY bit must be set before proceeding.

5. ADCSTRT in the SARCTRL register and ADCBUSY bit in the SARDATA register are set to 0 to
indicate the end of the conversion sequence.

6. Once ADCBUSY bit in the SARDATA register is set to 0, the SAR A/D Data Register contains the
channel converted in the CHSEL bit field and the actual converted value in the ADCDAT bit field.

11.2.12 Interrupt Support

11.2.12.1 Interrupt Events and Requests
The SAR peripheral generates DSP interrupts every time an ADC conversion is completed and data is
available to be read by the DSP. Additionally, when connected to a touch screen device, the SAR can be
configured to detect when the touch screen is pressed and generate an interrupt without having to perform
continuous conversion to poll the touch screen.

11.2.13 Emulation Considerations
The SAR controller is not affected by emulation halt events (such as breakpoints).

11.2.14 Conversion Example
To request a conversion the CPU must execute the following sequence of events:
1. Set SAR clock to be less than or equal to 2MHz in SAR Clock Control Register for fastest conversion

rate and operation of the A/D module.
2. Write a “1” to the ADCSTRT bit of the SARCTRL register and the desired channel for conversion in the

CHAN bit field in the SARDATA register.
3. ADCBUSY bit of the SARDATA register is set to “1” to indicate the start of A/D conversion.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

SAR Architecture www.ti.com

378 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Successive Approximation (SAR) Analog-to-Digital Converter (ADC)

4. Due to delays between the CPU write instruction and the actual write to the SAR A/D Registers, it is
recommended to read the SARDATA register and verify the ADCBUSY bit is set to “1” before
proceeding with step 6.

5. ADCSTRT and ADCBUSY bits are set to “0” to indicate the end of the conversion sequence. The SAR
A/D module enters stand-by mode to conserve power until event 2 occurs over again.

6. Once ADCBUSY bit is set to “0”, the SARDATA register contains the channel converted in the CHAN
bit field and the actual converted value in the ADCDAT bit field

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com SAR Registers

379SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Successive Approximation (SAR) Analog-to-Digital Converter (ADC)

11.3 SAR Registers
Table 11-2 list the memory mapped registers associated with the successive approximation (SAR) analog-
to-digital converter (ADC).

Table 11-2. SAR Registers

CPU Word
Address Acronym Register Name Section

7012h SARCTRL SAR A/D Control Register Section 11.3.1
7014h SARDATA SAR A/D Data Register Section 11.3.2
7016h SARCLKCTRL SAR A/D Clock Control Register Section 11.3.3
7018h SARPINCTRL SAR A/D Reference and Pin Control Register Section 11.3.4
701Ah SARGPOCTRL SAR A/D GPO Control Register Section 11.3.5

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

SAR Registers www.ti.com

380 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Successive Approximation (SAR) Analog-to-Digital Converter (ADC)

11.3.1 SARCTRL Register
The SAR A/D control register (SARCTRL) selects the channel number and indicates the start of a
conversion.

The SAR A/D control register (SARCTRL) is shown in Figure 11-8 and described in Table 11-3.

Figure 11-8. SAR A/D Control Register (SARCTRL)
15 14 12 11 10 9 0

ADCSTRT CHSEL MULTICH SNGLCONV Reserved
R/W-0 R/W-000 R/W-0 R/W-0 R/W-0000000000

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 11-3. SARCTRL Register Field Descriptions

Bit Field Type Reset Description
15 ADCSTRT R/W 0 Start Conversion

0 = No conversion.
1 = Start conversion cycle by setting START signal.

14-12 CHSEL R/W 0 Channel Select
0 = Channel CH0 is selected.
1h = Channel CH1 is selected.
2h = Channel CH2 is selected.
3h = Channel CH3 is selected.
4h = Channel CH4 is selected.
5h = Channel CH5 is selected.
6h = All channels are off.
7h = All channels are off.

11 MULTICH R/W 0 Multi Channel operation.
0 = Normal Mode.
1 = In this mode, the SAR state machine is optimized to give more time to sampling
the analog input. This mode could possibly improve measurements in cases where the
ADC input has abrupt voltage changes such as when changing from one input
channel to another. The additional time given to sampling does not affect the 32
cycles for conversion, but it does come at the expense of settling time for the ADC’s
internal comparator. Therefore, this mode should not be used unless the above
situation exists and it is determined to improve the measurements.

10 SNGLCONV R/W 0 Single Conversion mode.
0 = Continuously perform back-to-back conversions, as long as ADCSTRT is set.
1 = Perform one conversion and stop. ADCSTRT must be cleared and then set high to
perform another conversion.

9-0 Reserved R 0 Reserved.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com SAR Registers

381SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Successive Approximation (SAR) Analog-to-Digital Converter (ADC)

11.3.2 SARDATA Register
The SAR A/D data register (SARDATA) indicates if a conversion is in process, the actual digital data
converted from the analog signal, and the channel belonging to this conversion.

The SAR A/D data register (SARDATA) is shown in Figure 11-9 and described in Table 11-4.

Figure 11-9. SAR A/D Data Register (SARDATA)
15 14 12 11 10 9 0

ADCBUSY CHAN Reserved ADCDAT
R-0 R-111 R-00 R-0000000000

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 11-4. SARDATA Register Field Descriptions

Bit Field Type Reset Description
15 ADCBUSY R 0 ADC Converter Busy. The ADCBUSY bit will be set three SAR clock cycles after the

ADCSTRT bit is set. This will always read 0 when STATUSMASK=1.
0 = ADCDAT available.
1 = ADCBUSY performing a conversion. After ADCSTRT is high, the ADCBUSY
becomes high.

14-12 CHAN R 111 Channel Select. These bits will always read 000 when STATUSMASK = 1.
0 = Channel CH0 is selected.
1h = Channel CH1 is selected.
2h = Channel CH2 is selected.
3h = Channel CH3 is selected.
4h = Channel CH4 is selected.
5h = Channel CH5 is selected.
6h = Reserved.
7h = Reserved.

11-10 Reserved R 0 Reserved.
9-0 ADCDAT R 0 Converter Data from 0 to 3FFh.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

SAR Registers www.ti.com

382 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Successive Approximation (SAR) Analog-to-Digital Converter (ADC)

11.3.3 SARCLKCTRL Register
The SAR A/D clock control register (SARCLKCTRL) sets the clock divider to control the speed of
conversion. The clock rate of the SAR module must not exceed 2 MHz.

The SAR A/D clock control register (SARCLKCTRL) is shown in Figure 11-10 and described in Table 11-
5.

Figure 11-10. SAR A/D Clock Control Register (SARCLKCTRL)
15 14 0

Reserved ADCCLKDIV
R-0 R/W-111111111111111

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 11-5. SARCLKCTRL Register Field Descriptions

Bit Field Type Reset Description
15 Reserved R 0 0 = Reserved.

14-0 ADCCLKDIV R/w 1111 0 = System Clock Divisor from 0 to 7FFFh.
This specifies the divider rate of the system clock:
F(SAR_Clock) = (F(System_Clock)) /(ADCCLKDIV[14:0] + 1)
Allows for divide-by-1 up to divide-by-32768.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com SAR Registers

383SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Successive Approximation (SAR) Analog-to-Digital Converter (ADC)

11.3.4 SARPINCTRL Register
The SAR A/D reference and pin control register (SARPINCTRL) controls the SAR’s reference voltage and
the circuits surrounding the GPAIN pins. The SAR’s reference voltage determines the voltage at the ADC
input that corresponds to the fullscale output code (ie: 1111111111b). Note, however, that due to the
circuitry between the ADC input and the GPAIN[3:0] pins, the voltage at the ADC input isn’t necessarily
the same as the voltage at the GPAIN[3:0] pins. For example, the voltage divider on GPAIN0/Channel 1
scales the voltage of the signal by a factor of 8 before it arrives at the ADC. It is important to select the
best voltage reference according to the voltage range of signal that will be digitized by the ADC so that the
best resolution is obtained.

The SAR A/D reference and pin control register (SARPINCTRL) is shown in Figure 11-11 and described in
Table 11-6.

Figure 11-11. SAR A/D Reference and Pin Control Register (SARPINCTRL)
15 14 13 12 11 10 9 8

Reserved STATUSMASK PWRUPBIAS SARPWRUP Reserved REFBUFFEN REFLVSEL REFAVDDSEL

R-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0

7 5 4 3 2 1 0
Reserved TOUCHSCREENMODE AVDDMEAS Reserved GNDON HALF

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 11-6. SARPINCTRL Register Field Descriptions

Bit Field Type Reset Description
15 Reserved R 0 0 = Reserved.
14 STATUSMASK R/W 0 Asserting this bit causes bits 12-15 of the SAR_DATA register to be forced to 0000.

Those four bits correspond to the ChannelSelected and ADCBusy bits. The purpose
for clearing/masking them is so that DMA transfers from the SAR to a memory buffer
do not include those status bits and thus post-processing of the memory buffer is not
required to strip the status bits out of the sample set. For example, if the SAR & DMA
collect a 2k sample set into memory to perform an FFT on the sampled data, you
wouldn't want the ChannelSelected status bits to be in the data when the FFT is
performed.
0 = The SAR_DATA register includes the status info in bits 12-15.
1 = The SAR_DATA register bits 12-15 are always read as 0000.

13 PWRUPBIAS R/W 0 Enables or disables the current bias circuit that is needed for the SAR to perform A/D
conversions.
0 = Powered Down. Low power setting.
1 = Powered Up. Required setting for performing A/D conversions.

12 SARPWRUP R/W 0 Enables or disables the analog power to the SAR.
0 = SAR analog Powered down.
1 = SAR analog power present.

11 Reserved R 0 0 = Reserved.
10 REFBUFFEN R/W 0 Reference Buffer enable. The reference buffer can be disabled to save power when

the ADC's VREF is set to VDDA_ANA (REFAVDDSEL=1) or when VREF is provided
by the TOUCHSCREENMODE pins (TOUCHSCREENMODE=1). The reference
buffer must be enabled whenever one of the bandgap reference voltages are used
(ie: REFAVDDSEL=0). REFBUFEN can be 0 or 1 when TOUCHSCREENMODE=1.
0 = Reference Buffer is disabled. Low power setting.
1 = Reference Buffer is enabled. Required when using bandgap generated VREF.

9 REFLVSEL R/W 0 Bandgap-based reference voltage value select. The on-chip bandgap provides two
references to the SAR peripheral: 0.8v & 1.0v. This register is used to select which
bandgap reference voltage is used when REFAVDDSEL=0. In general, the lowest
VREF should be used to get the best resolution from the converter. However, VREF
should always be greater than the input signal else clipping will occur.
0 = Bandgap-Based Reference Voltage set to 0.8V.
1 = Bandgap-Based Reference Voltage set to 1V.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

SAR Registers www.ti.com

384 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Successive Approximation (SAR) Analog-to-Digital Converter (ADC)

Table 11-6. SARPINCTRL Register Field Descriptions (continued)
Bit Field Type Reset Description
8 REFAVDDSEL R/W 0 ADC Reference Voltage Select. When asserted, this register selects VDDA_ANA as

the voltage reference for the SAR ADC. Otherwise, one of the two selectable
bandgap references will be used. This register has no effect when
TOUCHSCREENMODE=1.
0 = Reference Voltage based on Bandgap. The voltage value of the Bandgap
reference is dictated by REFLVSEL.
1 = Reference Voltage set to Analog Voltage (VDD_ANA).

7-6 Reserved R 0 0 = Reserved.
5 Reserved R 0 0 = Reserved must write 0.
4 TOUCHSCREENMOD

E
R/W 0 Enables Touch Screen Mode. In this mode, the SAR detects which coordinate, X or

Y, is being measured based on the GPOxEN and GPOxDATA settings, and switches
the ADC's VREF+ and VREF- to the appropriate GPAIN[3:0] pins to reduce offset and
gain errors caused by the dc current flowing thru the touch screen and the drop
across the GPO output transistors.
0 = TOUCHSCREENMODE is Disabled.
1 = TOUCHSCREENMODE is Enabled.

3 AVDDMEAS R/W 0 Enable measurement of internal analog voltage (VDD_ANA) on SAR Channel 3.
0 = PMOS switch on channel 3 is open, thus VDDA_ANA is not connected to channel
3 ADC input.
1 = PMOS switch on channel 3 is closed, thus VDDA_ANA is connected to channel 3
ADC input thru a pullup resistor to enable measuring the internal VDDA_ANA voltage.
Note, when measuring VDDA_ANA, an independent voltage reference is needed for
the ADC. So one of the two bandgap voltages should be used. Half mode will also be
necessary since VDDA_ANA is greater than the two bandgap voltage references.

2 Reserved R 0 0 = Reserved.
1 GNDON R/W 0 Ground SAR Analog Channel 0 and introduce a voltage resistor divider network in

SAR Channel 1.
0 = SAR Analog Channel 0 is not grounded.
1 = SAR Analog Channel 0 grounded. Introduces a divider into the SAR Channel 1
input of 1/8 * GPAIN0. See datasheet for tolerance specs on the resistor divider.

0 HALF R/W 0 Divides the ADC analog input by two before doing the conversion. The attenuation is
accomplished by only charging half of the SAR ADC’s internal capacitive array during
the sample phase, then the whole capacitive array is used for the successive
approximation conversion. By sampling with half the capacitance and comparing
against VREF with the full capacitance, the input voltage is attenuated by a factor of
2.
0 = A-to-D conversion is based on Vin.
1 = A-to-D conversion is based on Vin / 2.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com SAR Registers

385SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Successive Approximation (SAR) Analog-to-Digital Converter (ADC)

11.3.5 SARGPOCTRL Register
The SAR A/D general-purpose output control register (SARGPOCTRL) sets the corresponding GPAIN
pins to general-purpose outputs or analog inputs. In general-purpose output mode, the GPAIN pins can be
individually driven high or low.

The SAR A/D GPO control register (SARGPOCTRL) is shown in Figure 11-12 and described in Table 11-
7.

Figure 11-12. SAR A/D GPO Control Register (SARGPOCTRL)
15 10 9 8

Reserved PENIRQ PENIRQEN
R-00000 R/W-0 R/W-0

7 6 5 4 3 2 1 0
GPO3EN GPO2EN GPO1EN GPO0EN GPO3 GPO2 GPO1 GPO0

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 11-7. SARGPOCTRL Register Field Descriptions

Bit Field Type Reset Description
15-10 Reserved R 0 0 = Reserved.

9 PENIRQ R/W 0 Pen Interrupt Request Status.
0 = No pen input detected.
1 = Pen input detected.

8 PENIRQEN R/W 0 Pen Interrupt Request Enable.
0 = Disable the pen interrupt.
1 = Enable the pen interrupt and route to the CPU’s SAR interrupt signal.

7 GPO3EN R/W 0 Enable General Purpose Output on GPAIN3. Allows using GPAIN3 as a general output.
0 = GPAIN3 output driver disabled.
1 = GPAIN3 used as output.

6 GPO2EN R/W 0 Enable General Purpose Output on GPAIN2. Allows using GPAIN2 as a general output.
0 = GPAIN2 output driver disabled.
1 = GPAIN2 used as output.

5 GPO1EN R/W 0 Enable General Purpose Output on GPAIN1. Allows using GPAIN1 as a general output.
0 = GPAIN1 output driver disabled.
1 = GPAIN1 used as output.

4 GPO0EN R/W 0 Enable General Purpose Output on GPAIN0. Allows using GPAIN0 as a general output
0 = GPAIN0 output driver disabled.
1 = GPAIN0 used as output.

3 GPO3 R/W 0 Drive high or low GPAIN3 when set as General Purpose Output.
0 = GPAIN3 grounded.
1 = GPAIN3 driven high.

2 GPO2 R/W 0 Drive high or low GPAIN2 when set as General Purpose Output.
0 = GPAIN2 grounded.
1 = GPAIN2 driven high.

1 GPO1 R/W 0 Drive high or low GPAIN1 when set as General Purpose Output.
0 = GPAIN1 grounded.
1 = GPAIN1 driven high.

0 GPO0 R/W 0 Ground GPAIN0 when set as General Purpose Output.
0 = GPAIN0 grounded.
1 = GPAIN0 driven high.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

386 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

General-Purpose Input/Output (GPIO)

Chapter 12
SPRUH87H–August 2011–Revised April 2016

General-Purpose Input/Output (GPIO)

This chapter describes the features and operations of the general-purpose input/output (GPIO).

Topic ... Page

12.1 Introduction ... 387
12.2 Peripheral Architecture ... 387
12.3 GPIO Registers... 390

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Introduction

387SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

General-Purpose Input/Output (GPIO)

(1) SAR is available only on TMS320C5545/35.

12.1 Introduction

12.1.1 Purpose of the Peripheral
The GPIO peripheral provides general-purpose pins that can be configured as either inputs or outputs.
When configured as an output, you can write to an internal register to control the state driven on the
output pin. When configured as an input, you can detect the state of the input by reading the state of the
internal register. The GPIO can also be used to send interrupts to the CPU.

12.1.2 Features
The GPIO peripheral supports the following:
• 32 GPIOs

– Configure up to 26 GPIO pins simultaneously on TMS320C5535/34/33/32
– Configure up to 20 GPIO pins simultaneously on TMS320C5545

• 1 general-purpose output (XF) and 4 Special-Purpose Outputs for Use With SAR are available on
TMS320C5535/34/33/32. (1)

• 3 Special-Purpose Outputs for Use with SAR are available on TMS320C5545.
• Each GPIO pin has internal pulldowns (IPDs) which can be individually disabled.
• Each GPIO pin can be configured to generate edge detected interrupts to the CPU on either the rising

or falling edge.

12.1.3 Industry Standard(s) Compliance Statement
The GPIO peripheral connects to external devices. While it is possible that the software implements some
standard connectivity protocol over GPIO, the GPIO peripheral itself is not compliant with any such
standards.

12.2 Peripheral Architecture
The following sections describe the GPIO peripheral.

12.2.1 Clock Control
The input clock to the GPIO peripheral is driven by the system clock.

12.2.2 Signal Descriptions
The device supports up to 26 signals on TMS320C5535/34/33/32 and up to 20 signals on TMS320C5545,
GPIO[31:27], GPIO[20:0], simultaneously. All GPIO pins are muxed with other signals and have an
optional internal pull-down resistor. The mux is controlled in the External Bus Selection Register (EBSR)
located at port address 1C00h. The routing of the signals takes place on the next CPU clock cycle. Before
modifying the values of EBSR, you must first clock gated all affected peripherals via the Peripheral Clock
Gating Control Register (PCGCR1 and PCGCR2) at addresses 1C02h and 1C03h.

The EBSR can be modified only once after boot process is complete. Continuously switching the EBSR is
not supported. Pulldowns are disabled or enabled by the Pulldown Inhibit Register (1C17h, 1C18h and
1C19h). These GPIO are muxed with other signals. For more information on the package pinout and
muxing of each GPIO signal, see the device-specific data manual.

Due to a variety of different technology devices that can be connected to the GPIO, the levels of logic 0
(low) and logic 1 (high) are not fixed and depend on the supply level. See the device-specific data manual
for more information.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Peripheral Architecture www.ti.com

388 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

General-Purpose Input/Output (GPIO)

12.2.3 GPIO Register Structure
The GPIO configuration registers are grouped into two 16-bit registers for each function. Control of the
general-purpose I/O is maintained through a set of I/O memory mapped registers. For detailed information
on the GPIO registers, see Section 12.3.

12.2.4 Using a GPIO Signal as an Output
GPIO signals are configured to operate as inputs or outputs by writing the appropriate value to the GPIO
direction registers (IODIR1 and IODIR2). This section describes using the GPIO signal as an output.

12.2.4.1 Configuring a GPIO Output Signal
To configure a given GPIO signal as an output, set the bit in (IODIR1 and IODIR2) that is associated with
the desired GPIO signal. For detailed information on the GPIO direction registers, see Section 12.3.1.

12.2.4.2 Controlling the GPIO Output Signal State
The GPIO output is controlled by the setting or clearing the OUT bit in the GPIO data out registers
(IODATAOUT1 or IODATAOUT2) for the desired GPIO. When the GPIO is configured for output, a write of
"1" will make the output high and a write of "0" will make the output low. For detailed information on the
GPIO data out registers, see Section 12.3.5.

12.2.5 Using a GPIO Signal as an Input
GPIO signals are configured to operate as inputs or outputs by writing the appropriate value to the IODIR1
or IODIR2 registers. This section describes using the GPIO signal as an input.

12.2.5.1 Configuring a GPIO Input Signal
To configure a given GPIO signal as an input, clear the bit in the GPIO direct register (IODIR1 or IODIR2)
that is associated with the desired GPIO signal. For detailed information on GPIO direction registers, see
Section 12.3.1.

12.2.5.2 Controlling the GPIO Input Signal State
The current state of the GPIO signals are read using the GPIO data in registers (IOINDATA1 &
IOINDATA2).
• For GPIO signals configured as inputs, reading input data register returns the state of the input signal

synchronized to the GPIO peripheral (system clock).
• For GPIO signals configured as outputs, reading input data register returns the output value being

driven by the device.

To use GPIO input signals as interrupt sources, see Section 12.2.7.

12.2.6 Reset Considerations
The GPIO peripheral is only reset by a hardware reset.

12.2.6.1 Software Reset Considerations
A software reset does not modify the configuration and state of the GPIO signals. Software resets include
reset initiated through the emulator, the device's software reset instruction, and the Peripheral Reset
Control Register (PRCR) (1C05h). For a detailed description, see Section 1.7.5.2, Peripheral Reset
Control Register (PRCR) [1C05h].

12.2.6.2 Hardware Reset Considerations
A hardware reset will cause the GPIO configuration to return to the default state, including GPIO pin
selection (GPIOs default to input), and data registers to their default states, therefore affecting the
configuration and state of the GPIO signals.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Peripheral Architecture

389SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

General-Purpose Input/Output (GPIO)

12.2.7 Interrupt Support
GPIO peripheral can individually generate an interrupt. The GPIO interrupts are falling or rising edge
triggered interrupts.

12.2.7.1 Interrupt Events and Requests
The GPIO signals can be configured to generate an interrupt. The device supports interrupts from the
GPIO signals. All GPIO are tied a single interrupt. To determine which GPIO caused the interrupt, the
GPIO interrupt flag registers (IOINTFLG1 and IOINTFLG2) must be read. For detailed information on the
GPIO interrupt flag registers, see Section 12.3.11.

12.2.7.2 Enabling GPIO Interrupt Events
GPIO interrupt events are enabled in GPIO interrupt enable registers (IOINTEN1 and IOINTEN2).
Interrupts can be enabled for each of the GPIO. Setting a "1" to the appropriate GPIO will enable external
interrupts for this pin. For detailed information on GPIO interrupt enable registers, see Section 12.3.9.

12.2.7.3 Configuring GPIO Interrupt Edge Triggering
Each GPIO interrupt source can be configured to generate an interrupt on the rising or the falling edge.
The edge detection is synchronized to the GPIO peripheral module clock. This is controlled in the GPIO
interrupt edge trigger enable registers (IOINTEDG1 and IOINTEDG2). Setting a "0" to this register will use
Rising edge to trigger the interrupt and "1" sets it to Falling Edge triggered if interrupts are enabled for this
GPIO. For detailed information on the GPIO interrupt edge trigger enable registers, see Section 12.3.7.

12.2.7.4 GPIO Interrupt Status
When an interrupt occurs on an enabled GPIO pin, the GPIO interrupt flag registers (IOINTFLG1 and
IOINTFLG2) latch the corresponding bit to a "1". The interrupt signal to the CPU will be kept low until all
flag bits in the IOINTFLG1 and IOINTFLG2 registers are cleared. To clear the flag you must write a "1" to
the corresponding bit.

The status of the GPIO interrupt events can be monitored by reading the IOINTFLG1 and IOINTFLG2
registers. If a GPIO interrupt event has occurred the corresponding bit will be a set to a “1”. In the case of
a non-interrupt the corresponding bit will be “0”.

12.2.7.5 Interrupt Multiplexing
No GPIO interrupts are multiplexed with other interrupt functions on the device.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

GPIO Registers www.ti.com

390 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

General-Purpose Input/Output (GPIO)

12.3 GPIO Registers
Table 12-1 lists the memory-mapped registers for the general-purpose input/output (GPIO).

Note: This device supports up to 26 signals on TMS320C5535/34/33/32, and up to 20 signals on
TMS320C5545, simultaneously. These signals include GPIO[31:27] and GPIO[20:0].

Table 12-1. GPIO Registers

Offset Acronym Register Name Section
1C06h IODIR1 GPIO Direction Register 1 Section 12.3.1
1C07h IODIR2 GPIO Direction Register 2 Section 12.3.1
1C08h IOINDATA1 GPIO Data In Register 1 Section 12.3.3
1C09h IOINDATA2 GPIO Data In Register 2 Section 12.3.3
1C0Ah IOOUTDATA1 GPIO Data Out Register 1 Section 12.3.5
1C0Bh IOOUTDATA2 GPIO Data Out Register 2 Section 12.3.5
1C0Ch IOINTEDG1 GPIO Interrupt Edge Trigger Enable Register 1 Section 12.3.7
1C0Dh IOINTEDG2 GPIO Interrupt Edge Trigger Enable Register 2 Section 12.3.7
1C0Eh IOINTEN1 GPIO Interrupt Enable Register 1 Section 12.3.9
1C0Fh IOINTEN2 GPIO Interrupt Enable Register 2 Section 12.3.9
1C10h IOINTFLG1 GPIO Interrupt Flag Register 1 Section 12.3.11
1C11h IOINTFLG2 GPIO Interrupt Flag Register 2 Section 12.3.11

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com GPIO Registers

391SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

General-Purpose Input/Output (GPIO)

12.3.1 IODIR1 Direction Registers
The device includes two registers for controlling whether the GPIO is set as a general-purpose Input, or
Output. Use the GPIO direction register (IODIR1 and IODIR2) to set the GPIO pin as Input or Output.
Each of these registers control 16 of the 32 GPIOs. IODIR1 is used for GPIO[15:0] with bit 0
corresponding to GPIO 0 through bit 15 corresponding to GPIO 15. IODIR2 is used for GPIO[31:16] with
bit 0 corresponding to GPIO 16 through bit 15 corresponding to GPIO 31. Writing a "1" to these bits
configures the pin as an OUTPUT and writing a "0" configures the pin as an INPUT.

The GPIO Direction Registers (IODIR1 and IODIR2) is shown in Figure 12-1 and Figure 12-2 and
described in Table 12-2.

Figure 12-1. IODIR1 Register
15 0

DIR
RW+0

LEGEND: R/W = Read/Write; n = value at reset

Table 12-2. IODIR1 Register Bit Field Description

Bit Field Type Reset Description
15-0 DIR RW 0 Data direction bits that configure the general-purpose IO pins as either

inputs or outputs. Bit 0 of IODIR1 corresponds to GPIO 0 and Bit 0 of
IODIR2 corresponds to GPIO 16, value 0 to FFFFh
0 = Configure corresponding pin as an INPUT
1 = Configure corresponding pin as an OUTPUT

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

GPIO Registers www.ti.com

392 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

General-Purpose Input/Output (GPIO)

12.3.2 IODIR2 Direction Registers
The device includes two registers for controlling whether the GPIO is set as a general-purpose Input, or
Output. Use the GPIO direction register (IODIR1 and IODIR2) to set the GPIO pin as Input or Output.
Each of these registers control 16 of the 32 GPIOs. IODIR1 is used for GPIO[15:0] with bit 0
corresponding to GPIO 0 through bit 15 corresponding to GPIO 15. IODIR2 is used for GPIO[31:16] with
bit 0 corresponding to GPIO 16 through bit 15 corresponding to GPIO 31. Writing a "1" to these bits
configures the pin as an OUTPUT and writing a "0" configures the pin as an INPUT.

The GPIO Direction Registers (IODIR1 and IODIR2) is shown in Figure 12-1 and Figure 12-2 and
described in Table 12-2.

Figure 12-2. IODIR2 Register
15 0

DIR
RW+0

LEGEND: R/W = Read/Write; n = value at reset

Table 12-3. IODIR2 Register Bit Field Description

Bit Field Type Reset Description
15-0 DIR RW 0 Data direction bits that configure the general-purpose IO pins as either

inputs or outputs. Bit 0 of IODIR1 corresponds to GPIO 0 and Bit 0 of
IODIR2 corresponds to GPIO 16, value 0 to FFFFh
0 = Configure corresponding pin as an INPUT
1 = Configure corresponding pin as an OUTPUT

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com GPIO Registers

393SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

General-Purpose Input/Output (GPIO)

12.3.3 IOINDATA1 Registers
The device includes two registers for reading in the GPIO values when they are configured as Inputs. Use
the GPIO data in registers (IOINDATA1) to read the state of the corresponding GPIO pin. Each of these
registers control 16 of the 32 GPIOs. IOINDATA1 is used for GPIO[15:0] with bit 0 corresponding to GPIO
0 through bit 15 corresponding to GPIO15. IOINDATA2 is used for GPIO[31:16] with bit 0 corresponding
to GPIO 16 through bit 15 corresponding to GPIO 31.

The GPIO Data In Registers (IOINDATA1) is shown in Figure 12-3 and Figure 12-4 and described in
Table 12-4.

Figure 12-3. IOINDATA1 Register
15 0

IN
RW+0

LEGEND: R/W = Read/Write; n = value at reset

Table 12-4. IOINDATA1 Register Bit Field Description

Bit Field Type Reset Description
15-0 IN RW 0 Data bits that are used to monitor the level of the GPIO pins configured as

general-purpose input pins, value 0 to FFFFh.
If DIR = 0, then:
0 = corresponding I/O pin is read as a LOW
1 = corresponding I/O pin is read as a HIGH
If DIR = 1, then:
X = reflects value of output pin

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

GPIO Registers www.ti.com

394 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

General-Purpose Input/Output (GPIO)

12.3.4 IOINDATA2 Registers
The device includes two registers for reading in the GPIO values when they are configured as Inputs. Use
the GPIO data in registers (IOINDATA1 and IOINDATA2) to read the state of the corresponding GPIO pin.
Each of these registers control 16 of the 32 GPIOs. IOINDATA1 is used for GPIO[15:0] with bit 0
corresponding to GPIO 0 through bit 15 corresponding to GPIO15. IOINDATA2 is used for GPIO[31:16]
with bit 0 corresponding to GPIO 16 through bit 15 corresponding to GPIO 31.

The GPIO Data In Registers (IOINDATA1 and IOINDATA2) is shown in Figure 12-3 and Figure 12-4 and
described in Table 12-4.

Figure 12-4. IOINDATA2 Register 2
15 0

IN
RW+0

LEGEND: R/W = Read/Write; n = value at reset

Table 12-5. IOINDATA2 Register Bit Field Description

Bit Field Type Reset Description
15-0 IN RW 0 Data bits that are used to monitor the level of the GPIO pins configured as

general-purpose input pins, value of 0-FFFFh.
If DIR = 0, then:
0 = corresponding I/O pin is read as a LOW
1 = corresponding I/O pin is read as a HIGH
If DIR = 1, then:
X = reflects value of output pin

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com GPIO Registers

395SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

General-Purpose Input/Output (GPIO)

12.3.5 IOOUTDATA1 Registers
The device includes two registers for writing to the GPIO pins when they are configured as outputs. Use
the GPIO data out registers (IOOUTDATA1 and IOOUTDATA2) to change the state of the corresponding
GPIO pin. Each of these registers control 16 of the 32 GPIOs. IOOUTDATA1 is used for GPIO[15:0] with
bit 0 corresponding to GPIO 0 through bit 15 corresponding to GPIO15. IOOUTDATA2 is used for
GPIO[31:16] with bit 0 corresponding to GPIO 16 through bit 15 corresponding to GPIO 31.

The GPIO Data Out Registers (IOOUTDATA1 and IOOUTDATA2) is shown in Figure 12-5 and Figure 12-
6 and described in Table 12-6.

Figure 12-5. IOOUTDATA1 Register
15 0

OUT
RW+0

LEGEND: R/W = Read/Write; n = value at reset

Table 12-6. IOOUTDATA1 Register Bit Field Description

Bit Field Type Reset Description
15-0 OUT RW 0 Data bits that are used to control the level of the GPIO pins configured as

general-purpose output pins, value 0-FFFFh.
If DIR = 0, then:
X = value stored on register but not reflected on the output pin
If DIR = 1, then:
0 = set corresponding I/O pin to LOW
1 = set corresponding I/O pin to HIGH

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

GPIO Registers www.ti.com

396 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

General-Purpose Input/Output (GPIO)

12.3.6 IOOUTDATA2 Registers
The device includes two registers for writing to the GPIO pins when they are configured as outputs. Use
the GPIO data out registers (IOOUTDATA2) to change the state of the corresponding GPIO pin. Each of
these registers control 16 of the 32 GPIOs. IOOUTDATA1 is used for GPIO[15:0] with bit 0 corresponding
to GPIO 0 through bit 15 corresponding to GPIO15. IOOUTDATA2 is used for GPIO[31:16] with bit 0
corresponding to GPIO 16 through bit 15 corresponding to GPIO 31.

The GPIO Data Out Registers (IOOUTDATA2) is shown in Figure 12-5 and Figure 12-6 and described in
Table 12-6.

Figure 12-6. GPIO Data Out Register 2 (IODATAOUT2)
15 0

OUT
RW+0

LEGEND: R/W = Read/Write; n = value at reset

Table 12-7. IOOUTDATA2 Register Bit Field Description

Bit Field Type Reset Description
15-0 OUT RW 0 Data bits that are used to control the level of the GPIO pins configured as

general-purpose output pins, value 0 to FFFFh.
If DIR = 0, then:
X = value stored on register but not reflected on the output pin
If DIR = 1, then:
0 = set corresponding I/O pin to LOW
1 = set corresponding I/O pin to HIGH

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com GPIO Registers

397SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

General-Purpose Input/Output (GPIO)

12.3.7 IOINTEDG1 Registers
The device has two registers for configuring interrupts to trigger on the rising or falling edge of the input
signal to the GPIO pins if they are configured as inputs with Interrupt enabled for the chosen GPIO. Use
the GPIO interrupt edge trigger registers (IOINTEDG1 and IOINTEDG2) to enable rising or falling edge
trigger for the corresponding GPIO pin. Each of these registers control 16 of the 32 GPIOs. IOINTEDG1 is
used for GPIO[15:0] with bit 0 corresponding to GPIO 0 through bit 15 corresponding to GPIO15.
IOINTEDG2 is used for GPIO[31:16] with bit 0 corresponding to GPIO 16 through bit 15 corresponding to
GPIO 31.

The GPIO Interrupt Edge Trigger Registers (IOINTEDG1 and IOINTEDG2) is shown in Figure 12-7 and
Figure 12-8 and described in Table 12-8.

Figure 12-7. IOINTEDG1 Register
15 0

INTEDG
RW+0

LEGEND: R/W = Read/Write; n = value at reset

Table 12-8. IOINTEDG1 Register Bit Field Description

Bit Field Type Reset Description
15-0 INTEDG RW 0 Configure the GPIO pin for rising or falling edge, value 0 to FFFFh

0 = Corresponding I/O pin has rising edge triggered interrupt capability
1 = Corresponding I/O pin has falling edge triggered interrupt capability

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

GPIO Registers www.ti.com

398 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

General-Purpose Input/Output (GPIO)

12.3.8 IOINTEDG2 Registers
The device has two registers for configuring interrupts to trigger on the rising or falling edge of the input
signal to the GPIO pins if they are configured as inputs with Interrupt enabled for the chosen GPIO. Use
the GPIO interrupt edge trigger registers (IOINTEDG1 and IOINTEDG2) to enable rising or falling edge
trigger for the corresponding GPIO pin. Each of these registers control 16 of the 32 GPIOs. IOINTEDG1 is
used for GPIO[15:0] with bit 0 corresponding to GPIO 0 through bit 15 corresponding to GPIO15.
IOINTEDG2 is used for GPIO[31:16] with bit 0 corresponding to GPIO 16 through bit 15 corresponding to
GPIO 31.

The GPIO Interrupt Edge Trigger Registers (IOINTEDG1 and IOINTEDG2) is shown in Figure 12-7 and
Figure 12-8 and described in Table 12-8.

Figure 12-8. IOINTEDG2 Register
15 0

INTEDG
RW+0

LEGEND: R/W = Read/Write; n = value at reset

Table 12-9. IOINTEDG2 Register Bit Field Description

Bit Field Type Reset Description
15-0 INTEDG RW 0 Configure the GPIO pin for rising or falling edge, value 0-FFFFh

0 = Corresponding I/O pin has rising edge triggered interrupt capability
1 = Corresponding I/O pin has falling edge triggered interrupt capability

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com GPIO Registers

399SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

General-Purpose Input/Output (GPIO)

12.3.9 IOINTEN1 Registers
The device has two registers for enabling Interrupts on the GPIO pins if they are configured as Inputs. Use
the GPIO interrupt enable registers (IOINTEN1 and IOINTEN2) to enable the interrupt of the
corresponding GPIO pin. Each of these registers control 16 of the 32 GPIOs. IOINTEN1 is used for
GPIO[15:0] with bit 0 corresponding to GPIO 0 through bit 15 corresponding to GPIO15. IOINTEN2 is
used for GPIO[31:16] with bit 0 corresponding to GPIO 16 through bit 15 corresponding to GPIO 31.

The GPIO Interrupt Enable Registers (IOINTEN1 and IOINTEN2) is shown in Figure 12-9 and Figure 12-
10 and described in Table 12-10.

Figure 12-9. IOINTEN1 Register
15 0

INTEN
RW+0

LEGEND: R/W = Read/Write; n = value at reset

Table 12-10. IOINTEN1 Register Bit Field Description

Bit Field Type Reset Description
15-0 INTEN RW 0 Enable or disable interrupt capability of the GPIO, value of 0 to FFFFh:

0 = Corresponding I/O pin has NO interrupt capability
1 = Corresponding I/O pin is configured as an external interrupt

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

GPIO Registers www.ti.com

400 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

General-Purpose Input/Output (GPIO)

12.3.10 IOINTEN2 Registers
The device has two registers for enabling Interrupts on the GPIO pins if they are configured as Inputs. Use
the GPIO interrupt enable registers (IOINTEN1 and IOINTEN2) to enable the interrupt of the
corresponding GPIO pin. Each of these registers control 16 of the 32 GPIOs. IOINTEN1 is used for
GPIO[15:0] with bit 0 corresponding to GPIO 0 through bit 15 corresponding to GPIO15. IOINTEN2 is
used for GPIO[31:16] with bit 0 corresponding to GPIO 16 through bit 15 corresponding to GPIO 31.

The GPIO Interrupt Enable Registers (IOINTEN1 and IOINTEN2) is shown in Figure 12-9 and Figure 12-
10 and described in Table 12-10.

Figure 12-10. IOINTEN2 Register
15 0

INTEN
RW+0

LEGEND: R/W = Read/Write; n = value at reset

Table 12-11. IOINTEN2 Register Bit Field Description

Bit Field Type Reset Description
15-0 INTEN RW 0 Enable or disable interrupt capability of the GPIO, value of 0 to FFFFh:

0 = Corresponding I/O pin has NO interrupt capability
1 = Corresponding I/O pin is configured as an external interrupt

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com GPIO Registers

401SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

General-Purpose Input/Output (GPIO)

12.3.11 IOINTFLG1 Registers
The device has two registers that latch an interrupt that occurred with the corresponding GPIO pin. Use
the GPIO interrupt flag registers (IOINTFLG1 and IOINTFLG2) to determine which GPIO pin triggered the
interrupt. Also, these registers are used to clear the interrupt sent to the CPU. Each of these registers
control 16 of the 32 GPIOs. IOINTFLG1 is used for GPIO[15:0] with bit 0 corresponding to GPIO 0 through
bit 15 corresponding to GPIO15. IOINTFLG2 is used for GPIO[31:16] with bit 0 corresponding to GPIO 16
through bit 15 corresponding to GPIO 31.

The GPIO Interrupt Flag Registers (IOINTFLG1 and IOINTFLG2) is shown in Figure 12-11 and Figure 12-
12 and described in Table 12-12.

Figure 12-11. IOINTFLG1 Register
15 0

INTFLG
RW+0

LEGEND: R/W = Read/Write; n = value at reset

Table 12-12. IOINTFLG1 Register Bit Field Description

Bit Field Type Reset Description
15-0 INTFLG RW 0 Register that latches if an interrupt occurred in the corresponding I/O pin, if

interrupts were enabled. The flag is cleared by writing a “1” or setting the
corresponding bit. The interrupt signal to the CPU will be kept low until all
flag bits in this register are cleared, value of 0 to FFFFh.
0 = Corresponding I/O interrupt has not occurred
1 = Corresponding I/O interrupt occurred. Write of “1” resets the flag

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

GPIO Registers www.ti.com

402 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

General-Purpose Input/Output (GPIO)

12.3.12 IOINTFLG2 Registers
The device has two registers that latch an interrupt that occurred with the corresponding GPIO pin. Use
the GPIO interrupt flag registers (IOINTFLG1 and IOINTFLG2) to determine which GPIO pin triggered the
interrupt. Also, these registers are used to clear the interrupt sent to the CPU. Each of these registers
control 16 of the 32 GPIOs. IOINTFLG1 is used for GPIO[15:0] with bit 0 corresponding to GPIO 0 through
bit 15 corresponding to GPIO15. IOINTFLG2 is used for GPIO[31:16] with bit 0 corresponding to GPIO 16
through bit 15 corresponding to GPIO 31.

The GPIO Interrupt Flag Registers (IOINTFLG1 and IOINTFLG2) is shown in Figure 12-11 and Figure 12-
12 and described in Table 12-12.

Figure 12-12. IOINTFLG2 Register
15 0

INTFLG
RW+0

LEGEND: R/W = Read/Write; n = value at reset

Table 12-13. IOINTFLG2 Register Bit Field Description

Bit Field Type Reset Description
15-0 INTFLG RW 0 Register that latches if an interrupt occurred in the corresponding I/O pin, if

interrupts were enabled. The flag is cleared by writing a “1” or setting the
corresponding bit. The interrupt signal to the CPU will be kept low until all
flag bits in this register are cleared, value of 0 to FFFFh.
0 = Corresponding I/O interrupt has not occurred
1 = Corresponding I/O interrupt occurred. Write of “1” resets the flag

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

403SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Chapter 13
SPRUH87H–August 2011–Revised April 2016

Universal Serial Bus (USB) Controller

This chapter describes the features and operations of the universal serial bus (USB) controller.

Topic ... Page

13.1 Introduction ... 404
13.2 Architecture ... 405
13.3 Registers ... 456

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Introduction www.ti.com

404 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.1 Introduction
This document describes the universal serial bus (USB) controller. The controller complies with the USB
2.0 standard high-speed and full-speed functions. In addition, the four test modes for high-speed operation
described in the USB 2.0 specification are supported. It also allows options that allow the USB controller
to be forced into full-speed mode and high-speed mode that may be used for debug purposes.

13.1.1 Purpose of the Peripheral
The USB controller provides a low-cost connectivity solution for consumer portable devices by providing a
mechanism for data transfer between USB devices up to 480 Mbps. With the USB controller, you can use
the DSP to create a high-speed or full-speed USB slave device.

13.1.2 Features
The USB has the following features:
• Operating as a peripheral, it complies with the USB 2.0 standard for high-speed (480 Mbps) and full-

speed (12 Mbps) operation with a host
• Supports 4 simultaneous RX and TX endpoints, in addition to control endpoint, more devices can be

supported by dynamically switching endpoints states
• Each endpoint (other than endpoint 0) can support all transfer types (control, bulk, interrupt, and

isochronous)
• Includes a 4K endpoint FIFO RAM, and supports programmable FIFO sizes
• Includes a DMA controller that supports 4 TX and 4 RX DMA channels
• Includes four types of Communications Port Programming Interface (CPPI) 4.1 DMA compliant transfer

modes, Transparent, Generic RNDIS, RNDIS, and Linux CDC mode of DMA for accelerating RNDIS
type protocols using short packet termination over USB

• DMA supports single data transfer size up to 4Mbytes

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

USB 2.0
Subsystem

USB_MXO USB_MXI

USB
Oscillator

REFCLK

USBSCR
[USBOSCDIS]

12 MHz

SYSCLK

CPPI
DMA

Engine
FIFO

Packet
Encode/
Decode

USB
2.0

PHY

USB
HOST

REFCLK
(from USB Oscillator)

Registers, Interrupts, Endpoint Control,
and Packet Scheduling

Internal
Bus

www.ti.com Introduction

405SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.1.3 Functional Block Diagram
The USB functional block diagram is shown in Figure 13-1.

Figure 13-1. Functional Block Diagram

13.1.4 Industry Standard(s) Compliance Statement
This peripheral is not intended to conform to any specific industry standard.

13.2 Architecture

13.2.1 Clock Control
Figure 13-2 shows the clock connections for the USB2.0 module. Note that there is a built-in oscillator that
generates a 12 MHz reference clock for the internal PLL of the USB 2.0 subsystem. The USB2.0
subsystem peripheral bus clock is sourced from the system clock (SYSCLK).

NOTE: The device system clock (SYSCLK) must be at least 30 MHz for proper USB operation.

Figure 13-2. USB Clocking Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Architecture www.ti.com

406 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.2 Signal Descriptions
The USB controller provides the I/O signals listed in Table 13-1.

(1) I = Input, O = Output, Z = High impedance, GND = Ground, A = Analog signal, PWR = Power supply pin.

Table 13-1. USB Terminal Functions

Name I/O (1) Description
USB_DP A I/O/Z USB D+ (differential signal pair)
USB_DM A I/O/Z USB D- (differential signal pair)
USB_VBUS A I Five volt input that signifies that VBUS is connected.
USB_REXT A I/O/Z External resistor connect.
USB_MXI I 12 MHz crystal oscillator input.
USB_MXO O 12 MHz crystal oscillator output.
USB_LDOO PWR USB module LDO output. This output is regulated to 1.3V.
USB_LDOI PWR USB module LDO input. This input handles a voltage range of 1.8V to 3.6V.
VSS_USBOSC PWR 3.3V USB oscillator power supply.
VDD_USBPLL PWR 3.3V USB PLL power supply.
VDDA_USBXCVR PWR 3.3V USB transceiver power supply.
VDDA_USB PWR 1.3V USB analog power supply.
VDD_USB PWR 1.3V USB PLL and oscillator digital power supply.
VSS_USBOSC GND USB oscillator ground.
VSS_USBPLL GND USB PLL ground.
VSSA_USBXCVR GND USB transceiver ground.
VSS_USBXCVR GND USB ground for reference circuits.
VSSA_USB GND USB analog ground.
VSS_USB GND USB PLL and oscillator digital ground.

13.2.3 Memory Map
The USB controller can access only internal single-access RAM (SARAM). It cannot access dual-access
RAM (DARAM). The starting address for SARAM is different from the point-of-view of the CPU and USB
controller. The memory map, as seen by the USB controller and the CPU, is shown in Table 13-2.

(1) CPU word addresses 00 0000h - 00 005Fh (which correspond to byte addresses 00 0000h - 00 00BFh) are reserved for the
memory-mapped registers (MMRs) of the DSP CPU.

Table 13-2. USB Controller Memory Map

USB Start Byte Address CPU Start Word Address CPU Memory Map USB Controller Memory Map
0001 0000h (1) 00 0000h (1) DARAM Reserved
0009 0000h 00 8000h SARAM SARAM

13.2.4 USB_DP/USB_DM Polarity Inversion
The polarity of the USB data pins (USB_DP and USB_DM) can be inverted through the USBDATPOL bit
of the USB system control register (USBSCR). Since USB_DP is equal to the inverse of USB_DM (they
form a differential pair), inverting these pins allows you to effectively swap their function. This allows
flexibility in board design by allowing different USB connector configurations. In particular, this allows for
mounting the connector on either side of the board and for arranging the data pins so they do not
physically cross each other.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Architecture

407SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.5 Indexed and Non-Indexed Registers
The USB controller provides two mechanisms of accessing the endpoint control and status registers:
• Indexed Endpoint Control/Status Registers: These registers are located at I/O address 8410h to

841Fh. The endpoint is selected by programming the INDEX register of the controller.
• Non-indexed Endpoint Control/Status Registers: These registers are located at I/O address 8500h to

854Fh. Registers at address 8500h to 850Fh map to Endpoint 0; at address 8510h to 851Fh map to
Endpoint 1, and so on.

For detailed information about the USB controller registers, see Section 13.3.

13.2.6 USB PHY Initialization
The general procedure for USB PHY initialization consists of enabling the USB on-chip oscillator,
configuring PHY parameters, and finally resetting the PHY. The detailed USB PHY initialization sequence
is as follows:
1. The bits USBOSCBIASDIS and USBOSCDIS in the USB system control register (USBSCR) should be

cleared to 0 to enable the on-chip USB oscillatory if not enabled already.
2. Wait cycles for the on-chip oscillator to stabilize. Refer to the device-specific data manual for oscillator

stabilization time.
3. To configure the PHY for normal operation, the bits USBPWDN, USBSESSEND, and USBPLLEN in

USBSCR should be cleared to 0, the USBVBUSDET bit should be set to 1, and the USBDATPOL bit
should be set according to the system requirements (set to 1 for normal operation).

4. Enable the USB clock by clearing USBCG to 0 in the peripheral clock gating configuration register 2
(PCGCR2) register.

5. Set the USBCLKSTPREQ bit.
6. Set COUNT = 20h in the peripheral software reset counter register (PSRCR).
7. Reset the USB controller by setting USB_RST to 1 in the peripheral reset control register (PRCR). This

bit will self-clear once the reset has been completed.

For more information on the PCGCR2, CLKSTOP, PSRCR, and PRCR, see Section 1.1, System Control .

During the normal operation, the USB PHY PLL should run at 60 MHz. This clock can be probed on the
device. One can monitor different clocks of the device by probing the CLKOUT pin for debugging
purposes. Different clocks can be routed to this pin by setting both register CCSSR (1C24h at IO space)
and CPU register ST3_55.

To monitor the USB PHY PLL, the setting of register CCSSR should be as follows:
• When CCSSR = 0x000F; USB PHY clock (60 MHz) is routed to the CLKOUT pin

The setting of bit-2 (CLKOFF) of register ST3_55:
• When CLKOFF = 0, the CLKOUT pin is enabled
• When CLKOFF = 1, the CLKOUT pin is disabled

After these settings, the 60 MHz clock can be probed on CLKOUT pin.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Architecture www.ti.com

408 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.6.1 USB System Control Register (USBSCR)
The USB system control register is used to disable the USB on-chip oscillator and to power-down the
USB.

The USB system control register (USBSCR) is shown in Figure 13-3 and described in Table 13-3.

Figure 13-3. USB System Control Register (USBSCR) [1C32h]
15 14 13 12 11 8

USBPWDN USBSESSEND USBVBUSDET USBPLLEN Reserved
R/W-1 R/W-0 R/W-1 R/W-0 R-0

7 6 5 4 3 2 1 0
Reserved USBDATPOL Reserved USBOSCBIASDIS USBOSCDIS BYTEMODE

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-3. USB System Control Register (USBSCR) Field Descriptions

Bit Field Value Description
15 USBPWDN USB module power.

0 USB module is powered.
1 USB module is powered-down.

14 USBSESSEND USB VBUS session end comparator enable.
0 USB VBUS session end comparator is disabled.
1 USB VBUS session end comparator is enabled.

13 USBVBUSDET USB VBUS detect enable.
0 USB VBUS detect comparator is disabled.
1 USB VBUS detect comparator is enabled.

12 USBPLLEN USB PLL enable.
0 Normal USB operation.
1 Override USB suspend end behavior and force release of PLL from suspend state.

11-7 Reserved 0 Reserved. Always write 0 to these bits.
6 USBDATPOL USB data polarity bit.

0 Reverse polarity on DP and DM signals.
1 Normal polarity.

5-4 Reserved 0 Reserved.
3 USBOSCBIASDIS USB internal oscillator bias resistor disable.

0 Internal oscillator bias resistor enabled (normal operating mode).
1 Internal oscillator bias resistor disabled.

2 USBOSCDIS USB oscillator disable bit.
0 USB internal oscillator enable.
1 USB internal oscillator disabled.

1-0 BYTEMODE USB byte mode select bits.
0 Word accesses by the CPU are allowed.
1h Byte accesses by the CPU are allowed (high byte is selected).
2h Byte accesses by the CPU are allowed (low byte is selected).
3h Reserved.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Architecture

409SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.7 Dynamic FIFO Sizing
The USB controller supports a total of 4K RAM to dynamically allocate FIFO to all endpoints. The
allocation of FIFO space to the different endpoints requires the specification for each Tx and Rx endpoint
of:
• The start address of the FIFO within the RAM block
• The maximum size of packet to be supported
• Whether double-buffering is required.

These details are specified through four registers, which are added to the indexed area of the memory
map. That is, the registers for the desired endpoint are accessed after programming the INDEX register
with the desired endpoint value. Section 13.3.46, Section 13.3.47, Section 13.3.48, and Section 13.3.50
provide details of these registers.

NOTE: The option of setting FIFO sizes dynamically only applies to Endpoints 1 to 4. Endpoint 0
FIFO has a fixed size (64 bytes) and a fixed location (start address 0).

It is the responsibility of the firmware to ensure that all the Tx and Rx endpoints that are
active in the current USB configuration have a block of RAM assigned exclusively to that
endpoint that is at least as large as the maximum packet size set for that endpoint.

13.2.8 USB Controller Peripheral Mode Operation
The USB controller can be used as a high-speed or a full-speed USB peripheral device attached to a
conventional USB host (such as a PC).

The USB2.0 controller will transition to session when it sees power (must be greater or equal to 4.01V) on
the USB0_VBUS pin, assuming that the firmware has set the SOFTCONN bit in the POWER register and
has enabled the data lines and there is an external host sourcing power on the USB0_VBUS line. The
USB 2.0 controller will then set the SESSION bit upon detecting the power on the USB0_VBUS line and it
will connect its 1.5Kohm pull-up resistor so it signifies to the external host out it is a Full-Speed device.
Note that even when operating as a High-Speed; it has to first come up as Full-Speed. The USB2.0
controller will then wait for a reset signal from the host.

13.2.8.1 USB Interrupts
The USB controller interrupts the CPU on completion of the data transfer on any of the endpoints or on
detecting reset, resume, suspend, connect, disconnect, or start-of-frame (SOF) on the bus.

When the CPU is interrupted with a USB interrupt, it needs to read the interrupt status register to
determine the endpoints that have caused the interrupt and jump to the appropriate routine. If multiple
endpoints have caused the interrupt, endpoint 0 should be serviced first followed by the other endpoints.
The suspend interrupt should be serviced last.

The flowchart in Figure 13-4 describes the interrupt service routine for the USB module.

The following sections describe the programming of USB controller in peripheral mode.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Read Interrupt
Status Register

Resume
Interrupt

?

Resume Routine
Yes

No

EP0
Interrupt

?

No

Receive
Interrupt

?

No

Transmit
Interrupt

?

No

SOF
Interrupt

?

No

Disconn
Interrupt

?

No

Peripheral
EP0 Routine

Yes

Peripheral
Rx Routine

Yes

Peripheral
Tx Routine

Yes

Resume
Routine

Yes

Disconnect
Routine

Yes

Suspend
Interrupt

?

Suspend
Routine

Yes

Architecture www.ti.com

410 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Figure 13-4. Interrupt Service Routine Flow Chart

13.2.8.2 Connect, Suspend Mode, and Reset Signaling
The following sections describe the operation of the USB controller during connect, suspend mode, and
USB reset.

13.2.8.2.1 Soft Connect
After a reset, the SOFTCONN bit in the POWER register is cleared to 0. The controller will therefore
appear disconnected until the software has set the SOFTCONN bit to 1. The application software can then
choose when to set the PHY into its normal mode. Systems with a lengthy initialization procedure may use
this to ensure that initialization is complete and the system is ready to perform enumeration before
connecting to the USB.

Once the SOFTCONN bit of the POWER register has been set, the software can also simulate a
disconnect by clearing this bit to 0.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Architecture

411SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.8.2.2 Suspend Mode
The controller monitors activity on the bus and when no activity has occurred for 3 ms, it goes into
Suspend mode. If the Suspend interrupt has been enabled, an interrupt will be generated.

At this point, the controller can be left active (and hence able to detect when Resume signaling occurs on
the USB), or the application may arrange to disable the controller by stopping its clock. However, the
controller will not then be able to detect Resume signaling on the USB. As a result, some external
hardware will be needed to detect Resume signaling (by monitoring the DM and DP signals) so that the
clock to the controller can be restarted.

When Resume signaling occurs on the bus, first the clock to the controller must be restarted if necessary.
Then the controller will automatically exit Suspend mode. If the Resume interrupt is enabled, an interrupt
will be generated.

If the software wants to initiate a remote wake-up while the controller is in Suspend mode, it should write
to the POWER register to set the RESUME bit to 1. The software should then leave this bit set for
approximately 10 ms (minimum of 2 ms, a maximum of 15 ms) before resetting it to 0.

NOTE: No resume interrupt will be generated when the software initiates a remote wake-up.

13.2.8.2.3 Reset Signaling
If the HSENA bit in the POWER register was set, the controller also tries to negotiate for high-speed
operation.

Whether high-speed operation is selected is indicated by the HSMODE bit of the POWER register.

When the application software receives a reset interrupt, it should close any open pipes and wait for bus
enumeration to begin.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Architecture www.ti.com

412 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.8.3 Control Transactions
Endpoint 0 is the main control endpoint of the core. The software is required to handle all the standard
device requests that may be sent or received via endpoint 0. These are described in Universal Serial Bus
Specification, Revision 2.0, Chapter 9. The protocol for these device requests involves different numbers
and types of transactions per transfer. To accommodate this, the software needs to take a state machine
approach to command decoding and handling.

The Standard Device Requests received by a USB peripheral device can be divided into three categories:
Zero Data Requests (in which all the information is included in the command), Write Requests (in which
the command will be followed by additional data), and Read Requests (in which the device is required to
send data back to the host).

This section looks at the sequence of actions that the software must perform to process these different
types of device request.

NOTE: The Setup packet associated with any standard device request should include an 8-byte
command. Any setup packet containing a command field of anything other than 8 bytes will
be automatically rejected by the controller.

13.2.8.3.1 Zero Data Requests
Zero data requests have all their information included in the 8-byte command and require no additional
data to be transferred. Examples of Zero Data standard device requests are:
• SET_FEATURE
• CLEAR_FEATURE
• SET_ADDRESS
• SET_CONFIGURATION
• SET_INTERFACE

The sequence of events will begin, as with all requests, when the software receives an endpoint 0
interrupt. The RXPKTRDY bit of the PERI_CSR0 register will also have been set. The 8-byte command
should then be read from the endpoint 0 FIFO, decoded, and the appropriate action taken.

For example, if the command is SET_ADDRESS, the 7-bit address value contained in the command
should be written to the FADDR register. The PERI_CSR0 register should then be written to set the
SERV_RXPKTRDY bit (indicating that the command has been read from the FIFO) and to set the
DATAEND bit (indicating that no further data is expected for this request). The interval between setting the
SERV_RXPKTRDY bit and setting the DATAEND bit should be very small to avoid getting a SetupEnd
error condition.

When the host moves to the status stage of the request, a second endpoint 0 interrupt will be generated to
indicate that the request has completed. No further action is required from the software. The second
interrupt is just a confirmation that the request completed successfully. For SET_ADDRESS command,
the address should be set in the FADDR register only after the status stage interrupt is received.

If the command is an unrecognized command, or for some other reason cannot be executed, then when it
has been decoded, the PERI_CSR0 register should be written to set the SERV_RXPKTRDY bit and to set
the SENDSTALL bit. When the host moves to the status stage of the request, the controller will send a
STALL to tell the host that the request was not executed. A second endpoint 0 interrupt will be generated
and the SENTSTALL bit in the PERI_CSR0 register will be set.

If the host sends more data after the DATAEND bit has been set, then the controller will send a STALL.
An endpoint 0 interrupt will be generated and the SENTSTALL bit in the PERI_CSR0 register will be set.

NOTE: DMA is not supported for endpoint 0, so the command should be read by accessing the
endpoint 0 FIFO register.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Architecture

413SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.8.3.2 Write Requests
Write requests involve an additional packet (or packets) of data being sent from the host after the 8-byte
command. An example of a Write standard device request is: SET_DESCRIPTOR.

The sequence of events will begin, as with all requests, when the software receives an endpoint 0
interrupt. The RXPKTRDY bit of PERI_CSR0 will also have been set. The 8-byte command should then
be read from the Endpoint 0 FIFO and decoded.

As with a zero data request, the PERI_CSR0 register should then be written to set the SERV_RXPKTRDY
bit (indicating that the command has been read from the FIFO) but in this case the DATAEND bit should
not be set (indicating that more data is expected).

When a second endpoint 0 interrupt is received, the PERI_CSR0 register should be read to check the
endpoint status. The RXPKTRDY bit in the PERI_CSR0 register should be set to indicate that a data
packet has been received. The COUNT0 register should then be read to determine the size of this data
packet. The data packet can then be read from the endpoint 0 FIFO.

If the length of the data associated with the request (indicated by the wLength field in the command) is
greater than the maximum packet size for endpoint 0, further data packets will be sent. In this case,
PERI_CSR0 should be written to set the SERV_RXPKTRDY bit, but the DATAEND bit should not be set.

When all the expected data packets have been received, the PERI_CSR0 register should be written to set
the SERV_RXPKTRDY bit and to set the DATAEND bit (indicating that no more data is expected).

When the host moves to the status stage of the request, another endpoint 0 interrupt will be generated to
indicate that the request has completed. No further action is required from the software, the interrupt is
just a confirmation that the request completed successfully.

If the command is an unrecognized command, or for some other reason cannot be executed, then when it
has been decoded, the PERI_CSR0 register should be written to set the SERV_RXPKTRDY bit and to set
the SENDSTALL bit. When the host sends more data, the controller will send a STALL to tell the host that
the request was not executed. An endpoint 0 interrupt will be generated and the SENTSTALL bit in the
PERI_CSR0 register will be set.

If the host sends more data after the DATAEND bit has been set, then the controller will send a STALL.
An endpoint 0 interrupt will be generated and the SENTSTALL bit will be set.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Architecture www.ti.com

414 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.8.3.3 Read Requests
Read requests have a packet (or packets) of data sent from the function to the host after the 8-byte
command. Examples of Read Standard Device Requests are:
• GET_CONFIGURATION
• GET_INTERFACE
• GET_DESCRIPTOR
• GET_STATUS
• SYNCH_FRAME

The sequence of events will begin, as with all requests, when the software receives an endpoint 0
interrupt. The RXPKTRDY bit in the PERI_CSR0 register will also have been set. Next, the 8-byte
command should be read from the endpoint 0 FIFO and decoded. The PERI_CSR0 register should then
be written to set the SERV_RXPKTRDY bit (indicating that the command has read from the FIFO).

The data to be sent to the host should be written to the endpoint 0 FIFO. If the data to be sent is greater
than the maximum packet size for endpoint 0, only the maximum packet size should be written to the
FIFO. The PERI_CSR0 register should then be written to set the TXPKTRDY bit (indicating that there is a
packet in the FIFO to be sent). When the packet has been sent to the host, another endpoint 0 interrupt
will be generated and the next data packet can be written to the FIFO.

When the last data packet has been written to the FIFO, the PERI_CSR0 register should be written to set
the TXPKTRDY bit and to set the DATAEND bit (indicating that there is no more data after this packet).

When the host moves to the status stage of the request, another endpoint 0 interrupt will be generated to
indicate that the request has completed. No further action is required from the software: the interrupt is
just a confirmation that the request completed successfully.

If the command is an unrecognized command, or for some other reason cannot be executed, then when it
has been decoded, the PERI_CSR0 register should be written to set the SERV_RXPKTRDY bit and to set
the SENDSTALL bit. When the host requests data, the controller will send a STALL to tell the host that the
request was not executed. An endpoint 0 interrupt will be generated and the SENTSTALL bit in the
PERI_CSR0 register will be set.

If the host requests more data after the DATAEND bit has been set, then the controller will send a STALL.
An endpoint 0 interrupt will be generated and the SENTSTALL bit will be set.

13.2.8.3.4 Endpoint 0 States
The endpoint 0 control needs three modes – IDLE, TX, and RX – corresponding to the different phases of
the control transfer and the states endpoint 0 enters for the different phases of the transfer (described in
later sections).

The default mode on power-up or reset should be IDLE. The RXPKTRDY bit in the PERI_CSR0 register
becoming set when endpoint 0 is in IDLE state indicates a new device request. Once the device request is
unloaded from the FIFO, the controller decodes the descriptor to find whether there is a data phase and, if
so, the direction of the data phase of the control transfer (in order to set the FIFO direction). See
Figure 13-5.

Depending on the direction of the data phase, endpoint 0 goes into either TX state or RX state. If there is
no Data phase, endpoint 0 remains in IDLE state to accept the next device request.

The actions that the CPU needs to take at the different phases of the possible transfers (for example,
loading the FIFO, setting TXPKTRDY) are indicated in Figure 13-6 .

NOTE: The controller changes the FIFO direction, depending on the direction of the data phase
independently of the CPU.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

IntSetup IN data
phase

Int IN data
phase

Int IN data
phase

Int Status phase
(OUT)

IntSequence #1

Idle TX state Idle

set TxPktRdy
Load FIFO and

and set DataEnd

Load FIFO
and set
TxPktRdy

Unload device
req. and clear

RxPktRdy

Load FIFO
and set
TxPktRdy

CPU actions

Status phaseSetup

CPU actions

Sequence #2

RxPktRdy
and clear
Unload FIFO

OUT data

Idle

Unload FIFO
and clear
RxPktRdy

phase
OUT dataInt Int

phase

clear RxPktRdy
Unload FIFO and

and set DataEnd

Int OUT data
phase

Int
(IN)

Int

RX state Idle

Unload
device req.
and clear
RxPktRdy

Setup IntSequence #3 Status phase
(IN)

Int

No data phase

DataEnd
clear RxPktRdy and set
Unload device req and

Idle

CPU actions

Idle

Tx state Rx state

Sequence #1 Sequence #2

Sequence #3

www.ti.com Architecture

415SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Figure 13-5. CPU Actions at Transfer Phases

Figure 13-6. Sequence of Transfer

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Architecture www.ti.com

416 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.8.3.5 Endpoint 0 Service Routine
An Endpoint 0 interrupt is generated when:
• The controller sets the RXPKTRDY bit in the PERI_CSR0 register after a valid token has been

received and data has been written to the FIFO.
• The controller clears the TXPKTRDY bit of PERI_CSR0 after the packet of data in the FIFO has been

successfully transmitted to the host.
• The controller sets the SENTSTALL bit of PERI_CSR0 after a control transaction is ended due to a

protocol violation.
• The controller sets the SETUPEND bit of PERI_CSR0 because a control transfer has ended before

DATAEND is set.

Whenever the endpoint 0 service routine is entered, the software must first check to see if the current
control transfer has been ended due to either a STALL condition or a premature end of control transfer. If
the control transfer ends due to a STALL condition, the SENTSTALL bit would be set. If the control
transfer ends due to a premature end of control transfer, the SETUPEND bit would be set. In either case,
the software should abort processing the current control transfer and set the state to IDLE.

Once the software has determined that the interrupt was not generated by an illegal bus state, the next
action taken depends on the endpoint state. Figure 13-7 shows the flow of this process.

If endpoint 0 is in IDLE state, the only valid reason an interrupt can be generated is as a result of the
controller receiving data from the bus. The service routine must check for this by testing the RXPKTRDY
bit of PERI_CSR0. If this bit is set, then the controller has received a SETUP packet. This must be
unloaded from the FIFO and decoded to determine the action the controller must take. Depending on the
command contained within the SETUP packet, endpoint 0 will enter one of three states:
• If the command is a single packet transaction (SET_ADDRESS, SET_INTERFACE etc.) without any

data phase, the endpoint will remain in IDLE state.
• If the command has an OUT data phase (SET_DESCRIPTOR etc.), the endpoint will enter RX state.
• If the command has an IN data phase (GET_DESCRIPTOR etc.), the endpoint will enter TX state.

If the endpoint 0 is in TX state, the interrupt indicates that the core has received an IN token and data
from the FIFO has been sent. The software must respond to this either by placing more data in the FIFO if
the host is still expecting more data or by setting the DATAEND bit to indicate that the data phase is
complete. Once the data phase of the transaction has been completed, endpoint 0 should be returned to
IDLE state to await the next control transaction.

NOTE: All command transactions include a field that indicates the amount of data the host expects
to receive or is going to send.

If the endpoint is in RX state, the interrupt indicates that a data packet has been received. The software
must respond by unloading the received data from the FIFO. The software must then determine whether it
has received all of the expected data. If it has, the software should set the DATAEND bit and return
endpoint 0 to IDLE state. If more data is expected, the firmware should set the SERV_RXPKTRDY bit of
PERI_CSR0 to indicate that it has read the data in the FIFO and leave the endpoint in RX state.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Service
endpoint 0

Read endpoint 0 CSR

Sent
stall

?

Yes Clear SentStall bit
state −> IDLE

No

No

Set ServicedSetupEnd
state −> IDLE

Setup
end
?

Yes

State Yes

No

= IDLE
?

IDLE mode

TX mode

No

= TX
?

State Yes

RX mode= RX*
?

State Yes

* By default

www.ti.com Architecture

417SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Figure 13-7. Service Endpoint 0 Flow Chart

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

IDLE mode

RxPktRdy
set?

Return
No

Yes

Set
ServiceRxPktRdy

Unload FIFO

Decode command

Yes

Command
has data

phase
?

No
Process command

Set DataEnd
Set ServicedRxPktRdy

Return

Data

No

phase = IN
?

State −> TX
Yes

Return

State −> RX

Return

Architecture www.ti.com

418 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.8.3.5.1 IDLE Mode
IDLE mode is the mode the endpoint 0 control must select at power-on or reset and is the mode to which
the endpoint 0 control should return when the RX and TX modes are terminated. It is also the mode in
which the SETUP phase of control transfer is handled (as outlined in Figure 13-8).

Figure 13-8. IDLE Mode Flow Chart

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

TX mode

Write
� MaxP bytes

to FIFO

Last
packet

?

No

Yes

Set TxPktRdy
and set DataEnd

state −> IDLE

Return

TxPktRdy
Set

www.ti.com Architecture

419SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.8.3.5.2 TX Mode
When the endpoint is in TX state all arriving IN tokens need to be treated as part of a data phase until the
required amount of data has been sent to the host. If either a SETUP or an OUT token is received while
the endpoint is in the TX state, this will cause a SetupEnd condition to occur as the core expects only IN
tokens. See Figure 13-9.

Three events can cause TX mode to be terminated before the expected amount of data has been sent:
1. The host sends an invalid token causing a SETUPEND condition (bit 4 of PERI_CSR0 set).
2. The software sends a packet containing less than the maximum packet size for endpoint 0.
3. The software sends an empty data packet.

Until the transaction is terminated, the software simply needs to load the FIFO when it receives an
interrupt that indicates a packet has been sent from the FIFO. (An interrupt is generated when
TXPKTRDY is cleared.)

When the software forces the termination of a transfer (by sending a short or empty data packet), it should
set the DATAEND bit of PERI_CSR0 (bit 3) to indicate to the core that the data phase is complete and
that the core should next receive an acknowledge packet.

Figure 13-9. TX Mode Flow Chart

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

RX mode

RxPktRdy
set
?

Return
No

Yes

Read Count0
register (n)

Unload n bytes
from FIFO

Last
packet

?

No

Yes

Set
ServicedRxPktRdy

Set
ServicedRxPktRdy

and DataEnd
state->IDLE

Return

Architecture www.ti.com

420 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.8.3.5.3 RX Mode
In RX mode, all arriving data should be treated as part of a data phase until the expected amount of data
has been received. If either a SETUP or an IN token is received while the endpoint is in RX state, a
SetupEnd condition will occur as the controller expects only OUT tokens.

Three events can cause RX mode to be terminated before the expected amount of data has been
received as shown in Figure 13-10:
1. The host sends an invalid token causing a SETUPEND condition (setting bit 4 of PERI_CSR0).
2. The host sends a packet which contains less than the maximum packet size for endpoint 0.
3. The host sends an empty data packet.

Until the transaction is terminated, the software unloads the FIFO when it receives an interrupt that
indicates new data has arrived (setting RXPKTRDY bit of PERI_CSR0) and to clear RXPKTRDY by
setting the SERV_RXPKTRDY bit of PERI_CSR0 (bit 6).

When the software detects the termination of a transfer (by receiving either the expected amount of data
or an empty data packet), it should set the DATAEND bit (bit 3 of PERI_CSR0) to indicate to the controller
that the data phase is complete and that the core should receive an acknowledge packet next.

Figure 13-10. RX Mode Flow Chart

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Architecture

421SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.8.3.5.4 Error Handling
A control transfer may be aborted due to a protocol error on the USB, the host prematurely ending the
transfer, or if the software wishes to abort the transfer (for example, because it cannot process the
command).

The controller automatically detects protocol errors and sends a STALL packet to the host under the
following conditions:
• The host sends more data during the OUT Data phase of a write request than was specified in the

command. This condition is detected when the host sends an OUT token after the DATAEND bit (bit 3
of PERI_CSR0) has been set.

• The host requests more data during the IN Data phase of a read request than was specified in the
command. This condition is detected when the host sends an IN token after the DATAEND bit in the
PERI_CSR0 register has been set.

• The host sends more than Max Packet Size data bytes in an OUT data packet.
• The host sends a non-zero length DATA1 packet during the STATUS phase of a read request.

When the controller has sent the STALL packet, it sets the SENTSTALL bit (bit 2 of PERI_CSR0) and
generates an interrupt. When the software receives an endpoint 0 interrupt with the SENTSTALL bit set, it
should abort the current transfer, clear the SENTSTALL bit, and return to the IDLE state.

If the host prematurely ends a transfer by entering the STATUS phase before all the data for the request
has been transferred, or by sending a new SETUP packet before completing the current transfer, then the
SETUPEND bit (bit 4 of PERI_CSR0) will be set and an endpoint 0 interrupt generated. When the
software receives an endpoint 0 interrupt with the SETUPEND bit set, it should abort the current transfer,
set the SERV_SETUPEND bit (bit 7 of PERI_CSR0), and return to the IDLE state. If the RXPKTRDY bit
(bit 0 of PERI_CSR0) is set this indicates that the host has sent another SETUP packet and the software
should then process this command.

If the software wants to abort the current transfer, because it cannot process the command or has some
other internal error, then it should set the SENDSTALL bit (bit 5 of PERI_CSR0). The controller will then
send a STALL packet to the host, set the SENTSTALL bit (bit 2 of PERI_CSR0) and generate an endpoint
0 interrupt.

13.2.8.3.5.5 Additional Conditions
The controller automatically responds to certain conditions on the USB bus or actions by the host. The
details are:
• Stall Issued to Control Transfers

– The host sends more data during an OUT Data phase of a Control transfer than was specified in
the device request during the SETUP phase. This condition is detected by the controller when the
host sends an OUT token (instead of an IN token) after the software has unloaded the last OUT
packet and set DataEnd.

– The host requests more data during an IN data phase of a Control transfer than was specified in
the device request during the SETUP phase. This condition is detected by the controller when the
host sends an IN token (instead of an OUT token) after the software has cleared TXPKTRDY and
set DataEnd in response to the ACK issued by the host to what should have been the last packet.

– The host sends more than MaxPktSize data with an OUT data token.
– The host sends the wrong PID for the OUT Status phase of a Control transfer.
– The host sends more than a zero length data packet for the OUT Status phase.

• Zero Length Out Data Packets In Control Transfer
– A zero length OUT data packet is used to indicate the end of a Control transfer. In normal

operation, such packets should only be received after the entire length of the device request has
been transferred (that is, after the software has set DataEnd). If, however, the host sends a zero
length OUT data packet before the entire length of device request has been transferred, this signals
the premature end of the transfer. In this case, the controller will automatically flush any IN token
loaded by software ready for the Data phase from the FIFO and set SETUPEND bit (bit 4 of
PERI_CSR0).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Architecture www.ti.com

422 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.8.4 Bulk Transactions

13.2.8.4.1 Bulk In Transactions
A Bulk IN transaction is used to transfer non-periodic data from the USB peripheral device to the host.

The following optional features are available for use with a Tx endpoint for Bulk IN transactions:
• Double packet buffering: When enabled, up to two packets can be stored in the FIFO awaiting

transmission to the host. Double packet buffering is enabled by setting the DPB bit of TXFIFOSZ
register (bit 4).

• DMA: If DMA is enabled for the endpoint, a DMA request will be generated whenever the endpoint is
able to accept another packet in its FIFO. This feature allows the DMA controller to load packets into
the FIFO without processor intervention.
When DMA is enabled and DMAMODE bit of PERI_TXCSR is set, an endpoint interrupt is not
generated for completion of the packet transfer. An endpoint interrupt is generated only in the error
conditions.

13.2.8.4.1.1 Setup
In configuring a TX endpoint for bulk transactions, the TXMAXP register must be written with the
maximum packet size (in bytes) for the endpoint. This value should be the same as the wMaxPacketSize
field of the Standard Endpoint Descriptor for the endpoint and the PERI_TXCSR register should be set as
shown in Table 13-4 when using DMA:

Table 13-4. PERI_TXCSR Register Bit Configuration for Bulk IN Transactions

Bit Position Bit Field Name Configuration
Bit 14 ISO Cleared to 0 for bulk mode operation.
Bit 13 MODE Set to 1 to make sure the FIFO is enabled (only necessary if the FIFO is shared with an RX

endpoint).
Bit 12 DMAEN Set to 1 if DMA requests must be enabled.
Bit 11 FRCDATATOG Cleared to 0 to allow normal data toggle operations.
Bit 10 DMAMODE Set to 1 when DMA is enabled and EP interrupt is not needed for each packet transmission.

When the endpoint is first configured (following a SET_CONFIGURATION or SET_INTERFACE command
on Endpoint 0), the lower byte of PERI_TXCSR should be written to set the CLRDATATOG bit (bit 6). This
will ensure that the data toggle (which is handled automatically by the controller) starts in the correct state.

Also if there are any data packets in the FIFO, indicated by the FIFONOTEMPTY bit (bit 1 of
PERI_TXCSR) being set, they should be flushed by setting the FLUSHFIFO bit (bit 3 of PERI_TXCSR).

NOTE: It may be necessary to set this bit twice in succession if double buffering is enabled.

13.2.8.4.1.2 Operation
When data is to be transferred over a Bulk IN pipe, a data packet needs to be loaded into the FIFO and
the PERI_TXCSR register written to set the TXPKTRDY bit (bit 0). When the packet has been sent, the
TXPKTRDY bit will be cleared by the USB controller and an interrupt generated so that the next packet
can be loaded into the FIFO. If double packet buffering is enabled, then after the first packet has been
loaded and the TXPKTRDY bit set, the TXPKTRDY bit will immediately be cleared by the USB controller
and an interrupt generated so that a second packet can be loaded into the FIFO. The software should
operate in the same way, loading a packet when it receives an interrupt, regardless of whether double
packet buffering is enabled or not.

In the general case, the packet size must not exceed the size specified by the lower 11 bits of the
TXMAXP register. This part of the register defines the payload (packet size) for transfers over the USB
and is required by the USB Specification to be either 8, 16, 32, 64 (Full-Speed or High-Speed) or
512 bytes (High-Speed only).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Architecture

423SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

The host may determine that all the data for a transfer has been sent by knowing the total amount of data
that is expected. Alternatively it may infer that all the data has been sent when it receives a packet which
is smaller than the stated payload (TXMAXP[10-0]). In the latter case, if the total size of the data block is a
multiple of this payload, it will be necessary for the function to send a null packet after all the data has
been sent. This is done by setting TXPKTRDY when the next interrupt is received, without loading any
data into the FIFO.

If large blocks of data are being transferred, then the overhead of calling an interrupt service routine to
load each packet can be avoided by using DMA.

13.2.8.4.1.3 Error Handling
If the software wants to shut down the Bulk IN pipe, it should set the SENDSTALL bit (bit 4 of
PERI_TXCSR). When the controller receives the next IN token, it will send a STALL to the host, set the
SENTSTALL bit (bit 5 of PERI_TXCSR) and generate an interrupt.

When the software receives an interrupt with the SENTSTALL bit (bit 5 of PERI_TXCSR) set, it should
clear the SENTSTALL bit. It should however leave the SENDSTALL bit set until it is ready to re-enable the
Bulk IN pipe.

NOTE: If the host failed to receive the STALL packet for some reason, it will send another IN token,
so it is advisable to leave the SENDSTALL bit set until the software is ready to re-enable the
Bulk IN pipe. When a pipe is re-enabled, the data toggle sequence should be restarted by
setting the CLRDATATOG bit in the PERI_TXCSR register (bit 6).

13.2.8.4.2 Bulk OUT Transactions
A Bulk OUT transaction is used to transfer non-periodic data from the host to the function controller.

The following optional features are available for use with an Rx endpoint for Bulk OUT transactions:
• Double packet buffering: When enabled, up to two packets can be stored in the FIFO on reception

from the host. Double packet buffering is enabled by setting the DPB bit of the RXFIFOSZ register (bit
4).

• DMA: If DMA is enabled for the endpoint, a DMA request will be generated whenever the endpoint has
a packet in its FIFO. This feature can be used to allow the DMA controller to unload packets from the
FIFO without processor intervention.
When DMA is enabled, endpoint interrupt will not be generated for completion of packet reception.
Endpoint interrupt will be generated only in the error conditions.

13.2.8.4.2.1 Setup
In configuring an Rx endpoint for Bulk OUT transactions, the RXMAXP register must be written with the
maximum packet size (in bytes) for the endpoint. This value should be the same as the wMaxPacketSize
field of the Standard Endpoint Descriptor for the endpoint. In addition, the relevant interrupt enable bit in
the INTRRXE register should be set (if an interrupt is required for this endpoint) and the PERI_RXCSR
register should be set as shown in Table 13-5.

Table 13-5. PERI_RXCSR Register Bit Configuration for Bulk OUT Transactions

Bit Position Bit Field Name Configuration
Bit 14 ISO Cleared to 0 to enable Bulk protocol.
Bit 13 DMAEN Set to 1 if a DMA request is required for this endpoint.
Bit 12 DISNYET Cleared to 0 to allow normal PING flow control. This will affect only high speed transactions.
Bit 11 DMAMODE Always clear this bit to 0.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Architecture www.ti.com

424 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

When the endpoint is first configured (following a SET_CONFIGURATION or SET_INTERFACE command
on Endpoint 0), the lower byte of PERI_RXCSR should be written to set the CLRDATATOG bit (bit 7).
This will ensure that the data toggle (which is handled automatically by the USB controller) starts in the
correct state.

Also if there are any data packets in the FIFO (indicated by the RXPKTRDY bit (bit 0 of PERI_RXCSR)
being set), they should be flushed by setting the FLUSHFIFO bit (bit 4 of PERI_RXCSR).

NOTE: It may be necessary to set this bit twice in succession if double buffering is enabled.

13.2.8.4.2.2 Operation
When a data packet is received by a Bulk Rx endpoint, the RXPKTRDY bit (bit 0 of PERI_RXCSR) is set
and an interrupt is generated. The software should read the RXCOUNT register for the endpoint to
determine the size of the data packet. The data packet should be read from the FIFO, then the
RXPKTRDY bit should be cleared.

The packets received should not exceed the size specified in the RXMAXP register (as this should be the
value set in the wMaxPacketSize field of the endpoint descriptor sent to the host). When a block of data
larger than wMaxPacketSize needs to be sent to the function, it will be sent as multiple packets. All the
packets will be wMaxPacketSize in size, except the last packet which will contain the residue. The
software may use an application specific method of determining the total size of the block and hence when
the last packet has been received. Alternatively it may infer that the entire block has been received when it
receives a packet which is less than wMaxPacketSize in size. (If the total size of the data block is a
multiple of wMaxPacketSize, a null data packet will be sent after the data to signify that the transfer is
complete.)

In the general case, the application software will need to read each packet from the FIFO individually. If
large blocks of data are being transferred, the overhead of calling an interrupt service routine to unload
each packet can be avoided by using DMA.

13.2.8.4.2.3 Error Handling
If the software wants to shut down the Bulk OUT pipe, it should set the SENDSTALL bit (bit 5 of
PERI_RXCSR). When the controller receives the next packet it will send a STALL to the host, set the
SENTSTALL bit (bit 6 of PERI_RXCSR) and generate an interrupt.

When the software receives an interrupt with the SENTSTALL bit (bit 6 of PERI_RXCSR) set, it should
clear this bit. It should however leave the SENDSTALL bit set until it is ready to re-enable the Bulk OUT
pipe.

NOTE: If the host failed to receive the STALL packet for some reason, it will send another packet,
so it is advisable to leave the SENDSTALL bit set until the software is ready to re-enable the
Bulk OUT pipe. When a Bulk OUT pipe is re-enabled, the data toggle sequence should be
restarted by setting the CLRDATATOG bit (bit 7) in the PERI_RXCSR register.

13.2.8.5 Interrupt Transactions
An Interrupt IN transaction uses the same protocol as a Bulk IN transaction and can be used the same
way. Similarly, an Interrupt OUT transaction uses almost the same protocol as a Bulk OUT transaction
and can be used the same way.

Tx endpoints in the USB controller have one feature for Interrupt IN transactions that they do not support
in Bulk IN transactions. In Interrupt IN transactions, the endpoints support continuous toggle of the data
toggle bit.

This feature is enabled by setting the FRCDATATOG bit in the PERI_TXCSR register (bit 11). When this
bit is set, the controller will consider the packet as having been successfully sent and toggle the data bit
for the endpoint, regardless of whether an ACK was received from the host.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Architecture

425SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Another difference is that interrupt endpoints do not support PING flow control. This means that the
controller should never respond with a NYET handshake, only ACK/NAK/STALL. To ensure this, the
DISNYET bit in the PERI_RXCSR register (bit 12) should be set to disable the transmission of NYET
handshakes in high-speed mode.

Though DMA can be used with an interrupt OUT endpoint, it generally offers little benefit as interrupt
endpoints are usually expected to transfer all their data in a single packet.

13.2.8.6 Isochronous Transactions

13.2.8.6.1 Isochronous IN Transactions
An Isochronous IN transaction is used to transfer periodic data from the function controller to the host.

The following optional features are available for use with a Tx endpoint for Isochronous IN transactions:
• Double packet buffering: When enabled, up to two packets can be stored in the FIFO awaiting

transmission to the host. Double packet buffering is enabled by setting the DPB bit of TXFIFOSZ
register (bit 4).

NOTE: Double packet buffering is generally advisable for Isochronous transactions in order to avoid
Underrun errors as described in later section.

• DMA: If DMA is enabled for the endpoint, a DMA request will be generated whenever the endpoint is
able to accept another packet in its FIFO. This feature allows the DMA controller to load packets into
the FIFO without processor intervention.
However, this feature is not particularly useful with Isochronous endpoints because the packets
transferred are often not maximum packet size and the PERI_TXCSR register needs to be accessed
following every packet to check for Underrun errors.
When DMA is enabled and DMAMODE bit of PERI_TXCSR is set, endpoint interrupt will not be
generated for completion of packet transfer. Endpoint interrupt will be generated only in the error
conditions.

13.2.8.6.1.1 Setup
In configuring a Tx endpoint for Isochronous IN transactions, the TXMAXP register must be written with
the maximum packet size (in bytes) for the endpoint. This value should be the same as the
wMaxPacketSize field of the Standard Endpoint Descriptor for the endpoint. In addition, the relevant
interrupt enable bit in the INTRTXE register should be set (if an interrupt is required for this endpoint) and
the PERI_TXCSR register should be set as shown in Table 13-6.

Table 13-6. PERI_TXCSR Register Bit Configuration for Isochronous IN Transactions

Bit Position Bit Field Name Configuration
Bit 14 ISO Set to 1 to enable Isochronous transfer protocol.
Bit 13 MODE Set to 1 to ensure the FIFO is enabled (only necessary if the FIFO is shared with an Rx

endpoint).
Bit 12 DMAEN Set to 1 if DMA Requests have to be enabled.
Bit 11 FRCDATATOG Ignored in Isochronous mode.
Bit 10 DMAMODE Set it to 1, when DMA is enabled and EP interrupt is not needed for each packet

transmission.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Architecture www.ti.com

426 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.8.6.1.2 Operation
An Isochronous endpoint does not support data retries, so if data underrun is to be avoided, the data to be
sent to the host must be loaded into the FIFO before the IN token is received. The host will send one IN
token per frame (or microframe in High-speed mode), however the timing within the frame (or microframe)
can vary. If an IN token is received near the end of one frame and then at the start of the next frame,
there will be little time to reload the FIFO. For this reason, double buffering of the endpoint is usually
necessary.

An interrupt is generated whenever a packet is sent to the host and the software may use this interrupt to
load the next packet into the FIFO and set the TXPKTRDY bit in the PERI_TXCSR register (bit 0) in the
same way as for a Bulk Tx endpoint. As the interrupt could occur almost any time within a
frame(/microframe), depending on when the host has scheduled the transaction, this may result in
irregular timing of FIFO load requests. If the data source for the endpoint is coming from some external
hardware, it may be more convenient to wait until the end of each frame(/microframe) before loading the
FIFO as this will minimize the requirement for additional buffering. This can be done by using either the
SOF interrupt or the external SOF_PULSE signal from the controller to trigger the loading of the next data
packet. The SOF_PULSE is generated once per frame(/microframe) when a SOF packet is received. (The
controller also maintains an external frame(/microframe) counter so it can still generate a SOF_PULSE
when the SOF packet has been lost.) The interrupts may still be used to set the TXPKTRDY bit in
PERI_TXCSR (bit 0) and to check for data overruns/underruns.

Starting up a double-buffered Isochronous IN pipe can be a source of problems. Double buffering requires
that a data packet is not transmitted until the frame(/microframe) after it is loaded. There is no problem if
the function loads the first data packet at least a frame(/microframe) before the host sets up the pipe (and
therefore starts sending IN tokens). But if the host has already started sending IN tokens by the time the
first packet is loaded, the packet may be transmitted in the same frame(/microframe) as it is loaded,
depending on whether it is loaded before, or after, the IN token is received. This potential problem can be
avoided by setting the ISOUPDATE bit in the POWER register (bit 7). When this bit is set, any data packet
loaded into an Isochronous Tx endpoint FIFO will not be transmitted until after the next SOF packet has
been received, thereby ensuring that the data packet is not sent too early.

13.2.8.6.1.3 Error Handling
If the endpoint has no data in its FIFO when an IN token is received, it will send a null data packet to the
host and set the UNDERRUN bit in the PERI_TXCSR register (bit 2). This is an indication that the
software is not supplying data fast enough for the host. It is up to the application to determine how this
error condition is handled.

If the software is loading one packet per frame(/microframe) and it finds that the TXPKTRDY bit in the
PERI_TXCSR register (bit 0) is set when it wants to load the next packet, this indicates that a data packet
has not been sent (perhaps because an IN token from the host was corrupted). It is up to the application
how it handles this condition: it may choose to flush the unsent packet by setting the FLUSHFIFO bit in
the PERI_TXCSR register (bit 3), or it may choose to skip the current packet.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Architecture

427SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.8.6.2 Isochronous OUT Transactions
An Isochronous OUT transaction is used to transfer periodic data from the host to the function controller.

Following optional features are available for use with an Rx endpoint for Isochronous OUT transactions:
• Double packet buffering: When enabled, up to two packets can be stored in the FIFO on reception

from the host. Double packet buffering is enabled by setting the DPB bit of RXFIFOSZ register (bit 4).

NOTE: Double packet buffering is generally advisable for Isochronous transactions in order to avoid
Overrun errors.

• DMA: If DMA is enabled for the endpoint, a DMA request will be generated whenever the endpoint has
a packet in its FIFO. This feature can be used to allow the DMA controller to unload packets from the
FIFO without processor intervention.
However, this feature is not particularly useful with Isochronous endpoints because the packets
transferred are often not maximum packet size and the PERI_RXCSR register needs to be accessed
following every packet to check for Overrun or CRC errors.
When DMA is enabled, endpoint interrupt will not be generated for completion of packet reception.
Endpoint interrupt will be generated only in the error conditions.

13.2.8.6.2.1 Setup
In configuring an Rx endpoint for Isochronous OUT transactions, the RXMAXP register must be written
with the maximum packet size (in bytes) for the endpoint. This value should be the same as the
wMaxPacketSize field of the Standard Endpoint Descriptor for the endpoint. In addition, the relevant
interrupt enable bit in the INTRRXE register should be set (if an interrupt is required for this endpoint) and
the PERI_RXCSR register should be set as shown in Table 13-7.

Table 13-7. PERI_RXCSR Register Bit Configuration for Isochronous OUT Transactions

Bit Position Bit Field Name Configuration
Bit 14 ISO Set to 1 to enable isochronous protocol.
Bit 13 DMAEN Set to 1 if a DMA request is required for this endpoint.
Bit 12 DISNYET Ignored in isochronous transfers.
Bit 11 DMAMODE Always clear this bit to 0.

13.2.8.6.2.2 Operation
An Isochronous endpoint does not support data retries so, if a data overrun is to be avoided, there must
be space in the FIFO to accept a packet when it is received. The host will send one packet per frame (or
microframe in High-speed mode); however, the time within the frame can vary. If a packet is received near
the end of one frame(/microframe) and another arrives at the start of the next frame, there will be little time
to unload the FIFO. For this reason, double buffering of the endpoint is usually necessary.

An interrupt is generated whenever a packet is received from the host and the software may use this
interrupt to unload the packet from the FIFO and clear the RXPKTRDY bit in the PERI_RXCSR register
(bit 0) in the same way as for a Bulk Rx endpoint. As the interrupt could occur almost any time within a
frame(/microframe), depending on when the host has scheduled the transaction, the timing of FIFO unload
requests will probably be irregular. If the data sink for the endpoint is going to some external hardware, it
may be better to minimize the requirement for additional buffering by waiting until the end of each
frame(/microframe) before unloading the FIFO. This can be done by using either the SOF interrupt or the
external SOF_PULSE signal from the controller to trigger the unloading of the data packet. The
SOF_PULSE is generated once per frame(/microframe) when a SOF packet is received. (The controller
also maintains an external frame(/microframe) counter so it can still generate a SOF_PULSE when the
SOF packet has been lost.) The interrupts may still be used to clear the RXPKTRDY bit in PERI_RXCSR
and to check for data overruns/underruns.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Architecture www.ti.com

428 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.8.6.2.3 Error Handling
If there is no space in the FIFO to store a packet when it is received from the host, the OVERRUN bit in
the PERI_RXCSR register (bit 2) will be set. This is an indication that the software is not unloading data
fast enough for the host. It is up to the application to determine how this error condition is handled.

If the controller finds that a received packet has a CRC error, it will still store the packet in the FIFO and
set the RXPKTRDY bit (bit 0 of PERI_RXCSR) and the DATAERROR bit (bit 3 of PERI_RXCSR). It is left
up to the application how this error condition is handled.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Main
Memory

CPU

Interrupts

Queue
Push/Pop

Operations

Queue
Manager

CPPI
DMA

(CDMA)

Queue
Push/Pop
Operations

cdma_sreq

cdma_sready

CDMA
Scheduler
(CDMAS)

Queue Indicators

FIFO_full

FIFO_empty SSRAM/
PPU

(CPPI
FIFO)

F
IF

O
_f

u
ll

F
IF

O
_e

m
p

ty

Transfer
DMA

(XDMA)

Mentor
USB 2.0

Core

USB
PHY

Configuration
Rd/Wr

DMA_req[8]

Endpoint
FIFOs

USB
Bus

REFCLK

CPPI 4.1

USB Controller

www.ti.com Architecture

429SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.9 Communications Port Programming Interface (CPPI) 4.1 DMA Overview for
TMS320C5515
The CPPI DMA module supports the transmission and reception of USB packets. The CPPI DMA is
designed to facilitate the segmentation and reassembly of CPPI compliant packets to/from smaller data
blocks that are natively compatible with the specific requirements of each networking port. Multiple Tx and
Rx channels are provided within the DMA which allow multiple segmentation or reassembly operations to
be effectively performed in parallel (but not actually simultaneously). The DMA controller maintains state
information for each of the ports/channels which allows packet segmentation and reassembly operations
to be time division multiplexed between channels in order to share the underlying DMA hardware. A DMA
scheduler is used to control the ordering and rate at which this multiplexing occurs.

The CPPI (version 4.1) DMA controller sub-module is a common 4 dual-port DMA Controller. It supports 4
Tx and 4 Rx Ports and each port attaches to the associated endpoint in the controller. Port 1 maps to
endpoint 1 and Port 2 maps to endpoint 2 and Port 3 maps to endpoint 3 and Port 4 maps to endpoint 4,
while endpoint 0 can not utilize the DMA and the firmware is responsible to load or offload the endpoint 0
FIFO via CPU.

Figure 13-11 displays the USB controller block diagram.

Figure 13-11. USB Controller Block Diagram

Host— The host is an intelligent system resource that configures and manages each communications
control module. The host is responsible for allocating memory, initializing all data structures, and
responding to port interrupts.

Main Memory— The area of data storage managed by the CPU. The CPPI DMA (CDMA) reads and
writes CPPI packets from and to main memory. This memory can exist internal or external from the
device.

Queue Manager (QM)— The QM is responsible for accelerating management of a variety of Packet
Queues and Free Descriptor / Buffer Queues. It provides status indications to the CDMA Scheduler
when queues are empty or full.

CPPI DMA (CDMA)— The CDMA is responsible for transferring data between the CPPI FIFO and Main
Memory. It acquires free Buffer Descriptor from the QM (Receive Submit Queue) for storage of
received data, posts received packets pointers to the Receive Completion Queue, transmits
packets stored on the Transmit Submit Queue (Transmit Queue) , and posts completed transmit
packets to the Transmit Completion Queue.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Architecture www.ti.com

430 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

CDMA Scheduler (CDMAS)— The CDMAS is responsible for scheduling CDMA transmit and receive
operations. It uses Queue Indicators from the QM and the CDMA to determine the types of
operations to schedule.

CPPI FIFO— The CPPI FIFO provides 8 FIFO interfaces (one for each of the 4 transmit and receive
endpoints). Each FIFO contains two 64-byte memory storage elements (ping-pong buffer storage).

Transfer DMA (XDMA)— The XDMA receives DMA requests from the Mentor USB 2.0 Core and initiates
DMAs to the CPPI FIFO.

Endpoint FIFOs— The Endpoint FIFOs are the USB packet storage elements used by the Mentor USB
2.0 Core for packet transmission or reception. The XDMA transfers data between the CPPI FIFO
and the Endpoint FIFOs for transmit operations and between the Endpoint FIFOs and the CPPI
FIFO for receive operations.

Mentor USB 2.0 Core— This controller is responsible for processing USB bus transfers (control, bulk,
interrupt, and isochronous). It supports 4 transmit and 4 receive endpoints in addition to endpoint 0
(control).

13.2.9.1 CPPI Terminology
The following terms are important in the discussion of DMA CPPI.

Port— A port is the communications module (peripheral hardware) that contains the control logic for
Direct Memory Access for a single transmit/receive interface or set of interfaces. Each port may
have multiple communication channels that transfer data using homogenous or heterogeneous
protocols. A port is usually subdivided into transmit and receive pairs which are independent of
each other. Each endpoint, excluding endpoint 0, has its own dedicated port.

Channel— A channel refers to the sub-division of information (flows) that is transported across ports.
Each channel has associated state information. Channels are used to segregate information flows
based on the protocol used, scheduling requirements (example: CBR, VBR, ABR), or concurrency
requirements (that is, blocking avoidance). All four ports have dedicated single channels, channel 0,
associated for their use in a USB application.

Data Buffer— A data buffer is a single data structure that contains payload information for transmission to
or reception from a port. A data buffer is a byte aligned contiguous block of memory used to store
packet payload data. A data buffer may hold any portion of a packet and may be linked together
(via descriptors) with other buffers to form packets. Data buffers may be allocated anywhere within
the device memory map. The Buffer Length field of the packet descriptor indicates the number of
valid data bytes in the buffer. There may be from 1 to 4M-1 valid data bytes in each buffer.

Host Buffer Descriptor— A buffer descriptor is a single data structure that contains information about
one or more data buffers. This type of descriptor is required when more than one descriptor is
needed to define an entire packet, that is, it either defines the middle of a packet or end of a
packet.

Host Packet Descriptor— A packet descriptor is another name for the first buffer descriptor within a
packet. Some fields within a data buffer descriptor are only valid when it is a packet descriptor
including the tags, packet length, packet type, and flags. This type of descriptor is always used to
define a packet since it provides packet level information that is useful to both the ports and the
Host in order to properly process the packet. It is the only descriptor used when single descriptor
solely defines a packet. When multiple descriptors are needed to define a packet, the packet
descriptor is the first descriptor used to define a packet.

Free Descriptor/Buffer Queue— A free descriptor/buffer queue is a hardware managed list of available
descriptors with pre-linked empty buffers that are to be used by the receive ports for host type
descriptors. Free Descriptor/Buffer Queues are implemented by the Queue Manager.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Architecture

431SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Teardown Descriptor— Teardown Descriptor is a special structure which is not used to describe either a
packet or a buffer but is instead used to describe the completion of a channel halt and teardown
event. Channel teardown is an important function because it ensures that when a connection is no
longer needed that the hardware can be reliably halted and any remaining packets which had not
yet been transmitted can be reclaimed by the Host without the possibility of losing buffer or
descriptor references (which results in a memory leak).

Packet Queue— A packet queue is hardware managed list of valid (that is, populated) packet descriptors
that is used for forwarding a packet from one entity to another for any number of purposes.

Queue Manager— The queue manager is a hardware module that is responsible for accelerating
management of the packet queues. Packets are added to a packet queue by writing the 32-bit
descriptor address to a particular memory mapped location in the Queue Manager module. Packets
are de-queued by reading the same location for that particular queue. A single Queue Manager is
used for a USB application.

NOTE: All descriptors (regardless of type) must be allocated at addresses that are naturally aligned
to the smallest power of 2 that is equal to or greater than the descriptor size.

13.2.9.2 Host Packet Descriptor (SOP Descriptor)
Host Packet Descriptors are designed to be used when USB like application requires support for true,
unlimited fragment count scatter/gather type operations. The Host Packet Descriptor is the first descriptor
on multiple descriptors setup or the only descriptor in a single descriptors setup. The Host Packet
Descriptor contains the following information:
• Indicator which identifies the descriptor as a Host Packet Descriptor (always 10h)
• Source and Destination Tags (Reserved)
• Packet Type
• Packet Length
• Protocol Specific Region Size
• Protocol Specific Control/Status Bits
• Pointer to the first valid byte in the SOP data buffer
• Length of the SOP data buffer
• Pointer to the next buffer descriptor in the packet

Host Packet Descriptors can vary in size of their defined fields from 32 bytes up to 104 bytes. Within this
range, Host Packet Descriptors always contain 32 bytes of required information and may also contain 8
bytes of software specific tagging information and up to 64 bytes (indicated in 4 byte increments) of
protocol specific information. How much protocol specific information (and therefore the allocated size of
the descriptors) is application dependent.

NOTE: Descriptors can be located anywhere within the 16MB address space of the device (except
for DARAM, which is not accessible by the USB controller). However, all descriptors must be
placed in a single contiguous block of up to 64KW.

The Host Packet Descriptor layout is shown in Figure 13-12.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Original Buffer Information Word 1 (Original Buffer Pointer)

Original Buffer Information Word 0 (Original Buffer Length)

Linking Information (Next Descriptor Pointer)

Buffer Information Word 1 (Buffer Pointer)

Buffer Information Word 0 (Buffer Length)

Packet and Buffer Information Word 2

Packet Information Word 1

Packet Information Word 0

Optional Software-Specific Information
(2 Words (8 Bytes))

Optional Protocol-Specific Information
(0 to 64 Bytes in Multiples of 4 Bytes)

Optional Private Data
(Any Number of Bytes in Multiples of 4 Bytes)

Required Information
(32 Bytes)

Optional Information
(Not Required for USB)

Architecture www.ti.com

432 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Figure 13-12. Host Packet Descriptor Layout

Table 13-8. Host Packet Descriptor Word 0 (HPD Word 0)

Bits Name Description
31-27 Descriptor Type The Host Packet Descriptor Type is 16 decimal (10h). The CPU initializes this field.
26-22 Protocol Specific Valid Word

Count
This field indicates the valid numberof 32-bit words in the protocol specific region. The
CPU initializes this field. This is encoded in increments of 4 bytes as:
0 = 0 byte
1 = 4 bytes
...
16 = 64 bytes
17-31 = Reserved

21-0 Packet Length The length of the packet in bytes. If the Packet Length is less than the sum of the
buffer lengths, then the packet data will be truncated. A Packet Length greater than
the sum of the buffers is an error. The valid range for the packet length is 0 to (4M - 1)
bytes. The CPU initializes this field for transmitted packets; the DMA overwrites this
field on packet reception.

Table 13-9. Host Packet Descriptor Word 1 (HPD Word 1)

Bits Name Description
31-27 Source Tag: Port # This field indicates the port number (0-31) from which the packet originated. The DMA

overwrites this field on packet reception. This is the RX Endpoint number from which
the packet originated.

26-21 Source Tag: Channel # This field indicates the channel number within the port from which the packet
originated. The DMA overwrites this field on packet reception. This field is always 0-
63.

20-16 Source Tag: Sub-channel # This field indicates the sub-channel number (0-31) within the channel from which the
packet originated. The DMA overwrites this field on packet reception. This field is
always 0.

15-0 Destination Tag This field is application specific. This field is always 0.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Architecture

433SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Table 13-10. Host Packet Descriptor Word 2 (HPD Word 2)

Bits Name Description
31 Packet Error This bit indicates if an error occurred during reception of this packet (0 = No error

occurred, 1 = Error occurred). The DMA overwrites this field on packet reception.
Additional information about different errors may be encoded in the protocol specific
fields in the descriptor.

30-26 Packet Type This field indicates the type of this packet. The CPU initializes this field for transmitted
packets; the DMA overwrites this field on packet reception. This field is encoded as:
0-4 = Reserved
5 = USB
6-31 = Reserved

25-20 Reserved Reserved
19 Zero-length packet indicator If a zero-length USB packet is received, the XDMA will send the CDMA a data block

with a byte count of 0 and this bit is set. The CDMA will then perform normal EOP
termination of the packet without transferring data. For transmit, if a packet has this bit
set, the XDMA will ignore the CPPI packet size and send a zero-length packet to the
USB controller.

18-16 Protocol Specific This field contains protocol specific flags/information that can be assigned based on
the packet type. Not used for USB.

15 Return Policy This field indicates the return policy for this packet. The CPU initializes this field.
0 = Entire packet (still linked together) should be returned to the queue specified in
bits 13-0.
1 = Each buffer should be returned to the queue specified in bits 13-0 of Word 2 in
their respective descriptors. The Tx DMA will return each buffer in sequence.

14 On-chip This field indicates whether or not this descriptor is in a region which is in on-chip
memory space (1) or in external memory (0).

13-12 Packet Return Queue Mgr # This field indicates which queue manager in the system the descriptor is to be
returned to after transmission is complete. This field is not altered by the DMA during
transmission or reception and is initialized by the CPU. There is only 1 Queue
Manager in the USB HS/FS Device Controller, this field must always be 0.

11-0 Packet Return Queue # This field indicates the queue number within the selected queue manager that the
descriptor is to be returned to after transmission is complete. This field is not altered
by the DMA during transmission or reception and is initialized by the CPU.

Table 13-11. Host Packet Descriptor Word 3 (HPD Word 3)

Bits Name Description
31-22 Reserved Reserved
21-0 Buffer 0 Length The Buffer Length field indicates how many valid data bytes are in the buffer. The

CPU initializes this field for transmitted packets; the DMA overwrites this field on
packet reception.

Table 13-12. Host Packet Descriptor Word 4 (HPD Word 4)

Bits Name Description
31-0 Buffer 0 Pointer The Buffer Pointer is the byte aligned memory address of the buffer associated with

the buffer descriptor. The CPU initializes this field for transmitted packets; the DMA
overwrites this field on packet reception.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Architecture www.ti.com

434 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Table 13-13. Host Packet Descriptor Word 5 (HPD Word 5)

Bits Name Description
31-0 Next Descriptor Pointer The 32-bit word aligned memory address of the next buffer descriptor in the packet. If

the value of this pointer is zero, then the current buffer is the last buffer in the packet.
The CPU initializes this field for transmitted packets; the DMA overwrites this field on
packet reception.

Table 13-14. Host Packet Descriptor Word 6 (HPD Word 6)

Bits Name Description
31-22 Reserved Reserved
21-0 Original Buffer 0 Length The Buffer Length field indicates the original size of the buffer in bytes. This value is

not overwritten during reception. This value is read by the Rx DMA to determine the
actual buffer size as allocated by the CPU at initialization. Since the buffer length in
Word 3 is overwritten by the Rx port during reception, this field is necessary to
permanently store the buffer size information.

Table 13-15. Host Packet Descriptor Word 7 (HPD Word 7)

Bits Name Description
31-22 Reserved Reserved
21-0 Original Buffer 0 Pointer The Buffer Pointer is the byte aligned memory address of the buffer associated with

the buffer descriptor. This value is not overwritten during reception. This value is read
by the Rx DMA to determine the actual buffer location as allocated by the CPU at
initialization. Since the buffer pointer in Word 4 is overwritten by the Rx port during
reception, this field is necessary to permanently store the buffer pointer information.

13.2.9.3 Host Buffer Descriptor (Non-SOP Descriptor)
The Host Buffer Descriptor is identical in size and organization to a Host Packet Descriptor but does not
include valid information in the packet level fields and does not include a populated region for protocol
specific information. The packet level fields is not needed since the SOP descriptor contain this
information and additional copy of this data is not needed/necessary.

Host Buffer Descriptors are designed to be linked onto a Host Packet Descriptor or another Host Buffer
Descriptor to provide support for unlimited scatter / gather type operations. Host Buffer Descriptors provide
information about a single corresponding data buffer. Every Host buffer descriptor stores the following
information:
• Pointer to the first valid byte in the data buffer
• Length of the data buffer
• Pointer to the next buffer descriptor in the packet

Host Buffer Descriptors always contain 32 bytes of required information. Since it is a requirement that it is
possible to convert a Host descriptor between a Buffer Descriptor and a Packet Descriptor (by filling in the
appropriate fields) in practice, Host Buffer Descriptors will be allocated using the same sizes as Host
Packet Descriptors. In addition, since the 5 LSBs of the Descriptor Pointers are used in CPPI 4.1 for the
purpose of indicating the length of the descriptor, the minimum size of a descriptor is always 32 bytes.
(For more information on Descriptor Size, see Section 13.3.80).

NOTE: Descriptors can be located anywhere within the 16MB address space of the device (except
for DARAM, which is not accessible by the USB controller). However, all descriptors must be
placed in a single contiguous block of up to 64KW.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Original Buffer Information Word 1 (Original Buffer Pointer)

Original Buffer Information Word 0 (Original Buffer Length)

Linking Information (Next Descriptor Pointer)

Buffer Information Word 1 (Buffer Pointer)

Buffer Information Word 0 (Buffer Length)

Word 2 [Pkt Info] Reserved

Word 1 (Reserved)

Word 0 (Reserved)

Required Information
(32 Bytes)

Word 2 [Buffer Info]

www.ti.com Architecture

435SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

The descriptor layout is shown in Figure 13-13.

Figure 13-13. Host Buffer Descriptor Layout

Table 13-16. Host Buffer Descriptor Word 0 (HBD Word 0)

Bits Name Description
31-0 Reserved Reserved

Table 13-17. Host Buffer Descriptor Word 1 (HBD Word 1)

Bits Name Description
31-0 Reserved Reserved

Table 13-18. Host Buffer Descriptor Word 2 (HBD Word 2)

Bits Name Description
31-15 Reserved Reserved

14 On-chip This field indicates whether or not this descriptor is in a region which is in on-chip
memory space (1) or in external memory (0).

13-12 Packet Return Queue Mgr # This field indicates which queue manager in the system the descriptor is to be
returned to after transmission is complete. This field is not altered by the DMA during
transmission or reception and is initialized by the CPU. There is only 1 Queue
Manager in the USB HS/FS Device Controller, this field must always be 0.

11-0 Packet Return Queue # This field indicates the queue number within the selected queue manager that the
descriptor is to be returned to after transmission is complete. This field is not altered
by the DMA during transmission or reception and is initialized by the CPU.

Table 13-19. Host Buffer Descriptor Word 3 (HBD Word 3)

Bits Name Description
31-22 Reserved Reserved
21-0 Buffer 0 Length The Buffer Length field indicates how many valid data bytes are in the buffer. The

CPU initializes this field for transmitted packets; the DMA overwrites this field on
packet reception.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Architecture www.ti.com

436 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Table 13-20. Host Buffer Descriptor Word 4 (HBD Word 4)

Bits Name Description
31-0 Buffer 0 Pointer The Buffer Pointer is the byte aligned memory address of the buffer associated with

the buffer descriptor. The CPU initializes this field for transmitted packets; the DMA
overwrites this field on packet reception.

Table 13-21. Host Buffer Descriptor Word 5 (HBD Word 5)

Bits Name Description
31-0 Next Descriptor Pointer The 32-bit word aligned memory address of the next buffer descriptor in the packet. If

the value of this pointer is zero, then the current descriptor is the last descriptor in the
packet. The CPU initializes this field for transmitted packets; the DMA overwrites this
field on packet reception.

Table 13-22. Host Buffer Descriptor Word 6 (HBD Word 6)

Bits Name Description
31-22 Reserved Reserved
21-0 Original Buffer 0 Length The Buffer Length field indicates the original size of the buffer in bytes. This value is

not overwritten during reception. This value is read by the Rx DMA to determine the
actual buffer size as allocated by the CPU at initialization. Since the buffer length in
Word 3 is overwritten by the Rx port during reception, this field is necessary to
permanently store the buffer size information.

Table 13-23. Host Buffer Descriptor Word 7 (HBD Word 7)

Bits Name Description
31-0 Original Buffer 0 Pointer The Buffer Pointer is the byte aligned memory address of the buffer associated with

the buffer descriptor. This value is not overwritten during reception. This value is read
by the Rx DMA to determine the actual buffer location as allocated by the CPU at
initialization. Since the buffer pointer in Word 4 is overwritten by the Rx port during
reception, this field is necessary to permanently store the buffer pointer information.

13.2.9.4 Teardown Descriptor
The Teardown Descriptor is not like the Host Packet or Buffer Descriptors since it is not used to describe
either a packet or a buffer. The Teardown Descriptor is always 32 bytes long and is comprised of 4 bytes
of actual teardown information and 28 bytes of pad (see Figure 13-14). Since the 5 LSBs of the Descriptor
Pointers are used in CPPI 4.1 for the purpose of indicating the length of the descriptor, the minimum size
of a descriptor is 32 bytes.

Teardown Descriptor is used to describe a channel halt and teardown event. Channel teardown ensures
that when a connection is no longer needed that the hardware can be reliably halted and any remaining
packets which had not yet been transmitted can be reclaimed by the Host without the possibility of losing
buffer or descriptor references (which results in a memory leak).

NOTE: Descriptors can be located anywhere within the 16MB address space of the device (except
for DARAM, which is not accessible by the USB controller). However, all descriptors must be
placed in a single contiguous block of up to 64KW.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Reserved Pad (4 Bytes)

Teardown Info (4 Bytes)

Required Information
(32 Bytes)

Reserved Pad (4 Bytes)

Reserved Pad (4 Bytes)

Reserved Pad (4 Bytes)

Reserved Pad (4 Bytes)

Reserved Pad (4 Bytes)

Reserved Pad (4 Bytes)

www.ti.com Architecture

437SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

The Teardown Descriptor contains the following information:
• Indicator which identifies the descriptor as a Teardown Packet Descriptor
• DMA Controller Number where teardown occurred
• Channel number within DMA where teardown occurred
• Indicator of whether this teardown was for the Tx or Rx channel

Figure 13-14. Teardown Descriptor Layout

Table 13-24. Teardown Descriptor Word 0

Bits Name Description
31-27 Descriptor Type The teardown descriptor type is 19 decimal (13h).
26-17 Reserved Reserved

16 TX_RX Indicates whether teardown is a TX (0) or RX (1).
15-10 DMA Number Indicates the DMA number for this teardown.

9-6 Reserved Reserved
5-0 Channel Number Indicates the channel number within the DMA that was torn down.

Table 13-25. Teardown Descriptor Words 1-7

Bits Name Description
31-0 Reserved Reserved

Teardown operation of an endpoint requires three operations. The teardown register in the CPPI DMA
must be written, the corresponding endpoint bit in TEARDOWN of the USB module must be set, and the
FlushFIFO bit in the Mentor USB controller TX/RXCSR register must be set. Writing to TEARDOWN in the
USB2.0 module resets the CPPI FIFO occupancy value and pointers to 0. It also resets the current state
of the XDMA for the endpoint selected, after any current operations have been completed. Note that due
to VBUSP bridge latency, the CPPI FIFO occupancy values will not be reset immediately upon writing of
TEARDOWN.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Architecture www.ti.com

438 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.9.5 Queues
Several types of queues exist (a total of 64 queues) within the CPPI 4.1 DMA. Regardless of the type of
queue a queue is, queues are used to hold pointers to host or buffer packet descriptors while they are
being passed between the Host and / or any of the ports in the system. All queues are maintained within
the Queue Manager module.

The following type of Queues exist:
• Receive Free Descriptor/Buffer Queue
• Receive Completion (Return) Queue
• Transmit Submit Queue (also referred as Transmit Queue)
• Transmit Completion (Return) Queue
• Free Descriptor Queue (Unassigned: Can be used for Completion or Application Specific purposes)

Table 13-26 displays the allocation (partition) of the available Queues.

Table 13-26. Allocation of Queues

Starting Queue Number Number of Queues Function
0 16 RX +Free Descriptor/Buffer (submit) queues
16 2 USB Endpoint 1 TX (submit) queues
18 2 USB Endpoint 2 TX (submit) queues
20 2 USB Endpoint 3 TX (submit) queues
22 2 USB Endpoint 4 TX (submit) queues
24 2 TX Completion (return) queues
26 2 RX Completion (return) queues
28 36 Unassigned (application-defined) queues

13.2.9.5.1 Queuing Packets
Prior to queuing packets, the host/firmware should construct data buffer as well host packet/buffer
descriptors within the 16MB address space of the device (except for DARAM which is not accessible by
the USB controller).

NOTE: Descriptors must be placed in a single contiguous block of up to 64KW anywhere in the
16MB address space of the device, except DARAM which is not accessible by the USB
controller.

Queuing of packets onto a packet queue is accomplished by writing a pointer to the Packet Descriptor into
a specific address within the selected queue (Register D of Queue N). Packet is always queued onto the
tail of the queue. The Queue Manager provides a unique set of addresses for adding packets for each
queue that it manages.

NOTE: The control register D for each queue is split up into two registers (CTRL1D and CTRL2D).
To load a descriptor pointer into a queue, use a single double word write to CTRL1D.

13.2.9.5.2 De-Queuing Packets
De-queuing of packets from a packet queue is accomplished by reading the head packet pointer from a
specific address within the selected queue (Register D of Queue N). After the head pointer has been read,
the Queue Manager will invalidate the head pointer and will replace it with the next packet pointer in the
queue. This functionality, which is implemented in the Queue Manager, prevents the ports from needing to
traverse linked lists and allows for certain optimizations to be performed within the Queue Manager.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Architecture

439SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

NOTE: The control register D for each queue is split up into two registers (CTRL1D and CTRL2D).
To unload a descriptor pointer into a queue, use a single word read from CTRL1D. The
return value will be the lower 16 bits of the descriptor address. Since all descriptors must be
within a 64KW memory range, a read from CTRL2D is not necessary.

13.2.9.5.3 Type of Queues
Several types of queues exist and all are managed by the Queue Manager which is part of the CPPI 4.1
DMA. All accesses to the queues are through memory mapped registers.

13.2.9.5.3.1 Receive Free Descriptor/Buffer (Submit) Queue
Receive ports use queues referred to as "receive free descriptor / buffer queues" to forward completed
receive packets to the host or another peer port entity. The entries on the Free Descriptor / Buffer Queues
have pre-attached empty buffers whose size and location are described in the "original buffer information"
fields in the descriptor. The host is required to allocate both the descriptor and buffer and pre-link them
prior to adding (submitting) a descriptor to one of the available receive free descriptor / buffer queue. The
first 16 queues (Queue 0 up to Queue 15) are reserved for all four receive ports to handle incoming
packets.

13.2.9.5.3.2 Transmit (Submit) Queue
Transmit ports use packet queues referred to as "transmit (submit) queues" to store the packets that are
waiting to be transmitted. Each port has dedicated queues (2 queues per port) that are reserved
exclusively for a use by a single port. Multiple queues per port/channel are allocated to facilitate Quality of
Service (QoS) for applications that require QoS. Queue 16 and 17 are allocated for port 1, Queue 18 and
19 are allocated for port 2 and Queue 20 and Queue 21 are allocated for port 3 and Queue 22 and 23 are
allocated for port 4.

13.2.9.5.3.3 Transmit Completion Queue
Transmit ports also use packet queues referred to as "transmit completion queues" to return packets to
the host after they have been transmitted. Even though, non-allocated queues can be used for this
purpose, a total of two dedicated queues (Queue 24 and Queue 25), that is to be shared amongst all four
transmit ports, have been reserved for returning transmit packets after end of transmit operation when the
firmware desires to receive interrupt when transmission completes.

13.2.9.5.3.4 Receive Completion Queue
Receive ports also use packet queues referred to as "receive completion queues" to return packets to the
port after they have been received. Even though, non-allocated queues can be used for this purpose, a
total of two dedicated queues (Queue 26 and Queue 27), that is to be shared amongst all four transmit
ports, have been reserved for returning received packets to the receive ports after end of receive
operation when the firmware desires to receive interrupt when transmission completes.

13.2.9.5.3.5 Unassigned (Application Defined) Queue
Thirty-six additional queues (Queue 28 to Queue 63) exist that have not been dedicated for exclusive use.
The user can use these queues as a Completion Queues or Free Descriptor/Buffer queue.

When these queues are used as Completion Queues, interrupt will not be generated. However, the
queues will have the list of descriptor pointers for the packets that have completed transmission or
reception. The firmware can use polling method by continually performing the de-queuing technique onto
the particular unassigned queue used to identify if the reception or transmission has completed.

When unassigned queues are used as free descriptor/buffer queue, the user can use these queues to
queue/store available descriptors for future receive and transmit operations by the firmware popping the
respective assigned queue and retrieving and populating descriptor prior to submitting the updated
descriptor.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Architecture www.ti.com

440 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.9.5.3.6 Teardown Queue
The Teardown Queue is used by the DMA to communicate a completion of a channel teardown after a
channel teardown is invoked on to a channel. The pointer to the teardown descriptor is written to the
teardown queue, which is also the Completion Queue, when the channel teardown completes.

13.2.9.5.3.7 Diverting Queue Packets from one Queue to Another
The host can move the entire contents of one queue to another queue by writing the source queue
number and the destination queue number to the Queue Diversion Register. When diverting packets, the
host can choose whether the source queue contents should be pushed onto the tail of the destination
queue.

13.2.9.6 Memory Regions and Linking RAM
In addition to allocating memory for raw data, the host is responsible for allocating additional memory for
exclusive use of the CPPI DMA as well as the Queue Manager. The Queue Manager has the capability of
managing up to 16 Memory Regions. These Memory regions are used to allocate descriptors of variable
sizes. The total number of descriptors that can be managed by the Queue Manager should not exceed
64K. Each memory region has descriptors of one configurable size. These 64K descriptors are referenced
internally in the queue manager by a 16-bit quantity index.

The queue manager uses a linking RAM to store information (16-bit quantity index) about how the
descriptors are logically connected to one another. A total of two Linking RAMs exists to be used by all
Memory Regions. Each location in the linking RAM stores information for one descriptor index. The linking
information for all descriptors in a given memory region is stored in a contiguous fashion in the linking
RAM. The host, when it initializes the memory regions, also writes the index number corresponding to the
first descriptor in a given region.

This information is used by the queue manager to compute where exactly in memory a particular
descriptor is stored. The size of the linking RAM to be allotted by the host/firmware should be large
enough to contain information for the amount of descriptor defined within the total Memory Regions. A
total of 4 bytes of RAM is required for each descriptor. Figure 13-15 illustrates the relationship between
memory regions and linking RAM.

NOTE: The reason for the existence of the two Linking RAMs is for the case when the user desires
to allocate Linking RAMs in internal memory. There is no restriction as to the placement of
the Linking RAM.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Region 0
128 x 32

Bytes

Memory Region 0
Base Address

Region 1
32 x 64
Bytes

Memory Region 1
Base Address

Region 2
64 x 32
Bytes

Memory Region 2
Base Address

Region N
64 x 32
Bytes

Memory Region N
Base Address

64
Entries

Index w

128
Entries

Index x

64 Entries Index y

32
Entries

Index z

65535

Linking RAM
Region 0

Linking RAM
Region 1

0

www.ti.com Architecture

441SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Figure 13-15. Relationship Between Memory Regions and Linking RAM

13.2.9.7 Zero Length Packets
A special case is the handling of null packets with the CPPI 4.1 compliant DMA controller. Upon receiving
a zero length USB packet, the XFER DMA will send a data block to the DMA controller with byte count of
zero and the zero byte packet bit of INFO Word 2 set. The DMA controller will then perform normal End of
Packet termination of the packet, without transferring data.

If a zero-length USB packet is received, the XDMA will send the CDMA a data block with a byte count of 0
and this bit set. The CDMA will then perform normal EOP termination of the packet without transferring
data. For transmit, if a packet has this bit set, the XDMA will ignore the CPPI packet size and send a zero-
length packet to the USB controller.

13.2.9.8 CPPI DMA Scheduler
The CPPI DMA scheduler is responsible for controlling the rate and order between the different Tx and Rx
threads that are provided in the CPPI DMA controller. The scheduler table RAM exists within the
scheduler.

13.2.9.8.1 CPPI DMA Scheduler Initialization
Before the scheduler can be used, the host is required to initialize and enable the block. This initialization
is performed as follows:
1. The Host initializes entries within an internal memory array in the scheduler. This array contains up to

256 entries and each entry consists of a DMA channel number and a bit indicating if this is a Tx or Rx
opportunity. These entries represent both the order and frequency that various Tx and Rx channels will
be processed. A table size of 256 entries allows channel bandwidth to be allocated with a maximum
precision of 1/256th of the total DMA bandwidth. The more entries that are present for a given channel,
the bigger the slice of the bandwidth that channel will be given. Larger tables can be accommodated to
allow for more precision. This array can only be written by the Host, it cannot be read.

2. If the application does not need to use the entire 256 entries, firmware can initialize the portion of the
256 entries and indicate the last entry used by writing to the LAST_ENTRY bits in the CDMA
Scheduler Control Register 1 (DMA_SCHED_CTRL1) in the scheduler.

3. The host writes to the ENABLE bit in DMA_SCHED_CTRL1 to enable the scheduler. The scheduler is
not required to be disabled in order to change the scheduler array contents.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Architecture www.ti.com

442 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.9.8.2 Scheduler Operation
Once the scheduler is enabled it will begin processing the entries in the table and when appropriate
passing credits to the DMA controller to perform a Tx or Rx operation. The operation of the DMA controller
is as follows:
1. After the DMA scheduler is enabled it begins with the table index set to 0.
2. The scheduler reads the entry pointed to by the index and checks to see if the channel in question is

currently in a state where a DMA operation can be accepted. The following must both be true:
• The DMA channel must be enabled.
• The CPPI FIFO that the channel talks to has free space on TX (FIFO full signal is not asserted) or

a valid block on Rx (FIFO empty signal is not asserted).
3. If the DMA channel is capable of processing a credit to transfer a block, the DMA scheduler will issue

that credit via the DMA scheduling interface. These are the steps:
(a) The DMA controller may not be ready to accept the credit immediately and it may stall the

scheduler until it can accept the credit. The DMA controller only accepts credits when it is in the
IDLE state.

(b) Once a credit has been accepted, the scheduler will increment the index to the next entry and will
start at step 2.

4. If the channel in question is not currently capable of processing a credit, the scheduler will increment
the index in the scheduler table to the next entry and will start at step 2.

5. When the scheduler attempts to increment its index to the value programmed in the table size register,
the index will reset to 0.

13.2.9.9 CPPI DMA Transfer Interrupt Handling
The CPPI DMA 4.1 Interrupt handling mechanism does not go through the PDR Interrupt handler built into
the core. The DMA interrupt line is directly routed to the Interrupt Dispatcher in a PDR compliant manner.
The DMA interrupt is not maskable. The firmware needs to use queues not reserved by H/W as
Completion Queues if require for DMA interrupt to be generated on a completion of a transfer.

Queues 24 and 25 are reserved by H/W for DMA transmit operations and queues 26 and 27 are reserved
by H/W for DMA receive operations. If firmware uses these queues as completion queues, interrupt will be
generated when the transfer completes. If need not to generate an interrupt, firmware is required to use
queues that are not reserved as completion queues (queues 28 to 67).

13.2.9.10 DMA State Registers
The port must store and maintain state information for each transmit and receive port/channel. The state
information is referred to as the Tx DMA State and Rx DMA State.

13.2.9.10.1 Transmit DMA State Registers
The Tx DMA State is a combination of control fields and protocol specific port scratchpad space used to
manipulate data structures and transmit packets. Each transmit channel has two queues. Each queue has
a one head descriptor pointer and one completion pointer. There are four Tx DMA State registers; one for
each port/channel.

The following information is stored in the Tx DMA State:
• Tx Queue Head Descriptor Pointer(s)
• Tx Completion Pointer(s)
• Protocol specific control/status (port scratchpad)

13.2.9.10.2 Receive DMA State Registers
The Rx DMA State is a combination of control fields and protocol specific port scratchpad space used to
manipulate data structures in order to receive packets. Each receive channel has only one queue. Each
channel queue has one head descriptor pointer and one completion pointer. There are four Rx DMA State
registers; one for each port/channel.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Architecture

443SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

The following information is stored in the Rx DMA State:
• Rx Queue Head Descriptor Pointer
• Rx Queue Completion Pointer
• Rx Buffer Offset

13.2.9.11 USB DMA Protocols Supported
Four different type of DMA transfers are supported by the CPPI 4.1 DMA; Transparent, RNDIS, Generic
RNDIS, and Linux CDC. The following sections will outline the details on these DMA transfer types.

13.2.9.11.1 Transparent DMA
Transparent Mode DMA operation is the default DMA mode where DMA interrupt is generated whenever a
DMA packet is transferred. In the transparent mode, DMA packet size cannot be greater than USB
MaxPktSize for the endpoint. This transfer type is ideal for transfer (not packet) sizes that are less than a
max packet size.

Transparent DMA Transfer Setup
The following will configure all four ports/channels for Transparent DMA Transfer type.
• Make sure that RNDIS Mode is disabled globally. RNDIS bit in the control register (CTRLR) is cleared

to 0.
• Configure the endpoint mode control fields in the DMA Mode Registers (MODE1 and MODE2) for

Transparent Mode (RXn_MODE and TXn_MODE = 0h).

13.2.9.11.2 RNDIS
RNDIS mode DMA is used for large transfers (that is, total data size to be transferred is greater than USB
MaxPktSize where the MzxPktSize is a multiple of 64 bytes) that requires multiple USB packets. This is
accomplished by breaking the larger packet into smaller packets, where each packet size being USB
MaxPktSize except the last packet where its size is less than USB MaxPktSize, including zero bytes. This
implies that multiple USB packets of MaxPktSize will be received and transferred together as a single
large DMA transfer and the DMA interrupt is generated only at the end of the complete reception of DMA
transfer. The protocol defines the end of the complete transfer by receiving a short USB packet (smaller
than USB MaxPktSize as mentioned in USB specification 2.0). If the DMA packet size is an exact multiple
of USB MaxPktSize, the DMA controller waits for a zero byte packet at the end of complete transfer to
signify the completion of the transfer.

NOTE: RNDIS Mode DMA is supported only when USB MaxPktSize is an integral multiple of
64 bytes.

RNDIS DMA Transfer Setup
The following will configure all four ports/channels for RNDIS DMA Transfer type. If all endpoints are to be
configured with the same RNDIS DMA transfer type, then you can enable for RNDIS mode support from
the Control Register and the content of the Mode Register will be ignored.

If you need to enable RNDIS support globally.
• Enable RNDIS Mode globally. RNDIS bit in the control register (CTRLR) is set to 1.

If you need to enable RNDIS support at the port/channel (endpoint) level.
• Disable RNDIS Mode globally. RNDIS bit in the control register (CTRLR) is cleared to 0.
• Configure the endpoint mode control fields in the DMA Mode Registers (MODE1 and MODE2) for

RNDIS Mode (RXn_MODE and TXn_MODE = 1h).

The above two setups yield the same result.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Architecture www.ti.com

444 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.9.11.3 Generic RNDIS
Generic RNDIS DMA transfer mode is identical to the normal RNDIS mode in nearly all respects, except
for the exception case where the last packet of the transfer can either be a short packet or the
MaxPktSize. Generic RNDIS transfer makes use of a RNDIS EP Size register (there exists a register for
each endpoint) that must be programmed with a value that is an integer multiple of the endpoint size for
the DMA to know the end of the transfer when the last packet size is equal to the USB MaxPktSize. For
example, it the Tx/RxMaxP is programmed with a value of 64, the Generic RNDIS EP Size register for that
endpoint must be programmed with a value that is an integer multiple of 64 (for example, 64, 128, 192,
256, etc.).

In other words, when using Generic RNDIS mode and the DMA is tasked to transfer data transfer size that
is less than a value programmed within the RNDIS EP Size register and this transfer will be resulting with
a short packet, the DMA will terminate the transfer when encountering the short packet behaving exactly
as the RNDIS DMA transfer type.

This means that Generic RNDIS mode will perform data transfer in the same manner as RNDIS mode,
closing the CPPI packet when a USB packet is received that is less than the USB MaxPktSize size.
Otherwise, the packet will be closed when the value in the Generic RNDIS EP Size register is reached.

Using RNDIS EP Size register, a packet of up to 64K bytes can be transferred. This is to allow the host
software to program the USB module to transfer data that is an exact multiple of the USB MaxPktSize
(Tx/RxMaxP programmed value) without having to send an additional short packet to terminate.

NOTE: As in RNDIS mode, the USB max packet size of any Generic RNDIS mode enabled
endpoints must be a multiple of 64 bytes. Generic RNDIS acceleration should not be enabled
for endpoints where the max packet size is not a multiple of 64 bytes. Only transparent mode
should be used for such endpoints.

Generic RNDIS DMA Transfer Setup
The following will configure all four ports/channels for Generic RNDIS DMA Transfer type.
• Disable RNDIS Mode globally. RNDIS bit in the control register (CTRLR) is cleared to 0.
• Configure the endpoint mode control fields in the DMA Mode Registers (MODE1 and MODE2) for

Generic RNDIS Mode (RXn_MODE and TXn_MODE = 3h).

13.2.9.11.4 Linux CDC
Linux CDC DMA transfer mode acts in the same manner as RNDIS packets, except for the case where
the last data matches the max USB packet size. If the last data packet of a transfer is a short packet
where the data size is greater than zero and less the USB MaxPktSize, then the behavior of the Linux
CDC DMA transfer type is identical with the RNDIS DMA transfer type. The only exception is when the
short packet length terminating the transfer is a Null Packet. In this case, instead of transferring the Null
Packet, it will transfer a data packet of size 1 byte with the data value of 0h.

In transmit operation, if an endpoint is configured or CDC Linux mode, upon receiving a Null Packet from
the CPPI DMA, the XFER DMA will then generate a packet containing 1 byte of data, whose value is 0h,
indicating the end of the transfer. During receive operation, the XFER DMA will recognize the one byte
zero packet as a termination of the data transfer, and sends a block of data with the EOP indicator set and
a byte count of one to the CPPI DMA controller. The CPPI DMA realizing the end of the transfer
termination will not update/increase the packet size count of the Host Packet Descriptor.

Linux CDC DMA Transfer Setup
The following will configure all four ports/channels for Linux CDC DMA Transfer type.
• Disable RNDIS Mode globally. RNDIS bit in the control register (CTRLR) is cleared to 0.
• Configure the endpoint mode control fields in the DMA Mode Registers (MODE1 and MODE2) for

Linux CDC Mode (RXn_MODE and TXn_MODE = 2h).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

PD

DB

BD

DB

BD

DB

CPU CPPI DMA XDMA USB Packets

CPPI Transmit (USB IN)

CPPI Receive (USB OUT)

Single Transfer
in Main Memory

(608 Bytes)

CPPI Packet in
Main Memory

(256 Byte DBs)

CPPI FIFO
(64-Byte Blocks) Endpoint FIFOs

(512 Bytes)

Single Transfer
in External USB
Host (608 Bytes)

www.ti.com Architecture

445SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.9.12 USB Data Flow Using DMA
The necessary steps required to perform a USB data transfer using the CPPI 4.1 DMA is expressed using
an example for both transmit and receive cases. Assume a device is ready to perform a data transfer of
size 608 bytes (see Figure 13-16).

Figure 13-16. High-Level Transmit and Receive Data Transfer Example

Example assumptions:
• The CPPI data buffers are 256 bytes in length.
• The USB endpoint 1 Tx and Rx endpoint 1 size are 512 bytes.
• A single transfer length is 608 bytes.
• The SOP offset is 0.

This translates to the following:
• Transmit Case:

– 1 Host Packet Descriptor with Packet Length field of 608 bytes and a Data Buffer of size 256 Bytes
linked to the 1st Host Buffer Descriptor.

– First Host Buffer Descriptor with a Data Buffer size of 256 Bytes linked to the 2nd Buffer Descriptor.
– Second Host Buffer Descriptor with a Data Buffer size of 96 bytes (can be greater, the Packet

Descriptor contain the size of the packet) linked with its link word set to Null.
• Receive Case:

– Two Host Buffer Descriptors with 256 bytes of Data Buffer Size
– One Host Buffer Descriptor with 96 bytes (can be greater) of Data Buffer size

Within the rest of this section, the following nomenclature is used.

BD— Host Buffer Descriptor

DB— Data Buffer Size of 256 Bytes

PBD— Pointer to Host Buffer Descriptor

PD— Host Packet Descriptor

PPD— Pointer to Host Packet Descriptor

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Architecture www.ti.com

446 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

RXCQ— Receive Completion Queue or Receive Return Queue (for all Rx EPs, use 26 or 27)

RXSQ— Receive Free Packet/Buffer Descriptor Queue or Receive Submit Queue. (for all Rx EPs, use 0
to 15)

TXCQ— Transmit Completion Queue or Transmit Return Queue (for all Tx EPs, use 24 or 25)

TXSQ— Transmit Queue or Transmit Submit Queue (for EP1, use 16 or 17)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Next Descriptor Pointer

Buffer Pointer

Buffer Size (256)

Buffer Descriptor

Packet Size (608)

Packet Descriptor

Buffer Pointer

Buffer Size (256)

Next Descriptor Pointer

0

Buffer Pointer

Buffer Size (96)

Buffer Descriptor

Data Buffer
(Valid Data)

PPD

PBD(1)

PBD(2)

Data Buffer
(Valid Data)

Data Buffer
(Valid Data)

CPPI Packet

PBD(1) PBD(2)PPDHead Tail

Queue 16: TXSQ

Head Tail

Queue 24: TXCQ

www.ti.com Architecture

447SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.2.9.12.1 Transmit USB Data Flow Using DMA
The transmit descriptors and queue status configuration prior to the transfer taking place is shown in
Figure 13-17. An example of initialization for a transmit USB data flow is shown in Figure 13-18.

Figure 13-17. Transmit Descriptors and Queue Status Configuration

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Main
Memory

CPU

Interrupts

Queue
Push/Pop

Operations

Queue
Manager

CPPI
DMA

(CDMA)

Queue
Push/Pop
Operations

cdma_sreq

cdma_sready

CDMA
Scheduler
(CDMAS)

Queue Indicators

FIFO_full

FIFO_empty CPPI
FIFO

F
IF

O
_f

u
ll

F
IF

O
_e

m
p

ty

Transfer
DMA

(XDMA)

Mentor
USB 2.0

Core

Configuration
Rd/Wr

DMA_req[8]

Endpoint
FIFOs

USB
Bus

CPPI 4.1

USB Controller

TXSQ

Queue
16

TXCQ

Queue
24

Architecture www.ti.com

448 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Figure 13-18. Transmit USB Data Flow Example (Initialization)

Step 1 (Initialization for Tx):
1. The CPU initializes Queue Manager with the Memory Region 0 base address and Memory Region 0

size, Link RAM0 Base address, Link RAM0 data size, and Link RAM1 Base address.
2. The CPU creates PD, BDs, and DBs in main memory and link as indicated in Figure 13-18.
3. It then initializes and configures the Queue Manager, Channel Setup, DMA Scheduler, and Mentor

USB 2.0 Core.
4. It then adds (pushes) the PPD and the two PBDs to the TXSQ

NOTE: You can create more BD/DB pairs and push them on one of the unassigned queues. The
firmware can pop a BD/DP pair from this chosen queue and can create its HPD or HBDs and
pre link them prior to submitting the pointers to the HPD and HBD on to the TXSQ.

Step 2 (CDMA and XDMA transfers packet data into Endpoint FIFO for Tx):
1. The Queue Manager informs the CDMAS that the TXSQ is not empty.
2. CDMAS checks that the CPPI FIFO FIFO_full is not asserted, then issues a credit to the CDMA.
3. CDMA reads the packet descriptor pointer and descriptor size hint from the Queue Manager.
4. CMDA reads the packet descriptor from memory.
5. For each 64-byte block of data in the packet data payload:

(a) The CDMA transfers a max burst of 64-byte block from the data to be transferred in main memory
to the CPPI FIFO.

(b) The XDMA sees FIFO_empty not asserted and transfers 64-byte block from CPPI FIFO to Endpoint
FIFO.

(c) The CDMA performs the above 2 steps 3 more times since the data size of the HPD is 256 bytes.
6. The CDMA reads the first buffer descriptor pointer.
7. CDMA reads the buffer descriptor from memory.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Main
Memory

CPU

Interrupts

Queue
Push/Pop

Operations

Queue
Manager

CPPI
DMA

(CDMA)

Queue
Push/Pop
Operations

cdma_sreq

cdma_sready

CDMA
Scheduler
(CDMAS)

Queue Indicators

FIFO_full

FIFO_empty CPPI
FIFO

F
IF

O
_f

u
ll

F
IF

O
_e

m
p

ty

Transfer
DMA

(XDMA)

Mentor
USB 2.0

Core

Configuration
Rd/Wr

DMA_req[8]

Endpoint
FIFOs

USB
Bus

CPPI 4.1

USB Controller

TXSQ

Queue
16

TXCQ

Queue
24

www.ti.com Architecture

449SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

8. For each 64-byte block of data in the packet data payload:
(a) The CDMA transfers a max burst of 64-byte block from the data to be transferred in main memory

to the CPPI FIFO.
(b) The XDMA sees FIFO_empty not asserted and transfers 64-byte block from CPPI FIFO to Endpoint

FIFO.
(c) The CDMA performs the above 2 steps 2 more times since data size of the HBD is 256 bytes.

9. The CDMA reads the second buffer descriptor pointer.
10. CDMA reads the buffer descriptor from memory.
11. For each 64-byte block of data in the packet data payload:

(a) The CDMA transfers a max burst of 64-byte block from the data to be transferred in main memory
to the CPPI FIFO.

(b) The XDMA sees FIFO_empty not asserted and transfers 64-byte block from CPPI FIFO to Endpoint
FIFO.

(c) The CDMA transfers the last remaining 32-byte from the data to be transferred in main memory to
the CPPI FIFO.

(d) The XDMA sees FIFO_empty not asserted and transfers 32-byte block from CPPI FIFO to Endpoint
FIFO.

Step 3 (Mentor USB 2.0 Core transmits USB packets for Tx):
1. Once the XDMA has transferred enough 64-byte blocks of data from the CPPI FIFO to fill the Endpoint

FIFO, it signals the Mentor USB 2.0 Core that a TX packet is ready (sets the endpoint’s TxPktRdy bit).
2. The Mentor USB 2.0 Core will transmit the packet from the Endpoint FIFO out on the USB BUS when

it receives a corresponding IN request from the attached USB Host.
3. After the USB packet is transferred, the Mentor USB 2.0 Core issues a TX DMA_req to the XDMA.
4. This process is repeated until the entire packet has been transmitted. The XDMA will also generate the

required termination packet depending on the termination mode configured for the endpoint.

An example of the completion for a transmit USB data flow is shown in Figure 13-19.

Figure 13-19. Transmit USB Data Flow Example (Completion)

Step 4 (Return packet to completion queue and interrupt CPU for Tx):

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Buffer Descriptor (2)PBD(2) Buffer

Buffer Descriptor (1)PBD(1) Buffer

Next Descriptor Pointer

Buffer Pointer

Buffer Size (256)

Buffer Descriptor (0)PBD(0)

Data Buffer
(No Valid

Data)

PBD(1) PBD(2)PBD(0)Head Tail

Queue 0: RXSQ

Head Tail

Queue 26: RXCQ

Architecture www.ti.com

450 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

1. After all data for the packet has been transmitted (as specified by the packet size field), the CDMA will
write the pointer to the packet descriptor to the TX Completion Queue specified in the return queue
manager / queue number fields of the packet descriptor.

2. The Queue Manager then indicates the status of the TXSQ (empty) to the CDMAS and the TXCQ to
the CPU via an interrupt.

13.2.9.12.2 Receive USB Data Flow Using DMA
The receive descriptors and queue status configuration prior to the transfer taking place is shown in
Figure 13-20. An example of initialization for a receive USB data flow is shown in Figure 13-21.

Figure 13-20. Receive Descriptors and Queue Status Configuration

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Main
Memory

CPU

Interrupts

Queue
Push/Pop

Operations

Queue
Manager

CPPI
DMA

(CDMA)

Queue
Push/Pop
Operations

cdma_sreq

cdma_sready

CDMA
Scheduler
(CDMAS)

Queue Indicators

FIFO_full

FIFO_empty CPPI
FIFO

F
IF

O
_f

u
ll

F
IF

O
_e

m
p

ty

Transfer
DMA

(XDMA)

Mentor
USB 2.0

Core

Configuration
Rd/Wr

DMA_req[8]

Endpoint
FIFOs

USB
Bus

CPPI 4.1

USB Controller

RXSQ

Queue 0
RXCQ

Queue 26

www.ti.com Architecture

451SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Figure 13-21. Receive USB Data Flow Example (Initialization)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Main
Memory

CPU

Interrupts

Queue
Push/Pop

Operations

Queue
Manager

CPPI
DMA

(CDMA)

Queue
Push/Pop
Operations

cdma_sreq

cdma_sready

CDMA
Scheduler
(CDMAS)

Queue Indicators

FIFO_full

FIFO_empty SSRAM/
PPU

F
IF

O
_f

u
ll

F
IF

O
_e

m
p

ty

Transfer
DMA

(XDMA)

Mentor
USB 2.0

Core

Configuration
Rd/Wr

DMA_req[8]

Endpoint
FIFOs

USB
Bus

CPPI 4.1

USB Controller

RXSQ

Queue 0
RXCQ

Queue 26

Architecture www.ti.com

452 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Step 1 (Initialization for Rx):
1. The CPU initializes Queue Manager with the Memory Region 0 base address and Memory Region 0

size, Link RAM0 Base address, Link RAM0 data size, and Link RAM1 Base address.
2. The CPU creates BDs, and DBs in main memory and link them as indicated in Figure 13-21.
3. It then initializes the RXCQ queue and configures the Queue Manager, Channel Setup, DMA

Scheduler, and Mentor USB 2.0 Core.
4. It then adds (pushes) the address of the three PHDs into the RXSQ.

Step 2 (Mentor USB 2.0 Core receives a packet, XDMA starts data transfer for Receive):
1. The Mentor USB 2.0 Core receives a USB packet from the USB Host and stores it in the Endpoint

FIFO.
2. It then asserts a DMA_req to the XDMA informing it that data is available in the Endpoint FIFO.
3. The XDMA verifies the corresponding CPPI FIFO is not full via the FIFO_full signal, then starts

transferring 64-byte data blocks from the Endpoint FIFO into the CPPI FIFO.

Step 3 (CDMA transfers data from SSRAM / PPU to main memory for Receive):
1. The CDMAS see FIFO_empty de-asserted (there is RX data in the FIFO) and issues a transaction

credit to the CDMA.
2. The CDMA begins packet reception by fetching the first PBD from the Queue Manager using the Free

Descriptor / Buffer Queue 0 (Rx Submit Queue) index that was initialized in the RX port DMA state for
that channel.

3. The CDMA will then begin writing the 64-byte block of packet data into this DB.
4. The CDMA will continue filling the buffer with additional 64-byte blocks of data from the CPPI FIFO and

will fetch additional PBD as needed using the Free Descriptor / Buffer Queue 1, 2, and 3 indexes for
the 2nd, 3rd, and remaining buffers in the packet. After each buffer is filled, the CDMA writes the buffer
descriptor to main memory.

An example of the completion for a receive USB data flow is shown in Figure 13-22 .

Figure 13-22. Receive USB Data Flow Example (Completion)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Architecture

453SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Step 4 (CDMA completes the packet transfer for Receive):
1. After the entire packet has been received, the CDMA writes the packet descriptor to main memory.
2. The CDMA then writes the packet descriptor to the RXCQ specified in the Queue Manager / Queue

Number fields in the RX Global Configuration Register.
3. The Queue Manager then indicates the status of the RXCQ to the CPU via an interrupt.
4. The CPU can then process the received packet by popping the received packet information from the

RXCQ and accessing the packet’s data from main memory.

13.2.9.13 Interrupt Handling
Table 13-27 lists the interrupts generated by the USB controller.

Table 13-27. Interrupts Generated by the USB Controller

Interrupt Description
Tx Endpoint [4-0] Tx endpoint ready or error condition. For endpoints 4 to 0. (Rx and Tx for endpoint 0)
Rx Endpoint [4-1] Rx endpoint ready or error condition. For endpoints 4 to 1. (Endpoint 0 has interrupt status in

Tx interrupt)
USB Core[3-0] Interrupts for 4 USB conditions
DMA Tx Completion [3-0] Tx DMA completion interrupt for channel 3 to 0 using Queues 24 and 25
DMA Rx Completion [3-0] Rx DMA completion interrupt for channel 3 to 0 using Queues 26 and 27

Whenever any of these interrupt conditions are generated, the host processor is interrupted. The software
needs to read the different interrupt status registers (discussed in later section) to determine the source of
the interrupt.

The USB interrupt conditions are listed in Table 13-28.

Table 13-28. USB Interrupt Conditions

Interrupt Description
USB[3] SOF started
USB[2] Reset Signaling detected
USB[1] Resume signaling detected
USB[0] Suspend Signaling detected

13.2.9.13.1 USB Core Interrupts
Interrupt status can be determined using the INTSRCR (interrupt source) registers. These registers are
non-masked. To clear the interrupt source, set the corresponding interrupt bit in INTCLRR registers. For
debugging purposes, interrupt can be set manually through INTSETR registers.

The interrupt controller provides the option of masking the interrupts. A mask can be set using
INTMSKSETR registers and can be cleared by setting the corresponding bit in the INTMSKCLRR
registers. The mask can be read from INTMSKR registers. The masked interrupt status is determined
using the INTMASKEDR registers.

The host processor software should write to the End Of Interrupt Register (EOIR) to acknowledge the
completion of an interrupt.

NOTE: While EOIR is not written, the interrupt from the USB controller remains asserted.

13.2.10 BYTEMODE Bits of the USB System Control Register
The CPU cannot generate 8-bit accesses to its data or I/O space. This presents a problem given that
some USB controller I/O registers are only 8 bits in width.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Architecture www.ti.com

454 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

For these situations, the BYTEMODE bits of the USB system control register (USBSCR) can be used to
program the DSP switched central resource (SCR) such that a CPU word access generates single byte
access when reading or writing from USB controller I/O registers.

Table 13-29 summarizes the effect of the BYTEMODE bits for different CPU operations. For more details
on USBSCR, please refer to Section 13.2.6.1.

Table 13-29. Effect of USBSCR BYTEMODE Bits on USB Access

BYTEMODE Setting CPU Access to USB Register
BYTEMODE = 0h (16-bit word access) Entire register contents are accessed.
BYTEMODE = 1h (8-bit access with high byte
selected)

Only the upper byte of the register is accessed.

BYTEMODE = 2h (8-bit access with low byte
selected)

Only the lower byte of the register is accessed.

13.2.11 Reset Considerations
The USB controller has two reset sources: hardware reset and the soft reset.

13.2.11.1 Software Reset Considerations
The USB controller can be reset by software through the RESET bit in the control register (CTRLR) or
through the USB_RST bit in the peripheral reset control register (PCR).

When the RESET bit in the control register (CTRLR) is set, all the USB controller registers and DMA
operations are reset. The bit is cleared automatically.

When USB_RST is set to 1, a hardware reset is forced on the USB controller. The effects of a hardware
reset are described in the next section. Please note that the USB input clock must be enabled when using
USB_RST (see Section 13.2.1).

13.2.11.2 Hardware Reset Considerations
A hardware reset is always initiated during a full chip reset. Alternatively, software can force an USB
controller hardware reset through the USB_RST bits of the peripheral reset control register (PRCR). For
more details on PRCR, see Section 1.1, System Control .

When a hardware reset is asserted, all the registers are set to their default values.

13.2.12 Interrupt Support
The USB controller is capable of interrupting the CPU. For more information on the mapping of interrupts,
see Section 1.1, System Control .

13.2.13 DMA Event Support
The USB is an internal bus master peripheral and does not utilize system DMA events. The USB has its
own dedicated DMA, CPPI 4.1 DMA, that it utilizes for DMA driven data transfer.

13.2.14 Power Management
The USB controller can be clock gated to conserve power during periods of no activity. The clock gating
the peripheral is controlled by the CPU. For detailed information on power management procedures, see
Section 1.1, System Control .

One of the main improvements of the device is that a dedicated LDO for USB has been integrated on the
chip. This simplifies the power supply design on the system level. In order to use the internal USB LDO,
the pin connections in Table 13-30 are required. The external LDO can also be used; the pin connections
for using external LDO are included in Table 13-30 as well.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Architecture

455SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Table 13-30. LDO Pin Connections

Pin Number Pin Name Internal LDO External LDO
A12 RSV0 L L
B12 RSV3 L L
C13 DSP_LDO_EN L H
B13 RSV16 L L

Notes:
• L in the above table means voltage is at ground-level
• H in the above table means voltage is at the corresponding power supply level
• To use the internal USB LDO, the bit0 of register LDOCNTL (LDO Control Register) at 7004h need to

be set as “1”
• Internal USB LDO is dedicated for USB module only; it should not be used for any other modules or

external devices
• If an application requires the device to boot from an external USB device, then the external LDO must

be used to power the USB module

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

456 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3 Registers

13.3.1 USB Controller Register Summary
The following sections summarize the registers for the universal serial bus (USB) controller. Please note
that the USB controller includes an USB2.0 mentor core and a communication part programming interface
(CPPI) DMA, each with its own set of registers.

Due to the fact that the CDMA (CPPI DMA) is a native 32-bit module, and the device is a 16-bit DSP, it
cannot do 32-bit read/write in one operation cycle. So, some cautions are needed when the device is
accessing this module.
• When the device reads a 32-bit self-clean register, only the first read returns a valid 16-bit data. This is

because when a reading action is applied to a 32-bit self-clean register; all 32 bit of the register is
cleaned after the current read.

• When one needs to write a 32-bit data to a pair of 16-bit registers, which are split from a native 32-bit
register, these two 16-bit write operations need to be consecutive and all the interrupts need to be
disabled during these two write operations.

13.3.1.1 Universal Serial Bus (USB) Controller Registers
Table 13-31 lists the registers of the USB controller. Refer to the sections listed for detailed information on
each register.

NOTE: Some USB controller registers are 8-bits wide. However, the CPU cannot generate 8-bit
accesses to its data or I/O space. When accessing these registers, program the BYTEMODE
bits of the USB system control register (USBSCR) to mask the upper or lower byte of of a
word access. The BYTEMODE bits should be set to 00b (16-bit access) when accessing any
other register. See Section 13.2.10 for more details on the BYTEMODE bits.

Table 13-31. Universal Serial Bus (USB) Registers

CPU Word
Address Acronym Register Description Section

8000h REVID1 Revision Identification Register 1 Section 13.3.2
8001h REVID2 Revision Identification Register 2 Section 13.3.2
8004h CTRLR Control Register Section 13.3.3
800Ch EMUR Emulation Register Section 13.3.4
8010h MODE1 Mode Register 1 Section 13.3.5
8011h MODE2 Mode Register 2 Section 13.3.5
8014h AUTOREQ Auto Request Register Section 13.3.6
801Ch TEARDOWN1 Teardown Register 1 Section 13.3.7
801Dh TEARDOWN2 Teardown Register 2 Section 13.3.7
8020h INTSRCR1 USB Interrupt Source Register 1 Section 13.3.8
8021h INTSRCR2 USB Interrupt Source Register 2 Section 13.3.8
8024h INTSETR1 USB Interrupt Source Set Register 1 Section 13.3.9
8025h INTSETR2 USB Interrupt Source Set Register 2 Section 13.3.9
8028h INTCLRR1 USB Interrupt Source Clear Register 1 Section 13.3.10
8029h INTCLRR2 USB Interrupt Source Clear Register 2 Section 13.3.10
802Ch INTMSKR1 USB Interrupt Mask Register 1 Section 13.3.11
802Dh INTMSKR2 USB Interrupt Mask Register 2 Section 13.3.11
8030h INTMSKSETR1 USB Interrupt Mask Set Register 1 Section 13.3.12
8031h INTMSKSETR2 USB Interrupt Mask Set Register 2 Section 13.3.12
8034h INTMSKCLRR1 USB Interrupt Mask Clear Register 1 Section 13.3.13
8035h INTMSKCLRR2 USB Interrupt Mask Clear Register 2 Section 13.3.13
8038h INTMASKEDR1 USB Interrupt Source Masked Register 1 Section 13.3.14

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

457SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Table 13-31. Universal Serial Bus (USB) Registers (continued)
CPU Word
Address Acronym Register Description Section

8039h INTMASKEDR2 USB Interrupt Source Masked Register 2 Section 13.3.14
803Ch EOIR USB End of Interrupt Register Section 13.3.15
8040h INTVECTR1 USB Interrupt Vector Register 1 Section 13.3.16
8041h INTVECTR2 USB Interrupt Vector Register 2 Section 13.3.16
8050h GREP1SZR1 Generic RNDIS EP1Size Register 1 Section 13.3.17
8051h GREP1SZR2 Generic RNDIS EP1Size Register 2 Section 13.3.17
8054h GREP2SZR1 Generic RNDIS EP2 Size Register 1 Section 13.3.18
8055h GREP2SZR2 Generic RNDIS EP2 Size Register 2 Section 13.3.18
8058h GREP3SZR1 Generic RNDIS EP3 Size Register 1 Section 13.3.19
8059h GREP3SZR2 Generic RNDIS EP3 Size Register 2 Section 13.3.19
805Ch GREP4SZR1 Generic RNDIS EP4 Size Register 1 Section 13.3.20
805Dh GREP4SZR2 Generic RNDIS EP4 Size Register 2 Section 13.3.20

13.3.1.2 Mentor USB2.0 Core Registers
This section lists the registers of the Mentor USB2.0 core integrated in the USB controller.

NOTE: Some USB controller registers are 8-bits wide. However, the CPU cannot generate 8-bit
accesses to its data or I/O space. When accessing these registers, program the BYTEMODE
bits of the USB system control register (USBSCR) to mask the upper or lower byte of of a
word access. The BYTEMODE bits should be set to 00b (16-bit access) when accessing any
other register. See Section 13.2.10 for more details on the BYTEMODE bits.

13.3.1.2.1 Common USB Registers
Table 13-33 lists the common USB registers. Some common USB registers are 8-bit wide and share a
word address with other 8-bit registers. Table 13-32 describes how the common USB registers are laid out
in memory.

Table 13-32. Common USB Register Layout

CPU Word Address
Register

Byte 1 Byte 0
8401h POWER FADDR
8402h INTRTX
8405h INTRRX
8406h INTRTXE
8409h INTRRXE
840Ah INTRUSBE INTRUSB
840Dh FRAME
840Eh TESTMODE INDEX

Table 13-33. Common USB Registers

CPU Word
Address Acronym Register Description Section

8401h FADDR_POWER Function Address Register, Power Management Register Section 13.3.21
8402h INTRTX Interrupt Register for Endpoint 0 plus Transmit Endpoints 1 to 4 Section 13.3.23
8405h INTRRX Interrupt Register for Receive Endpoints 1 to 4 Section 13.3.24

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

458 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Table 13-33. Common USB Registers (continued)
CPU Word
Address Acronym Register Description Section

8406h INTRTXE Interrupt enable register for INTRTX Section 13.3.25
8409h INTRRXE Interrupt Enable Register for INTRRX Section 13.3.26
840Ah INTRUSB_INTRUSBE Interrupt Register for Common USB Interrupts, Interrupt Enable

Register
Section 13.3.27

840Dh FRAME Frame Number Register Section 13.3.29
840Eh INDEX_TESTMODE Index Register for Selecting the Endpoint Status and Control

Registers, Register to Enable the USB 2.0 Test Modes
Section 13.3.30

13.3.1.2.2 Indexed Registers
Table 13-36 lists the index registers. These registers operate on the endpoint selected by the index
register. (The index register is the low-8 bits of the INDEX_TESTMODE 16 bits register). Table 13-34
describes how the indexed USB registers are laid out in memory when endpoint 0 is selected in the index
register (INDEX = 0). Similarly, Table 13-35 shows the layout of the indexed registers when endpoints 1-4
are selected in the index register (INDEX = 1 or 2 or 3 or 4).

Table 13-34. USB Indexed Register Layout when Index Register Set to Select Endpoint 0

CPU Word Address
Register

Byte 1 Byte 0
8411h Reserved
8412h PERI_CSR0
8415h Reserved
8416h Reserved
8419h COUNT0
841Ah Reserved
841Dh Reserved
841Eh CONFIGDATA_INDX Reserved

Table 13-35. USB Indexed Register Layout when Index Register Set to Select Endpoint 1-4

CPU Word Address
Register

Byte 1 Byte 0
8411h TXMAXP
8412h PERI_TXCSR
8415h RXMAXP
8416h PERI_RXCSR
8419h RXCOUNY
841Ah Reserved
841Dh Reserved
841Eh Reserved

Table 13-36. USB Indexed Registers

CPU Word
Address Acronym Register Description Section

8411h TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint. (Index
register set to select Endpoints 1-4)

Section 13.3.32

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

459SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Table 13-36. USB Indexed Registers (continued)
CPU Word
Address Acronym Register Description Section

8412h PERI_CSR0 Control Status Register for Peripheral Endpoint 0. (Index register set
to select Endpoint 0)

Section 13.3.33

PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint. (Index
register set to select Endpoints 1-4)

Section 13.3.34

8415h RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint. (Index
register set to select Endpoints 1-4)

Section 13.3.35

8416h PERI_RXCSR Control Status Register for Peripheral Receive Endpoint. (Index
register set to select Endpoints 1-4)

Section 13.3.36

8419h COUNT0 Number of Received Bytes in Endpoint 0 FIFO. (Index register set to
select Endpoint 0)

Section 13.3.37

RXCOUNT Number of Bytes in Host Receive Endpoint FIFO. (Index register set
to select Endpoints 1- 4)

Section 13.3.38

841Ah - Reserved
841Dh - Reserved
841Eh CONFIGDATA_INDC

(Upper byte of 841Dh)
Returns details of core configuration. (index register set to select
Endpoint 0)

Section 13.3.39

13.3.1.2.3 FIFO Registers
Table 13-37 lists the FIFO registers of the USB2.0 Mentor core.

Table 13-37. USB FIFO Registers

CPU Word
Address Acronym Register Description Section

8421h FIFO0R1 Transmit and Receive FIFO Register 1 for Endpoint 0 Section 13.3.40
8422h FIFO0R2 Transmit and Receive FIFO Register 2 for Endpoint 0 Section 13.3.40
8425h FIFO1R1 Transmit and Receive FIFO Register 1 for Endpoint 1 Section 13.3.41
8426h FIFO1R2 Transmit and Receive FIFO Register 2 for Endpoint 1 Section 13.3.41
8429h FIFO2R1 Transmit and Receive FIFO Register 1 for Endpoint 2 Section 13.3.42
842Ah FIFO2R2 Transmit and Receive FIFO Register 2 for Endpoint 2 Section 13.3.42
842Dh FIFO3R1 Transmit and Receive FIFO Register 1 for Endpoint 3 Section 13.3.43
842Eh FIFO3R2 Transmit and Receive FIFO Register 2 for Endpoint 3 Section 13.3.43
8431h FIFO4R1 Transmit and Receive FIFO Register 1 for Endpoint 4 Section 13.3.44
8432h FIFO4R2 Transmit and Receive FIFO Register 2 for Endpoint 4 Section 13.3.44

13.3.1.2.4 Dynamic FIFO Control Registers
Table 13-39 lists the dynamic FIFO control registers of the US2.0 Mentor core. Some common USB
registers are 8-bit wide and share a word address with other 8-bit registers. Table 13-38 describes how
the common USB registers are laid out in memory.

Table 13-38. Dynamic FIFO Control Register Layout

CPU Word Address
Register

Byte 1 Byte 0
8461h Reserved
8462h RXFIFOSZ TXFIFOSZ
8465h TXFIFOADDR
8466h RXFIFOADDR
846Dh HWVERS

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

460 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Table 13-39. Dynamic FIFO Control Registers

CPU Word
Address Acronym Register Description Section

8461h - Reserved
8462h TXFIFOSZ_RXFIFOSZ Transmit Endpoint FIFO Size, Receive Endpoint FIFO Size (Index

register set to select Endpoints 1-4)
Section 13.3.46

8465h TXFIFOADDR Transmit Endpoint FIFO Address (Index register set to select
Endpoints 1-4)

Section 13.3.48

8466h RXFIFOADDR Receive Endpoint FIFO Address (Index register set to select
Endpoints 1-4)

Section 13.3.50

846Dh HWVERS Hardware Version Register Section 13.3.49

13.3.1.2.5 Control and Status Registers for Endpoints 0-4
Table 13-40 lists the control and status registers for endpoints 0-4 of the USB2.0 Mentor Core.

Table 13-40. Control and Status Registers for Endpoints 0-4

CPU Word
Address Acronym Register Description Section

Control and Status Register for Endpoint 1
8511h TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint Section 13.3.32
8512h PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral

mode)
Section 13.3.34

8515h RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint Section 13.3.35
8516h PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral

mode)
Section 13.3.36

8519h RXCOUNT Number of Bytes in Host Receive endpoint FIFO Section 13.3.38
851Ah - Reserved
851Dh - Reserved
851Eh - Reserved

Control and Status Register for Endpoint 2
8521h TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint Section 13.3.32
8522h PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral

mode)
Section 13.3.34

8525h RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint Section 13.3.35
8526h PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral

mode)
Section 13.3.36

8529h RXCOUNT Number of Bytes in Host Receive endpoint FIFO Section 13.3.38
852Ah - Reserved
852Dh - Reserved
852Eh - Reserved

Control and Status Register for Endpoint 3
8531h TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint Section 13.3.32
8532h PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral

mode)
Section 13.3.34

8535h RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint Section 13.3.35
8536h PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral

mode)
Section 13.3.36

8539h RXCOUNT Number of Bytes in Host Receive endpoint FIFO Section 13.3.38
853Ah - Reserved
853Dh - Reserved
853Eh - Reserved

Control and Status Register for Endpoint 4

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

461SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Table 13-40. Control and Status Registers for Endpoints 0-4 (continued)
CPU Word
Address Acronym Register Description Section

8541h TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint Section 13.3.32
8542h PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral

mode)
Section 13.3.34

8545h RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint Section 13.3.35
8546h PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral

mode)
Section 13.3.36

8549h RXCOUNT Number of Bytes in Host Receive endpoint FIFO Section 13.3.38
854Ah - Reserved
854Dh - Reserved
854Eh - Reserved

13.3.1.3 Communications Port Programming Interface (CPPI) 4.1 DMA Registers
This section lists the registers of the communications port programming interface (CPPI) DMA. Refer to
the sections listed for detailed information on each register.

13.3.1.3.1 CPPI DMA (CMDA) Registers
Table 13-41 lists the register of the CPPI DMA (CMDA).

Table 13-41. CPPI DMA (CMDA) Registers

CPU Word
Address Acronym Register Description Section

9000h DMAREVID1 CDMA Revision Identification Register 1 Section 13.3.51
9001h DMAREVID2 CDMA Revision Identification Register 2 Section 13.3.51
9004h TDFDQ CDMA Teardown Free Descriptor Queue Control Register Section 13.3.52
9008h DMAEMU CDMA Emulation Control Register Section 13.3.53
9800h TXGCR1[0] Transmit Channel 0 Global Configuration Register 1 Section 13.3.54
9801h TXGCR2[0] Transmit Channel 0 Global Configuration Register 2 Section 13.3.54
9808h RXGCR1[0] Receive Channel 0 Global Configuration Register 1 Section 13.3.55
9809h RXGCR2[0] Receive Channel 0 Global Configuration Register 2 Section 13.3.55
980Ch RXHPCR1A[0] Receive Channel 0 Host Packet Configuration Register 1 A Section 13.3.56
980Dh RXHPCR2A[0] Receive Channel 0 Host Packet Configuration Register 2 A Section 13.3.56
9810h RXHPCR1B[0] Receive Channel 0 Host Packet Configuration Register 1 B Section 13.3.57
9811h RXHPCR2B[0] Receive Channel 0 Host Packet Configuration Register 2 B Section 13.3.57
9820h TXGCR1[1] Transmit Channel 1 Global Configuration Register 1 Section 13.3.54
9821h TXGCR2[1] Transmit Channel 1 Global Configuration Register 2 Section 13.3.54
9828h RXGCR1[1] Receive Channel 1 Global Configuration Register 1 Section 13.3.55
9829h RXGCR2[1] Receive Channel 1 Global Configuration Register 2 Section 13.3.55
982Ch RXHPCR1A[1] Receive Channel 1 Host Packet Configuration Register 1 A Section 13.3.56
982Dh RXHPCR2A[1] Receive Channel 1 Host Packet Configuration Register 2 A Section 13.3.56
9830h RXHPCR1B[1] Receive Channel 1 Host Packet Configuration Register 1 B Section 13.3.57
9831h RXHPCR2B[1] Receive Channel 1 Host Packet Configuration Register 2 B Section 13.3.57
9840h TXGCR1[2] Transmit Channel 2 Global Configuration Register 1 Section 13.3.54
9841h TXGCR2[2] Transmit Channel 2 Global Configuration Register 2 Section 13.3.54
9848h RXGCR1[2] Receive Channel 2 Global Configuration Register 1 Section 13.3.55
9849h RXGCR2[2] Receive Channel 2 Global Configuration Register 2 Section 13.3.55
984Ch RXHPCR1A[2] Receive Channel 2 Host Packet Configuration Register 1 A Section 13.3.56

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

462 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Table 13-41. CPPI DMA (CMDA) Registers (continued)
CPU Word
Address Acronym Register Description Section
984Dh RXHPCR2A[2] Receive Channel 2 Host Packet Configuration Register 2 A Section 13.3.56
9850h RXHPCR1B[2] Receive Channel 2 Host Packet Configuration Register 1 B Section 13.3.57
9851h RXHPCR2B[2] Receive Channel 2 Host Packet Configuration Register 2 B Section 13.3.57
9860h TXGCR1[3] Transmit Channel 3 Global Configuration Register 1 Section 13.3.54
9861h TXGCR2[3] Transmit Channel 3 Global Configuration Register 2 Section 13.3.54
9868h RXGCR1[3] Receive Channel 3 Global Configuration Register 1 Section 13.3.55
9869h RXGCR2[3] Receive Channel 3 Global Configuration Register 2 Section 13.3.55
986Ch RXHPCR1A[3] Receive Channel 3 Host Packet Configuration Register 1 A Section 13.3.56
986Dh RXHPCR2A[3] Receive Channel 3 Host Packet Configuration Register 2 A Section 13.3.56
9870h RXHPCR1B[3] Receive Channel 3 Host Packet Configuration Register 1 B Section 13.3.57
9871h RXHPCR2B[3] Receive Channel 3 Host Packet Configuration Register 2 B Section 13.3.57
A000h DMA_SCHED_CTRL1 CDMA Scheduler Control Register 1 Section 13.3.58
A001h DMA_SCHED_CTRL2 CDMA Scheduler Control Register 1 Section 13.3.58

A800h + 4 × N ENTRYLSW[N] CDMA Scheduler Table Word N Registers LSW (N = 0 to 63) Section 13.3.59
A801h + 4 × N ENTRYMSW[N] CDMA Scheduler Table Word N Registers MSW (N = 0 to 63) Section 13.3.59

13.3.1.3.2 Queue Manager (QMGR) Registers
Table 13-42 lists the registers of the queue manager.

Table 13-42. Queue Manager (QMGR) Registers

CPU Word
Address Acronym Register Description Section
C000h QMGRREVID1 Queue Manager Revision Identification Register 1 Section 13.3.60
C001h QMGRREVID2 Queue Manager Revision Identification Register 2 Section 13.3.60
C008h DIVERSION1 Queue Manager Queue Diversion Register 1 Section 13.3.61
C009h DIVERSION2 Queue Manager Queue Diversion Register 2 Section 13.3.61
C020h FDBSC0 Queue Manager Free Descriptor/Buffer Starvation Count Register 0 Section 13.3.62
C021h FDBSC1 Queue Manager Free Descriptor/Buffer Starvation Count Register 1 Section 13.3.63
C024h FDBSC2 Queue Manager Free Descriptor/Buffer Starvation Count Register 2 Section 13.3.64
C025h FDBSC3 Queue Manager Free Descriptor/Buffer Starvation Count Register 3 Section 13.3.65
C028h FDBSC4 Queue Manager Free Descriptor/Buffer Starvation Count Register 4 Section 13.3.66
C029h FDBSC5 Queue Manager Free Descriptor/Buffer Starvation Count Register 5 Section 13.3.67
C02Ch FDBSC6 Queue Manager Free Descriptor/Buffer Starvation Count Register 6 Section 13.3.68
C02Dh FDBSC7 Queue Manager Free Descriptor/Buffer Starvation Count Register 7 Section 13.3.69
C080h LRAM0BASE1 Queue Manager Linking RAM Region 0 Base Address Register 1 Section 13.3.70
C081h LRAM0BASE2 Queue Manager Linking RAM Region 0 Base Address Register 2 Section 13.3.70
C084h LRAM0SIZE Queue Manager Linking RAM Region 0 Size Register Section 13.3.71
C085h - Reserved
C088h LRAM1BASE1 Queue Manager Linking RAM Region 1 Base Address Register 1 Section 13.3.72
C089h LRAM1BASE2 Queue Manager Linking RAM Region 1 Base Address Register 2 Section 13.3.72
C090h PEND0 Queue Manager Queue Pending 0 Section 13.3.73
C091h PEND1 Queue Manager Queue Pending 1 Section 13.3.74
C094h PEND2 Queue Manager Queue Pending 2 Section 13.3.75
C095h PEND3 Queue Manager Queue Pending 3 Section 13.3.76
C098h PEND4 Queue Manager Queue Pending 4 Section 13.3.77
C099h PEND5 Queue Manager Queue Pending 5 Section 13.3.78

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

463SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Table 13-42. Queue Manager (QMGR) Registers (continued)
CPU Word
Address Acronym Register Description Section

D000h + 16 × R QMEMRBASE1[R] Queue Manager Memory Region R Base Address Register 1 (R = 0
to 15)

Section 13.3.79

D001h + 16 × R QMEMRBASE2[R] Queue Manager Memory Region R Base Address Register 2 (R = 0
to 15)

Section 13.3.79

D004h + 16 × R QMEMRCTRL1[R] Queue Manager Memory Region R Control Register (R = 0 to 15) Section 13.3.80
D005h + 16 × R QMEMRCTRL2[R] Queue Manager Memory Region R Control Register (R = 0 to 15) Section 13.3.80
E00Ch + 16 × N CTRL1D Queue Manager Queue N Control Register 1 D (N = 0 to 63) Section 13.3.81
E00Dh + 16 × N CTRL2D Queue Manager Queue N Control Register 2 D (N = 0 to 63) Section 13.3.81
E800h + 16 × N QSTATA Queue Manager Queue N Status Register A (N = 0 to 63) Section 13.3.82
E804h + 16 × N QSTAT1B Queue Manager Queue N Status Register 1 B (N = 0 to 63) Section 13.3.83
E805h + 16 × N QSTAT2B Queue Manager Queue N Status Register 2 B (N = 0 to 63) Section 13.3.83
E808h + 16 × N QSTATC Queue Manager Queue N Status Register C (N = 0 to 63) Section 13.3.84

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

464 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.2 Revision Identification Registers (REVID1 and REVID2)
The revision identification registers (REVID1 and REVID2) contain the revision for the USB 2.0 controller
module. The REVID1 is shown in Figure 13-23 and described in Table 13-43. The REVID2 is shown in
Figure 13-24 and described in Table 13-44.

Figure 13-23. Revision Identification Register 1 (REVID1)
15 0

REVLSB
R- 0800h

LEGEND: R = Read only; -n = value after reset

Figure 13-24. Revision Identification Register 2 (REVID2)
15 0

REVMSB
R-4EA1h

LEGEND: R = Read only; -n = value after reset

Table 13-43. Revision Identification Register 1 (REVID1) Field Descriptions

Bit Field Type Reset Description
15-0 REVLSB R 0800h Least significant bits of the revision ID of the USB module. Value: 0-FFFFh

Table 13-44. Revision Identification Register 2 (REVID2) Field Descriptions

Bit Field Type Reset Description
15-0 REVMSB R R-4EA1h Most significant bits of the revision ID of the USB module. Value: 0-FFFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

465SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.3 Control Register (CTRLR)
The control register (CTRLR) allows the CPU to control various aspects of the module. The CTRLR is
shown in Figure 13-25 and described in Table 13-45.

Figure 13-25. Control Register (CTRLR)
15 5 4 3 2 1 0

Reserved RNDIS UINT Reserved CLKFACK RESET
R-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-45. Control Register (CTRLR) Field Descriptions

Bit Field Type Reset Description
15-5 Reserved R 0 Reserved

4 RNDIS RW 0 Global RNDIS mode enable for all endpoints.
0 = Global RNDIS mode is disabled.
1 = Global RNDIS mode is enabled.

3 UINT RW 0 USB non-PDR interrupt handler enable.
0 = PDR interrupt handler is enabled.
1 = PDR interrupt handler is disabled

2 Reserved R 0 Reserved
1 CLKFACK RW 0 Clock stop fast ACK enable.

0 = Clock stop fast ACK is disabled.
1 = Clock stop fast ACK is enabled.

0 RESET RW 0 Soft reset.
0 = No effect.
1 = Writing a 1 starts a module reset.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

466 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.4 Emulation Register (EMUR)
The emulation register (EMUR) allows the CPU to configure the CBA 3.0 emulation interface. The EMUR
is shown in Figure 13-26 and described in Table 13-46.

Figure 13-26. Emulation Register (EMUR)
15 3 2 1 0

Reserved RT_SEL SOFT FREERUN
R-0 R/W-0 R/W-1 R/W-1

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-46. Emulation Register (EMUR) Field Descriptions

Bit Field Type Reset Description
15-3 Reserved R 0 Reserved.

2 RT_SEL RW 0 Real-time enable.
0 = Enable
1 = Disable

1 SOFT RW 1 Soft stop.
0 = No effect.
1 = Soft stop enable.

0 FREERUN RW 1 Free run.
0 = No effect.
1 = Free run enable

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

467SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.5 Mode Registers (MODE1 and MODE2)
The mode registers (MODE1 and MODE2) allow the CPU to individually enable RNDIS/Generic/CDC
modes for each endpoint. Using the global RNDIS bit in the control register (CTRLR) overrides this
register and enables RNDIS mode for all endpoints. The MODE1 is shown in Figure 13-27 and described
in Table 13-47. The MODE2 is shown in Figure 13-28 and described in Table 13-48.

Figure 13-27. Mode Register 1 (MODE1)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved TX4_MODE Reserved TX3_MODE Reserved TX2_MODE Reserved TX1_MODE

R R/W R R/W R R/W R R/W
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 13-28. Mode Register 2 (MODE2)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved RX4_MODE Reserved RX3_MODE Reserved RX2_MODE Reserved RX1_MODE

R R/W R R/W R R/W R R/W
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-47. Mode Register 1 (MODE1) Field Descriptions

Bit Field Type Reset Description
15-14 Reserved R 0 Reserved.
13-12 TX4_MODE RW 0 Transmit endpoint 4 mode control.

0 = Transparent mode on Transmit endpoint 4.
1h = RNDIS mode on Transmit endpoint 4.
2h = CDC mode on Transmit endpoint 4.
3h = Generic RNDIS mode on Transmit endpoint 4.

11-10 Reserved R 0 Reserved.
9-8 TX3_MODE RW 0 Transmit endpoint 3 mode control.

0 = Transparent mode on Transmit endpoint 3.
1h = RNDIS mode on Transmit endpoint 3.
2h = CDC mode on Transmit endpoint 3.
3h = Generic RNDIS mode on Transmit endpoint 3.

7-6 Reserved R 0 Reserved.
5-4 TX2_MODE RW 0 Transmit endpoint 2 mode control.

0 = Transparent mode on Transmit endpoint 2.
1h = RNDIS mode on Transmit endpoint 2.
2h = CDC mode on Transmit endpoint 2.
3h = Generic RNDIS mode on Transmit endpoint 2.

3-2 Reserved R 0 Reserved.
1-0 TX1_MODE RW 0 Transmit endpoint 1 mode control.

0 = Transparent mode on Transmit endpoint 1.
1h = RNDIS mode on Transmit endpoint 1.
2h = CDC mode on Transmit endpoint 1.
3h = Generic RNDIS mode on Transmit endpoint 1.

Table 13-48. Mode Register 2 (MODE2) Field Descriptions

Bit Field Type Reset Description
15-14 Reserved R 0 Reserved.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

468 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Table 13-48. Mode Register 2 (MODE2) Field Descriptions (continued)
Bit Field Type Reset Description

13-12 RX4_MODE RW 0 Receive endpoint 4 mode control.
0 = Transparent mode on Receive endpoint 4.
1h = RNDIS mode on Receive endpoint 4.
2h = CDC mode on Receive endpoint 4.
3h = Generic RNDIS mode on Receive endpoint 4.

11-10 Reserved R 0 Reserved.
9-8 RX3_MODE RW 0 Receive endpoint 3 mode control.

0 = Transparent mode on Receive endpoint 3.
1h = RNDIS mode on Receive endpoint 3.
2h = CDC mode on Receive endpoint 3.
3h = Generic RNDIS mode on Receive endpoint 3.

7-6 Reserved R 0 Reserved.
5-4 RX2_MODE RW 0 Receive endpoint 2 mode control.

0 = Transparent mode on Receive endpoint 2.
1h = RNDIS mode on Receive endpoint 2.
2h = CDC mode on Receive endpoint 2.
3h = Generic RNDIS mode on Receive endpoint 2.

3-2 Reserved R 0 Reserved.
1-0 RX1_MODE RW 0 Receive endpoint 1 mode control.

0 = Transparent mode on Receive endpoint 1.
1h = RNDIS mode on Receive endpoint 1.
2h = CDC mode on Receive endpoint 1.
3h = Generic RNDIS mode on Receive endpoint 1.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

469SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.6 Auto Request Register (AUTOREQ)
The auto request register (AUTOREQ) allows the CPU to enable an automatic IN token request
generation for host mode RX operation per each RX endpoint. This feature has the DMA set the REQPKT
bit in the control status register for host receive endpoint (HOST_RXCSR) when it clears the RXPKTRDY
bit after reading out a packet. The REQPKT bit is used by the core to generate an IN token to receive
data. By using this feature, the host can automatically generate an IN token after the DMA finishes
receiving data and empties an endpoint buffer, thus receiving the next data packet as soon as possible
from the connected device. Without this feature, the CPU will have to manually set the REQPKT bit for
every USB packet.

There are two modes that auto request can function in: always or all except an EOP. The always mode
sets the REQPKT bit after every USB packet the DMA receives thus generating a new IN token after each
USB packet. The EOP mode sets the REQPKT bit after every USB packet that is not an EOP (end of
packet) in the CPPI descriptor. For RNDIS, CDC, and Generic RNDIS modes, the auto request stops
when the EOP is received (either via a short packet for RNDIS, CDC, and Generic RNDIS or the count is
reached for Generic RNDIS), making it useful for starting a large RNDIS packet and having it auto
generate IN tokens until the end of the RNDIS packet. For transparent mode, every USB packet is an
EOP CPPI packet so the auto request never functions and acts like auto request is disabled.

The AUTOREQ is shown in Figure 13-29 and described in Table 13-49.

Figure 13-29. Auto Request Register (AUTOREQ)
15 8 7 6 5 4 3 2 1 0

Reserved RX4_AUTREQ RX3_AUTREQ RX2_AUTREQ RX1_AUTREQ
R-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-49. Auto Request Register (AUTOREQ) Field Descriptions

Bit Field Type Rese
t

Description

15-8 Reserved R 0 Reserved.
7-6 RX4_AUTR

EQ
RW 0 Receive endpoint 4 auto request enable.

0 = No auto request.
1h = Auto request on all but EOP.
2h = Reserved.
3h = Auto request always.

5-4 RX3_AUTR
EQ

RW 0 Receive endpoint 3 auto request enable.
0 = No auto request.
1h = Auto request on all but EOP.
2h = Reserved.
3h = Auto request always.

3-2 RX2_AUTR
EQ

RW 0 Receive endpoint 2 auto request enable.
0 = No auto request.
1h = Auto request on all but EOP.
2h = Reserved.
3h = Auto request always.

1-0 RX1_AUTR
EQ

RW 0 Receive endpoint 1 auto request enable.
0 = No auto request.
1h = Auto request on all but EOP.
2h = Reserved.
3h = Auto request always.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

470 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.7 Teardown Registers (TEARDOWN1 and TEARDOWN2)
The teardown registers (TEARDOWN1 and TEARDOWN2) control the tearing down of receive and
transmit FIFOs in the USB controller. When a 1 is written to a valid bit in TEARDOWN1 or TEARDOWN2,
the CPPI FIFO pointers for that endpoint are cleared. TEARDOWN1 and TEARDOWN2 must be used in
conjunction with the CPPI DMA teardown mechanism. The Host should also write the FLUSHFIFO bits in
the TXCSR and RXCSR registers to ensure a complete teardown of the endpoint.

The TEARDOWN1 is shown in Figure 13-30 and described in Table 13-50. The TEARDOWN2 is shown in
Figure 13-31 and described in Table 13-51.

Figure 13-30. Teardown Register 1 (TEARDOWN1)
15 5 4 1 0

Reserved RX_TDOWN Reserved
R-0 R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 13-31. Teardown Register 2 (TEARDOWN2)
15 5 4 1 0

Reserved TX_TDOWN Reserved
R-0 R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-50. Teardown Register 1 (TEARDOWN1) Field Descriptions

Bit Field Type Reset Description
15-5 Reserved R 0 Reserved.
4-1 RX_TDOWN RW 0 Receive endpoint teardown.

0 = Disable.
1 = Enable.

0 Reserved R 0 Reserved.

Table 13-51. Teardown Register 2 (TEARDOWN2) Field Descriptions

Bit Field Type Reset Description
15-5 Reserved R 0 Reserved.
4-1 TX_TDOWN RW Transmit endpoint teardown.

0 = Disable.
1 = Enable.

0 Reserved R 0 Reserved.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

471SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.8 USB Interrupt Source Registers (INTSRCR1 and INTSRCR2)
The USB interrupt source registers (INTSRCR1 and INTSRCR2) contain the status of the interrupt
sources generated by the USB core (not the DMA). The INTSRCR1 is shown in Figure 13-32 and
described in Table 13-52. The INTSRCR2 is shown in Figure 13-33 and described in Table 13-53.

Figure 13-32. USB Interrupt Source Register 1 (INTSRCR1)
15 13 12 9 8 5 4 0

Reserved RX Reserved TX
R-0 R-0

LEGEND: R = Read only; -n = value after reset

Figure 13-33. USB Interrupt Source Register 2 (INTSRCR2)
15 9 8 0

Reserved USB
R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 13-52. USB Interrupt Source Register 1 (INTSRCR1) Field Descriptions

Bit Field Type Reset Description
15-13 Reserved R 0 Reserved.

12 RX4 R 0 Receive interrupt source for EndPoint4. Value: 0/1
11 RX3 R 0 Receive interrupt source for EndPoint3. Value: 0/1
10 RX2 R 0 Receive interrupt source for EndPoint2. Value: 0/1
9 RX1 R 0 Receive interrupt source for EndPoint1. Value: 0/1

8-5 Reserved R 0 Reserved
4 TX4 R 0 Transmit interrupt source for EndPoint4. Value: 0/1
3 TX3 R 0 Transmit interrupt source for EndPoint3. Value: 0/1
2 TX2 R 0 Transmit interrupt source for EndPoint2. Value: 0/1
1 TX1 R 0 Transmit interrupt source for EndPoint1. Value: 0/1
0 RX1/TX1 R 0 Both Receive and Transmit interrupt source for EndPoint0. Value: 0/1

Table 13-53. USB Interrupt Source Register 2 (INTSRCR2) Field Descriptions

Bit Field Type Reset Description
15-9 Reserved R 0 Reserved.
8-0 USB R 0 USB interrupt sources. (Please see Figure 13-64 for the definition of each bit here.)

Value: 0-1FFh.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

472 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.9 USB Interrupt Source Set Registers (INTSETR1 and INTSETR2)
The USB interrupt source set registers (INTSETR1 and INTSETR2) allow the USB interrupt sources to be
manually triggered. A read of this register returns the USB interrupt source register value. The INTSETR1
is shown in Figure 13-34 and described in Table 13-54. The INTSETR2 is shown in Figure 13-35 and
described in Table 13-55.

Figure 13-34. USB Interrupt Source Set Register 1 (INTSETR1)
15 13 12 9 8 5 4 0

Reserved RX Reserved TX
R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 13-35. USB Interrupt Source Set Register 2 (INTSETR2)
15 9 8 0

Reserved USB
R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-54. USB Interrupt Source Set Register 1 (INTSETR1) Field Descriptions

Bit Field Type Reset Description
15-13 Reserved R 0 Reserved.
12-8 RX RW 0 Write a 1 to set equivalent Receive endpoint interrupt source. Allows the USB interrupt

sources to be manually triggered. Value: 0-Fh
7-5 Reserved R 0 Reserved.
4-0 TX RW 0 Write a 1 to set equivalent Transmit endpoint interrupt source. Allows the USB

interrupt sources to be manually triggered. Value: 0-Fh

Table 13-55. USB Interrupt Source Set Register 2 (INTSETR2) Field Descriptions

Bit Field Type Reset Description
15-9 Reserved R 0 Reserved.
8-0 USB RW 0 Write a 1 to set equivalent USB interrupt source. Allows the USB interrupt sources to

be manually triggered. Value: 0-1FFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

473SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.10 USB Interrupt Source Clear Registers (INTCLRR1 and INTCLRR2)
The USB interrupt source clear registers (INTCLRR1 and INTCLRR2) allow the CPU to acknowledge an
interrupt source and turn it off. A read of this register returns the USB interrupt source register value. The
INTCLRR1 is shown in Figure 13-36 and described in Table 13-56. The INTCLRR2 is shown in Figure 13-
37 and described in Table 13-57.

Figure 13-36. USB Interrupt Source Clear Register 1 (INTCLRR1)
15 13 12 9 8 5 4 0

Reserved RX Reserved TX
R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 13-37. USB Interrupt Source Clear Register 2 (INTCLRR2)
15 9 8 0

Reserved USB
R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-56. USB Interrupt Source Clear Register 1 (INTCLRR1) Field Descriptions

Bit Field Type Reset Description
15-13 Reserved R 0 Reserved.
12-8 RX RW 0 Write a 1 to clear equivalent Receive endpoint interrupt source. Allows the CPU to

acknowledge an interrupt source and turn it off. Value: 0-Fh
7-5 Reserved R 0 Reserved.
4-0 TX RW 0 Write a 1 to clear equivalent Transmit endpoint interrupt source. Allows the CPU to

acknowledge an interrupt source and turn it off. Value: 0-1Fh

Table 13-57. USB Interrupt Source Clear Register 2 (INTCLRR2) Field Descriptions

Bit Field Type Reset Description
15-9 Reserved R 0 Reserved.
8-0 USB RW 0 Write a 1 to clear equivalent USB interrupt source. Allows the CPU to acknowledge an

interrupt source and turn it off. Value: 0-1FFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

474 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.11 USB Interrupt Mask Registers (INTMSKR1 and INTMSKR2)
The USB interrupt mask registers (INTMSKR1 and INTMSKR2) contain the masks of the interrupt sources
generated by the USB core (not the DMA). These masks are used to enable or disable interrupt sources
generated on the masked source interrupts (the raw source interrupts are never masked). The bit
positions are maintained in the same position as the interrupt sources in the USB interrupt source register.

The INTMSKR1 is shown in Figure 13-38 and described in Table 13-58. The INTMSKR2 is shown in
Figure 13-39 and described in Table 13-59.

Figure 13-38. USB Interrupt Mask Register 1 (INTMSKR1)
15 13 12 9 8 5 4 0

Reserved RX Reserved TX
R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Figure 13-39. USB Interrupt Mask Register 2 (INTMSKR2)
15 9 8 0

Reserved USB
R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 13-58. USB Interrupt Mask Register 1 (INTMSKR1) Field Descriptions

Bit Field Type Reset Description
15-13 Reserved R 0 Reserved.
12-8 RX R 0 Receive endpoint interrupt source masks. Value: 0-Fh
7-5 Reserved R 0 Reserved.
4-0 TX R 0 Transmit endpoint interrupt source masks. Value: 0-1Fh

Table 13-59. USB Interrupt Mask Register 2 (INTMSKR2) Field Descriptions

Bit Field Type Reset Description
15-9 Reserved R 0 Reserved.
8-0 USB R 0 USB interrupt source masks. Value: 0-1FFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

475SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.12 USB Interrupt Mask Set Registers (INTMSKSETR1 and INTMSKSETR2)
The USB interrupt mask set registers (INTMSKSETR1 and INTMSKSETR2) allow the USB masks to be
individually enabled. A read to this register returns the USB interrupt mask register value. The
INTMSKSETR1 is shown in Figure 13-40 and described in Table 13-60. The INTMSKSETR2 is shown in
Figure 13-41 and described in Table 13-61.

Figure 13-40. USB Interrupt Mask Set Register 1 (INTMSKSETR1)
15 13 12 9 8 5 4 0

Reserved RX Reserved TX
R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 13-41. USB Interrupt Mask Set Register 2 (INTMSKSETR2)
15 9 8 0

Reserved USB
R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-60. USB Interrupt Mask Set Register 1 (INTMSKSETR1) Field Descriptions

Bit Field Type Reset Description
15-13 Reserved R 0 Reserved.
12-8 RX RW 0 Write a 1 to set equivalent Receive endpoint interrupt mask. Value: 0-Fh
7-5 Reserved R 0 Reserved.
4-0 TX RW 0 Write a 1 to set equivalent Transmit endpoint interrupt mask. Value: 0-1Fh

Table 13-61. USB Interrupt Mask Set Register 2 (INTMSKSETR2) Field Descriptions

Bit Field Type Reset Description
15-9 Reserved R 0 Reserved.
8-0 USB RW 0 Write a 1 to set equivalent USB interrupt mask. Value: 0-1FFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

476 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.13 USB Interrupt Mask Clear Registers (INTMSKCLRR1 and INTMSKCLRR2)
The USB interrupt mask clear registers (INTMSKCLRR1 and INTMSKCLRR2) allow the USB interrupt
masks to be individually disabled. A read to this register returns the USB interrupt mask register value.
The INTMSKCLRR1 is shown in Figure 13-42 and described in Table 13-62. The INTMSKCLRR2 is
shown in Figure 13-43 and described in Table 13-63.

Figure 13-42. USB Interrupt Mask Clear Register 1 (INTMSKCLRR1)
15 13 12 9 8 5 4 0

Reserved RX Reserved TX
R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 13-43. USB Interrupt Mask Clear Register 2 (INTMSKCLRR2)
15 9 8 0

Reserved USB
R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-62. USB Interrupt Mask Clear Register 1 (INTMSKCLRR1) Field Descriptions

Bit Field Type Reset Description
15-13 Reserved R 0 Reserved.
12-8 RX RW 0 Write a 1 to clear equivalent Receive endpoint interrupt mask. Value: 0-Fh
7-5 Reserved R 0 Reserved.
4-0 TX RW 0 Write a 1 to clear equivalent Transmit endpoint interrupt mask. Value: 0-1Fh

Table 13-63. USB Interrupt Mask Clear Register 2 (INTMSKCLRR2) Field Descriptions

Bit Field Type Reset Description
15-9 Reserved R 0 Reserved.
8-0 USB RW 0 Write a 1 to clear equivalent USB interrupt mask. Value: 0-1FFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

477SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.14 USB Interrupt Source Masked Registers (INTMASKEDR1 and INTMASKEDR2)
The USB interrupt source masked registers (INTMASKEDR1 and INTMASKEDR2) contain the status of
the interrupt sources generated by the USB core masked by the USB interrupt mask register values. The
INTMASKEDR1 is shown in Figure 13-44 and described in Table 13-64. The INTMASKEDR2 is shown in
Figure 13-45 and described in Table 13-65.

Figure 13-44. USB Interrupt Source Masked Register 1 (INTMASKEDR1)
15 13 12 9 8 5 4 0

Reserved RX Reserved TX
R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Figure 13-45. USB Interrupt Source Masked Register 2 (INTMASKEDR2)
15 9 8 0

Reserved USB
R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 13-64. USB Interrupt Source Masked Register 1 (INTMASKEDR1) Field Descriptions

Bit Field Type Reset Description
15-13 Reserved R 0 Reserved.
12-8 RX RW 0 Receive endpoint interrupt sources masked. Value: 0-Fh
7-5 Reserved R 0 Reserved.
4-0 TX RW 0 Transmit endpoint interrupt sources masked. Value: 0-1Fh

Table 13-65. USB Interrupt Source Masked Register 2 (INTMASKEDR2) Field Descriptions

Bit Field Type Reset Description
15-9 Reserved R 0 Reserved.
8-0 USB R 0 USB interrupt sources masked. Value: 0-1FFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

478 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.15 USB End of Interrupt Register (EOIR)
The USB end of interrupt register (EOIR) allows the CPU to acknowledge completion of an interrupt by
writing 0 to the EOI_VECTOR bit. The EOIR is shown in Figure 13-46 and described in Table 13-66.

Figure 13-46. USB End of Interrupt Register (EOIR)
15 8 7 0

Reserved EOI_VECTOR
R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-66. USB End of Interrupt Register (EOIR) Field Descriptions

Bit Field Type Reset Description
15-8 Reserved R 0 Reserved.
7-0 EOI_VECTOR RW 0 EOI Vector. Value: 0-FFh

13.3.16 USB Interrupt Vector Registers (INTVECTR1 and INTVECTR2)
The USB interrupt vector registers (INTVECTR1 and INTVECTR2) recycle the Interrupt Vector input to be
read by the CPU. The INTVECTR1 is shown in Figure 13-47 and described in Table 13-67. The
INTVECTR2 is shown in Figure 13-48 and described in Table 13-68.

Figure 13-47. USB Interrupt Vector Register 1 (INTVECTR1)
15 0

VECTORLSB
R-0

LEGEND: R = Read only; -n = value after reset

Figure 13-48. USB Interrupt Vector Register 2 (INTVECTR2)
15 0

VECTORMSB
R-0

LEGEND: R = Read only; -n = value after reset

Table 13-67. USB Interrupt Vector Register 1 (INTVECTR1) Field Descriptions

Bit Field Type Reset Description
15-0 VECTORLSB R 0 Input Interrupt Vector. Together, INTVECTR1 and INTVECTR2 specify a 32 bit

value. Value: 0-FFFFh

Table 13-68. USB Interrupt Vector Register 2 (INTVECTR2) Field Descriptions

Bit Field Type Reset Description
15-0 VECTORMSB R 0 Input Interrupt Vector. Together, INTVECTR1 and INTVECTR2 specify a 32 bit

value. Value: 0-FFFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

479SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.17 Generic RNDIS EP1 Size Registers (GREP1SZR1 and GREP1SZR2)
The generic RNDIS EP1 size registers (GREP1SZR1 and GREP1SZR2) are programmed with a RNDIS
packet size in bytes. When EP1 is in Generic RNDIS mode, the received USB packets are collected into a
single CPPI packet that is completed when the number of bytes equal to the value of this register have
been received, or a short packet is received. The packet size must be an integer multiple of the endpoint
size. The maximum packet size that can be used is 10000h, or 65536.

The GREP1SZR1 is shown in Figure 13-49 and described in Table 13-69. The GREP1SZR2 is shown in
Figure 13-50 and described in Table 13-70.

Figure 13-49. Generic RNDIS EP1 Size Register 1 (GREP1SZR1)
15 0

EP1_SIZE_LSB
R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 13-50. Generic RNDIS EP1 Size Register 2 (GREP1SZR2)
15 1 0

Reserved EP1_SIZE_MSB
R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-69. Generic RNDIS EP1 Size Register 1 (GREP1SZR1) Field Descriptions

Bit Field Type Reset Description
15-0 EP1_SIZE_LS

B
RW 0 Generic RNDIS packet size. Together, GREP1SZR1 and GREP1SZR2

specify the packet size. Value: 0-FFFFh

Table 13-70. Generic RNDIS EP1 Size Register 2 (GREP1SZR2) Field Descriptions

Bit Field Type Reset Description
15-1 Reserved R 0 Reserved.

0 EP1_SIZE_MS
B

RW 0 Generic RNDIS packet size. Together, GREP1SZR1 and GREP1SZR2
specify the packet size. Value: 0-1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

480 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.18 Generic RNDIS EP2 Size Registers (GREP2SZR1 and GREP2SZR2)
The generic RNDIS EP2 size registers (GREP2SZR1 and GREP2SZR2) are programmed with a RNDIS
packet size in bytes. When EP2 is in Generic RNDIS mode, the received USB packets are collected into a
single CPPI packet that is completed when the number of bytes equal to the value of this register have
been received, or a short packet is received. The packet size must be an integer multiple of the endpoint
size. The maximum packet size that can be used is 10000h, or 65536.

The GREP2SZR1 is shown in Figure 13-51 and described in Table 13-71. The GREP2SZR2 is shown in
Figure 13-52 and described in Table 13-72.

Figure 13-51. Generic RNDIS EP2 Size Register 1 (GREP2SZR1)
15 0

EP2_SIZE_LSB
R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 13-52. Generic RNDIS EP2 Size Register 2 (GREP2SZR2)
15 1 0

Reserved EP2_SIZE_MSB
R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-71. Generic RNDIS EP2 Size Register 1 (GREP2SZR1) Field Descriptions

Bit Field Type Reset Description
15-0 EP2_SIZE_LS

B
RW 0 Generic RNDIS packet size. Together, GREP2SZR1 and GREP2SZR2

specify the packet size. Value: 0-FFFFh

Table 13-72. Generic RNDIS EP2 Size Register 2 (GREP2SZR2) Field Descriptions

Bit Field Type Reset Description
15-1 Reserved R 0 Reserved.

0 EP2_SIZE_MS
B

RW 0 Generic RNDIS packet size. Together, GREP2SZR1 and GREP2SZR2
specify the packet size. Value: 0-1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

481SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.19 Generic RNDIS EP3 Size Registers (GREP3SZR1 and GREP3SZR2)
The generic RNDIS EP3 size registers (GREP3SZR1 and GREP3SZR2) are programmed with a RNDIS
packet size in bytes. When EP3 is in Generic RNDIS mode, the received USB packets are collected into a
single CPPI packet that is completed when the number of bytes equal to the value of this register has
been received, or a short packet is received. The packet value must be an integer multiple of the endpoint
size. The maximum packet size that can be used is 10000h, or 65536.

The GREP3SZR1 is shown in Figure 13-53 and described in Table 13-73. The GREP3SZR2 is shown in
Figure 13-54 and described in Table 13-74.

Figure 13-53. Generic RNDIS EP3 Size Register 1 (GREP3SZR1)
15 0

EP3_SIZE_LSB
R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 13-54. Generic RNDIS EP3 Size Register 2 (GREP3SZR2)
15 1 0

Reserved EP3_SIZE_MSB
R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-73. Generic RNDIS EP3 Size Register 1 (GREP3SZR1) Field Descriptions

Bit Field Type Reset Description
15-0 EP3_SIZE_LS

B
RW 0 Generic RNDIS packet size. Together, GREP3SZR1 and GREP3SZR2

specify the packet size. Value: 0-FFFFh

Table 13-74. Generic RNDIS EP3 Size Register 2 (GREP3SZR2) Field Descriptions

Bit Field Type Value Description
15-1 Reserved R 0 Reserved.

0 EP3_SIZE_MS
B

RW 0 Generic RNDIS packet size. Together, GREP3SZR1 and GREP3SZR2
specify the packet size. Value: 0-1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

482 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.20 Generic RNDIS EP4 Size Registers (GREP4SZR1 and GREP4SZR2)
The generic RNDIS EP4 size registers (GREP4SZR1 and GREP4SZR2) are programmed with a RNDIS
packet size in bytes. When EP4 is in Generic RNDIS mode, the received USB packets are collected into a
single CPPI packet that is completed when the number of bytes equal to the value of this register has
been received, or a short packet is received. The packet size must be an integer multiple of the endpoint
size. The maximum packet size that can be used is 10000h, or 65536.

The GREP4SZR1 is shown in Figure 13-55 and described in Table 13-75. The GREP4SZR2 is shown in
Figure 13-56 and described in Table 13-76.

Figure 13-55. Generic RNDIS EP4 Size Register 1 (GREP4SZR1)
15 0

EP4_SIZE_LSB
R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 13-56. Generic RNDIS EP4 Size Register 2 (GREP4SZR2)
15 1 0

Reserved EP4_SIZE_MSB
R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-75. Generic RNDIS EP4 Size Register 1 (GREP4SZR1) Field Descriptions

Bit Field Type Reset Description
15-0 EP4_SIZE_LS

B
RW 0 Generic RNDIS packet size. Together, GREP4SZR1 and GREP4SZR2

specify the packet size. Value: 0-FFFFh

Table 13-76. Generic RNDIS EP4 Size Register 2 (GREP4SZR2) Field Descriptions

Bit Field Type Reset Description
15-1 Reserved R 0 Reserved

0 EP4_SIZE_MS
B

RW 0 Generic RNDIS packet size. Together, GREP4SZR1 and GREP4SZR2
specify the packet size. Value: 0-1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

483SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.21 Function Address Register (FADDR)
The function address register (FADDR) is shown in Figure 13-57 and described in Table 13-77.

Figure 13-57. Function Address Register (FADDR)
7 6 0

Reserved FUNCADDR
R-0 R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 13-77. Function Address Register (FADDR) Field Descriptions

Bit Field Type Reset Description
7 Reserved R 0 Reserved.

6-0 FUNCADDR RW 0 7_bit address of the peripheral part of the transaction. Value: 0-7Fh
This register should be written with the address received through a SET_ADDRESS
command, which will then be used for decoding the function address in subsequent
token packets.
When used in Host mode, this register should be set to the value sent in a
SET_ADDRESS command during device enumeration as the address for the
peripheral device.

13.3.22 Power Management Register (POWER)
The power management register (POWER) is shown in Figure 13-58 and described in Table 13-78.

Figure 13-58. Power Management Register (POWER)
7 6 5 4 3 2 1 0

ISOUPDATE SOFTCONN HSEN HSMODE RESET RESUME SUSPENDM ENSUSPM
R/W-0 R/W-0 R/W-1 R-0 R-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-78. Power Management Register (POWER) Field Descriptions

Bit Field Type Reset Description
7 ISOUPDATE RW 0 When set, the USB controller will wait for an SOF token from the time TxPktRdy is set

before sending the packet. If an IN token is received before an SOF token, then a zero
length data packet will be sent. This bit only affects endpoints performing Isochronous
transfers. Value: 0-1

6 SOFTCONN RW 0 If Soft Connect/Disconnect feature is enabled, then the USB D+/D- lines are enabled
when this bit is set and tri-stated when this bit is cleared. Value: 0-1

5 HSEN RW 1 When set, the USB controller will negotiate for high-speed mode when the device is
reset by the hub. If not set, the device will only operate in full-speed mode. Value: 0-1

4 HSMODE R 0 This bit is set when the USB controller has successfully negotiated for high-speed
mode. Value: 0-1

3 RESET R 0 This bit is set when Reset signaling is present on the bus. Note: this bit is read-only.
Value: 0-1

2 RESUME RW 0 Set to generate Resume signaling when the controller is in Suspend mode. The bit
should be cleared after 10 ms (a maximum of 15 ms) to end Resume signaling. In
Host mode, this bit is also automatically set when Resume signaling from the target is
detected while the USB controller is suspended. Value: 0-1

1 SUSPENDM RW 0 This bit is set on entry into Suspend mode. It is cleared when the interrupt register is
read, or the RESUME bit is set. Value: 0-1

0 ENSUSPM RW 0 Set to enable the SUSPENDM output. Value: 0-1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

484 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.23 Interrupt Register for Endpoint 0 Plus Transmit Endpoints 1 to 4 (INTRTX)
The interrupt register for endpoint 0 plus transmit endpoints 1 to 4 (INTRTX) is shown in Figure 13-59 and
described in Table 13-79.

Figure 13-59. Interrupt Register for Endpoint 0 Plus Tx Endpoints 1 to 4 (INTRTX)
15 8

Reserved
R-0

7 5 4 3 2 1 0
Reserved EP4TX EP3TX EP2TX EP1TX EP0

R-0 R-0 R-0 R-0 R-0 R-0
LEGEND: R = Read only; -n = value after reset

Table 13-79. Interrupt Register for Endpoint 0 Plus Transmit Endpoints 1 to 4 (INTRTX) Field
Descriptions

Bit Field Type Reset Description
15-5 Reserved R 0 Reserved.

4 EP4TX R 0 Transmit Endpoint 4 interrupt active. Value: 0-1
3 EP3TX R 0 Transmit Endpoint 3 interrupt active. Value: 0-1
2 EP2TX R 0 Transmit Endpoint 2 interrupt active. Value: 0-1
1 EP1TX R 0 Transmit Endpoint 1 interrupt active. Value: 0-1
0 EP0 R 0 Endpoint 0 interrupt active. Value: 0-1

13.3.24 Interrupt Register for Receive Endpoints 1 to 4 (INTRRX)
The interrupt register for receive endpoints 1 to 4 (INTRRX) is shown in Figure 13-60 and described in
Table 13-80.

Figure 13-60. Interrupt Register for Receive Endpoints 1 to 4 (INTRRX)
15 8

Reserved
R-0

7 5 4 3 2 1 0
Reserved EP4RX EP3RX EP2RX EP1RX Reserved

R-0 R-0 R-0 R-0 R-0 R-0
LEGEND: R = Read only; -n = value after reset

Table 13-80. Interrupt Register for Receive Endpoints 1 to 4 (INTRRX) Field Descriptions

Bit Field Type Reset Description
15-5 Reserved R 0 Reserved.

4 EP4RX R 0 Receive Endpoint 4 interrupt active. Value: 0-1
3 EP3RX R 0 Receive Endpoint 3 interrupt active. Value: 0-1
2 EP2RX R 0 Receive Endpoint 2 interrupt active. Value: 0-1
1 EP1RX R 0 Receive Endpoint 1 interrupt active. Value: 0-1
0 Reserved R 0 Reserved.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

485SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.25 Interrupt Enable Register for INTRTX (INTRTXE)
The interrupt enable register for INTRTX (INTRTXE) is shown in Figure 13-61 and described in Table 13-
81.

Figure 13-61. Interrupt Enable Register for INTRTX (INTRTXE)
15 8

Reserved
R-0

7 5 4 3 2 1 0
Reserved EP4TX EP3TX EP2TX EP1TX EP0

R-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-81. Interrupt Enable Register for INTRTX (INTRTXE) Field Descriptions

Bit Field Type Reset Description
15-5 Reserved R 0 Reserved.

4 EP4TX RW 1 Transmit Endpoint 4 interrupt active. Value: 0-1
3 EP3TX RW 1 Transmit Endpoint 3 interrupt active. Value: 0-1
2 EP2TX RW 1 Transmit Endpoint 2 interrupt active. Value: 0-1
1 EP1TX RW 1 Transmit Endpoint 1 interrupt active. Value: 0-1
0 EP0 RW 1 Endpoint 0 interrupt active. Value: 0-1

13.3.26 Interrupt Enable Register for INTRRX (INTRRXE)
The interrupt enable register for INTRRX (INTRRXE) is shown in Figure 13-62 and described in Table 13-
82.

Figure 13-62. Interrupt Enable Register for INTRRX (INTRRXE)
15 8

Reserved
R-0

7 5 4 3 2 1 0
Reserved EP4RX EP3RX EP2RX EP1RX Reserved

R-0 R/W-1 R/W-1 R/W-1 R/W-1 R-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-82. Interrupt Enable Register for INTRRX (INTRRXE) Field Descriptions

Bit Field Type Reset Description
15-5 Reserved R 0 Reserved.

4 EP4RX RW 1 Receive Endpoint 4 interrupt active. Value: 0-1
3 EP3RX RW 1 Receive Endpoint 3 interrupt active. Value: 0-1
2 EP2RX RW 1 Receive Endpoint 2 interrupt active. Value: 0-1
1 EP1RX RW 1 Receive Endpoint 1 interrupt active. Value: 0-1
0 Reserved R 0 Reserved.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

486 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.27 Interrupt Register for Common USB Interrupts (INTRUSB)
The interrupt register for common USB interrupts (INTRUSB) is shown in Figure 13-63 and described in
Table 13-83.

NOTE: Unless the UINT bit of CTRLR is set, do not read or write this register directly. Use the
INTSRCR register instead.

Figure 13-63. Interrupt Register for Common USB Interrupts (INTRUSB)
7 6 5 4 3 2 1 0

VBUSERR SESSREQ DISCON CONN SOF RESET_BABBLE RESUME SUSPEND
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 13-83. Interrupt Register for Common USB Interrupts (INTRUSB) Field Descriptions

Bit Field Type Reset Description
7 VBUSERR R 0 Set when VBus drops below the VBus valid threshold during a session. Only valid

when the USB controller is 'A' device. All active interrupts will be cleared when this
register is read. Value: 0-1

6 SESSREQ R 0 Set when session request signaling has been detected. Only valid when USB
controller is 'A' device. Value: 0-1

5 DISCON R 0 Set when a session ends. Value: 0-1
4 CONN R 0 Set when a device connection is detected. Only valid in host mode. Value: 0-1
3 SOF R 0 Set when a new frame starts. Value: 0-1
2 RESET_BABBL

E
R 0 Set when reset signaling is detected on the bus. Value: 0-1

1 RESUME R 0 Set when resume signaling is detected on the bus while the USB controller is in
suspend mode. Value: 0-1

0 SUSPEND R 0 Set when suspend signaling is detected on the bus. Value: 0-1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

487SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.28 Interrupt Enable Register for INTRUSB (INTRUSBE)
The interrupt enable register for INTRUSB (INTRUSBE) is shown in Figure 13-64 and described in
Table 13-84.

NOTE: Unless the UINT bit of CTRLR is set, do not read or write this register directly. Use the
INTSETR/INTCLRR registers instead.

Figure 13-64. Interrupt Enable Register for INTRUSB (INTRUSBE)
7 6 5 4 3 2 1 0

VBUSERR SESSREQ DISCON CONN SOF RESET_BABBLE RESUME SUSPEND
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-1 R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 13-84. Interrupt Enable Register for INTRUSB (INTRUSBE) Field Descriptions

Bit Field Type Reset Description
7 VBUSERR RW 0 Vbus error interrupt enable. Value: 0-1
6 SESSREQ RW 0 Session request interrupt enable. Value: 0-1
5 DISCON RW 0 Disconnect interrupt enable. Value: 0-1
4 CONN RW 0 Connect interrupt enable. Value: 0-1
3 SOF RW 0 Start of frame interrupt enable. Value: 0-1
2 RESET_BABBL

E
RW 1 Reset interrupt enable. Value: 0-1

1 RESUME RW 1 Resume interrupt enable. Value: 0-1
0 SUSPEND RW 0 Suspend interrupt enable. Value: 0-1

13.3.29 Frame Number Register (FRAME)
The frame number register (FRAME) is shown in Figure 13-65 and described in Table 13-85.

Figure 13-65. Frame Number Register (FRAME)
15 11 10 0

Reserved FRAMENUMBER
R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 13-85. Frame Number Register (FRAME) Field Descriptions

Bit Field Type Reset Description
15-11 Reserved R 0 Reserved.
10-0 FRAMENUMBE

R
R 0 Last received frame number. Value: 0-7FFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

488 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.30 Index Register for Selecting the Endpoint Status and Control Registers (INDEX)
The index register for selecting the endpoint status and control registers (INDEX) is shown in Figure 13-66
and described in Table 13-86.

Figure 13-66. Index Register for Selecting the Endpoint Status and Control Registers (INDEX)
7 4 3 0

Reserved EPSEL
R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-86. Index Register for Selecting the Endpoint Status and Control Registers (INDEX)
Field Descriptions

Bit Field Type Reset Description
7-4 Reserved R 0 Reserved.
3-0 EPSEL RW 0 Each transmit endpoint and each receive endpoint have their own set of control/status

registers. EPSEL determines which endpoint control/status registers are accessed.
Before accessing an endpoint's control/status registers, the endpoint number should
be written to the Index register to ensure that the correct control/status registers
appear in the memory-map. Value: 0-Fh

13.3.31 Register to Enable the USB 2.0 Test Modes (TESTMODE)
The register to enable the USB 2.0 test modes (TESTMODE) is shown in Figure 13-67 and described in
Table 13-87.

Figure 13-67. Register to Enable the USB 2.0 Test Modes (TESTMODE)
7 6 5 4 3 2 1 0

FORCE_HOST FIFO_ACCESS FORCE_FS FORCE_HS TEST_PACKET TEST_K TEST_J TEST_SE0_NAK
R/W-0 W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; W = Write only; -n = value after reset

Table 13-87. Register to Enable the USB 2.0 Test Modes (TESTMODE) Field Descriptions

Bit Field Type Reset Description
7 FORCE_HOST RW 0 Set this bit to forcibly put the USB controller into Host mode when SESSION

bit is set, regardless of whether it is connected to any peripheral. The
controller remains in Host mode until the Session bit is cleared, even if a
device is disconnected. And if the FORCE_HOST but remains set, it will re-
enter Host mode next time the SESSION bit is set. The operating speed is
determined using the FORCE_HS and FORCE_FS bits. Value: 0-1

6 FIFO_ACCESS W 0 Set this bit to transfer the packet in EP0 Tx FIFO to EP0 Receive FIFO. It is
cleared automatically. Value: 0-1

5 FORCE_FS RW 0 Set this bit to force the USB controller into full-speed mode when it receives
a USB reset. Value: 0-1

4 FORCE_HS RW 0 Set this bit to force the USB controller into high-speed mode when it
receives a USB reset. Value: 0-1

3 TEST_PACKET RW 0 Set this bit to enter the Test_Packet test mode. In this mode, the USB
controller repetitively transmits a 53-byte test packet on the bus, the form of
which is defined in the Universal Serial Bus Specification Revision 2.0. Note:
The test packet has a fixed format and must be loaded into the Endpoint 0
FIFO before the test mode is entered. Value: 0-1

2 TEST_K RW 0 Set this bit to enter the Test_K test mode. In this mode, the USB controller
transmits a continuous K on the bus. Value: 0-1

1 TEST_J RW 0 Set this bit to enter the Test_J test mode. In this mode, the USB controller
transmits a continuous J on the bus. Value: 0-1

0 TEST_SE0_NAK RW 0 Set this bit to enter the Test_SE0_NAK test mode. In this mode, the USB
controller remains in high-speed mode, but responds to any valid IN token
with a NAK. Value: 0-1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

489SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.32 Maximum Packet Size for Peripheral/Host Transmit Endpoint (TXMAXP)
The maximum packet size for peripheral/host transmit endpoint (TXMAXP) is shown in Figure 13-68 and
described in Table 13-88.

Figure 13-68. Maximum Packet Size for Peripheral/Host Transmit Endpoint (TXMAXP)
15 11 10 0

Reserved MAXPAYLOAD
R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-88. Maximum Packet Size for Peripheral/Host Transmit Endpoint (TXMAXP)
Field Descriptions

Bit Field Type Reset Description
15-11 Reserved R 0 Reserved.
10-0 MAXPAYLOAD RW 0 The maximum payload transmitted in a single transaction. The value set can be up to

1024 bytes, but is subject to the constraints placed by the USB Specification on
packet sizes for Bulk, Interrupt, and Isochronous transfers in full-speed and high-
speed operations. The value written to this register should match the wMaxPacketSize
field of the Standard Endpoint Descriptor for the associated endpoint. A mismatch
could cause unexpected results. Value: 0-FFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

490 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.33 Control Status Register for Peripheral Endpoint 0 (PERI_CSR0)
The control status register for peripheral endpoint 0 (PERI_CSR0) is shown in Figure 13-69 and described
in Table 13-89.

Figure 13-69. Control Status Register for Peripheral Endpoint 0 (PERI_CSR0)
15 9 8

Reserved FLUSHFIFO
R-0 W-0

7 6 5 4 3 2 1 0
SERV_SETUPEND SERV_RXPKTRDY SENDSTALL SETUPEND DATAEND SENTSTALL TXPKTRDY RXPKTRDY

W-0 W-0 W-0 R-0 W-0 R/W-0 R/W-0 R-0
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset

Table 13-89. Control Status Register for Peripheral Endpoint 0 (PERI_CSR0)
Field Descriptions

Bit Field Type Reset Description
15-9 Reserved R 0 Reserved.

8 FLUSHFIFO W 0 Set this bit to flush the next packet to be transmitted/read from the Endpoint
0 FIFO. The FIFO pointer is reset and the TXPKTRDY/RXPKTRDY bit is
cleared. Value: 0-1
Note: FLUSHFIFO has no effect unless TXPKTRDY/RXPKTRDY is set.

7 SERV_SETUPEND W 0 Set this bit to clear the SETUPEND bit. It is cleared automatically. Value: 0-1
6 SERV_RXPKTRDY W 0 Set this bit to clear the RXPKTRDY bit. It is cleared automatically. Value: 0-1
5 SENDSTALL W 0 Set this bit to terminate the current transaction. The STALL handshake will

be transmitted and then this bit will be cleared automatically.Value: 0-1
4 SETUPEND R 0 This bit will be set when a control transaction ends before the DATAEND bit

has been set. An interrupt will be generated, and the FIFO will be flushed at
this time. The bit is cleared by the writing a 1 to the SERV_SETUPEND bit.
Value: 0-1

3 DATAEND W 0 Set this bit to 1:
1. When setting TXPKTRDY for the last data packet.
2. When clearing RXPKTRDY after unloading the last data packet.
3. When setting TXPKTRDY for a zero length data packet. It is cleared

automatically.
Value: 0-1

2 SENTSTALL RW 0 This bit is set when a STALL handshake is transmitted. This bit should be
cleared. Value: 0-1

1 TXPKTRDY RW 0 Set this bit after loading a data packet into the FIFO. It is cleared
automatically when the data packet has been transmitted. An interrupt is
generated (if enabled) when the bit is cleared. Value: 0-1

0 RXPKTRDY R 0 This bit is set when a data packet has been received. An interrupt is
generated when this bit is set. This bit is cleared by setting the
SERV_RXPKTRDY bit. Value: 0-1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

491SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.34 Control Status Register for Peripheral Transmit Endpoint (PERI_TXCSR)
The control status register for peripheral transmit endpoint (PERI_TXCSR) is shown in Figure 13-70 and
described in Table 13-90.

Figure 13-70. Control Status Register for Peripheral Transmit Endpoint (PERI_TXCSR)
15 14 13 12 11 10 9 7

AUTOSET ISO MODE DMAEN FRCDATATOG DMAMODE Reserved
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0

6 5 4 3 2 1 0
CLRDATATOG SENTSTALL SENDSTALL FLUSHFIFO UNDERRUN FIFONOTEMPTY TXPKTRDY

W-0 R/W-0 R/W-0 W-0 R/W-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset

Table 13-90. Control Status Register for Peripheral Transmit Endpoint (PERI_TXCSR)
Field Descriptions

Bit Field Type Reset Description
15 AUTOSET RW 0 DMA Mode: The CPU needs to set the AUTOSET bit prior to enabling the Tx DMA.

Value: 0
CPU Mode: If the CPU sets the AUTOSET bit, the TXPKTRDY bit will be automatically
set when data of the maximum packet size (value in TXMAXP) is loaded into the Tx
FIFO. If a packet of less than the maximum packet size is loaded, then the
TXPKTRDY bit will have to be set manually. Value: 1

14 ISO RW 0 Set this bit to enable the Tx endpoint for Isochronous transfers, and clear it to enable
the Tx endpoint for Bulk or Interrupt transfers. Value: 0-1

13 MODE RW 0 Set this bit to enable the endpoint direction as Tx, and clear the bit to enable it as Rx.
Value: 0-1
Note: This bit has any effect only where the same endpoint FIFO is used for both
Transmit and Receive transactions.

12 DMAEN RW 0 Set this bit to enable the DMA request for the Tx endpoint. Value: 0-1
11 FRCDATATOG RW 0 Set this bit to force the endpoint data toggle to switch and the data packet to be

cleared from the FIFO, regardless of whether an ACK was received. This can be used
by Interrupt Tx endpoints that are used to communicate rate feedback for Isochronous
endpoints. Value: 0-1

10 DMAMODE RW 0 Set to 1 when DMA is enabled and EP interrupt is not needed for each packet
transmission. Value: 0-1

9-7 Reserved R 0 Reserved.
6 CLRDATATOG W 0 Write a 1 to this bit to reset the endpoint data toggle to 0. Value: 0-1
5 SENTSTALL RW 0 This bit is set automatically when a STALL handshake is transmitted. The FIFO is

flushed and the TXPKTRDY bit is cleared. You should clear this bit. Value: 0-1
4 SENDSTALL RW 0 Write a 1 to this bit to issue a STALL handshake to an IN token. Clear this bit to

terminate the stall condition. Value: 0-1
Note: This bit has no effect where the endpoint is being used for Isochronous
transfers.

3 FLUSHFIFO W 0 Write a 1 to this bit to flush the next packet to be transmitted from the endpoint Tx
FIFO. The FIFO pointer is reset and the TXPKTRDY bit is cleared. Value: 0-1
Note: FlushFIFO has no effect unless the TXPKTRDY bit is set. Also note that, if the
FIFO is double-buffered, FlushFIFO may need to be set twice to completely clear the
FIFO.

2 UNDERRUN RW 0 This bit is set automatically if an IN token is received when TXPKTRDY is not set. You
should clear this bit. Value: 0-1

1 FIFONOTEMPT
Y

RW 0 This bit is set when there is at least 1 packet in the Tx FIFO. You should clear this bit.
Value: 0-1

0 TXPKTRDY RW 0 Set this bit after loading a data packet into the FIFO. It is cleared automatically when a
data packet has been transmitted. An interrupt is generated (if enabled) when the bit
is cleared. Value: 0-1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

492 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.35 Maximum Packet Size for Peripheral Receive Endpoint (RXMAXP)
The maximum packet size for peripheral receive endpoint (RXMAXP) is shown in Figure 13-71 and
described in Table 13-91.

Figure 13-71. Maximum Packet Size for Peripheral Receive Endpoint (RXMAXP)
15 11 10 0

Reserved MAXPAYLOAD
R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-91. Maximum Packet Size for Peripheral Receive Endpoint (RXMAXP) Field Descriptions

Bit Field Type Reset Description
15-11 Reserved R 0 Reserved.
10-0 MAXPAYLOAD RW 0 Defines the maximum amount of data that can be transferred through the selected

Receive endpoint in a single frame/microframe (high-speed transfers). The value set
can be up to 1024 bytes, but is subject to the constraints placed by the USB
Specification on packet sizes for Bulk, Interrupt, and Isochronous transfers in full-
speed and high-speed operations. The value written to this register should match the
wMaxPacketSize field of the Standard Endpoint Descriptor for the associated
endpoint. A mismatch could cause unexpected results. Value: 0-FFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

493SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.36 Control Status Register for Peripheral Receive Endpoint (PERI_RXCSR)
The control status register for peripheral receive endpoint (PERI_RXCSR) is shown in Figure 13-72 and
described in Table 13-92.

Figure 13-72. Control Status Register for Peripheral Receive Endpoint (PERI_RXCSR)
15 14 13 12 11 10 8

AUTOCLEAR ISO DMAEN DISNYET DMAMODE Reserved
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0

7 6 5 4 3 2 1 0
CLRDATATOG SENTSTALL SENDSTALL FLUSHFIFO DATAERROR OVERRUN FIFOFULL RXPKTRDY

W-0 R/W-0 R/W-0 W-0 R-0 R/W-0 R-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset

Table 13-92. Control Status Register for Peripheral Receive Endpoint (PERI_RXCSR)
Field Descriptions

Bit Field Type Reset Description
15 AUTOCLEAR RW 0 DMA Mode: The CPU sets the AUTOCLEAR bit prior to enabling the Rx DMA. Value:

0
CPU Mode: If the CPU sets the AUTOCLEAR bit, then the RXPKTRDY bit will be
automatically cleared when a packet of RXMAXP bytes has been unloaded from the
Receive FIFO. When packets of less than the maximum packet size are unloaded,
RXPKTRDY will have to be cleared manually. Value: 1

14 ISO RW 0 Set this bit to enable the Receive endpoint for Isochronous transfers, and clear it to
enable the Receive endpoint for Bulk/Interrupt transfers. Value: 0-1

13 DMAEN RW 0 Set this bit to enable the DMA request for the Receive endpoints. Value: 0-1
12 DISNYET RW 0 DISNYET: Applies only for Bulk/Interrupt Transactions: The CPU sets this bit to

disable the sending of NYET handshakes. When set, all successfully received Rx
packets are ACK'd including at the point at which the FIFO becomes full. Value: 0
Note: This bit only has any effect in high-speed mode, in which mode it should be set
for all Interrupt endpoints.
PID_ERROR: Applies only for ISO Transactions: The core sets this bit to indicate a
PID error in the received packet. Value: 1

11 DMAMODE RW 0 The CPU clears the DMAMODE bit prior to enabling the Rx DMA. Value: 0-1
10-8 Reserved R 0 Reserved.

7 CLRDATATOG W 0 Write a 1 to this bit to reset the endpoint data toggle to 0. Value: 0-1
6 SENTSTALL RW 0 This bit is set when a STALL handshake is transmitted. The FIFO is flushed and the

TXPKTRDY bit is cleared. You should clear this bit. Value: 0-1
5 SENDSTALL RW 0 Write a 1 to this bit to issue a STALL handshake. Clear this bit to terminate the stall

condition. Value: 0-1
Note: This bit has no effect where the endpoint is being used for Isochronous
transfers.

4 FLUSHFIFO W 0 Write a 1 to this bit to flush the next packet to be read from the endpoint Receive
FIFO. The FIFO pointer is reset and the RXPKTRDY bit is cleared. Value: 0-1
Note: FLUSHFIFO has no effect unless RXPKTRDY is set. Also note that, if the FIFO
is double-buffered, FLUSHFIFO may need to be set twice to completely clear the
FIFO.

3 DATAERROR R 0 This bit is set when RXPKTRDY is set if the data packet has a CRC or bit-stuff error. It
is cleared when RXPKTRDY is cleared. Value: 0-1
Note: This bit is only valid when the endpoint is operating in ISO mode. In Bulk mode,
it always returns zero.

2 OVERRUN RW 0 This bit is set if an OUT packet cannot be loaded into the Receive FIFO. You should
clear this bit. Value: 0-1
Note: This bit is only valid when the endpoint is operating in ISO mode. In Bulk mode,
it always returns zero.

1 FIFOFULL R 0 This bit is set when no more packets can be loaded into the Receive FIFO. Value: 0-1
0 RXPKTRDY RW 0 This bit is set when a data packet has been received. You should clear this bit when

the packet has been unloaded from the Receive FIFO. An interrupt is generated when
the bit is set. Value: 0-1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

494 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.37 Count 0 Register (COUNT0)
The count 0 register (COUNT0) is shown in Figure 13-73 and described in Table 13-93.

Figure 13-73. Count 0 Register (COUNT0)
15 7 6 0

Reserved EP0RXCOUNT
R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 13-93. Count 0 Register (COUNT0) Field Descriptions

Bit Field Type Reset Description
15-7 Reserved R 0 Reserved.
6-0 EP0RXCOUNT R 0 Indicates the number of received data bytes in the Endpoint 0 FIFO. The value

returned changes as the contents of the FIFO change and is only valid while
RXPKTRDY of PERI_CSR0 is set. Value: 0-7Fh

13.3.38 Receive Count Register (RXCOUNT)
The receive count register (RXCOUNT) is shown in Figure 13-74 and described in Table 13-94.

Figure 13-74. Receive Count Register (RXCOUNT)
15 13 12 0

Reserved EPRXCOUNT
R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 13-94. Receive Count Register (RXCOUNT) Field Descriptions

Bit Field Type Reset Description
15-13 Reserved R 0 Reserved.
12-0 EPRXCOUNT R 0 Holds the number of received data bytes in the packet in the Receive FIFO.

The value returned changes as the contents of the FIFO change and is only
valid while RXPKTRDY of PERI_RXCSR or HOST_RXCSR is set. Value: 0-
1FFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

495SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.39 Configuration Data Register (CONFIGDATA)
The configuration data register (CONFIGDATA) is shown in Figure 13-75 and described in Table 13-95.

Figure 13-75. Configuration Data Register (CONFIGDATA)
7 6 5 4 3 2 1 0

MPRXE MPTXE BIGENDIAN HBRXE HBTXE DYNFIFO SOFTCONE UTMIDATAWIDTH
R-0 R-0 R-0 R-0 R-0 R-1 R-1 R-0

LEGEND: R = Read only; -n = value after reset

Table 13-95. Configuration Data Register (CONFIGDATA) Field Descriptions

Bit Field Type Reset Description
7 MPRXE R 0 Indicates automatic amalgamation of bulk packets.

0 = Automatic amalgamation of bulk packets is not selected.
1 = Automatic amalgamation of bulk packets is selected.

6 MPTXE R 0 Indicates automatic splitting of bulk packets.
0 = Automatic splitting of bulk packets is not selected.
1 = Automatic splitting of bulk packets is selected.

5 BIGENDIAN R 0 Indicates endian ordering.
0 = Little-endian ordering is selected.
1 = Big-endian ordering is selected.

4 HBRXE R 0 Indicates high-bandwidth Rx ISO endpoint support.
0 = High-bandwidth Rx ISO endpoint support is not selected.
1 = High-bandwidth Rx ISO endpoint support is selected.

3 HBTXE R 0 Indicates high-bandwidth Tx ISO endpoint support.
0 = High-bandwidth Tx ISO endpoint support is not selected.
1 = High-bandwidth Tx ISO endpoint support is selected.

2 DYNFIFO R 1 Indicates dynamic FIFO sizing.
0 = Dynamic FIFO sizing option is not selected.
1 = Dynamic FIFO sizing option is selected.

1 SOFTCONE R 1 Indicates soft connect/disconnect.
0 = Soft connect/disconnect option is not selected.
1 = Soft connect/disconnect option is selected.

0 UTMIDATAWIDTH R 0 Indicates selected UTMI data width.
0 = 8 bits.
1 = 16 bits.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

496 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.40 Transmit and Receive FIFO Registers for Endpoint 0 (FIFO0R1 and FIFO0R2)
The transmit and receive FIFO register 1 for endpoint 0 (FIFO0R1) is shown in Figure 13-76 and
described in Table 13-96. The transmit and receive FIFO register 2 for endpoint 0 (FIFO0R2) is shown in
Figure 13-77 and described in Table 13-97.

Figure 13-76. Transmit and Receive FIFO Register 1 for Endpoint 0 (FIFO0R1)
15 0

DATA
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 13-77. Transmit and Receive FIFO Register 2 for Endpoint 0 (FIFO0R2)
15 0

DATA
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 13-96. Transmit and Receive FIFO Register 1 for Endpoint 0 (FIFO0R1) Field Descriptions

Bit Field Type Reset Description
15-0 DATA RW 0 Writing to this address loads data into the Transmit FIFO for the corresponding

endpoint.
Reading from these addresses unloads data from the Receive FIFO for the
corresponding endpoint. Value: 0-FFFFh

Table 13-97. Transmit and Receive FIFO Register 2 for Endpoint 0 (FIFO0R2) Field Descriptions

Bit Field Type Reset Description
15-0 DATA RW 0 Writing to this address loads data into the Transmit FIFO for the corresponding

endpoint.
Reading from these addresses unloads data from the Receive FIFO for the
corresponding endpoint. Value: 0-FFFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

497SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.41 Transmit and Receive FIFO Registers for Endpoint 1 (FIFO1R1 and FIFO1R2)
The transmit and receive FIFO register 1 for endpoint 1 (FIFO1R1) is shown in Figure 13-78 and
described in Table 13-98. The transmit and receive FIFO register 2 for endpoint 1 (FIFO1R2) is shown in
Figure 13-79 and described in Table 13-99.

Figure 13-78. Transmit and Receive FIFO Register 1 for Endpoint 1 (FIFO1R1)
15 0

DATA
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 13-79. Transmit and Receive FIFO Register 2 for Endpoint 1 (FIFO1R2)
15 0

DATA
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 13-98. Transmit and Receive FIFO Register 1 for Endpoint 1 (FIFO1R1) Field Descriptions

Bit Field Type Reset Description
15-0 DATA RW 0 Writing to these addresses loads data into the Transmit FIFO for the corresponding

endpoint.
Reading from these addresses unloads data from the Receive FIFO for the
corresponding endpoint. Value: 0-FFFFh

Table 13-99. Transmit and Receive FIFO Register 2 for Endpoint 1 (FIFO1R2) Field Descriptions

Bit Field Type Reset Description
15-0 DATA RW 0 Writing to these addresses loads data into the Transmit FIFO for the corresponding

endpoint.
Reading from these addresses unloads data from the Receive FIFO for the
corresponding endpoint. Value: 0-FFFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

498 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.42 Transmit and Receive FIFO Registers for Endpoint 2 (FIFO2R1 and FIFO2R2)
The transmit and receive FIFO register 1 for endpoint 2 (FIFO2R1) is shown in Figure 13-80 and
described in Table 13-100. The transmit and receive FIFO register 2 for endpoint 2 (FIFO2R2) is shown in
Figure 13-81 and described in Table 13-101.

Figure 13-80. Transmit and Receive FIFO Register 1 for Endpoint 2 (FIFO2R1)
15 0

DATA
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 13-81. Transmit and Receive FIFO Register 2 for Endpoint 2 (FIFO2R2)
15 0

DATA
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 13-100. Transmit and Receive FIFO Register 1 for Endpoint 2 (FIFO2R1) Field Descriptions

Bit Field Type Reset Description
15-0 DATA RW 0 Writing to these addresses loads data into the Transmit FIFO for the corresponding

endpoint.
Reading from these addresses unloads data from the Receive FIFO for the
corresponding endpoint. Value: 0-FFFFh

Table 13-101. Transmit and Receive FIFO Register 2 for Endpoint 2 (FIFO2R2) Field Descriptions

Bit Field Type Reset Description
15-0 DATA RW 0 Writing to these addresses loads data into the Transmit FIFO for the corresponding

endpoint.
Reading from these addresses unloads data from the Receive FIFO for the
corresponding endpoint. Value: 0-FFFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

499SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.43 Transmit and Receive FIFO Registers for Endpoint 3 (FIFO3R1 and FIFO3R2)
The transmit and receive FIFO register 1 for endpoint 3 (FIFO3R1) is shown in Figure 13-82 and
described in Table 13-102. The transmit and receive FIFO register 2 for endpoint 3 (FIFO3R2) is shown in
Figure 13-83 and described in Table 13-103.

Figure 13-82. Transmit and Receive FIFO Register 1 for Endpoint 3 (FIFO3R1)
15 0

DATA
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 13-83. Transmit and Receive FIFO Register 2 for Endpoint 3 (FIFO3R2)
15 0

DATA
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 13-102. Transmit and Receive FIFO Register 1 for Endpoint 3 (FIFO3R1) Field Descriptions

Bit Field Type Reset Description
15-0 DATA RW 0 Writing to these addresses loads data into the Transmit FIFO for the corresponding

endpoint.
Reading from these addresses unloads data from the Receive FIFO for the
corresponding endpoint. Value: 0-FFFFh

Table 13-103. Transmit and Receive FIFO Register 2 for Endpoint 3 (FIFO3R2) Field Descriptions

Bit Field Type Reset Description
15-0 DATA RW 0 Writing to these addresses loads data into the Transmit FIFO for the corresponding

endpoint.
Reading from these addresses unloads data from the Receive FIFO for the
corresponding endpoint. Value: 0-FFFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

500 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.44 Transmit and Receive FIFO Registers for Endpoint 4 (FIFO4R1 and FIFO4R2)
The transmit and receive FIFO register 1 for endpoint 4 (FIFO4R1) is shown in Figure 13-84 and
described in Table 13-104. The transmit and receive FIFO register 2 for endpoint 4 (FIFO4R2) is shown in
Figure 13-85 and described in Table 13-105.

Figure 13-84. Transmit and Receive FIFO Register 1 for Endpoint 4 (FIFO4R1)
15 0

DATA
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 13-85. Transmit and Receive FIFO Register 2 for Endpoint 4 (FIFO4R2)
15 0

DATA
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 13-104. Transmit and Receive FIFO Register 1 for Endpoint 4 (FIFO4R1) Field Descriptions

Bit Field Type Reset Description
15-0 DATA RW 0 Writing to these addresses loads data into the Transmit FIFO for the corresponding

endpoint.
Reading from these addresses unloads data from the Receive FIFO for the
corresponding endpoint. Value: 0-FFFFh

Table 13-105. Transmit and Receive FIFO Register 2 for Endpoint 4 (FIFO4R2) Field Descriptions

Bit Field Type Reset Description
15-0 DATA RW 0 Writing to these addresses loads data into the Transmit FIFO for the corresponding

endpoint.
Reading from these addresses unloads data from the Receive FIFO for the
corresponding endpoint. Value: 0-FFFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

501SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.45 Device Control Register (DEVCTL)
The device control register (DEVCTL) is shown in Figure 13-86 and described in Table 13-106.

Figure 13-86. Device Control Register (DEVCTL)
7 6 5 4 3 2 1 0

BDEVICE FSDEV LSDEV VBUS HOSTMODE Reserved SESSION
R-0 R-0 R-0 R-0 R-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-106. Device Control Register (DEVCTL) Field Descriptions

Bit Field Type Reset Description
7 BDEVICE R 0 This read-only bit indicates whether the USB controller is operating as the 'A' device or

the 'B' device.
0 = A device.
1 = B device.
Only valid while a session is in progress.

6 FSDEV R 0 This read-only bit is set when a full-speed or high-speed device has been detected
being connected to the port (high-speed devices are distinguished from full-speed by
checking for high-speed chirps when the device is reset). Only valid in Host mode.
Host mode is not supported on the device. Value: 0-1

5 LSDEV R 0 This read-only bit is set when a low-speed device has been detected being connected
to the port. Only valid in Host mode. Host mode is not supported on the device. Value:
0-1

VBUS R 0 These read-only bits encode the current VBus level as follows:
0 = Below Session End.
1h = Above Session End, below AValid.
2h = Above AValid, below VBusValid.
3h = Above VBusValid.

2 HOSTMODE R 0 This read-only bit is set when the USB controller is acting as a Host. Host mode is not
supported on the device. Value: 0-1

1 Reserved RW 0 Reserved.
0 SESSION RW 0 When operating as an 'A' device, you must set or clear this bit start or end a session.

When operating as a 'B' device, this bit is set/cleared by the USB controller when a
session starts/ends. You must also set this bit to initiate the Session Request Protocol.
When the USB controller is in Suspend mode, you may clear the bit to perform a
software disconnect.
A special software routine is required to perform SRP. Details will be made available
in a later document version. Value: 0-1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

502 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.46 Transmit Endpoint FIFO Size (TXFIFOSZ)
Section 13.2.7 describes dynamically setting endpoint FIFO sizes. The option of dynamically setting
endpoint FIFO sizes only applies to Endpoints 1-4. The Endpoint 0 FIFO has a fixed size (64 bytes) and a
fixed location (start address 0). It is the responsibility of the firmware to ensure that all the Tx and Rx
endpoints that are active in the current USB configuration have a block of RAM assigned exclusively to
that endpoint. The RAM must be at least as large as the maximum packet size set for that endpoint.

The transmit endpoint FIFO size (TXFIFOSZ) is shown in Figure 13-87 and described in Table 13-107.

Figure 13-87. Transmit Endpoint FIFO Size (TXFIFOSZ)
7 5 4 3 0

Reserved DPB SZ
R-0 R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-107. Transmit Endpoint FIFO Size (TXFIFOSZ) Field Descriptions

Bit Field Type Reset Description
7-5 Reserved R 0 Reserved.
4 DPB RW 0 Double packet buffering enable.

0 = Single packet buffering is supported.
1 = Double packet buffering is enabled.

3-0 SZ R 0 Maximum packet size to be allowed (before any splitting within the FIFO of Bulk
packets prior to transmission). If m = SZ, the FIFO size is calculated as 2(m+3) for single
packet buffering and 2(m+4) for dual packet buffering. Value: 0-Fh

13.3.47 Receive Endpoint FIFO Size (RXFIFOSZ)
Section 13.2.7 describes dynamically setting endpoint FIFO sizes. The option of dynamically setting
endpoint FIFO sizes only applies to Endpoints 1-4. The Endpoint 0 FIFO has a fixed size (64 bytes) and a
fixed location (start address 0). It is the responsibility of the firmware to ensure that all the Tx and Rx
endpoints that are active in the current USB configuration have a block of RAM assigned exclusively to
that endpoint. The RAM must be at least as large as the maximum packet size set for that endpoint.

The receive endpoint FIFO size (RXFIFOSZ) is shown in Figure 13-88 and described in Table 13-108.

Figure 13-88. Receive Endpoint FIFO Size (RXFIFOSZ)
7 5 4 3 0

Reserved DPB SZ
R-0 R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-108. Receive Endpoint FIFO Size (RXFIFOSZ) Field Descriptions

Bit Field Type Reset Description
7-5 Reserved R 0 Reserved.
4 DPB RW 0 Double packet buffering enable.

0 = Single packet buffering is supported.
1 = Double packet buffering is enabled.

3-0 SZ R 0 Maximum packet size to be allowed (before any splitting within the FIFO of Bulk
packets prior to transmission). If m = SZ, the FIFO size is calculated as 2(m+3) for single
packet buffering and 2(m+4) for dual packet buffering. Value: 0-Fh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

503SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.48 Transmit Endpoint FIFO Address (TXFIFOADDR)
The transmit endpoint FIFO address (TXFIFOADDR) is shown in Figure 13-89 and described in Table 13-
109.

Figure 13-89. Transmit Endpoint FIFO Address (TXFIFOADDR)
15 13 12 0

Reserved ADDR
R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-109. Transmit Endpoint FIFO Address (TXFIFOADDR) Field Descriptions

Bit Field Type Reset Description
15-13 Reserved R 0 Reserved.
12-0 ADDR RW 0 Start Address of endpoint FIFO in units of 8 bytes.

If m = ADDR, then the start address is 8 × m. Value: 0-1FFFh

13.3.49 Hardware Version Register (HWVERS)
The hardware version register (HWVERS) contains the RTL major and minor version numbers for the USB
2.0 controller module. The RTL version number is REVMAJ.REVMIN. The HWVERS is shown in
Figure 13-90 and described in Table 13-110.

Figure 13-90. Hardware Version Register (HWVERS)
15 14 10 9 0
RC REVMAJ REVMIN
R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 13-110. Hardware Version Register (HWVERS) Field Descriptions

Bit Field Type Reset Description
15 RC R 0 Set to 1 if RTL is used from a Release Candidate, rather than from a full

release of the core. Value: 0-1
14-10 REVMAJ R 0 Major version of RTL. Range is 0-3.1. Value: 0-1Fh
9-0 REVMIN R 0 Minor version of RTL. Range is 0-999. Value: 0-3E7h

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

504 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.50 Receive Endpoint FIFO Address (RXFIFOADDR)
The receive endpoint FIFO address (RXFIFOADDR) is shown in Figure 13-91 and described in Table 13-
111.

Figure 13-91. Receive Endpoint FIFO Address (RXFIFOADDR)
15 13 12 0

Reserved ADDR
R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-111. Receive Endpoint FIFO Address (RXFIFOADDR) Field Descriptions

Bit Field Type Reset Description
15-13 Reserved R 0 Reserved.
12-0 ADDR RW 0 Start Address of endpoint FIFO in units of 8 bytes.

If m = ADDR, then the start address is 8 × m. Value: 0-1FFFh

13.3.51 CDMA Revision Identification Registers (DMAREVID1 and DMAREVID2)
The CDMA revision identification registers (DMAREVID1 and DMAREVID2) contain the revision for the
module. The DMAREVID1 is shown in Figure 13-92 and described in Table 13-112. The DMAREVID2 is
shown in Figure 13-93 and described in Table 13-113.

Figure 13-92. CDMA Revision Identification Register 1 (DMAREVID1)
15 0

REV_LSB
R-1900h

LEGEND: R = Read only; -n = value after reset

Figure 13-93. CDMA Revision Identification Register 2 (DMAREVID2)
15 0

REV_MSB
R-0053h

LEGEND: R = Read only; -n = value after reset

Table 13-112. CDMA Revision Identification Register 1 (DMAREVID1) Field Descriptions

Bit Field Type Reset Description
15-0 REV_LSB R 1900h Revision ID of the CPPI DMA (CDMA) module. Least significant bits. Value:

0-FFFFh

Table 13-113. CDMA Revision Identification Register 2 (DMAREVID2) Field Descriptions

Bit Field Type Reset Description
15-0 REV_MSB R 0053h Revision ID of the CPPI DMA (CDMA) module. Most significant bits. Value:

0-FFFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

505SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.52 CDMA Teardown Free Descriptor Queue Control Register (TDFDQ)
The CDMA teardown free descriptor queue control register (TDFDQ) is used to inform the DMA of the
location in memory or descriptor array which is to be used for signaling of a teardown complete for each
transmit and receive channel. The CDMA teardown free descriptor queue control register (TDFDQ) is
shown in Figure 13-94 and described in Table 13-114.

Figure 13-94. CDMA Teardown Free Descriptor Queue Control Register (TDFDQ)
15 14 13 12 11 0
Reserved TD_DESC_QMGR TD_DESC_QNUM

R-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-114. CDMA Teardown Free Descriptor Queue Control Register (TDFDQ) Field Descriptions

Bit Field Type Reset Description
15-14 Reserved R 0 Reserved.
13-12 TD_DESC_QMGR RW 0 Controls which of the four queue managers the DMA accesses to

allocate a channel teardown descriptor from the teardown descriptor
queue. Value: 0-3h

11-0 TD_DESC_QNUM RW 0 Controls which of the 2K queues in the indicated queue manager
should be read to allocate the channel teardown descriptors. Value: 0-
FFFh

13.3.53 CDMA Emulation Control Register (DMAEMU)
The CDMA emulation controls the behavior of the DMA when an emulation suspend signal is asserted.
The CDMA emulation control register (DMAEMU) is shown in Figure 13-95 and described in Table 13-
115.

Figure 13-95. CDMA Emulation Control Register (DMAEMU)
15 2 1 0

Reserved SOFT FREE
R-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-115. CDMA Emulation Control Register (DMAEMU) Field Descriptions

Bit Field Type Reset Description
15-2 Reserved R 0 Reserved.

1 SOFT RW 0 Value : 0-1
0 FREE RW 0 Value : 0-1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

506 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.54 CDMA Transmit Channel n Global Configuration Registers (TXGCR1[n] and
TXGCR2[n])
The transmit channel n configuration registers (TXGCR2[n] and TXGCR1[n]) initialize the behavior of each
of the transmit DMA channels. There are four configuration register pairs, one for each transmit DMA
channel.

The transmit channel n configuration registers TXGCR1[n]) and (TXGCR2[n] are shown in Figure 13-96
and Figure 13-97and described in Table 13-116 and Table 13-117. .

Figure 13-96. CDMA Transmit Channel n Global Configuration Register 1 (TXGCR1[n])
15 14 13 12 11 0
Reserved TX_DEFAULT_QMGR TX_DEFAULT_QNUM

R-0 W-0 W-0
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset

Figure 13-97. CDMA Transmit Channel n Global Configuration Register 2 (TXGCR2[n])
15 14 13 0

TX_ENABLE TX_TEARDOWN Reserved
R/W-0 R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset

Table 13-116. CDMA Transmit Channel n Global Configuration Register 1 (TXGCR1[n]) Field
Descriptions

Bit Field Type Reset Description
15-14 Reserved RW 0 Reserved.
13-12 TX_DEFAULT_QMGR RW 0 Controls the default queue manager number that is used to queue teardown

descriptors back to the host. Value: 0-3h
11-0 TX_DEFAULT_QNUM RW 0 Controls the default queue number within the selected queue manager onto

which teardown descriptors are queued back to the host. Value: 0-FFFh

Table 13-117. CDMA Transmit Channel n Global Configuration Register 2 (TXGCR2[n]) Field
Descriptions

Bit Field Type Reset Description
15 TX_ENABLE RW 0 Channel control. The TX_ENABLE field is cleared after a channel teardown

is complete.
0 = Disables channel.
1 = Enables channel.

14 TX_TEARDOWN RW 0 Setting this bit requests the channel to be torn down. The TX_TEARDOWN
field remains set after a channel teardown is complete. Value: 0-1

13-0 Reserved R 0 Reserved.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

507SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.55 CDMA Receive Channel n Global Configuration Registers (RXGCR1[n] and
RXGCR2[n])
The receive channel n global configuration registers (RXGCR1[n] and RXGCR2[n]) initialize the global
(non-descriptor-type specific) behavior of each of the receive DMA channels. There are four configuration
register pairs, one for each receive DMA channel. If the enable bit is being set, the receive channel n
global configuration register should only be written after all of the other receive configuration registers
have been initialized.

The receive channel n global configuration registers (RXGCR1[n] and RXGCR2[n]) are shown in
Figure 13-98 and Figure 13-99 and are described in Table 13-118 and Table 13-119.

Figure 13-98. CDMA Receive Channel n Global Configuration Register 1 (RXGCR1[n])
15 14 13 12 11 0

RX_DEFAULT_DESC_TYPE RX_DEFAULT_RQ_QMGR RX_DEFAULT_RQ_QNUM
R-0 W-0 W-0

LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset

Figure 13-99. CDMA Receive Channel n Global Configuration Register 2 (RXGCR2[n])
15 14 13 9 8 7 0

RX_ENABLE RX_TEARDOWN Reserved RX_ERROR_HANDLING RX_SOP_OFFSET
R/W-0 R/W-0 R-0 W-0 W-0

LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset

Table 13-118. CDMA Receive Channel n Global Configuration Register 1 (RXGCR1[n]) Field
Descriptions

Bit Field Type Reset Description
15-14 RX_DEFAULT_DESC_TY

PE
R 0 Indicates the default descriptor type to use. The actual descriptor type

that is used for reception can be overridden by information provided in
the CPPI FIFO data block.
0 = Reserved.
1h = Host.
2h = Reserved.
3h = Reserved.

13-12 RX_DEFAULT_RQ_QMG
R

W 0 Indicates the default receive queue manager that this channel should
use. The actual receive queue manager index can be overridden by
information provided in the CPPI FIFO data block. Value: 0-3h

11-0 RX_DEFAULT_RQ_QNU
M

W 0 Indicates the default receive queue that this channel should use. The
actual receive queue that is used for reception can be overridden by
information provided in the CPPI FIFO data block. Value: 0-FFFh

Table 13-119. CDMA Receive Channel n Global Configuration Register 2 (RXGCR2[n]) Field
Descriptions

Bit Field Type Reset Description
15 RX_ENABLE RW 0 Channel control. Field is cleared after a channel teardown is

complete.
0 = Disables channel.
1 = Enables channel.

14 RX_TEARDOWN RW 0 Indicates whether a receive operation is complete. Field should be
cleared when a channel is initialized. Field is set after a channel
teardown is complete. Value: 0-1

13-9 Reserved R 0 Reserved.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

508 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Table 13-119. CDMA Receive Channel n Global Configuration Register 2 (RXGCR2[n]) Field
Descriptions (continued)

Bit Field Type Reset Description
8 RX_ERROR_HANDLING W 0 Controls the error handling mode for the channel and is only used

when channel errors (that is, descriptor or buffer starvation occur):
0 = Starvation errors result in dropping packet and reclaiming any
used descriptor or buffer resources back to the original queues/pools
they were allocated to.
1 = Starvation errors result in subsequent retry of the descriptor
allocation operation. In this mode, the DMA will return to the IDLE
state without saving its internal operational state back to the internal
state RAM and without issuing an advance operation on the FIFO
interface. This results in the DMA re-initiating the FIFO block transfer
at a later time with the intention that additional free buffers and/or
descriptors will have been added.

7-0 RX_SOP_OFFSET W 0 Specifies the number of bytes that are to be skipped in the SOP buffer
before beginning to write the payload. This value must be less than
the minimum size of a buffer in the system. Value: 0–FFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

509SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.56 CDMA Receive Channel n Host Packet Configuration Registers A (RXHPCR1A[n]
and RXHPCR2A[n])
The receive channel n host packet configuration registers A (RXHPCR1A[n] and RXHPCR2A[n]) initialize
the behavior of each of the receive DMA channels for reception of host type packets. There are four
configuration A registers, one for each receive DMA channel.

The receive channel n host packet configuration register 1 A (RXHPCR1A[n]) are shown in Figure 13-100
and described in Table 13-120. The receive channel n host packet configuration register 2 A
(RXHPCR2A[n]) is shown in Figure 13-101 and described in Table 13-121.

Figure 13-100. Receive Channel n Host Packet Configuration Register 1 A (RXHPCR1A[n])
15 14 13 12 11 0
Reserved RX_HOST_FDQ0_QMGR RX_HOST_FDQ0_QNUM

R-0 W-0 W-0
LEGEND: R = Read only; W = Write only; -n = value after reset

Figure 13-101. Receive Channel n Host Packet Configuration Register 2 A (RXHPCR2A[n])
15 14 13 12 11 0
Reserved RX_HOST_FDQ1_QMGR RX_HOST_FDQ1_QNUM

R-0 W-0 W-0
LEGEND: R = Read only; W = Write only; -n = value after reset

Table 13-120. Receive Channel n Host Packet Configuration Register 1 A (RXHPCR1A[n])
Field Descriptions

Bit Field Type Reset Description
15-14 Reserved R 0 Reserved.
13-12 RX_HOST_FDQ0_QMGR W 0 Specifies which buffer manager should be used for the first receive

buffer in a host type packet. Value: 0-3h
11-0 RX_HOST_FDQ0_QNUM W 0 Specifies which free descriptor/buffer pool should be used for the first

receive buffer in a host type packet. Value: 0-FFFh

Table 13-121. Receive Channel n Host Packet Configuration Register 2 A (RXHPCR2A[n])
Field Descriptions

Bit Field Type Reset Description
15-14 Reserved R 0 Reserved.
13-12 RX_HOST_FDQ1_QMGR W 0 Specifies which buffer manager should be used for the second receive

buffer in a host type packet. Value: 0-3h
11-0 RX_HOST_FDQ1_QNUM W 0 Specifies which free descriptor/buffer pool should be used for the

second receive buffer in a host type packet. Value: 0-FFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

510 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.57 CDMA Receive Channel n Host Packet Configuration Registers B (RXHPCR1B[n]
and RXHPCR2B[n])
The receive channel n host packet configuration registers B (RXHPCR1B[n] and RXHPCR2B[n]) initialize
the behavior of each of the receive DMA channels for reception of host type packets. There are four
configuration B register pairs, one for each receive DMA channel.

The receive channel n host packet configuration register 1 B (RXHPCR1B[n]) is shown in Figure 13-102
and described in Table 13-122. The receive channel n host packet configuration register 2 B
(RXHPCR2B[n]) is shown in Figure 13-103 and described in Table 13-123.

Figure 13-102. Receive Channel n Host Packet Configuration Register 1 B (RXHPCR1B[n])
15 14 13 12 11 0
Reserved RX_HOST_FDQ2_QMGR RX_HOST_FDQ2_QNUM

R-0 W-0 W-0
LEGEND: R = Read only; W = Write only; -n = value after reset

Figure 13-103. Receive Channel n Host Packet Configuration Register 2 B (RXHPCR2B[n])
15 14 13 12 11 0
Reserved RX_HOST_FDQ3_QMGR RX_HOST_FDQ3_QNUM

R-0 W-0 W-0
LEGEND: R = Read only; W = Write only; -n = value after reset

Table 13-122. Receive Channel n Host Packet Configuration Register 1 B (RXHPCR1B[n])
Field Descriptions

Bit Field Type Reset Description
15-14 Reserved R 0 Reserved.
13-12 RX_HOST_FDQ2_QMGR W 0 Specifies which buffer manager should be used for the third receive

buffer in a host type packet. Value: 0-3h
11-0 RX_HOST_FDQ2_QNUM W 0 Specifies which free descriptor/buffer pool should be used for the third

receive buffer in a host type packet. Value: 0-FFFh

Table 13-123. Receive Channel n Host Packet Configuration Register 2 B (RXHPCR2B[n])
Field Descriptions

Bit Field Value Description
15-14 Reserved 0 Reserved.
13-12 RX_HOST_FDQ3_QMGR 0 Specifies which buffer manager should be used for the fourth or later receive buffer

in a host type packet. Value: 0-3h
11-0 RX_HOST_FDQ3_QNUM 0 Specifies which free descriptor/buffer pool should be used for the fourth or later

receive buffer in a host type packet. Value: 0-FFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

511SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.58 CDMA Scheduler Control Register (DMA_SCHED_CTRL1 and DMA_SCHED_CTRL2)
The CDMA scheduler control registers (DMA_SCHED_CTRL1 and DMA_SCHED_CTRL2) enable the
scheduler and indicate the last entry in the scheduler table. The CDMA scheduler control register 1
(DMA_SCHED_CTRL1) is shown in Figure 13-104 and described in Table 13-124. The CDMA scheduler
control register 2 (DMA_SCHED_CTRL2) is shown in Figure 13-105 and described in Table 13-125.

Figure 13-104. CDMA Scheduler Control Register 1 (DMA_SCHED_CTRL1)
15 8 7 0

Reserved LAST_ENTRY
R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 13-105. CDMA Scheduler Control Register 2 (DMA_SCHED_CTRL2)
15 14 0

ENABLE Reserved
R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-124. CDMA Scheduler Control Register 1 (DMA_SCHED_CTRL1) Field Descriptions

Bit Field Type Reset Description
15-8 Reserved R 0 Reserved.
7-0 LAST_ENTRY RW 0 Indicates the last valid entry in the scheduler table. There are 64 words in the table

and there are 4 entries in each word. The table can be programmed with any integer
number of entries from 1 to 256. The corresponding encoding for this field is as
follows:
0 = 1 entry.
1h = 2 entries.
2h to FFh = 3 entries to 256 entries.

Table 13-125. CDMA Scheduler Control Register 2 (DMA_SCHED_CTRL2) Field Descriptions

Bit Field Type Reset Description
15 ENABLE R 0 This is the enable bit for the scheduler and is encoded as follows:

0 = Scheduler is disabled and will no longer fetch entries from the scheduler table or
pass credits to the DMA controller.
1 = Scheduler is enabled. This bit should only be set after the table has been
initialized.

14-0 Reserved RW 0 Reserved.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

512 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.59 CDMA Scheduler Table Word n Registers (ENTRYLSW[n]-ENTRYMSW[n])
The CDMA scheduler table word n registers (ENTRYLSW[n]-ENTRYMSW[n]) provide information about
the scheduler. The CDMA scheduler table word n registers (ENTRYLSW[n]) are shown in Figure 13-106
and described in Table 13-126. The CDMA scheduler table word n registers (ENTRYMSW[n]) are shown
in Figure 13-107 and described in Table 13-127.

Figure 13-106. CDMA Scheduler Table Word n Registers (ENTRYLSW[n])
15 14 12 11 8 7 6 4 3 0

ENTRY1_RXTX Reserved ENTRY1_CHANNEL ENTRY0_RXTX Reserved ENTRY0_CHANNEL

W-0 R-0 W-0 W-0 R-0 W-0
LEGEND: R = Read only; W = Write only; -n = value after reset

Figure 13-107. CDMA Scheduler Table Word n Registers (ENTRYMSW[n])
15 14 12 11 8 7 6 4 3 0

ENTRY3_RXTX Reserved ENTRY3_CHANNEL ENTRY2_RXTX Reserved ENTRY2_CHANNEL

W-0 R-0 W-0 W-0 R-0 W-0
LEGEND: R = Read only; W = Write only; -n = value after reset

Table 13-126. CDMA Scheduler Table Word n Registers (ENTRYLSW[n]) Field Descriptions

Bit Field Type Reset Description
15 ENTRY1_RXTX W 0 This entry is for a transmit or a receive channel.

0 = Transmit channel
1 = Receive channel

14-12 Reserved R 0 Reserved
11-8 ENTRY1_CHANNEL W 0 Indicates the channel number that is to be given an opportunity to transfer data.

If this is a transmit entry, the DMA will be presented with a scheduling credit for
that exact transmit channel. If this is a receive entry, the DMA will be presented
with a scheduling credit for the receive FIFO that is associated with this
channel. For receive FIFOs which carry traffic for more than one receive DMA
channel, the exact channel number that is given in the receive credit will actually
be the channel number which is currently on the head element of that Rx FIFO,
which is not necessarily the channel number given in the scheduler table entry.
Value: 0-Fh

7 ENTRY0_RXTX W 0 This entry is for a transmit or a receive channel.
0 = Transmit channel
1 = Receive channel

6-4 Reserved R 0 Reserved
3-0 ENTRY0_CHANNEL W 0 Indicates the channel number that is to be given an opportunity to transfer data.

If this is a transmit entry, the DMA will be presented with a scheduling credit for
that exact transmit channel. If this is a receive entry, the DMA will be presented
with a scheduling credit for the receive FIFO that is associated with this
channel. For receive FIFOs which carry traffic for more than one receive DMA
channel, the exact channel number that is given in the receive credit will actually
be the channel number which is currently on the head element of that Rx FIFO,
which is not necessarily the channel number given in the scheduler table entry.
Value: 0-Fh

Table 13-127. CDMA Scheduler Table Word n Registers (ENTRYMSW[n]) Field Descriptions

Bit Field Type Reset Description
15 ENTRY3_RXTX W 0 This entry is for a transmit or a receive channel.

0 = Transmit channel
1 = Receive channel

14-12 Reserved R 0 Reserved

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

513SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Table 13-127. CDMA Scheduler Table Word n Registers (ENTRYMSW[n]) Field Descriptions (continued)
Bit Field Type Reset Description

11-8 ENTRY3_CHANNEL W 0 Indicates the channel number that is to be given an opportunity to transfer data.
If this is a transmit entry, the DMA will be presented with a scheduling credit for
that exact transmit channel. If this is a receive entry, the DMA will be presented
with a scheduling credit for the receive FIFO that is associated with this
channel. For receive FIFOs which carry traffic for more than one receive DMA
channel, the exact channel number that is given in the receive credit will actually
be the channel number which is currently on the head element of that Rx FIFO,
which is not necessarily the channel number given in the scheduler table entry.
Value: 0-Fh

7 ENTRY2_RXTX W 0 This entry is for a transmit or a receive channel.
0 = Transmit channel
1 = Receive channel

6-4 Reserved R 0 Reserved
3-0 ENTRY2_CHANNEL W 0 Indicates the channel number that is to be given an opportunity to transfer data.

If this is a transmit entry, the DMA will be presented with a scheduling credit for
that exact transmit channel. If this is a receive entry, the DMA will be presented
with a scheduling credit for the receive FIFO that is associated with this
channel. For receive FIFOs which carry traffic for more than one receive DMA
channel, the exact channel number that is given in the receive credit will actually
be the channel number which is currently on the head element of that Rx FIFO,
which is not necessarily the channel number given in the scheduler table entry.
Value: 0-Fh

13.3.60 Queue Manager Revision Identification Registers (QMGRREVID1 and QMGRREVID2)
The queue manager revision identification registers (QMGRREVID1 and QMGRREVID2) contain the
major and minor revisions for the module. The QMGRREVID1 is shown in Figure 13-108 and described in
Table 13-128. The QMGRREVID2 is shown in Figure 13-109 and described in Table 13-129.

Figure 13-108. Queue Manager Revision Identification Register 1 (QMGRREVID1)
15 0

REV_LSB
R-1200h

LEGEND: R = Read only; -n = value after reset

Figure 13-109. Queue Manager Revision Identification Register 2 (QMGRREVID2)
15 0

REV_MSB
R-0052h

LEGEND: R = Read only; -n = value after reset

Table 13-128. Queue Manager Revision Identification Register 1 (QMGRREVID1) Field Descriptions

Bit Field Type Reset Description
15-0 REV_LSB R 1200H Revision ID of the queue manager. Least-significant bits. Value: 0-FFFFh

Table 13-129. Queue Manager Revision Identification Register 2 (QMGRREVID2) Field Descriptions

Bit Field Type Reset Description
15-0 REV_MSB R 0052h Revision ID of the queue manager. Most-significant bits. Value: 0-FFFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

514 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.61 Queue Manager Queue Diversion Registers (DIVERSION1 and DIVERSION2)
The queue manager queue diversion registers (DIVERSION1 and DIVERSION2) are used to transfer the
contents of one queue onto another queue. It does not support byte accesses. The queue manager queue
diversion register 1 (DIVERSION1) is shown in Figure 13-110 and described in Table 13-130. The queue
manager queue diversion register 2 (DIVERSION2) is shown in Figure 13-111 and described in Table 13-
131.

Figure 13-110. Queue Manager Queue Diversion Register 1 (DIVERSION1)
15 14 13 0

Reserved SOURCE_QNUM
R-0 W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 13-111. Queue Manager Queue Diversion Register 2 (DIVERSION2)
15 14 13 0

HEAD_TAIL Reserved DEST_QNUM
W-0 R-0 W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-130. Queue Manager Queue Diversion Register 1 (DIVERSION1) Field Descriptions

Bit Field Type Reset Description
15-14 Reserved R 0 Reserved.
13-0 SOURCE_QNU

M
W 0 Source Queue Number. Value: 0-3FFFh

Table 13-131. Queue Manager Queue Diversion Register 2 (DIVERSION2 Field Descriptions

Bit Field Type Reset Description
15 HEAD_TAIL W 0 Indicates whether queue contents should be merged on to the head or tail of

the destination queue.
0 = Head.
1 = Tail.

14 Reserved R 0 Reserved.
13-0 DEST_QNUM W 0 Destination Queue Number. Value: 0-3FFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

515SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.62 Queue Manager Free Descriptor/Buffer Starvation Count Register 0 (FDBSC0)
The free descriptor/buffer queue starvation count register (FDBSC0) provides statistics about how many
starvation events are occurring on the receive free descriptor/buffer queues. These registers do not
support byte accesses. The free descriptor/buffer queue starvation count register (FDBSC0) is shown in
Figure 13-112 and described in Table 13-132.

Figure 13-112. Queue Manager Free Descriptor/Buffer Starvation Count Register 0 (FDBSC0)
15 8 7 0

FDBQ1_STARVE_CNT FDBQ0_STARVE_CNT
RC-0 RC-0

LEGEND: RC = Cleared on read; -n = value after reset

Table 13-132. Queue Manager Free Descriptor/Buffer Starvation Count Register 0 (FDBSC0)
Field Descriptions

Bit Field Type Reset Description
15-8 FDBQ1_STARVE_CNT RC 0 This field increments each time the Free Descriptor/Buffer Queue 1 is read

while it is empty. This field is cleared when read by CPU. Value: 0-FFh
7-0 FDBQ0_STARVE_CNT RC 0 This field increments each time the Free Descriptor/Buffer Queue 0 is read

while it is empty. This field is cleared when read by CPU. Value: 0-FFh

13.3.63 Queue Manager Free Descriptor/Buffer Starvation Count Register 1 (FDBSC1)
The free descriptor/buffer queue starvation count register (FDBSC1) provides statistics about how many
starvation events are occurring on the receive free descriptor/buffer queues. These registers do not
support byte accesses. The free descriptor/buffer queue starvation count register (FDBSC1) is shown in
Figure 13-113 and described in Table 13-133.

Figure 13-113. Queue Manager Free Descriptor/Buffer Starvation Count Register 1 (FDBSC1)
15 8 7 0

FDBQ3_STARVE_CNT FDBQ2_STARVE_CNT
RC-0 RC-0

LEGEND: RC = Cleared on read; -n = value after reset

Table 13-133. Queue Manager Free Descriptor/Buffer Starvation Count Register 1 (FDBSC1)
Field Descriptions

Bit Field Type Reset Description
15-8 FDBQ3_STARVE_CNT RC 0 This field increments each time the Free Descriptor/Buffer Queue 3 is read

while it is empty. This field is cleared when readby CPU. Value: 0-FFh
7-0 FDBQ2_STARVE_CNT RC 0 This field increments each time the Free Descriptor/Buffer Queue 2 is read

while it is empty. This field is cleared when readby CPU. Value: 0-FFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

516 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.64 Queue Manager Free Descriptor/Buffer Starvation Count Register 2 (FDBSC2)
The free descriptor/buffer queue starvation count register 2 (FDBSC2) provides statistics about how many
starvation events are occurring on the receive free descriptor/buffer queues. These registers do not
support byte accesses. The free descriptor/buffer queue starvation count register 2 (FDBSC2) is shown in
Figure 13-114 and described in Table 13-134.

Figure 13-114. Queue Manager Free Descriptor/Buffer Starvation Count Register 2 (FDBSC2)
15 8 7 0

FDBQ5_STARVE_CNT FDBQ4_STARVE_CNT
RC-0 RC-0

LEGEND: RC = Cleared on read; -n = value after reset

Table 13-134. Queue Manager Free Descriptor/Buffer Starvation Count Register 2 (FDBSC2)
Field Descriptions

Bit Field Type Reset Description
15-8 FDBQ5_STARVE_CNT RC 0 This field increments each time the Free Descriptor/Buffer Queue 5 is read

while it is empty. This field is cleared when read by CPU. Value: 0-FFh
7-0 FDBQ4_STARVE_CNT RC 0 This field increments each time the Free Descriptor/Buffer Queue 4 is read

while it is empty. This field is cleared when read by CPU. Value: 0-FFh

13.3.65 Queue Manager Free Descriptor/Buffer Starvation Count Register 3 (FDBSC3)
The free descriptor/buffer queue starvation count register 3 (FDBSC3) provides statistics about how many
starvation events are occurring on the receive free descriptor/buffer queues. These registers do not
support byte accesses. The free descriptor/buffer queue starvation count register 3 (FDBSC3) is shown in
Figure 13-115 and described in Table 13-135.

Figure 13-115. Queue Manager Free Descriptor/Buffer Starvation Count Register 3 (FDBSC3)
15 8 7 0

FDBQ7_STARVE_CNT FDBQ6_STARVE_CNT
RC-0 RC-0

LEGEND: RC = Cleared on read; -n = value after reset

Table 13-135. Queue Manager Free Descriptor/Buffer Starvation Count Register 3 (FDBSC3)
Field Descriptions

Bit Field Type Reset Description
15-8 FDBQ7_STARVE_CNT RC 0 This field increments each time the Free Descriptor/Buffer Queue 7 is read

while it is empty. This field is cleared when read by CPU. Value: 0-FFh
7-0 FDBQ6_STARVE_CNT RC 0 This field increments each time the Free Descriptor/Buffer Queue 6 is read

while it is empty. This field is cleared when read by CPU. Value: 0-FFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

517SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.66 Queue Manager Free Descriptor/Buffer Starvation Count Register 4 (FDBSC4)
The free descriptor/buffer queue starvation count register 4 (FDBSC4) provides statistics about how many
starvation events are occurring on the receive free descriptor/buffer queues. These registers do not
support byte accesses. The free descriptor/buffer queue starvation count register 4 (FDBSC4) is shown in
Figure 13-116 and described in Table 13-136.

Figure 13-116. Queue Manager Free Descriptor/Buffer Starvation Count Register 4 (FDBSC4)
15 8 7 0

FDBQ9_STARVE_CNT FDBQ8_STARVE_CNT
RC-0 RC-0

LEGEND: RC = Cleared on read; -n = value after reset

Table 13-136. Queue Manager Free Descriptor/Buffer Starvation Count Register 4 (FDBSC4)
Field Descriptions

Bit Field Type Reset Description
15-8 FDBQ9_STARVE_CNT RC 0 This field increments each time the Free Descriptor/Buffer Queue 9 is read

while it is empty. This field is cleared when read by CPU. Value: 0-FFh
7-0 FDBQ8_STARVE_CNT RC 0 This field increments each time the Free Descriptor/Buffer Queue 8 is read

while it is empty. This field is cleared when read by CPU. Value: 0-FFh

13.3.67 Queue Manager Free Descriptor/Buffer Starvation Count Register 5 (FDBSC5)
The free descriptor/buffer queue starvation count register 5 (FDBSC5) provides statistics about how many
starvation events are occurring on the receive free descriptor/buffer queues. These registers do not
support byte accesses. The free descriptor/buffer queue starvation count register 5 (FDBSC5) is shown in
Figure 13-117 and described in Figure 13-117.

Figure 13-117. Queue Manager Free Descriptor/Buffer Starvation Count Register 5 (FDBSC5)
15 8 7 0

FDBQ11_STARVE_CNT FDB10_STARVE_CNT
RC-0 RC-0

LEGEND: RC = Cleared on read; -n = value after reset

Table 13-137. Queue Manager Free Descriptor/Buffer Starvation Count Register 5 (FDBSC5)
Field Descriptions

Bit Field Type Reset Description
15-8 FDBQ11_STARVE_CN

T
RC 0 This field increments each time the Free Descriptor/Buffer Queue 11 is read

while it is empty. This field is cleared when read by CPU. Value: 0-FFh
7-0 FDBQ10_STARVE_CN

T
RC 0 This field increments each time the Free Descriptor/Buffer Queue 10 is read

while it is empty. This field is cleared when read by CPU. Value: 0-FFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

518 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.68 Queue Manager Free Descriptor/Buffer Starvation Count Register 6 (FDBSC6)
The free descriptor/buffer queue starvation count register 6 (FDBSC6) provides statistics about how many
starvation events are occurring on the receive free descriptor/buffer queues. These registers do not
support byte accesses. The free descriptor/buffer queue starvation count register 6 (FDBSC6) is shown in
Figure 13-118 and described in Table 13-138.

Figure 13-118. Queue Manager Free Descriptor/Buffer Starvation Count Register 6 (FDBSC6)
15 8 7 0

FDBQ13_STARVE_CNT FDBQ12_STARVE_CNT
RC-0 RC-0

LEGEND: RC = Cleared on read; -n = value after reset

Table 13-138. Queue Manager Free Descriptor/Buffer Starvation Count Register 6 (FDBSC6)
Field Descriptions

Bit Field Value Description
15-8 FDBQ13_STARVE_CNT 0-FFh This field increments each time the Free Descriptor/Buffer Queue 13 is read while it is

empty. This field is cleared when read by CPU.
7-0 FDBQ12_STARVE_CNT 0-FFh This field increments each time the Free Descriptor/Buffer Queue 12 is read while it is

empty. This field is cleared when read by CPU.

13.3.69 Queue Manager Free Descriptor/Buffer Starvation Count Register 7 (FDBSC7)
The free descriptor/buffer queue starvation count register 7 (FDBSC7) provides statistics about how many
starvation events are occurring on the receive free descriptor/buffer queues. The registers do not support
byte accesses. The free descriptor/buffer queue starvation count register 7 (FDBSC7) is shown in
Figure 13-119 and described in Table 13-139.

Figure 13-119. Queue Manager Free Descriptor/Buffer Starvation Count Register 7 (FDBSC7)
15 8 7 0

FDBQ15_STARVE_CNT FDB14_STARVE_CNT
RC-0 RC-0

LEGEND: RC = Cleared on read; -n = value after reset

Table 13-139. Queue Manager Free Descriptor/Buffer Starvation Count Register 7 (FDBSC7)
Field Descriptions

Bit Field Type Reset Description
15-8 FDBQ15_STARVE_CN

T
RC 0 This field increments each time the Free Descriptor/Buffer Queue 15 is read

while it is empty. This field is cleared when read by CPU. Value: 0-FFh
7-0 FDBQ14_STARVE_CN

T
RC 0 This field increments each time the Free Descriptor/Buffer Queue 14 is read

while it is empty. This field is cleared when read by CPU. Value: 0-FFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

519SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.70 Queue Manager Linking RAM Region 0 Base Address Registers (LRAM0BASE1
and LRAM0BASE2)
The queue manager linking RAM region 0 base address registers (LRAM0BASE1 and LRAM0BASE2) set
the base address for the first portion of the Linking RAM. This address must be 32-bit aligned. It is used
by the Queue Manager to calculate the 32-bit linking address for a given descriptor index. These registers
do not support byte accesses.

The queue manager linking RAM region 0 base address register 1 (LRAM0BASE1) is shown in Figure 13-
120 and described in Table 13-140. The queue manager linking RAM region 0 base address register 2
(LRAM0BASE2) is shown in Figure 13-121 and described in Table 13-141.

Figure 13-120. Queue Manager Linking RAM Region 0 Base Address Register 1 (LRAM0BASE1)
15 0

REGION0_BASE_LSB
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 13-121. Queue Manager Linking RAM Region 0 Base Address Register 2 (LRAM0BASE2)
15 0

REGION0_BASE_MSB
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 13-140. Queue Manager Linking RAM Region 0 Base Address Register 1 (LRAM0BASE1)
Field Descriptions

Bit Field Type Reset Description
15-0 REGION0_BASE_LS

B
RW 0 This field stores the 16 least significant bits of the base address for

the first region of the linking RAM. This may be anywhere in 32-bit
address space but would be typically located in on-chip memory.
Value: 0-FFFFh

Table 13-141. Queue Manager Linking RAM Region 0 Base Address Register 2 (LRAM0BASE2)
Field Descriptions

Bit Field Type Reset Description
15-0 REGION0_BASE_MS

B
RW 0 This field stores the 16 most significant bits of the base address for

the first region of the linking RAM. This may be anywhere in 32-bit
address space but would be typically located in on-chip memory.
Value: 0-FFFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

520 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.71 Queue Manager Linking RAM Region 0 Size Register (LRAM0SIZE)
The queue manager linking RAM region 0 size register (LRAM0SIZE) sets the size of the array of linking
pointers that are located in Region 0 of Linking RAM. The size specified the number of descriptors for
which linking information is stored in this region. It does not support byte accesses. The queue manager
linking RAM region 0 size register (LRAM0SIZE) is shown in Figure 13-122 and described in Table 13-
142.

Figure 13-122. Queue Manager Linking RAM Region 0 Size Register (LRAM0SIZE)
15 14 13 0
Reserved REGION0_SIZE

R-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-142. Queue Manager Linking RAM Region 0 Size Register (LRAM0SIZE)
Field Descriptions

Bit Field Type Reset Description
15-14 Reserved R 0 Reserved.
13-0 REGION0_SIZE RW 0 This field indicates the number of entries that are contained in the linking RAM region

0. A descriptor with index less than region0_size value has its linking location in region
0. A descriptor with index greater than region0_size has its linking location in region 1.
The queue manager will add the index (left shifted by 2 bits) to the appropriate
regionX_base_addr to get the absolute 32-bit address to the linking location for a
descriptor. Value: 0-3FFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

521SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.72 Queue Manager Linking RAM Region 1 Base Address Registers (LRAM1BASE1
and LRAM1BASE2)
The queue manager linking RAM region 1 base address registers (LRAM1BASE1 and LRAM1BASE2) are
used to set the base address for the first portion of the Linking RAM. This address must be 32-bit aligned.
These registers are used by the Queue Manager to calculate the 32-bit linking address for a given
descriptor index. These registers do not support byte accesses.

The queue manager linking RAM region 1 base address register (LRAM1BASE1) is shown in Figure 13-
123 and described in Table 13-143. The queue manager linking RAM region 1 base address register
(LRAM1BASE2) is shown in Figure 13-124 and described in Table 13-144.

Figure 13-123. Queue Manager Linking RAM Region 1 Base Address Register 1 (LRAM1BASE1)
15 0

REGION1_BASE_LSB
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 13-124. Queue Manager Linking RAM Region 1 Base Address Register 2 (LRAM1BASE2)
15 0

REGION1_BASE_MSB
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 13-143. Queue Manager Linking RAM Region 1 Base Address Register 1 (LRAM1BASE1)
Field Descriptions

Bit Field Type Reset Description
15-0 REGION1_BASE_LS

B
RW 0 This field stores the least significant bits of the base address for the

second region of the linking RAM. This may be anywhere in 32-bit
address space but would be typically located in off-chip memory.
Value: 0-FFFFh

Table 13-144. Queue Manager Linking RAM Region 1 Base Address Register (LRAM1BASE2)
Field Descriptions

Bit Field Type Reset Description
15-0 REGION1_BASE_MS

B
RW 0 This field stores the most significant bits of the base address for the

second region of the linking RAM. This may be anywhere in 32-bit
address space but would be typically located in off-chip memory.
Value: 0-FFFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

522 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.73 Queue Manager Queue Pending Register 0 (PEND0)
The queue pending register 0 (PEND0) can be read to find the pending status for queues 15 to 0. It does
not support byte accesses. The queue pending register 0 (PEND0) is shown in Figure 13-125 and
described in Table 13-145.

Figure 13-125. Queue Manager Queue Pending Register 0 (PEND0)
15 0

QPEND0
R-0

LEGEND: R = Read only; -n = value after reset

Table 13-145. Queue Manager Queue Pending Register 0 (PEND0) Field Descriptions

Bit Field Type Recet Description
15-0 QPEND0 R 0 This field indicates the queue pending status for queues 15-0. Value: 0-FFFFh

13.3.74 Queue Manager Queue Pending Register 1 (PEND1)
The queue pending register 1 (PEND1) can be read to find the pending status for queues 31 to 16. It does
not support byte accesses. The queue pending register 1 (PEND1) is shown in Figure 13-126 and
described in Table 13-146.

Figure 13-126. Queue Manager Queue Pending Register 1 (PEND1)
15 0

QPEND1
R-0

LEGEND: R = Read only; -n = value after reset

Table 13-146. Queue Manager Queue Pending Register 1 (PEND1) Field Descriptions

Bit Field Type Reset Description
15-0 QPEND1 R 0 This field indicates the queue pending status for queues 31-16. Value: 0-FFFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

523SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.75 Queue Manager Queue Pending Register 2 (PEND2)
The queue pending register 2 (PEND2) can be read to find the pending status for queues 47 to 32. It does
not support byte accesses. The queue pending register 2 (PEND2) is shown in Figure 13-127 and
described in Table 13-147.

Figure 13-127. Queue Manager Queue Pending Register 2 (PEND2)
15 0

QPEND2
R-0

LEGEND: R = Read only; -n = value after reset

Table 13-147. Queue Manager Queue Pending Register 2 (PEND2) Field Descriptions

Bit Field Type Reset Description
15-0 QPEND2 R 0 This field indicates the queue pending status for queues 47-32.Value: 0-FFFFh

13.3.76 Queue Manager Queue Pending Register 3 (PEND3)
The queue pending register 3 (PEND3) can be read to find the pending status for queues 63 to 48. It does
not support byte accesses. The queue pending register 3 (PEND3) is shown in Figure 13-128 and
described in Table 13-148.

Figure 13-128. Queue Manager Queue Pending Register 3 (PEND3)
15 0

QPEND3
R-0

LEGEND: R = Read only; -n = value after reset

Table 13-148. Queue Manager Queue Pending Register 3 (PEND3) Field Descriptions

Bit Field Type Reset Description
15-0 QPEND3 R 0 This field indicates the queue pending status for queues 63-48. Value: 0-FFFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

524 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.77 Queue Manager Queue Pending Register 4 (PEND4)
The queue pending register 4 (PEND4) can be read to find the pending status for queues 79 to 64. It does
not support byte accesses. The queue pending register 4 (PEND4) is shown in Figure 13-129 and
described in Table 13-149.

Figure 13-129. Queue Manager Queue Pending Register 4 (PEND4)
15 0

QPEND4
R-0

LEGEND: R = Read only; -n = value after reset

Table 13-149. Queue Manager Queue Pending Register 4 (PEND4) Field Descriptions

Bit Field Type Reset Description
15-0 QPEND4 R 0 This field indicates the queue pending status for queues 79-64. Value: 0-FFFFh

13.3.78 Queue Manager Queue Pending Register 5 (PEND5)
The queue pending register 5 (PEND5) can be read to find the pending status for queues 95 to 80. It does
not support byte accesses. The queue pending register 5 (PEND5) is shown in Figure 13-130 and
described in Table 13-150.

Figure 13-130. Queue Manager Queue Pending Register 5 (PEND5)
15 0

QPEND5
R-0

LEGEND: R = Read only; -n = value after reset

Table 13-150. Queue Manager Queue Pending Register 5 (PEND5) Field Descriptions

Bit Field Type Reset Description
15-0 QPEND5 R 0 This field indicates the queue pending status for queues 95-80. Value: 0-FFFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

525SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.79 Queue Manager Memory Region R Base Address Registers (QMEMRBASE1[R]
and QMEMRBASE2[R])
The memory region R base address registers (QMEMRBASE1[R] and QMEMRBASE2[R]) are written by
the host to set the base address of memory region R, where R is 0-15. This memory region will store a
number of descriptors of a particular size as determined by the memory region R control register. These
registers do not support byte accesses.

The memory region R base address register (QMEMRBASE1[R]) is shown in Figure 13-131 and
described in Table 13-151. The memory region R base address register (QMEMRBASE2[R]) is shown in
Figure 13-132 and described in Table 13-152.

Figure 13-131. Queue Manager Memory Region R Base Address Register 1 (QMEMRBASE1[R])
15 0

REG_LSB
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 13-132. Queue Manager Memory Region R Base Address Register 2 (QMEMRBASE2[R])
15 0

REG_MSB
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 13-151. Queue Manager Memory Region R Base Address Register 1 (QMEMRBASE1[R])
Field Descriptions

Bit Field Type Reset Description
15-0 REG_LSB RW 0 This field contains the least-significant bits of the base address of the memory

region R. Value: 0-FFFFh

Table 13-152. Queue Manager Memory Region R Base Address Register 2 (QMEMRBASE2[R])
Field Descriptions

Bit Field Type Reset Description
15-0 REG_MSB RW 0 This field contains the most-significant bits of the base address of the memory

region R. Value: 0-FFFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

526 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.80 Queue Manager Memory Region R Control Registers
(QMEMRCTRL1[R] and QMEMRCTRL2[R])
The memory region R control registers (QMEMRCTRL1[R] and QMEMRCTRL2[R]) are written by the host
to configure various parameters of memory region R, where R is 0-15. These registers do not support byte
accesses.

The memory region R control register (QMEMRCTRL1[R])) is shown in Figure 13-133 and described in
Table 13-153. The memory region R control register (QMEMRCTRL2[R])) is shown in Figure 13-134 and
described in Table 13-154.

Figure 13-133. Queue Manager Memory Region R Control Register 1 (QMEMRCTRL1[R])
15 12 11 8 7 3 2 0

Reserved DESC_SIZE Reserved REG_SIZE
R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 13-134. Queue Manager Memory Region R Control Register 2 (QMEMRCTRL2[R])
15 14 13 0
Reserved START_INDEX

R-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13-153. Queue Manager Memory Region R Control Register 1 (QMEMRCTRL1[R])
Field Descriptions

Bit Field Type Reset Description
15-12 Reserved R 0 Reserved.
11-8 DESC_SIZE RW 0 This field indicates the size of each descriptor in this memory region.

0 = 32
1h = 64
2h = 128
3h = 256
4h = 512
5h = 1/k
6h = 2/k
7h = 4/k
8h = 8/k
9h-Fh = Reserved

7-3 Reserved R 0 Reserved.
2-0 REG_SIZE RW 0 This field indicates the size of the memory region (in terms of number of descriptors).

0 = 32
1h = 64
2h = 128
3h = 256
4h = 512
5h = 1/k
6h = 2/k
7h = 4/k
8h = 8/k
9h-Fh = Reserved

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

527SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Table 13-154. Queue Manager Memory Region R Control Register 2 (QMEMRCTRL2[R])
Field Descriptions

Bit Field Type Reset Description
15-14 Reserved R 0 Reserved.
13-0 START_INDE

X
RW 0 This field indicates where in linking RAM the descriptor linking information

corresponding to memory region R starts. Value: 0-3FFFh

13.3.81 Queue Manager Queue N Control Register D (CTRL1D[N] and CTRL2D[N])
The queue manager queue N control registers D (CTRL1D[N] and CTRL2D[N]) are written to add a packet
to the queue and read to pop a packets off a queue. The packet is only pushed or popped to/from the
queue when the queue manager queue N control register D is written. These registers do not support byte
accesses.

The queue manager queue N control register 1 D (CTRL1D[N]) is shown in Figure 13-135 and described
in Table 13-155. The queue manager queue N control register 2 D (CTRL2D[N]) is shown in Figure 13-
136 and described in Table 13-156.

Figure 13-135. Queue Manager Queue N Control Register 1 D (CTRL1D[N])
15 5 4 0

DESC_PTR_LSB DESC_SIZE
R/W-0 R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 13-136. Queue Manager Queue N Control Register 2 D (CTRL2D[N])
15 0

DESC_PTR_MSB
R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 13-155. Queue Manager Queue N Control Register 1 D (CTRL1D[N]) Field Descriptions

Bit Field Type Reset Description
15-5 DESC_PTR_LSB RW 0 Descriptor Pointer (Least significant bits).

0 = Queue is empty.
1 = Indicates a 32-bit aligned address that points to a descriptor.

4-0 DESC_SIZE RW 0 The descriptor size is encoded in 4-byte increments. This field returns
a 0 when an empty queue is read.
0 = 24 bytes.
1h = 28 bytes.
2h = 32 bytes.
3h to 1Fh = 36 bytes to 148 bytes.

Table 13-156. Queue Manager Queue N Control Register 2 D (CTRL2D[N]) Field Descriptions

Bit Field Value Description
15-0 DESC_PTR_MSB Descriptor Pointer (Most significant bits).

0 Queue is empty.
1 Indicates a 32-bit aligned address that points to a descriptor.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

528 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

13.3.82 Queue Manager Queue N Status Register A (QSTATA[N])
The queue manager queue N status register A (QSTATA[N]) is an optional register that is only
implemented for a queue if the queue supports entry/byte count feature. The entry count feature provides
a count of the number of entries that are currently valid in the queue. It does not support byte accesses.
The queue manager queue N status register A (QSTATA[N]) is shown in Figure 13-137 and described in
Table 13-157.

Figure 13-137. Queue Manager Queue N Status Register A (QSTATA[N])
15 14 13 0
Reserved QUEUE_ENTRY_COUNT

R-0 R-0
LEGEND: R = Read only; -n = value after reset

Table 13-157. Queue Manager Queue N Status Register A (QSTATA[N]) Field Descriptions

Bit Field Type Reset Description
15-14 Reserved R 0 Reserved.
13-0 QUEUE_ENTRY_COUNT R 0 This field indicates how many packets are currently queued on the

queue. Value: 0-3FFFh

13.3.83 Queue Manager Queue N Status Registers B (QSTAT1B[N] and QSTAT2B[N])
The queue manager queue N status registers B (QSTAT1B[N] and QSTAT2B[N]) are optional registers
that are only implemented for a queue if the queue supports a total byte count feature. The total byte
count feature provides a count of the total number of bytes in all of the packets that are currently valid in
the queue. The registers do not support byte accesses.

The queue manager queue N status register 1 B (QSTAT1B[N]) is shown in Figure 13-138 and described
in Table 13-158. The queue manager queue N status register 2 B (QSTAT2B[N]) is shown in Figure 13-
139 and described in Table 13-159.

Figure 13-138. Queue Manager Queue N Status Register 1 B (QSTAT1B[N])
15 0

QUEUE_BYTE_COUNT_LSB
R-0

LEGEND: R = Read only; -n = value after reset

Figure 13-139. Queue Manager Queue N Status Register 2 B (QSTAT2B[N])
15 12 11 0

Reserved QUEUE_BYTE_COUNT_MSB
LEGEND: R = Read only; -n = value after reset

Table 13-158. Queue Manager Queue N Status Register 1 B (QSTAT1B[N]) Field Descriptions

Bit Field Type Reset Description
15-0 QUEUE_BYTE_COUNT_

LSB
R 0 Together, QUEUE_BYTE_COUNT_MSB and

QUEUE_BYTE_COUNT_LSB indicate how many bytes total are
contained in all of the packets which are currently queued on this
queue. Value: 0-FFFFh

Table 13-159. Queue Manager Queue N Status Register 2 B (QSTAT2B[N]) Field Descriptions

Bit Field Type Reset Description
15-12 Reserved R 0 Reserved.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

529SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Universal Serial Bus (USB) Controller

Table 13-159. Queue Manager Queue N Status Register 2 B (QSTAT2B[N]) Field Descriptions (continued)
Bit Field Type Reset Description

11-0 QUEUE_BYTE_COUNT_
MSB

R 0 Together, QUEUE_BYTE_COUNT_MSB and
QUEUE_BYTE_COUNT_LSB indicate how many bytes total are
contained in all of the packets which are currently queued on this
queue. Value: 0-FFFh

13.3.84 Queue Manager Queue N Status Register C (QSTATC[N])
The queue manager queue N status register C (QSTATC[N]) specifies the packet size for the head
element of a queue. It does not support byte accesses. The queue manager queue N status register C
(QSTATC[N]) is shown in Figure 13-140 and described in Table 13-160.

Figure 13-140. Queue Manager Queue N Status Register C (QSTATC[N])
15 14 13 0
Reserved PACKET_SIZE

R-0 R-0
LEGEND: R = Read only; -n = value after reset

Table 13-160. Queue Manager Queue N Status Register C (QSTATC[N]) Field Descriptions

Bit Field Type Reset Description
15-14 Reserved R 0 Reserved.
13-0 PACKET_SIZ

E
R 0 This field indicates how many packets are currently queued on the queue.

Value: 0-3FFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

530 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

Chapter 14
SPRUH87H–August 2011–Revised April 2016

Liquid Crystal Display Controller (LCDC)

This chapter describes the features and operations of the liquid crystal display (LCD) controller.

Topic ... Page

14.1 Introduction ... 531
14.2 LCD Port Mapping ... 542
14.3 Registers ... 543

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Gray-scaler/
serializer

Output
FIFO

Palette
RAM

Input
FIFO

M
U

XSTN

TFT

Raster
controller

M
U

X

Registers

LIDD
controller

LCD_D[15:0]

M
U

X

LCD block

Control Signals
DMA

control
registers

DMA

DMA
block

LCD_CLK

CPU
read/
write

www.ti.com Introduction

531SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

14.1 Introduction
The liquid crystal display controller (LCDC) supports asynchronous (memory-mapped) LCD interfaces.

14.1.1 Purpose of the Peripheral
The LCD controller consists of two independent controllers, the Raster Controller and the LCD Interface
Display Driver (LIDD) controller. Each controller operates independently from the other and only one of
them is active at any given time. The Raster Controller is currently not supported and is only for feature
enhancement for the future.

The LIDD Controller supports the asynchronous LCD interface. It provides full-timing programmability of
control signals and output data.

Figure 14-1 shows internal blocks of the LCD controller. Please note that Figure 1 shows LIDD controller
and Raster controller as well but the blocks in gray belong to Raster Controller and are not supported. The
solid, thick lines in Figure 1 indicate the data path. The LIDD controllers are responsible for generating the
correct external timing. The DMA engine provides a constant flow of data from the frame buffer(s) to the
external LCD panel via the LIDD Controllers. In addition, CPU access is provided to read and write
registers.

The blocks in gray belong to the Raster Controller that is not supported.

Figure 14-1. LCD Controller

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

LCD_CLK = SYSTEM_CLK when CLK_DIV = 0

LCD_CLK = SYSTEM_CLK
when 0 < CLK_DIV <256

LCK_DIV

Introduction www.ti.com

532 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

14.1.2 Terminology Used in this Document

Term Meaning
RDB Read Strobe
WRB Write Strobe
RS Register Select
CS Chip select
OE Output enable
WE Write enable

14.1.2.1 LCD Clock
The LCD controller has an internal clock (LCD_CLK) which is derived from system clock. The LCD_CLK
determines the minimum cycle of configuration of the control signals .

14.1.3 LCD External I/O Signals
Table 14-1 shows the details of the LCD controller external signals.

Table 14-1. LCD External I/O Signals

Signal Type Description
LCD_RS OUT HD44780U mode: Register Select (RS)

MPU6800 Sync mode: Command/Data Select (C/D)
MPU6800 Async mode: Command/Data Select (C/D)
MPU80 Sync mode: Command/Data Select (C/D)
MPU80 Async mode: Command/Data Select (C/D)

LCD_RW_WRB OUT HD44780U mode: Read/Write Select (R/W)
MPU6800 Sync mode: Read/Write Select (R/W)
MPU6800 Async mode: Read/Write Select (R/W)
MPU80 Sync mode: Write Strobe (WRB)
MPU80 Async mode: Write Strobe (WRB)

LCD_EN_RDB OUT HD44780U mode: not used
MPU6800 Sync mode: Read or Write Enable (EN)
MPU6800 Async mode: Read or Write Enable (EN)
MPU80 Sync mode: Read Strobe (RDB)
MPU80 Async mode: Read Strobe (RDB)

LCD_CS0_E0 OUT HD44780U mode: Start Data Read/Write (E0)
MPU6800 Sync mode: Primary Chip Select (CS0)
MPU6800 Async mode: Primary Chip Select (CS0)
MPU80 Sync mode: Primary Chip Select (CS0)
MPU80 Async mode: Primary Chip Select (CS0)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Introduction

533SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

Table 14-1. LCD External I/O Signals (continued)
Signal Type Description
LCD_CS1_E1 OUT HD44780U mode: Start Data Read/Write (E1)

MPU6800 Sync mode: LCD_CLK output
MPU6800 Async mode: Secondary Chip Select (CS1)
MPU80 Sync mode: LCD_CLK output
MPU80 Async mode: Secondary Chip Select (CS1)

LCD_D[15:0] LIDD:
OUT/IN

HD44780U mode: Read and write the command and Data

MPU6800 Sync mode: Read and write command and data
MPU6800 Async mode: Read and write command and data
MPU80 Sync mode: Read and write command and data
MPU80 Async mode: Read and write command and data

14.1.4 LCD Interface Display Driver Details (LIDD) Controller
The LIDD Controller is designed to support LCD panels with a memory-mapped interface. The types of
displays range from low-end character monochrome LCD panels to high-end TFT smart LCD panels.

LIDD mode (and the use of this logic) is enabled by clearing the MODESEL bit in the LCD control register
(LCD_CTRL).

LIDD Controller operation is summarized as follows:
• During initialization, the LCD LIDD CS0/CS1 configuration registers (LIDD_CS0_CONF and

LIDD_CS1_CONF) are configured to match the requirements of the LCD panel being used.
• During normal operation, the CPU writes display data to the LCD data registers (LIDD_CS0_DATA and

LIDD_CS1_DATA). The LIDD interface converts the CPU write into the proper signal transition
sequence for the display, as programmed earlier. Note that the first CPU write should send the
beginning address of the update to the LCD panel and the subsequent writes update data at display
locations starting from the first address and continuing sequentially. Note that DMA may be used
instead of CPU.

• The LIDD Controller is also capable of reading back status or data from the LCD panel, if the latter has
this capability. This is set up and activated in a similar manner to the write function described above.

NOTE: If an LCD panel is not used, this interface can be used to control any MCU-like peripheral.

Table 14-2 describes how the signals are used to interface external LCD modules, which are configured
by the LIDD_CTRL register.

Table 14-2. LIDD I/O Name Map

Display Type
Interface

Type
Data
Bits

LIDD_CTRL
[2:0] I/O Name

Display I/O
Name Comment

Character
Display

HD44780
Type

4 100 LCD_D[7:4] DATA[7:4] Data Bus (length defined by
Instruction)

LCD_CS0_E1 E0 Enable Strobe (first display)
LCD_RW_WRB R/W Read/Write
LCD_RS RS Register Select (Data/not

Instruction)
LCD_CS1_E1 E1 Enable Strobe (second display

optional)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

LCD_CLK = SYSTEM_CLK when CLK_DIV = 0

LCD_CLK = SYSTEM_CLK
when 0 < CLK_DIV <256

LCK_DIV

Introduction www.ti.com

534 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

Table 14-2. LIDD I/O Name Map (continued)

Display Type
Interface

Type
Data
Bits

LIDD_CTRL
[2:0] I/O Name

Display I/O
Name Comment

Character
Display

HD44780
Type

8 100 LCD_D[7:0] DATA[7:0] Data Bus (length defined by
Instruction)

LCD_CS0_E0 E0 Enable Strobe (first display)
LCD_RW_WRB R/W Read/Write
LCD_RS RS Register Select (Data/not

Instruction)
LCD_CS1_E1 E1 Enable Strobe (second display

optional)
Micro Interface
Graphic Display

6800
Family

Up To
16

001 LCD_D[7:0] DATA[7:0] Data Bus
LCD_EN_RDB E Enable Clock
LCD_RW_WRB R/W Read/Write
LCD_RS A0 Address/Data Select
LCD_CS0_E0 CS (or CS0) Chip Select (first display)
LCD_CS1_E1 CS1 Chip Select (second display

optional)
000 LCD_CS1_E1 LCD_CLK LCD_CLK Output for Synchronous

Clock
Micro Interface
Graphic Display

8080
Family

Up To
16

011 LCD_D[7:0] DATA[7:0] Data Bus
LCD_EN_RDB RD Read Strobe
LCD_RW_WRB WR Write Strobe
LCD_RS A0 Address/Data Select
LCD_CS1_E0 CS (or CS0) Chip Select (first display)
LCD_CS1_E1 CS1 Chip Select (second display

optional)
010 LCD_CLK LCD_CLK LCD_CLK Output for Synchronous

Clock

The timing parameters are defined by the LIDD_CS0_CONF and LIDD_CS1_CONF registers.

The timing configuration is based on an internal reference clock, LCD_CLK. LCD_CLK is generated out of
System Clock , which is determined by the CLKDIV bit in the LCD_CTRL register.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

LCD_CSx_Ex

LCD_RS

LCD_RW_WRB

R_SU

R_STROBE R_HOLD

(0–31)

(1–63) (1–5)

CS_DELAY

(0-3)

RS

R/W

W_SU W_STROBE

W_HOLD

(0–31) (1–63)

(1–15)

CS_DELAY

(0 - 3)

8 9

12 13

10 11

LCD_D[7:0]

14 1716

Read

Data

15 4 5

E0
E1

12 13

Data[7:0]Write Instruction

LCD_CLK
A

LCD_CSx_Ex

W_SU
(0 to 31) W_STROBE

(1 to 63) W_HOLD
(1 to 15)

CS_DELAY

(0 to 3)
R_SU

(0 to 31)
R_STROBE

(1 to 63)

R_HOLD
(1 to 15) CS_DELAY

(0 to 3)

4

Write Data

5 14

16

17

15

Data[7:0]

8 9

10 11

12

13

12

13

RS

R/W

E0
E1

LCD_D[15:0]

LCD_RS

LCD_RW_WRB

Read Status

LCD_CLK
[Internal]

www.ti.com Introduction

535SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

14.1.5 LIDD Controller Timing

Figure 14-2. LIDD Mode HD44780 Write Timing Diagram

Figure 14-3. LIDD Mode HD44780 Read Timing Diagram

A In 6800 Async mode, LCD_CLK is internal
In 6800 Sync mode, LCD_CLK is output via LCD_CS1_E1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

LCD_D[15:0]

LCD_CSx_Ex

(async mode)

LCD_RS

LCD_RW_WRB

LCD_EN_RDB

4

W_SU W_STROBE

W_HOLD

(0-31) (1-63)

(1-15)

CS_DELAY

(0-3)

CS0
CS1

RS

R/W

EN

W_SU W_STROBE

W_HOLD

(0-31) (1-63)

(1-15)

CS_DELAY

(0-3)

5 4 5

6 7 6 7

8 9

12 13

Write Address Write Data

12 13

10 11 10 11

Data[15:0]

LCD_CLK
A

Introduction www.ti.com

536 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

Figure 14-4. LIDD Mode 6800 Write Timing Diagram

A In 6800 Async mode, LCD_CLK is internal
In 6800 Sync mode, LCD_CLK is output via LCD_CS1_E1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

LCD_D[15:0]

LCD_CSx_Ex

(Async Mode)

LCD_RS

LCD_RW_WRB

LCD_EN_RDB

4

W_SU W_STROBE

W_HOLD

(0-31) (1-63)

(1-15)

CS_DELAY

(0-3)

CS0
CS1

RS

R/W

EN

R_SU

R_STROBE R_HOLD

(0-31)

(1-63 (1-15)

CS_DELAY

(0-3)

5 14 15

6 7 6 7

8 9

12 13

1716

Write Address

Read

Data

10 11

1213

Data[15:0]

LCD_CLK
A

www.ti.com Introduction

537SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

Figure 14-5. LIDD Mode 6800 Read Timing Diagram

A In 6800 Async mode, LCD_CLK is internal
In 6800 Sync mode, LCD_CLK is output via LCD_CS1_E1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Read
Data

LCD_D[15:0]

LCD_CSx_Ex

(Async Mode)

LCD_RS

LCD_RW_WRB

LCD_EN_RDB

R_SU

R_STROBE R_HOLD

(0-31)

(1-63) (1-15)

CS_DELAY

(0-3)

CS0

CS1

RS

R/W

EN

R_STROBE R_HOLD

(1-63) (1-15)

CS_DELAY

(0-3)

14 15

6 7 6 7

8 9

12 13

171614 1716 15

12 13

Data[15:0]

R_SU
(0-31)

Read

Status

LCD_CLK
A

Introduction www.ti.com

538 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

Figure 14-6. LIDD Mode 6800 Status Timing Diagram

A In 6800 Async mode, LCD_CLK is internal
In 6800 Sync mode, LCD_CLK is output via LCD_CS1_E1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

LCD_D[15:0]

LCD_CSx_Ex

(Async Mode)

LCD_RS

LCD_RW_WRB

LCD_EN_RDB

4

W_SU W_STROBE

W_HOLD

(0-31) (1-63)

(1-15)

CS_DELAY

(0-3)

DATA[15:0]

CS0

CS1

RS

WRB

RDB

W_SU W_STROBE

W_HOLD

(0-31) (1-63)

(1-15)

CS_DELAY

(0 - 3)

5 4 5

6 7 6 7

8 9

10 11

Write Address Write Data

10 11

LCD_CLK
A

www.ti.com Introduction

539SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

Figure 14-7. LIDD Mode 8080 Write Timing Diagram

A In 8080 Async mode, LCD_CLK is internal
In 8080 Sync mode, LCD_CLK is output via LCD_CS1_E1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

LCD_D[15:0]

LCD_CSx_Ex

(async mode)

LCD_RS

LCD_RW_WRB

LCD_EN_RDB

4

W_SU W_STROBE

W_HOLD

(0-31) (1-63)

(1-15)

CS_DELAY

(0-3)

CS0

CS1

RS

WRB

RDB

R_SU

R_STROBE R_HOLD

(0-31)

(1-63) (1-15)

CS_DELAY

(0-3)

5 14 15

6 7 6 7

8 9

12 13

1716

Read
Data

10 11

Data[15:0]Write Address

LCD_CLK
A

Introduction www.ti.com

540 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

Figure 14-8. LIDD Mode 8080 Read Timing Diagram

A In 8080 Async mode, LCD_CLK is internal
In 8080 Sync mode, LCD_CLK is output via LCD_CS1_E1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

LCD_D[15:0]

LCD_CSx_Ex

LCD_RS

LCD_RW_WRB

LCD_PCLK

R_SU

R_STROBE R_HOLD

(0-31)

(1-63) (1-15)

CS_DELAY

(0-3)

CS0

CS1

RS

WRB

RDB

R_STROBE R_HOLD

(1-63) (1-15)

CS_DELAY

(0-3)

14 15

6 7 6

8

12 13

1716

Read Status

14 1716

Read Data

15

12 13

Data[15:0]

7

9

R_SU
(0-31)

LCD_CLK
A

www.ti.com Introduction

541SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

Figure 14-9. LIDD Mode 8080 Status Timing Diagram

A In 8080 Async mode, LCD_CLK is internal
In 8080 Sync mode, LCD_CLK is output via LCD_CS1_E1

14.1.6 DMA Engine
The DMA engine provides the capability to output data constantly, without burdening the CPU, via
interrupts or a firmware timer. It operates on one or two frame buffers, which are set up during
initialization. Using two frame buffers (ping-pong buffers) enables the simultaneous operation of outputting
the current video frame to the external display and updating the next video frame. The ping-pong buffering
approach is preferred in most applications.

The DMA engine accesses the LIDD Controller's address and/or data registers.

To program DMA engine, configure the following registers, as shown in Table 14-3.

Table 14-3. Register Configuration for DMA Engine Programming

Register Configuration
LCDDMA_CTRL Configure DMA data format
LCDDMA_FB0_BASE Configure frame buffer 0
LCDDMA_FB0_CEILING
LCDDMA_FB1_BASE Configure frame buffer 1 (If only one frame buffer is used, these two

registers will not be used.)LCDDMA_FB1_CEILING

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

LCD Port Mapping www.ti.com

542 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

In addition, the LIDD_CTRL register (for LIDD Controller) should also be configured appropriately, along
with all the timing registers.

To enable DMA transfers, the LIDD_DMA_EN bit (in the LIDD_CTRL register) should be written with 1.

14.1.6.1 Interrupts
Interrupts in this LCD module are related to DMA engine operation. Two registers are closely related to
this subject:
• The LIDD_CTRL enables or disables .
• The LCD_STAT register collects all the interrupt status information.

The DMA engine generates one interrupt signal every time the specified frame buffer has been transferred
completely.
• The DONE_INT_EN bit in the LIDD_CTRL register specifies if the interrupt signal is delivered to the

system interrupt controller, which in turn may or may not generate an interrupt to CPU.
• The EOF1, EOF0, and DONE bits in the LCD_STAT register reflect the interrupt signal, regardless of

being delivered to the system interrupt controller or not.

14.1.6.1.1 Interrupt Handling
Refer the device-specific data manual for information about LCD interrupt number to CPU .The interrupt
service routine needs to determine the interrupt source by examining the LCD_STAT register and clearing
the interrupt properly.

14.2 LCD Port Mapping
The DSP uses pin multiplexing to accommodate a larger number of peripheral functions in the smallest
possible package, providing the ultimate flexibility for end applications. The external bus selection register
(EBSR) controls all the pin multiplexing functions on the device. LCD ports can be 8-bit LCD ports, 16-bit
LCD ports, or disabled via the EBSR register. For more details on the EBSR register, see Section 1.1,
System Control.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

543SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

14.3 Registers
Table 14-4 lists the memory-mapped registers for the LCD Controller (LCDC). See the device-specific
data manual for the memory address of these registers.

Table 14-4. LCD Controller (LCDC) Registers

CPU Word
Address

Acronym Register Description Section

2E00h LCDREVMIN LCD Minor Revision Register Section 14.3.1
2E01h LCDREVMAJ LCD Major Revision Register Section 14.3.2
2E04h LCDCR LCD Control Register Section 14.3.3
2E08h LCDSR LCD Status Register Section 14.3.4
2E0Ch LCDLIDDCR LCD LIDD Control Register Section 14.3.5
2E10h LCDLIDDCS0CONFIG0 LCD LIDD CS0 Configuration Register 0 Section 14.3.6
2E11h LCDLIDDCS0CONFIG1 LCD LIDD CS0 Configuration Register 1 Section 14.3.7
2E14h LCDLIDDCS0ADDR LCD LIDD CS0 Address Read/Write Register Section 14.3.8
2E18h LCDLIDDCS0DATA LCD LIDD CS0 Data Read/Write Register Section 14.3.9
2E1Ch LCDLIDDCS1CONFIG0 LCD LIDD CS1 Configuration Register 0 Section 14.3.6
2E1Dh LCDLIDDCS1CONFIG1 LCD LIDD CS1 Configuration Register 1 Section 14.3.7
2E20h LCDLIDDCS1ADDR LCD LIDD CS1 Address Read/Write Register Section 14.3.8
2E24h LCDLIDDCS1DATA LCD LIDD CS1 Data Read/Write Register Section 14.3.9

2E28h –
2E3Ah

- Reserved -

2E40h LCDDMACR LCD DMA Control Register Section 14.3.10
2E44h LCDDMAFB0BAR0 LCD DMA Frame Buffer 0 Base Address Register 0 Section 14.3.11
2E45h LCDDMAFB0BAR1 LCD DMA Frame Buffer 0 Base Address Register 1 Section 14.3.12
2E48h LCDDMAFB0CAR0 LCD DMA Frame Buffer 0 Ceiling Address Register 0 Section 14.3.13
2E49h LCDDMAFB0CAR1 LCD DMA Frame Buffer 0 Ceiling Address Register 1 Section 14.3.14
2E4Ch LCDDMAFB1BAR0 LCD DMA Frame Buffer 1 Base Address Register 0 Section 14.3.15
2E4Dh LCDDMAFB1BAR1 LCD DMA Frame Buffer 1 Base Address Register 1 Section 14.3.16
2E50h LCDDMAFB1CAR0 LCD DMA Frame Buffer 1 Ceiling Address Register 0 Section 14.3.17
2E51h LCDDMAFB1CAR1 LCD DMA Frame Buffer 1 Ceiling Address Register 1 Section 14.3.18

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

544 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

14.3.1 LCD Minor Revision Register (LCDREVMIN)
The LCD minor revision register (LCDREVMIN) is shown in Figure 14-10 and described in Table 14-5.

Figure 14-10. LCD Minor Revision Register (LCDREVMIN)
15 0

REVMIN
R- 0000h

LEGEND: R/W = Read/Write; -n = value after reset

Table 14-5. LCD Minor Revision Register (LCDREVMIN) Field Descriptions

Bit Field Type Reset Description
15-0 REVMIN R 0000h Minor Revision.

14.3.2 LCD Major Revision Register (LCDREVMAJ)
The LCD major revision register (LCDREVMAJ) is shown in Table 14-6 and described in Table 14-6.

Figure 14-11. LCD Major Revision Register (LCDREVMAJ)
15 0

REVMAJ
R-0001h

LEGEND: R/W = Read/Write; -n = value after reset

Table 14-6. LCD Major Revision Register (LCDREVMAJ) Field Descriptions

Bit Field Type Reset Description
15-0 REVMAJ R 0001h Major Revision.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

LCD_CLK = SYSTEM_CLK when CLK_DIV = 0

SYSTEM_CLK
LCD_CLK when 0 < CLK_DIV < 256

CLK_DIV
=

www.ti.com Registers

545SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

14.3.3 LCD Control Register (LCDCR)
The LCD control register (LCDCR) is shown in Figure 14-12 and described in Table 14-7.

Figure 14-12. LCD Control Register (LCDCR)
15 8 7 1 0

CLKDIV Reserved MODESEL
RW-0 R-0 RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14-7. LCD Control Register (LCDCR) Field Descriptions

Bit Field Type Reset Description
15-8 CLKDIV RW 0 Clock Divisor Value (from 0–255) is used to specify the frequency of LCD_CLK .
7-1 Reserved R 0 Reserved.
0 MODESEL RW 0 LCD Mode Select. MODESEL should be set to 0 (default) all the time. Raster mode is

not supported.
0 = LCD Controller in LIDD mode.
1 = LCD Controller in Raster mode (not supported).

The 8-bit clock divider (CLKDIV) field is used to select the frequency LCD_CLK.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

546 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

14.3.4 LCD Status Register (LCDSR)
The LCD status register (LCD_STAT) contains bits that signal status to the processor. Each of the LCD
status bits signals an interrupt request as long as the bit is set AND the interrupt enable for that bit is also
set (see the LCD DMA control register for these enables). Writing a 1 to each bit clears it; once the bit is
cleared, the interrupt is cleared.

The LCD status register (LCDSR) is shown in Figure 14-13 and described in Table 14-8.

Figure 14-13. LCD Status Register (LCDSR)
15 10 9 8

Reserved EOF1 EOF0
R-0 RW-0 RW-0

7 1 0
Reserved DONE

R-0 RW-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14-8. LCD Status Register (LCDSR) Field Descriptions

Bit Field Type Reset Description
15-10 Reserved R 0 Reserved.

9 EOF1 RW 0 End of Frame 1
0 = No end of frame 1 detected
1= End of frame 1 detected.

8 EOF0 RW 0 End of Frame 0
0 = No end of frame 0 detected.
1 = End of frame 0 detected.

7-1 Reserved R 0 Reserved.
0 DONE RW 0 LIDD Frame Done.

0 = Raster engine enabled.
1 = Raster engine disabled.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

547SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

14.3.5 LCD LIDD Control Register (LCDLIDDCR)
The LCD LIDD control register (LIDD_CTRL) contains the polarity controls for LIDD output signals (to
account for variety in the external LCD display/peripheral signal requirements), and the LIDD type select
bits.

NOTE: To activate DMA to drive LIDD interface, all other control bit-fields must be programmed
before setting LIDD_DMA_EN = 1 and must also disable LIDD_DMA_EN bit when changing
the state of any control bit within the LCD controller.

The LCD LIDD control register (LCDLIDDCR) is shown in Figure 14-14 and described in Table 14-9.

Figure 14-14. LCD LIDD Control Register (LCDLIDDCR)
15 11 10 9 8

Reserved DONE_INT_EN DMA_CS0_CS
1

LIDD_DMA_EN

R-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 0
CS1_E1_POL CS0_E0_POL WS_DIR_POL RS_EN_POL RSPOL LIDD_MODE_SEL

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14-9. LCD LIDD Control Register (LCDLIDDCR) Field Descriptions

Bit Field Type Reset Description
15-
11

Reserved R 0 Reserved

10 DONE_INT_EN RW 0 LIDD Frame Done Interrupt Enable
0 = Disable LIDD Frame Done interrupt.
1 = Enable LIDD Frame Done interrupt (seen on LCD Status Reg bit 0).

9 DMA_CS0_CS1 RW 0 CS0/CS1 Select for LIDD DMA writes
0 = DMA writes to LIDD CS0.
1 = DMA writes to LIDD CS1.

8 LIDD_DMA_EN RW 0 LIDD DMA Enable
0 = Deactivate DMA control of LIDD interface; DMA control is released upon completion of
transfer of the currentframe of data (LIDD Frame Done) after this bit is cleared. The MPU has
direct read/write access to the panel in this mode .
1 = Activate DMA to drive LIDD interface to support streaming data to "smart" panels. The
MPU cannot access the panel directly in this mode.

7 CS1_E1_POL RW 0 Chip Select 1/Enable 1 (Secondary) Polarity Control.
0 = Do Not Invert Chip Select 1/Enable 1
1 = Invert Chip Select 1/Enable 1 Chip Select 1 is active low by default; Enable 1 is active
high by default.

6 CS0_E0_POL RW 0 Chip Select 0/Enable 0 (Primary) Polarity Control.
0 = Do Not Invert Chip Select 0/Enable 0
1 = Invert Chip Select 0/Enable 0 Chip Select 0 is active low by default; Enable 0 is active
high by default.

5 WS_DIR_POL RW 0 Write Strobe/Direction Polarity Control
0 = Do Not Invert Write Strobe/Direction
1 = Invert Write Strobe/Direction Write Strobe/Direction is active low/write low by default.

4 RS_EN_POL RW 0 Read Strobe/Enable Polarity Control
0 = Do Not Invert Read Strobe/Enable
1 = Invert Read Strobe/Enable Read Strobe is active low by default; Enable is active high by
default

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

548 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

Table 14-9. LCD LIDD Control Register (LCDLIDDCR) Field Descriptions (continued)
Bit Field Type Reset Description
3 RSPOL RW 0 Register Select Polarity Control

0 = Do not invert RS
1 = Invert RS. RS is active low by default

2-0 LIDD_MODE_
SEL

RW 0 LIDD Mode Select, value 0 to 7h. Selects type of LCD interface for the LIDD to drive.
LIDD_MODE_SEL defines the function of LCD external pins as follows:

Pin 000b 001b 010b 011b 100b
LCD_EN_RD
B

EN EN RDB RDB N/A

LCD_RW_W
RB

R/W R/W WRB WRB R/W

LCD_RS D/C(RS) D/C (RS) D/C (RS) D/C (RS) RS
LCD_CS0_E
0

CS0 CS0 CS0 CS0 E0

LCD_CS1_E
1

LCD_CLK CS1 LCD_CLK CS1 E1

0 = MPU6800 Sync mode
1h = MPU 6800 Async mode
2h = MPU80 Sync mode
3h = MPU80 Async mode
4h = Hitachi Async (HD44780)mode

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

549SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

14.3.6 LCD LIDD CS0 and CS1 Configuration Register 0 (LCDLIDDCS0CONFIG0 and
LCDLIDDCS1CONFIG0)
The LCD LIDD CS0 and CS1 Configuration Register 0 (LCDLIDDCS0CONFIG0 and
LCDLIDDCS1CONFIG0) provides the capability to configure write and read strobe timing parameters to
meet a variety of interface timing requirements for the chip select 0 (primary) device and chip select 1
(secondary) device, respectively. These values are in LCD_CLK cycles; LCD_CLK is divided down from
system clock as defined by the CLKDIV field in the LCD control register.

The LLCD LIDD CS0 and CS1 Configuration Register 0 (LCDLIDDCS0CONFIG0 and
LCDLIDDCS1CONFIG0) is shown in Figure 14-15 and described in Table 14-10.

Figure 14-15. LCD LIDD CS0 and CS1 Configuration Register 0 (LCDLIDDCS0CONFIG0 and
LCDLIDDCS1CONFIG0)

15 12 11 6 5 2 1 0
R_SU0 R_STROBE R_HOLD TA
RW-0 RW-1 RW-1 RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14-10. LCD LIDD CS0 and CS1 Configuration Register 0 (LCDLIDDCS0CONFIG0 and
LCDLIDDCS1CONFIG0) Field Descriptions

Bit Field Type Reset Description
15-12 R_SU0 RW 0 Read Strobe Set-Up cycles (lower 4 bits upper bit is in LIDD CSO config reg 1 at bit-0)

Field value defines number of LCD_CLK cycles after Data Bus/Pad Output Enable,
ALE, Direction bit and Chip Select 0 have been set-up before the Read Strobe is
asserted when performing a read access. Value 0 to Fh.

11-6 R_STROBE RW 1 Read Strobe Duration cycles Field value defines number of LCD_CLK cycles for which
the Read Strobe is held active when performing a read access. Value 0 to 3Fh.

5-2 R_HOLD RW 1 Read Strobe Hold cycles Field value defines number of LCD_CLK cycles for which
Data Bus/Pad Output Enable, ALE, Direction bit and Chip Select 0 are held after the
Read Strobe is deasserted when performing a read access. Value 0 to Fh.

1-0 TA RW 0 Field value defines number of LCD_CLK cycles between the end of one CS0 device
access and the start of another CS0 device access unless the two accesses are both
reads, in which case this delay is not incurred. Value 0 to 3h.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

550 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

14.3.7 LCD LIDD CS0 and CS1 Configuration Register 1 (LCDLIDDCS0CONFIG1 and
LCDLIDDCS1CONFIG1)
The LCD LIDD CS0 and CS1 Configuration Register 1 (LCDLIDDCS0CONFIG1 and
LCDLIDDCS1CONFIG1) provides the capability to configure write and read strobe timing parameters to
meet a variety of interface timing requirements for the chip select 0 (primary) device and chip select 1
(secondary) device, respectively. These values are in LCD_CLK cycles; LCD_CLK is divided down from
system clock as defined by the CLKDIV field in the LCD control register.

The LCD LIDD CS0 and CS1 Configuration Register 1 (LCDLIDDCS0CONFIG1 and
LCDLIDDCS1CONFIG1) is shown in Figure 14-16 and described in Table 14-11.

Figure 14-16. LCD LIDD CS0 and CS1 Configuration Register 1 (LClidd_cs1_1DLIDDCS0CONFIG1
and LCDLIDDCS1CONFIG1)

15 11 10 5 4 1 0
W_SU W_STROBE W_HOLD R_SU1
RW-0 RW-1 RW-1 RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14-11. LCD LIDD CS0 and CS1 Configuration Register 1 (LCDLIDDCS0CONFIG1 and
LCDLIDDCS1CONFIG1) Field Descriptions

Bit Field Type Reset Description
15-11 W_SU RW 0 Write Strobe Set-Up cycles Field value defines number of LCD_CLK cycles after Data

Bus/Pad Output Enable, ALE, Direction bit and Chip Select 0 have been set-up before
the Write Strobe is asserted when performing a write access. Value 0 to 1Fh.

10-5 W_STROBE RW 1 Write Strobe Duration cycles Field value defines number of LCD_CLK cycles for which
the Write Strobe is held active when performing a write access. Value 0 to 3Fh.

4-1 W_HOLD RW 1 Write Strobe Hold cycles Field value defines number of LCD_CLK cycles for which
Data Bus/Pad Output Enable, ALE, Direction bit and Chip Select 0 are held after the
Write Strobe is deasserted when performing a write access. Value 0 to Fh.

0 R_SU1 RW 0 Most Significant Bit for Read Strobe Set-Up cycles (upper bit. The lower 4 bits are
located in LIDD CSO confir reg 0) Field value defines number of LCD_CLK cycles
after Data Bus/Pad Output Enable, ALE, Direction bit and Chip Select 0 have been
set-up before the Read Strobe is asserted when performing a read access. Value 1 to
0.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

551SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

14.3.8 LCD LIDD CS0 and CS1 Address Read/Write Register (LCDLIDDCS0ADDR and
LCDLIDDCS1ADDR)
The LCD LIDD CS0 and SC1 Address Read/Write Register (LCDLIDDCS0ADDR and
LCDLIDDCS1ADDR) are accessed by the processor to perform the address/index read or write operations
on the CS0 and CS1 device respectively. Writing to LCDLIDDCS0ADDR asserts CS0 and Address Latch
Enable, which loads the ADR_INDX field of this register into the address generator of the peripheral
device. Likewise, reading from LCDLIDDCS0ADDR asserts CS0 and Address Latch Enable, which loads
status information from the peripheral device into the ADR_INDX field of this register. Similarly writing to
LCDLIDDCS1ADDR asserts CS1 and Address Latch Enable, which loads the ADR_INDX field of this
register into the address generator of the peripheral device. Likewise, reading from LCDLIDDCS1ADDR
asserts CS1 and Address Latch Enable, which loads status information from the peripheral device into the
ADR_INDX field of this register.

The LCD LIDD CS0 and SC1 Address Read/Write Register (LCDLIDDCS0ADDR and
LCDLIDDCS1ADDR) is shown in Figure 14-17 and described in Table 14-12.

Figure 14-17. LCD LIDD CS0 and CS1 Address Read/Write Register (LCDLIDDCS0ADDR and
LCDLIDDCS1ADDR)

15 0
ADR_INDX

RW-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14-12. LCD LIDD CS0 and CS1 Address Read/Write Register (LCDLIDDCS0ADDR and
LCDLIDDCS1ADDR) Field Descriptions

Bit Field Type Reset Description
15-0 ADR_INDX RW 0 Peripheral Device Address/Index value. On writes, this field is loaded into

the CSn peripheral device's address generator. On reads, this field contains
the CSn peripheral device's status. Value 0 to FFFFh.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

552 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

14.3.9 LCD LIDD CS0 and CS1 Data Read/Write Register (LCDLIDDCS0DATA and
LCDLIDDCS1DATA)
The LCD LIDD CS0 and CS1 Data Read/Write Register (LCDLIDDCS0DATA and LCDLIDDCS1DATA)
are accessed by the processor to perform the data read or write operations on the CS0 and CS1 device
respectively . Writing to LCDLIDDCS0DATA asserts CS0 and deasserts Address Latch Enable, which
loads the DATA field of this register into the peripheral device. Likewise, reading from this register asserts
CS0 and deasserts Address Latch Enable, which loads data from the peripheral device into the DATA field
of this register. Similarly writing to LCDLIDDCS1DATA asserts CS1 and deasserts Address Latch Enable,
which loads the DATA field of this register into the peripheral device. Likewise, reading from
LCDLIDDCS1DATA asserts CS1 and deasserts Address Latch Enable, which loads data from the
peripheral device into the DATA field of this register.

The LCD LIDD CS0 and CS1 Data Read/Write Register (LCDLIDDCS0DATA and LCDLIDDCS1DATA) is
shown in Figure 14-18 and described in Table 14-13.

Figure 14-18. LCD LIDD CS0 and CS1 Data Read/Write Register (LCDLIDDCS0DATA and
LCDLIDDCS1DATA)

15 0
DATA
RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14-13. LCD LIDD CS0 and CS1 Data Read/Write Register (LCDLIDDCS0DATA and
LCDLIDDCS1DATA) Field Descriptions

Bit Field Type Reset Description
15-0 DATA RW 0 Peripheral Device Data value. On writes, this field is loaded into the CSn

peripheral device. On reads, this field contains the CSn peripheral device's
data. Value 0 to FFFFh

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

553SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

14.3.10 LCD DMA Control Register (LCDDMACR)
The LCD DMA control register (LCDDMACR) is shown in Figure 14-19 and described in Table 14-14.

Figure 14-19. LCD DMA Control Register (LCDDMACR)
15 8

Reserved
R-0

7 6 4 3 2 1 0
Reserved BURST_SIZE Reserved EOF_INTEN BIGENDIAN FRAME_MODE

R-0 RW-0 R-0 RW-0 RW-0 RW-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14-14. LCD DMA Control Register (LCDDMACR) Field Descriptions

Bit Field Type Reset Description
15-7 Reserved R 0 Reserved.
6-4 BURST_SIZE RW 0 Burst Size setting for DMA transfers (all DMA transfers are 32 bits wide).

0 = Burst size of 1
1h = Burst size of 2
2h = Burst size of 4
3h = Burst size of 8
4h = Burst size of 16
5h to 7h = Reserved.

3 Reserved R 0 Reserved.
2 EOF_INTEN RW 0 End of Frame interrupt enable Setting this bit allows the End of Frame 0 or 1 Status

bits in the LCD Status Register to trigger an interrupt 0: End of Frame 0/1Interrupt
disabled 1: End of Frame 0/1Interrupt enabled.
0 = EoF Interrupt disabled.
1 = EoF Interrupt enabled.

1 BIGENDIAN RW 0 Big Endian enable Use this bit when the processor is operating in Big Endian mode
and writes to the frame buffer(s) are less than 32 bits wide; only in this scenario we
need to change the byte alignment for data coming into the FIFO from the frame
buffer(s) 0: Big Endian data reordering disabled 1: Big Endian data reordering
enabled.
0 = Big Endian disabled.
1 = Big Endian enabled.

0 FRAME_MODE RW 0 Frame Mode 0: one frame buffer (FB0 only) used 1: two frame buffers used; DMA
ping-pongs between FB0 and FB1 in this mode
0 = One Frame buffer used
1 = Two frame buffers used.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

554 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

14.3.11 LCD DMA Frame Buffer 0 Base Address Register 0 (LCDDMAFB0BAR0)
The LCD DMA frame buffer 0 base address register 0 is shown in Figure 14-20 and described in
Table 14-15.

Figure 14-20. LCD DMA Frame Buffer 0 Base Address Register 0 (LCDDMAFB0BAR0)
15 0

FB0_BASE0
RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14-15. LCD DMA Frame Buffer 0 Base Address Register 0 (LCDDMAFB0BAR0) Field
Descriptions

Bit Field Type Reset Description
15-0 FB0_BASE0 RW 0 Frame Buffer 0 Base Address pointer LSW; 2 LSBs are hardwired to be 00.

Value is 0 to FFFFh.

14.3.12 LCD DMA Frame Buffer 0 Base Address Register 1 (LCDDMAFB0BAR1)
The LCD DMA frame buffer 0 base address register 1 is shown in Figure 14-21 and described in
Table 14-16.

Figure 14-21. LCD DMA Frame Buffer 0 Base Address Register 1 (LCDDMAFB0BAR1)
15 0

FB0_BASE1
RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14-16. LCD DMA Frame Buffer 0 Base Address Register 1 (LCDDMAFB0BAR1) Field
Descriptions

Bit Field Type Reset Description
15-0 FB0_BASE1 RW 0 Frame Buffer 0 Base Address pointer MSW. Value is 0 to FFFFh.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

555SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

14.3.13 LCD DMA Frame Buffer 0 Ceiling Address Register 0 (LCDDMAFB0CAR0)
The LCD DMA frame buffer 0 ceiling address register 0 is shown in Figure 14-22 and described in
Table 14-17.

Figure 14-22. LCD DMA Frame Buffer 0 Ceiling Address Register 0 (LCDDMAFB0CAR0)
15 0

FB0_CEIL0
RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14-17. LCD DMA Frame Buffer 0 Ceiling Address Register 0 (LCDDMAFB0CAR0) Field
Descriptions

Bit Field Type Reset Description
15-0 FB0_CEIL0 RW 0 Frame Buffer 0 Ceiling Address pointer LSW; 2 LSBs are hardwired to be

00. Value is 0 to FFFFh.

14.3.14 LCD DMA Frame Buffer 0 Ceiling Address Register 1 (LCDDMAFB0CAR1)
The LCD DMA frame buffer 0 ceiling address register 1 is shown in Figure 14-23 and described in
Table 14-18.

Figure 14-23. LCD DMA Frame Buffer 0 Ceiling Address Register 1 (LCDDMAFB0CAR1)
15 0

FB0_CEIL1
RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14-18. LCD DMA Frame Buffer 0 Ceiling Address Register 1 (LCDDMAFB0CAR1) Field
Descriptions

Bit Field Type Reset Description
15-0 FB0_CEIL1 RW 0 Frame Buffer 0 Ceiling Address pointer MSW. Value is 0 to FFFFh.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

Registers www.ti.com

556 SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

14.3.15 LCD DMA Frame Buffer 1 Base Address Register 0 (LCDDMAFB1BAR0)
The LCD DMA frame buffer 1 base address register 0 is shown in Figure 14-24 and described in
Table 14-19.

Figure 14-24. LCD DMA Frame Buffer 1 Base Address Register 0 (LCDDMAFB1BAR0)
15 0

FB1_BASE0
RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14-19. LCD DMA Frame Buffer 1 Base Address Register 0 (LCDDMAFB1BAR0) Field
Descriptions

Bit Field Type Reset Description
15-0 FB1_BASE0 RW 0 Frame Buffer 1 Base Address pointer LSW; 2 LSBs are hardwired to be 00.

Value is 0 to FFFFh.

14.3.16 LCD DMA Frame Buffer 1 Base Address Register 1 (LCDDMAFB1BAR1)
The LCD DMA frame buffer 1 base address register 1 is shown in Figure 14-25 and described in
Table 14-20.

Figure 14-25. LCD DMA Frame Buffer 1 Base Address Register 1 (LCDDMAFB1BAR1)
15 0

FB1_BASE1
RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14-20. LCD DMA Frame Buffer 1 Base Address Register 1 (LCDDMAFB1BAR1) Field
Descriptions

Bit Field Type Reset Description
15-0 FB1_BASE1 RW 0 Frame Buffer 1 Base Address pointer MSW. Value is 0 to FFFFh.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

www.ti.com Registers

557SPRUH87H–August 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Liquid Crystal Display Controller (LCDC)

14.3.17 LCD DMA Frame Buffer 1 Ceiling Address Register 0 (LCDDMAFB1CAR0)
The LCD DMA frame buffer 1 ceiling address register 0 is shown in Figure 14-26 and described in
Table 14-21.

Figure 14-26. LCD DMA Frame Buffer 1 Ceiling Address Register 0 (LCDDMAFB1CAR0)
15 0

FB1_CEIL0
RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14-21. LCD DMA Frame Buffer 1 Ceiling Address Register 0 (LCDDMAFB1CAR0) Field
Descriptions

Bit Field Type Reset Description
15-0 FB1_CEIL0 RW 0 Frame Buffer 1 Ceiling Address pointer LSW; 2 LSBs are hardwired to be

00. Value is 0 to FFFFh.

14.3.18 LCD DMA Frame Buffer 1 Ceiling Address Register 1 (LCDDMAFB1CAR1)
The LCD DMA frame buffer 1 ceiling address register 1 is shown in Figure 14-27 and described in
Table 14-22.

Figure 14-27. LCD DMA Frame Buffer 1 Ceiling Address Register 1 (LCDDMAFB1CAR1)
15 0

FB1_CEIL1
RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14-22. LCD DMA Frame Buffer 1 Ceiling Address Register 1 (LCDDMAFB1CAR1) Field
Descriptions

Bit Field Type Reset Description
15-0 FB1_CEIL1 RW 0 Frame Buffer 1 Ceiling Address pointer MSW. Value is 0 to FFFFh.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH87H

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Table of Contents
	Preface
	Revision History
	1 System Control
	1.1 Introduction
	1.1.1 Block Diagram
	1.1.2 Device Differences
	1.1.3 CPU Core
	1.1.4 FFT Hardware Accelerator (TMS320C5545/35 Only)
	1.1.4.1 Using FFT Accelerator ROM Routines

	1.1.5 Power Management
	1.1.6 Peripherals

	1.2 System Memory
	1.2.1 Program/Data Memory Map
	1.2.1.1 On-Chip Dual-Access RAM (DARAM)
	1.2.1.2 On-Chip Single-Access RAM (SARAM) (Not Available for TMS320C5532)
	1.2.1.3 On-Chip Single-Access Read-Only Memory (SAROM)

	1.2.2 I/O Memory Map

	1.3 Device Clocking
	1.3.1 Overview
	1.3.2 Clock Domains

	1.4 System Clock Generator
	1.4.1 Overview
	1.4.2 Functional Description
	1.4.2.1 Multiplier and Dividers
	1.4.2.2 Powering Down and Powering Up the System PLL
	1.4.2.3 CLKOUT Pin
	1.4.2.4 DSP Reset Conditions of the System Clock Generator
	1.4.2.4.1 Clock Generator During Reset
	1.4.2.4.2 Clock Generator After Reset

	1.4.3 Configuration
	1.4.3.1 BYPASS MODE
	1.4.3.1.1 Entering and Exiting the BYPASS MODE
	1.4.3.1.2 Register Bits Used in the BYPASS MODE
	1.4.3.1.3 Setting the System Clock Frequency In the BYPASS MODE

	1.4.3.2 PLL MODE
	1.4.3.2.1 Entering and Exiting the PLL MODE
	1.4.3.2.2 Register Bits Used in the PLL Mode
	1.4.3.2.3 Frequency Ranges for Internal Clocks
	1.4.3.2.4 Setting the Output Frequency for the PLL MODE
	1.4.3.2.5 Lock Time
	1.4.3.2.6 Software Steps To Modify Multiplier and Divider Ratios

	1.4.4 Clock Generator Registers
	1.4.4.1 Clock Generator Control Register 1 (CGCR1) [1C20h]
	1.4.4.2 Clock Generator Control Register 2 (CGCR2) [1C21h]
	1.4.4.3 Clock Generator Control Register 3 (CGCR3) [1C22h]
	1.4.4.4 Clock Generator Control Register 4 (CGCR4) [1C23h]
	1.4.4.5 Clock Configuration Register 2 (CCR2) [1C1Fh]

	1.5 Power Management
	1.5.1 Overview
	1.5.2 Power Domains
	1.5.3 Clock Management
	1.5.3.1 CPU Domain Clock Gating
	1.5.3.1.1 Idle Configuration Register (ICR) [0001h] and IDLE Status Register (ISTR) [0002h]
	1.5.3.1.2 Valid Idle Configurations
	1.5.3.1.3 Clock Configuration Process

	1.5.3.2 Peripheral Domain Clock Gating
	1.5.3.2.1 Peripheral Clock Gating Configuration Registers (PCGCR1 and PCGCR2) [1C02 - 1C03h]
	1.5.3.2.2 Peripheral Clock Stop Request/Acknowledge Register (CLKSTOP) [1C3Ah]
	1.5.3.2.3 Clock Configuration Process

	1.5.3.3 Clock Generator Domain Clock Gating
	1.5.3.4 USB Domain Clock Gating
	1.5.3.4.1 Clock Configuration Process
	1.5.3.4.2 USB System Control Register (USBSCR) [1C32h]

	1.5.3.5 RTC Domain Clock Gating

	1.5.4 Static Power Management
	1.5.4.1 RTC Power Management Register (RTCPMGT) [1930h]
	1.5.4.2 RTC Interrupt Flag Register (RTCINTFL) [1920h]
	1.5.4.3 Internal Memory Low Power Modes
	1.5.4.3.1 RAM Sleep Mode Control Register 1 (RAMSLPMDCNTLR1) [1C28h]

	1.5.5 Power Considerations
	1.5.5.1 Power Considerations for TMS320C5545/35/34
	1.5.5.1.1 LDO Configuration

	1.5.5.2 Power Considerations for TMS320C5533
	1.5.5.2.1 LDO Configuration

	1.5.5.3 Power Considerations for TMS320C5532
	1.5.5.3.1 LDO Configuration
	1.5.5.3.2 LDO Inputs
	1.5.5.3.3 LDO Outputs

	1.5.6 Power Configurations
	1.5.6.1 IDLE2 Procedure
	1.5.6.2 IDLE3 Procedure
	1.5.6.3 Core Voltage Scaling

	1.6 Interrupts
	1.6.1 IFR and IER Registers
	1.6.2 Interrupt Timing
	1.6.3 Timer Interrupt Aggregation Flag Register (TIAFR) [1C14h]
	1.6.4 GPIO Interrupt Enable and Aggregation Flag Registers
	1.6.5 DMA Interrupt Enable and Aggregation Flag Registers

	1.7 System Configuration and Control
	1.7.1 Overview
	1.7.2 Device Identification
	1.7.2.1 Die ID Register 0 (DIEIDR0) [1C40h]
	1.7.2.2 Die ID Register 1 (DIEIDR1) [1C41h]
	1.7.2.3 Die ID Register 2 (DIEIDR2) [1C42h]
	1.7.2.4 Die ID Register 3 (DIEIDR3) [1C43h]
	1.7.2.5 Die ID Register 4 (DIEIDR4) [1C44h]
	1.7.2.6 Die ID Register 5 (DIEIDR5) [1C45h]
	1.7.2.7 Die ID Register 6 (DIEIDR6) [1C46h]
	1.7.2.8 Die ID Register 7 (DIEIDR7) [1C47h]

	1.7.3 Device Configuration
	1.7.3.1 External Bus Selection Register (EBSR)
	1.7.3.2 LDO Control for TMS320C5545/35/34
	1.7.3.3 LDO Control for TMS320C5533
	1.7.3.4 Output Slew Rate Control Register (OSRCR) [1C16h]
	1.7.3.5 Pullup/Pulldown Inhibit Register (PDINHIBR1, PDINHIBR2, and PDINHIBR3 [1C17h, 1C18h, and 1C19h]

	1.7.4 DMA Controller Configuration
	1.7.4.1 DMA Synchronization Events
	1.7.4.2 DMA Configuration Registers
	1.7.4.2.1 DMA Interrupt Flag Register (DMAIFR) [1C30h] and DMA Interrupt Enable Register (DMAIER) [1C31h]
	1.7.4.2.2 DMAn Channel Event Source Registers (DMAnCESR1 and DMAnCESR2) [1C1Ah, 1C1Bh, 1C1Ch, 1C1Dh, 1C36h, 1C37h, 1C38h, and 1C39h]

	1.7.5 Peripheral Reset
	1.7.5.1 Peripheral Software Reset Counter Register (PSRCR) [1C04h]
	1.7.5.2 Peripheral Reset Control Register (PRCR) [1C05h]

	1.7.6 USB Byte Access (Not Available for TMS320C5532)

	2 FFT Implementation on the TMS320C5545/35 DSP
	2.1 Introduction
	2.2 Basics of DFT and FFT
	2.2.1 Radix-2 Decimation in Time Equations
	2.2.2 Radix-2 DIT Butterfly
	2.2.3 Computational Complexity
	2.2.4 FFT Graphs

	2.3 DSP Overview Including the FFT Accelerator
	2.4 FFT Hardware Accelerator Description
	2.4.1 Tightly-Coupled Hardware Accelerator
	2.4.2 Hardware Butterfly, Double-Stage and Single-Stage Mode
	2.4.3 Pipeline and Latency
	2.4.4 Software Control
	2.4.5 Twiddle Factors
	2.4.6 Scaling

	2.5 HWAFFT Software Interface
	2.5.1 Data Types
	2.5.2 HWAFFT Functions
	2.5.2.1 HWAFFT Naming and Format
	2.5.2.2 HWAFFT Parameters

	2.5.3 Bit Reverse Function
	2.5.3.1 Bit Reverse Destination Vector Alignment Requirement
	2.5.3.2 Bit Reverse Format and Parameters

	2.5.4 Function Descriptions and ROM Locations
	2.5.5 Project Configuration for Calling Functions from ROM

	2.6 Simple Example to Illustrate the Use of the FFT Accelerator
	2.6.1 1024-Point FFT, Scaling Disabled
	2.6.2 1024-Point IFFT, Scaling Disabled
	2.6.3 Graphing FFT Results in CCS4

	2.7 FFT Benchmarks
	2.8 Computation of Large (Greater Than 1024-Point) FFTs
	2.8.1  Procedure for Computing Large FFTs
	2.8.2 Twiddle Factor Computation
	2.8.3 Bit-Reverse Separates Even and Odd Indexes
	2.8.4 2048-point FFT Source Code

	2.9 Appendix A Methods for Aligning the Bit-Reverse Destination Vector
	2.9.1 Statically Allocate Buffer at Beginning of Suitable RAM Block
	2.9.2 Use the ALIGN Descriptor to Force log2(4 * N) Zeros in the Least Significant Bits
	2.9.3 Use the DATA_ALIGN Pragma

	3 Direct Memory Access (DMA) Controller
	3.1 Introduction
	3.1.1 Purpose of the DMA Controller
	3.1.2 Key Features of the DMA Controller
	3.1.3 Block Diagram of the DMA Controller

	3.2 DMA Controller Architecture
	3.2.1 Clock Control
	3.2.2 Memory Map
	3.2.3 DMA Channels
	3.2.4 Channel Source and Destination Start Addresses
	3.2.4.1 Start Address for On-Chip Memory
	3.2.4.2 Start Address for I/O Space

	3.2.5 Updating Addresses in a Channel
	3.2.6 Data Burst Capability
	3.2.7 Synchronizing Channel Activity to DSP Peripheral Events
	3.2.8 Channel Auto-Initialization Capability
	3.2.9 Ping-Pong DMA Mode
	3.2.10 Monitoring Channel Activity
	3.2.11 Latency in DMA Transfers
	3.2.12 Reset Considerations
	3.2.13 Initialization
	3.2.14 Interrupt Support
	3.2.14.1 Interrupt Events and Requests
	3.2.14.2 Interrupt Multiplexing

	3.2.15 Power Management
	3.2.16 Emulation Considerations

	3.3  DMA Transfer Examples
	3.3.1 Block Move Example
	3.3.2 Peripheral Servicing Example
	3.3.2.1 Non-Bursting Peripherals
	3.3.2.2 Bursting Peripherals

	3.3.3 Ping-Pong DMA Example

	3.4 Registers
	3.4.1 Source Start Address Registers (DMACHmSSAL and DMACHmSSAU)
	3.4.2 Destination Start Address Registers (DMACHmDSAL and DMACHmDSAU)
	3.4.3 Transfer Control Registers (DMACHmTCR1 and DMACHmTCR2)

	4 Real-Time Clock (RTC)
	4.1 Introduction
	4.1.1 Purpose of the Peripheral
	4.1.2  Features
	4.1.3 Functional Block Diagram

	4.2 Peripheral Architecture
	4.2.1 Clock Control
	4.2.2 Signal Descriptions
	4.2.3 RTC-Only Mode (TMS320C5535/34 Only)
	4.2.4 Using the Real-Time Clock Time and Calendar Registers
	4.2.4.1 Time/Calendar Data Format
	4.2.4.2 Setting the Time/Calendar Register
	4.2.4.3 Reading the Time/Calendar Registers

	4.2.5 Using the Real-Time Clock Time and Calendar Alarms
	4.2.5.1 Time/Calendar Alarm Data Format
	4.2.5.2 Setting and Reading the Time/Calendar Alarm Registers
	4.2.5.3  Examples of Time/Calendar Alarm Settings

	4.2.6 Real-Time Clock Interrupt Requests
	4.2.6.1 Interrupt Enable
	4.2.6.2 Interrupt Flag Bits
	4.2.6.3 Periodic Interrupt Request
	4.2.6.4 Alarm Interrupt Request
	4.2.6.5 WAKEUP Interrupt Request

	4.2.7 Reset Considerations
	4.2.7.1 Software Reset Considerations
	4.2.7.2 Hardware Reset Considerations

	4.3 Registers
	4.3.1 Overview
	4.3.2 RTC Registers
	4.3.2.1 RTCINTEN Register
	4.3.2.2 RTCUPDATE Register
	4.3.2.3 RTCMIL Register
	4.3.2.4 RTCMILA Register
	4.3.2.5 RTCSEC Register
	4.3.2.6 RTCSECA Register
	4.3.2.7 RTCMIN Register
	4.3.2.8 RTCMINA Register
	4.3.2.9 RTCHOUR Register
	4.3.2.10 RTCHOURA Register
	4.3.2.11 RTCDAY Register
	4.3.2.12 RTCDAYA Register
	4.3.2.13 RTCMONTH Register
	4.3.2.14 RTCMONTHA Register
	4.3.2.15 RTCYEAR Register
	4.3.2.16 RTCYEARA Register
	4.3.2.17 RTCINTFL Register
	4.3.2.18 RTCNOPWR Register
	4.3.2.19 RTCINTREG Register
	4.3.2.20 RTCDRIFT Register
	4.3.2.21 RTCOSC Register
	4.3.2.22 RTCPMGT Register
	4.3.2.23 RTCSCR1 Register
	4.3.2.24 RTCSCR2 Register
	4.3.2.25 RTCSCR3 Register
	4.3.2.26 RTCSCR4 Register

	5 32-Bit Timer/Watchdog Timer
	5.1 Introduction
	5.1.1 Purpose of the Timers
	5.1.2 Features
	5.1.3 Functional Timer Block Diagram

	5.2 General-Purpose Timer
	5.2.1 General-Purpose Timer Clock Control
	5.2.2 Using the 32-bit General Purpose Timer

	5.3 Watchdog Timer
	5.3.1 Watchdog Timer Function
	5.3.2 Watchdog Timer Operation

	5.4 Reset Considerations
	5.5  Interrupt Support
	5.6 Registers
	5.6.1 WDKCKLK Register
	5.6.2 WDKICK Register
	5.6.3 WDSVLR Register
	5.6.4 WDSVR Register
	5.6.5 WDENLOK Register
	5.6.6 WDEN Register
	5.6.7 WDPSLR Register
	5.6.8 WDPS Register
	5.6.9 TCR Register
	5.6.10 TIMPRD1 Register
	5.6.11 TIMPRD2 Register
	5.6.12 TIMCNT1 Register
	5.6.13 TIMCNT2 Register
	5.6.14 TIAFR Register

	6 Embedded Multimedia Card (eMMC)/Secure Digital (SD) Card Controller
	6.1 Introduction
	6.1.1 Purpose of the Peripheral
	6.1.2 Features
	6.1.3 Functional Block Diagram
	6.1.4 Supported Use Case Statement
	6.1.5 Industry Standard(s) Compliance Statement

	6.2 Peripheral Architecture
	6.2.1 Clock Control
	6.2.2 Signal Descriptions
	6.2.3 Pin Multiplexing
	6.2.4 Protocol Descriptions
	6.2.4.1 eMMC/SD Mode Write Sequence
	6.2.4.2 eMMC/SD Mode Read Sequence

	6.2.5 Data Flow in the Input/Output FIFO
	6.2.6 Data Flow in the Data Registers (SDDRR and SDDXR)
	6.2.7 FIFO Operation During Card Read Operation
	6.2.7.1 DMA Reads
	6.2.7.2 CPU Reads

	6.2.8 FIFO Operation During Card Write Operation
	6.2.8.1 DMA Writes
	6.2.8.2 CPU Writes

	6.2.9 Reset Considerations
	6.2.9.1 Software Reset Considerations
	6.2.9.2 Hardware Reset Considerations

	6.2.10 Programming and Using the SD Controller
	6.2.10.1 eMMC/SD Mode Initialization
	6.2.10.2 Initializing the SD Control Register (SDCTL)
	6.2.10.3 Initializing the Clock Controller Registers (SDCLK)
	6.2.10.4 Initialize the Interrupt Mask Register (SDIM)
	6.2.10.5 Initialize the Time-Out Registers (SDTOR and SDTOD)
	6.2.10.6 Initialize the Data Block Registers (SDBLEN and SDNBLK)
	6.2.10.7 Using the Command Registers (MMCSD1 and MMCSD2)
	6.2.10.8 Monitoring Activity in the eMMC/SD Mode
	6.2.10.8.1 Detecting Edges on the DAT3 Pin
	6.2.10.8.2 Detecting Level Changes on the DAT3 Pin
	6.2.10.8.3 Determining Whether New Data is Available in SDDRR Registers
	6.2.10.8.4 Verifying that SDDXR is Ready to Accept New Data
	6.2.10.8.5 Checking for CRC Errors
	6.2.10.8.6 Checking for Time-Out Events
	6.2.10.8.7 Determining When a Response/Command is Done
	6.2.10.8.8 Determining Whether the Memory Card is Busy
	6.2.10.8.9 Determining Whether a Data Transfer is Done
	6.2.10.8.10 Determining When Last Data has Been Written to Card (SanDisk SD cards)
	6.2.10.8.11 Checking For a Data Transmit Empty Condition
	6.2.10.8.12 Checking for a Data Receive Full Condition
	6.2.10.8.13 Checking the Status of the SD_CLK Pin
	6.2.10.8.14 Checking the Remaining Block Count During a Multiple-Block Transfer

	6.2.11 Interrupt Support
	6.2.11.1 Interrupt Events and Requests

	6.2.12 DMA Event Support
	6.2.13 Emulation Considerations

	6.3 Procedures for Common Operations
	6.3.1 Card Identification Operation
	6.3.2 eMMC/SD Mode Single-Block Write Operation Using CPU
	6.3.3 eMMC/SD Mode Single-Block Write Operation Using DMA
	6.3.4 eMMC/SD Mode Single-Block Read Operation Using CPU
	6.3.5 eMMC/SD Mode Single-Block Read Operation Using DMA
	6.3.6 eMMC/SD Mode Multiple-Block Write Operation Using CPU
	6.3.7 eMMC/SD Mode Multiple-Block Write Operation Using DMA
	6.3.8 eMMC/SD Mode Multiple-Block Read Operation Using CPU
	6.3.9 eMMC/SD Mode Multiple-Block Read Operation Using DMA
	6.3.10 SD High Speed Mode
	6.3.11 SDIO Card Function
	6.3.11.1 SDIO Control Register (SDIOCTL)
	6.3.11.2 SDIO Status Register 0 (SDIOST0)
	6.3.11.3 SDIO Interrupt Control Registers (SDIOIEN, SDIOIST)

	6.4 Registers
	6.4.1 SD Control Register (SDCTL)
	6.4.2 SD Memory Clock Control Register (SDCLK)
	6.4.3 SD Status Register 0 (SDST0)
	6.4.4 SD Status Register 1 (SDST1)
	6.4.5 SD Interrupt Mask Register (SDIM)
	6.4.6 SD Response Time-Out Register (SDTOR)
	6.4.7 SD Data Read Time-Out Register (SDTOD)
	6.4.8 SD Block Length Register (SDBLEN)
	6.4.9 SD Number of Blocks Register (SDNBLK)
	6.4.10 SD Number of Blocks Counter Register (SDNBLC)
	6.4.11 SD Data Receive Register (SDDRR1) and (SDDRR2)
	6.4.12 SD Data Transmit Registers (SDDXR1) and (SDDXR2)
	6.4.13 eMMC Command Registers (MMCSD1) and (MMCSD2)
	6.4.14 SD Argument Registers (SDARG1) and (SDARG2)
	6.4.15 SD Response Registers (SDRSP0-SDRSP7)
	6.4.16 SD Data Response Register (SDDRSP)
	6.4.17 SD Command Index Register (SDCIDX)
	6.4.18 SDIO Control Register (SDIOCTL)
	6.4.19 SDIO Status Register 0 (SDIOST0)
	6.4.20 SDIO Interrupt Enable Register (SDIOIEN)
	6.4.21 SDIO Interrupt Status Register (SDIOIST)
	6.4.22 SD FIFO Control Register (SDFIFOCTL)

	7 Universal Asynchronous Receiver/Transmitter (UART)
	7.1 Introduction
	7.1.1 Purpose of the Peripheral
	7.1.2 Features
	7.1.3 Functional Block Diagram
	7.1.4 Industry Standard(s) Compliance Statement

	7.2 Peripheral Architecture
	7.2.1 Clock Generation and Control
	7.2.2 Signal Descriptions
	7.2.3 Pin Multiplexing
	7.2.4 Protocol Description
	7.2.4.1 Transmission
	7.2.4.2 Reception
	7.2.4.3 Data Format

	7.2.5 Operation
	7.2.5.1 Transmission
	7.2.5.2 Reception
	7.2.5.3 FIFO Modes
	7.2.5.3.1 FIFO Interrupt Mode
	7.2.5.3.2 FIFO Poll Mode

	7.2.5.4 Autoflow Control
	7.2.5.4.1 RTS Behavior
	7.2.5.4.2 CTS Behavior

	7.2.5.5 Loopback Control

	7.2.6 Exception Processing
	7.2.6.1 Divisor Latch Not Programmed
	7.2.6.2 Changing Operating Mode During Busy Serial Communication

	7.2.7 Reset Considerations
	7.2.7.1 Software Reset Considerations
	7.2.7.2 Hardware Reset Considerations

	7.2.8 Initialization
	7.2.9 Interrupt Support
	7.2.9.1 Interrupt Events and Requests
	7.2.9.2 Interrupt Multiplexing

	7.2.10 DMA Event Support
	7.2.11 Power Management
	7.2.12 Emulation Considerations

	7.3 Registers
	7.3.1 RBR Register
	7.3.2 THR Register
	7.3.3 IER Register
	7.3.4 IIR Register
	7.3.5 FCR Register
	7.3.6 LCR Register
	7.3.7 MCR Register
	7.3.8 LSR Register
	7.3.9 SCR Register
	7.3.10 DLL Register
	7.3.11 DLH Register
	7.3.12 PWREMU_MGMT Register

	8 Serial Peripheral Interface (SPI)
	8.1 Introduction
	8.1.1 Purpose of the Peripheral
	8.1.2 Features
	8.1.3 Functional Block Diagram
	8.1.4 Supported Use Case Statement
	8.1.5 Industry Standard(s) Compliance Statement

	8.2 Serial Peripheral Interface Architecture
	8.2.1 Clock Control
	8.2.2 Signal Descriptions
	8.2.3 Units of Data: Characters and Frames
	8.2.4 Chip Select Control
	8.2.5 Clock Polarity and Phase
	8.2.6 Data Delay
	8.2.7 Data Input and Output
	8.2.8 Loopback Mode
	8.2.9 Monitoring SPI Activity
	8.2.10 Slave Access
	8.2.11 Reset Considerations
	8.2.11.1 Software Reset Considerations
	8.2.11.2 Hardware Reset Considerations

	8.2.12 Initialization
	8.2.13 Interrupt Support
	8.2.13.1 Interrupt Events and Requests
	8.2.13.2 Interrupt Multiplexing

	8.2.14 DMA Event Support
	8.2.15 Power Management
	8.2.16 Emulation Considerations

	8.3 Interfacing the SPI to an SPI EEPROM
	8.3.1 Operational Description
	8.3.2 Hardware Interface
	8.3.3 SW Configuration
	8.3.3.1 Basic Initialization
	8.3.3.2 Reading the SPI EEPROM Status Register
	8.3.3.3 Enabling and Disabling Writes
	8.3.3.4 Writing a Block of Data to a SPI EEPROM
	8.3.3.5  Reading a Block of Data from a SPI EEPROM

	8.4 SPI Registers
	8.4.1 SPICDR Register
	8.4.2 SPICCR Register
	8.4.3 SPIDCR1 Register
	8.4.4 SPIDCR2 Register
	8.4.5 SPICMD1 Register
	8.4.6 SPICMD2 Register
	8.4.7 SPISTAT1 Register
	8.4.8 SPISTAT2 Register
	8.4.9 SPIDAT1 Register
	8.4.10 SPIDAT2 Register

	9 Inter-Integrated Circuit (I2C) Peripheral
	9.1 Introduction
	9.1.1 Purpose of the Peripheral
	9.1.2 Features
	9.1.2.1 Features Not Supported

	9.1.3 Functional Block Diagram
	9.1.4 Industry Standard(s) Compliance Statement

	9.2 Peripheral Architecture
	9.2.1 Bus Structure
	9.2.2 Clock Generation
	9.2.3 Clock Synchronization
	9.2.4 Signal Descriptions
	9.2.4.1 Input and Output Voltage Levels
	9.2.4.2 Data Validity

	9.2.5 START and STOP Conditions
	9.2.6 Serial Data Formats
	9.2.6.1 7-Bit Addressing Format
	9.2.6.2 10-Bit Addressing Format
	9.2.6.3 Free Data Format
	9.2.6.4 Using a Repeated START Condition

	9.2.7 Operating Modes
	9.2.8 NACK Bit Generation
	9.2.9 NACK Response
	9.2.9.1 Hardware Response to a NACK
	9.2.9.2 User Response to a NACK

	9.2.10 Arbitration
	9.2.11 Reset Considerations
	9.2.11.1 Software Reset Considerations
	9.2.11.2 Hardware Reset Considerations

	9.2.12 Initialization
	9.2.12.1 Configuring the I2C in Master Receiver Mode and Servicing Receive Data via CPU
	9.2.12.2 Configuring the I2C in Slave Receiver and Transmitter Mode

	9.2.13 Interrupt Support
	9.2.13.1 Interrupt Events and Requests
	9.2.13.2 Interrupt Multiplexing

	9.2.14 DMA Events Generated by the I2C Peripheral
	9.2.15 Power Management
	9.2.16 Emulation Considerations

	9.3 I2C Registers
	9.3.1 ICOAR Register
	9.3.2 ICIMR Register
	9.3.3 ICSTR Register
	9.3.4 ICCLKL Register
	9.3.5 ICCLKH Register
	9.3.6 ICCNT Register
	9.3.7 ICDRR Register
	9.3.8 ICSAR Register
	9.3.9 ICDXR Register
	9.3.10 ICMDR Register
	9.3.11 ICIVR Register
	9.3.12 ICEMDR Register
	9.3.13 ICPSC Register
	9.3.14 ICPID1 Register
	9.3.15 ICPID2 Register

	10 Inter-IC Sound (I2S) Bus
	10.1 Introduction
	10.1.1 Purpose of the Peripheral
	10.1.2 Features
	10.1.3 Functional Block Diagram
	10.1.4 Industry Standard(s) Compliance

	10.2 Architecture
	10.2.1 Clock Control
	10.2.2 I2S Clock Generator
	10.2.3 Signal and Pin Descriptions
	10.2.3.1 Pin Multiplexing

	10.2.4 Frame Clock Timing Requirement in Slave Mode
	10.2.5 Protocol Description
	10.2.5.1  I2S/Left-Justified Format
	10.2.5.2 DSP Format

	10.2.6 I2S Data Transfer and Control Behavior
	10.2.7 I2S Data Transfer Latency
	10.2.7.1 Transmit Path Latency
	10.2.7.2 Receive Path Latency
	10.2.7.3 Loopback Path Latency

	10.2.8 Data Packing and Sign Extension Options
	10.2.8.1 Data Pack Mode
	10.2.8.2  Data Sign Extend Mode
	10.2.8.3 PACK and Sign Extend Data Arrangement for Various Word Lengths
	10.2.8.3.1 8-Bit Word Length
	10.2.8.3.2 10-Bit Word Length
	10.2.8.3.3 12-Bit Word Length
	10.2.8.3.4 14-Bit Word Length
	10.2.8.3.5 16-Bit Word Length
	10.2.8.3.6 18-Bit Word Length
	10.2.8.3.7 20-Bit Word Length
	10.2.8.3.8 24-Bit Word Length
	10.2.8.3.9 32-Bit Word Length

	10.2.9 Reset Considerations
	10.2.9.1 Software Reset Considerations
	10.2.9.2 Hardware Reset Considerations

	10.2.10 Interrupt Support
	10.2.10.1 Interrupt Multiplexing

	10.2.11 DMA Event Support
	10.2.12 Power Management
	10.2.13 Emulation Considerations
	10.2.14 Steps for I2S Configuration and I2S Interrupt Service Routine (ISR)
	10.2.14.1  Initialization and Configuration Steps
	10.2.14.2 ISR Steps (for CPU transfers)

	10.3 Registers
	10.3.1 I2Sn Serializer Control Register (I2SSCTRL)
	10.3.2 I2Sn Sample Rate Generator Register (I2SSRATE)
	10.3.3 I2Sn Transmit Left Data 0 Register (I2STXLT0)
	10.3.4 I2Sn Transmit Left Data 1 Register (I2STXLT1)
	10.3.5 I2Sn Transmit Right Data 0 Register (I2STXRT0)
	10.3.6 I2Sn Transmit Right Data 1 Register (I2STXRT1)
	10.3.7 I2Sn Interrupt Flag Register (I2SINTFL)
	10.3.8 I2Sn Interrupt Mask Register (I2SINTMASK)
	10.3.9 I2Sn Receive Left Data 0 Register (I2SRXLT0)
	10.3.10 I2Sn Receive Left Data 1 Register (I2SRXLT1)
	10.3.11 I2Sn Receive Right Data 0 Register (I2SRXRT0)
	10.3.12 I2Sn Receive Right Data 1 Register (I2SRXRT1)

	11 Successive Approximation (SAR) Analog-to-Digital Converter (ADC)
	11.1 Introduction
	11.1.1 Purpose of the 10-bit SAR
	11.1.2 Features
	11.1.3 Supported Use Case Statement
	11.1.4 Industry Standard(s) Compliance Statement
	11.1.5 Functional Block Diagram

	11.2 SAR Architecture
	11.2.1 SAR Clock Control
	11.2.2 Memory Map
	11.2.3 Signal Descriptions
	11.2.4 Battery Measurement
	11.2.5 Internal Voltage Measurement
	11.2.6  Volume Control
	11.2.7 Touch Screen Digitizing
	11.2.8 Touch Screen : Pen Press Interrupts
	11.2.9 General-Purpose Output
	11.2.10 Reset Considerations
	11.2.10.1 Software Reset Considerations
	11.2.10.2 Hardware Reset Considerations

	11.2.11 A/D Conversion
	11.2.12 Interrupt Support
	11.2.12.1 Interrupt Events and Requests

	11.2.13 Emulation Considerations
	11.2.14 Conversion Example

	11.3 SAR Registers
	11.3.1 SARCTRL Register
	11.3.2 SARDATA Register
	11.3.3 SARCLKCTRL Register
	11.3.4 SARPINCTRL Register
	11.3.5 SARGPOCTRL Register

	12 General-Purpose Input/Output (GPIO)
	12.1 Introduction
	12.1.1 Purpose of the Peripheral
	12.1.2 Features
	12.1.3 Industry Standard(s) Compliance Statement

	12.2 Peripheral Architecture
	12.2.1 Clock Control
	12.2.2 Signal Descriptions
	12.2.3 GPIO Register Structure
	12.2.4 Using a GPIO Signal as an Output
	12.2.4.1 Configuring a GPIO Output Signal
	12.2.4.2 Controlling the GPIO Output Signal State

	12.2.5 Using a GPIO Signal as an Input
	12.2.5.1 Configuring a GPIO Input Signal
	12.2.5.2 Controlling the GPIO Input Signal State

	12.2.6 Reset Considerations
	12.2.6.1 Software Reset Considerations
	12.2.6.2 Hardware Reset Considerations

	12.2.7 Interrupt Support
	12.2.7.1 Interrupt Events and Requests
	12.2.7.2 Enabling GPIO Interrupt Events
	12.2.7.3 Configuring GPIO Interrupt Edge Triggering
	12.2.7.4 GPIO Interrupt Status
	12.2.7.5 Interrupt Multiplexing

	12.3 GPIO Registers
	12.3.1 IODIR1 Direction Registers
	12.3.2 IODIR2 Direction Registers
	12.3.3 IOINDATA1 Registers
	12.3.4 IOINDATA2 Registers
	12.3.5 IOOUTDATA1 Registers
	12.3.6 IOOUTDATA2 Registers
	12.3.7 IOINTEDG1 Registers
	12.3.8 IOINTEDG2 Registers
	12.3.9 IOINTEN1 Registers
	12.3.10 IOINTEN2 Registers
	12.3.11 IOINTFLG1 Registers
	12.3.12 IOINTFLG2 Registers

	13 Universal Serial Bus (USB) Controller
	13.1 Introduction
	13.1.1 Purpose of the Peripheral
	13.1.2 Features
	13.1.3 Functional Block Diagram
	13.1.4 Industry Standard(s) Compliance Statement

	13.2 Architecture
	13.2.1 Clock Control
	13.2.2 Signal Descriptions
	13.2.3 Memory Map
	13.2.4 USB_DP/USB_DM Polarity Inversion
	13.2.5 Indexed and Non-Indexed Registers
	13.2.6 USB PHY Initialization
	13.2.6.1 USB System Control Register (USBSCR)

	13.2.7 Dynamic FIFO Sizing
	13.2.8 USB Controller Peripheral Mode Operation
	13.2.8.1 USB Interrupts
	13.2.8.2 Connect, Suspend Mode, and Reset Signaling
	13.2.8.2.1 Soft Connect
	13.2.8.2.2 Suspend Mode
	13.2.8.2.3 Reset Signaling

	13.2.8.3 Control Transactions
	13.2.8.3.1 Zero Data Requests
	13.2.8.3.2  Write Requests
	13.2.8.3.3 Read Requests
	13.2.8.3.4 Endpoint 0 States
	13.2.8.3.5 Endpoint 0 Service Routine

	13.2.8.4  Bulk Transactions
	13.2.8.4.1  Bulk In Transactions
	13.2.8.4.2 Bulk OUT Transactions

	13.2.8.5 Interrupt Transactions
	13.2.8.6 Isochronous Transactions
	13.2.8.6.1 Isochronous IN Transactions
	13.2.8.6.2 Isochronous OUT Transactions

	13.2.9 Communications Port Programming Interface (CPPI) 4.1 DMA Overview for TMS320C5515
	13.2.9.1 CPPI Terminology
	13.2.9.2 Host Packet Descriptor (SOP Descriptor)
	13.2.9.3 Host Buffer Descriptor (Non-SOP Descriptor)
	13.2.9.4 Teardown Descriptor
	13.2.9.5 Queues
	13.2.9.5.1 Queuing Packets
	13.2.9.5.2 De-Queuing Packets
	13.2.9.5.3 Type of Queues

	13.2.9.6 Memory Regions and Linking RAM
	13.2.9.7 Zero Length Packets
	13.2.9.8 CPPI DMA Scheduler
	13.2.9.8.1 CPPI DMA Scheduler Initialization
	13.2.9.8.2 Scheduler Operation

	13.2.9.9 CPPI DMA Transfer Interrupt Handling
	13.2.9.10 DMA State Registers
	13.2.9.10.1 Transmit DMA State Registers
	13.2.9.10.2 Receive DMA State Registers

	13.2.9.11 USB DMA Protocols Supported
	13.2.9.11.1 Transparent DMA
	13.2.9.11.2 RNDIS
	13.2.9.11.3 Generic RNDIS
	13.2.9.11.4 Linux CDC

	13.2.9.12 USB Data Flow Using DMA
	13.2.9.12.1 Transmit USB Data Flow Using DMA
	13.2.9.12.2 Receive USB Data Flow Using DMA

	13.2.9.13 Interrupt Handling
	13.2.9.13.1 USB Core Interrupts

	13.2.10 BYTEMODE Bits of the USB System Control Register
	13.2.11 Reset Considerations
	13.2.11.1 Software Reset Considerations
	13.2.11.2 Hardware Reset Considerations

	13.2.12 Interrupt Support
	13.2.13 DMA Event Support
	13.2.14 Power Management

	13.3 Registers
	13.3.1 USB Controller Register Summary
	13.3.1.1 Universal Serial Bus (USB) Controller Registers
	13.3.1.2 Mentor USB2.0 Core Registers
	13.3.1.2.1 Common USB Registers
	13.3.1.2.2 Indexed Registers
	13.3.1.2.3 FIFO Registers
	13.3.1.2.4 Dynamic FIFO Control Registers
	13.3.1.2.5 Control and Status Registers for Endpoints 0-4

	13.3.1.3 Communications Port Programming Interface (CPPI) 4.1 DMA Registers
	13.3.1.3.1 CPPI DMA (CMDA) Registers
	13.3.1.3.2 Queue Manager (QMGR) Registers

	13.3.2 Revision Identification Registers (REVID1 and REVID2)
	13.3.3 Control Register (CTRLR)
	13.3.4 Emulation Register (EMUR)
	13.3.5 Mode Registers (MODE1 and MODE2)
	13.3.6 Auto Request Register (AUTOREQ)
	13.3.7 Teardown Registers (TEARDOWN1 and TEARDOWN2)
	13.3.8 USB Interrupt Source Registers (INTSRCR1 and INTSRCR2)
	13.3.9 USB Interrupt Source Set Registers (INTSETR1 and INTSETR2)
	13.3.10 USB Interrupt Source Clear Registers (INTCLRR1 and INTCLRR2)
	13.3.11 USB Interrupt Mask Registers (INTMSKR1 and INTMSKR2)
	13.3.12 USB Interrupt Mask Set Registers (INTMSKSETR1 and INTMSKSETR2)
	13.3.13 USB Interrupt Mask Clear Registers (INTMSKCLRR1 and INTMSKCLRR2)
	13.3.14 USB Interrupt Source Masked Registers (INTMASKEDR1 and INTMASKEDR2)
	13.3.15 USB End of Interrupt Register (EOIR)
	13.3.16 USB Interrupt Vector Registers (INTVECTR1 and INTVECTR2)
	13.3.17 Generic RNDIS EP1 Size Registers (GREP1SZR1 and GREP1SZR2)
	13.3.18 Generic RNDIS EP2 Size Registers (GREP2SZR1 and GREP2SZR2)
	13.3.19 Generic RNDIS EP3 Size Registers (GREP3SZR1 and GREP3SZR2)
	13.3.20 Generic RNDIS EP4 Size Registers (GREP4SZR1 and GREP4SZR2)
	13.3.21 Function Address Register (FADDR)
	13.3.22 Power Management Register (POWER)
	13.3.23 Interrupt Register for Endpoint 0 Plus Transmit Endpoints 1 to 4 (INTRTX)
	13.3.24 Interrupt Register for Receive Endpoints 1 to 4 (INTRRX)
	13.3.25 Interrupt Enable Register for INTRTX (INTRTXE)
	13.3.26 Interrupt Enable Register for INTRRX (INTRRXE)
	13.3.27 Interrupt Register for Common USB Interrupts (INTRUSB)
	13.3.28 Interrupt Enable Register for INTRUSB (INTRUSBE)
	13.3.29 Frame Number Register (FRAME)
	13.3.30 Index Register for Selecting the Endpoint Status and Control Registers (INDEX)
	13.3.31 Register to Enable the USB 2.0 Test Modes (TESTMODE)
	13.3.32 Maximum Packet Size for Peripheral/Host Transmit Endpoint (TXMAXP)
	13.3.33 Control Status Register for Peripheral Endpoint 0 (PERI_CSR0)
	13.3.34 Control Status Register for Peripheral Transmit Endpoint (PERI_TXCSR)
	13.3.35 Maximum Packet Size for Peripheral Receive Endpoint (RXMAXP)
	13.3.36 Control Status Register for Peripheral Receive Endpoint (PERI_RXCSR)
	13.3.37 Count 0 Register (COUNT0)
	13.3.38 Receive Count Register (RXCOUNT)
	13.3.39 Configuration Data Register (CONFIGDATA)
	13.3.40 Transmit and Receive FIFO Registers for Endpoint 0 (FIFO0R1 and FIFO0R2)
	13.3.41 Transmit and Receive FIFO Registers for Endpoint 1 (FIFO1R1 and FIFO1R2)
	13.3.42 Transmit and Receive FIFO Registers for Endpoint 2 (FIFO2R1 and FIFO2R2)
	13.3.43 Transmit and Receive FIFO Registers for Endpoint 3 (FIFO3R1 and FIFO3R2)
	13.3.44 Transmit and Receive FIFO Registers for Endpoint 4 (FIFO4R1 and FIFO4R2)
	13.3.45 Device Control Register (DEVCTL)
	13.3.46 Transmit Endpoint FIFO Size (TXFIFOSZ)
	13.3.47 Receive Endpoint FIFO Size (RXFIFOSZ)
	13.3.48 Transmit Endpoint FIFO Address (TXFIFOADDR)
	13.3.49 Hardware Version Register (HWVERS)
	13.3.50 Receive Endpoint FIFO Address (RXFIFOADDR)
	13.3.51 CDMA Revision Identification Registers (DMAREVID1 and DMAREVID2)
	13.3.52 CDMA Teardown Free Descriptor Queue Control Register (TDFDQ)
	13.3.53 CDMA Emulation Control Register (DMAEMU)
	13.3.54 CDMA Transmit Channel n Global Configuration Registers (TXGCR1[n] and TXGCR2[n])
	13.3.55 CDMA Receive Channel n Global Configuration Registers (RXGCR1[n] and RXGCR2[n])
	13.3.56 CDMA Receive Channel n Host Packet Configuration Registers A (RXHPCR1A[n] and RXHPCR2A[n])
	13.3.57 CDMA Receive Channel n Host Packet Configuration Registers B (RXHPCR1B[n] and RXHPCR2B[n])
	13.3.58 CDMA Scheduler Control Register (DMA_SCHED_CTRL1 and DMA_SCHED_CTRL2)
	13.3.59 CDMA Scheduler Table Word n Registers (ENTRYLSW[n]-ENTRYMSW[n])
	13.3.60 Queue Manager Revision Identification Registers (QMGRREVID1 and QMGRREVID2)
	13.3.61 Queue Manager Queue Diversion Registers (DIVERSION1 and DIVERSION2)
	13.3.62 Queue Manager Free Descriptor/Buffer Starvation Count Register 0 (FDBSC0)
	13.3.63 Queue Manager Free Descriptor/Buffer Starvation Count Register 1 (FDBSC1)
	13.3.64 Queue Manager Free Descriptor/Buffer Starvation Count Register 2 (FDBSC2)
	13.3.65 Queue Manager Free Descriptor/Buffer Starvation Count Register 3 (FDBSC3)
	13.3.66 Queue Manager Free Descriptor/Buffer Starvation Count Register 4 (FDBSC4)
	13.3.67 Queue Manager Free Descriptor/Buffer Starvation Count Register 5 (FDBSC5)
	13.3.68 Queue Manager Free Descriptor/Buffer Starvation Count Register 6 (FDBSC6)
	13.3.69 Queue Manager Free Descriptor/Buffer Starvation Count Register 7 (FDBSC7)
	13.3.70 Queue Manager Linking RAM Region 0 Base Address Registers (LRAM0BASE1 and LRAM0BASE2)
	13.3.71 Queue Manager Linking RAM Region 0 Size Register (LRAM0SIZE)
	13.3.72 Queue Manager Linking RAM Region 1 Base Address Registers (LRAM1BASE1 and LRAM1BASE2)
	13.3.73 Queue Manager Queue Pending Register 0 (PEND0)
	13.3.74 Queue Manager Queue Pending Register 1 (PEND1)
	13.3.75 Queue Manager Queue Pending Register 2 (PEND2)
	13.3.76 Queue Manager Queue Pending Register 3 (PEND3)
	13.3.77 Queue Manager Queue Pending Register 4 (PEND4)
	13.3.78 Queue Manager Queue Pending Register 5 (PEND5)
	13.3.79 Queue Manager Memory Region R Base Address Registers (QMEMRBASE1[R] and QMEMRBASE2[R])
	13.3.80 Queue Manager Memory Region R Control Registers (QMEMRCTRL1[R] and QMEMRCTRL2[R])
	13.3.81 Queue Manager Queue N Control Register D (CTRL1D[N] and CTRL2D[N])
	13.3.82 Queue Manager Queue N Status Register A (QSTATA[N])
	13.3.83 Queue Manager Queue N Status Registers B (QSTAT1B[N] and QSTAT2B[N])
	13.3.84 Queue Manager Queue N Status Register C (QSTATC[N])

	14 Liquid Crystal Display Controller (LCDC)
	14.1 Introduction
	14.1.1 Purpose of the Peripheral
	14.1.2 Terminology Used in this Document
	14.1.2.1  LCD Clock

	14.1.3 LCD External I/O Signals
	14.1.4 LCD Interface Display Driver Details (LIDD) Controller
	14.1.5 LIDD Controller Timing
	14.1.6 DMA Engine
	14.1.6.1 Interrupts
	14.1.6.1.1 Interrupt Handling

	14.2  LCD Port Mapping
	14.3 Registers
	14.3.1 LCD Minor Revision Register (LCDREVMIN)
	14.3.2 LCD Major Revision Register (LCDREVMAJ)
	14.3.3 LCD Control Register (LCDCR)
	14.3.4 LCD Status Register (LCDSR)
	14.3.5 LCD LIDD Control Register (LCDLIDDCR)
	14.3.6 LCD LIDD CS0 and CS1 Configuration Register 0 (LCDLIDDCS0CONFIG0 and LCDLIDDCS1CONFIG0)
	14.3.7 LCD LIDD CS0 and CS1 Configuration Register 1 (LCDLIDDCS0CONFIG1 and LCDLIDDCS1CONFIG1)
	14.3.8 LCD LIDD CS0 and CS1 Address Read/Write Register (LCDLIDDCS0ADDR and LCDLIDDCS1ADDR)
	14.3.9 LCD LIDD CS0 and CS1 Data Read/Write Register (LCDLIDDCS0DATA and LCDLIDDCS1DATA)
	14.3.10 LCD DMA Control Register (LCDDMACR)
	14.3.11 LCD DMA Frame Buffer 0 Base Address Register 0 (LCDDMAFB0BAR0)
	14.3.12 LCD DMA Frame Buffer 0 Base Address Register 1 (LCDDMAFB0BAR1)
	14.3.13 LCD DMA Frame Buffer 0 Ceiling Address Register 0 (LCDDMAFB0CAR0)
	14.3.14 LCD DMA Frame Buffer 0 Ceiling Address Register 1 (LCDDMAFB0CAR1)
	14.3.15 LCD DMA Frame Buffer 1 Base Address Register 0 (LCDDMAFB1BAR0)
	14.3.16 LCD DMA Frame Buffer 1 Base Address Register 1 (LCDDMAFB1BAR1)
	14.3.17 LCD DMA Frame Buffer 1 Ceiling Address Register 0 (LCDDMAFB1CAR0)
	14.3.18 LCD DMA Frame Buffer 1 Ceiling Address Register 1 (LCDDMAFB1CAR1)

	Important Notice

