KeyStone Architecture Gigabit Ethernet (GbE) Switch Subsystem

User's Guide

Literature Number: SPRUGV9D November 2010-Revised June 2013

Contents

Prefa	ace		16
1	Intro	duction	17
	1.1	Purpose of the Peripheral	18
	1.2	Features	18
	1.3	Gigabit Ethernet Switch Subsystem Functional Block Diagram	19
	1.4	Industry Standard(s) Compliance Statement	21
2	Archi	itecture	22
	2.1	Clock Control	23
		2.1.1 Gigabit Switch Subsystem Clock	23
		2.1.2 SGMII SerDes Reference Clock	23
		2.1.3 MDIO Clock	23
		2.1.4 IEEE 1588 Time Synchronization Clock	23
		2.1.5 GMII Clock	23
	2.2	Memory Map	24
	2.3	Gigabit Ethernet Switch Architecture	24
		2.3.1 Streaming Packet Interface	25
		2.3.1.1 Transmit Streaming Packet Interface	25
		2.3.1.2 Receive Streaming Packet Interface	26
		2.3.2 Media Access Controller Submodule Architecture	27
		2.3.2.1 Data Receive Operations	27
		2.3.2.2 Data Transmission	28
		2.3.3 MAC Receive FIFO Architecture	32
		2.3.4 Statistics Submodule Architecture	33
		2.3.4.1 Accessing Statistics Registers	33
		2.3.4.2 Statistics Interrupts	33
		2.3.4.3 Receive Statistics Descriptions	
		2.3.4.4 Transmit (Only) Statistics Descriptions	
		2.3.4.5 Receive and Transmit (Shared) Statistics Descriptions	
		2.3.5 Time Synchronization Submodule Architecture	
		2.3.5.1 KeyStone II Time Synchronization Submodule Architecture	
		2.3.5.2 Time Synchronization Submodule Components	
		2.3.5.3 Time Synchronization Events	
		2.3.5.4 Time Synchronization Initialization	
		2.3.5.5 Detecting and Processing Time Synchronization Events	
		2.3.6 Address Lookup Engine (ALE) Submodule Architecture	
		2.3.6.1 ALE Table	53
		2.3.6.2 Reading Entries from the ALE Table	
		2.3.6.3 Writing Entries to the ALE Table	
		2.3.6.4 ALE Table Entry Types	
		2.3.6.5 ALE Packet Forwarding Process	
		2.3.6.6 ALE Learning Process	
	2.4	Serial Gigabit Media Independent Interface (SGMII) Architecture	
		2.4.1 SGMII Receive Interface	
		2.4.2 SGMII Transmit Interface	
		2.4.3 Modes of Operation	65

2

SPRUGV9D-November 2010-Revised June 2013 Submit Documentation Feedback

www.t	ti.com		
		2.4.3.1 Digital Loopback	65
		2.4.3.2 SGMII to PHY Configuration	
		2.4.3.3 SGMII to SGMII with Auto-Negotiation Configuration	
		2.4.3.4 SGMII to SGMII with Forced Link Configuration	
	2.5	Management Data Input/Output (MDIO) Architecture	
		2.5.1 Global PHY Detection and Link State Monitoring	
		2.5.2 PHY Register User Access	
		2.5.2.1 Writing Data to a PHY Register	
		2.5.2.2 Reading Data from a PHY Register	
		2.5.3 MDIO Interrupts	
		2.5.3.1 MDIO User Access Interrupts	
		2.5.4 Initializing the MDIO Module	
	2.6	KeyStone I Serializer/Deserializer (SerDes) Architecture	
	2.7	KeyStone II Serializer/Deserializer (SerDes) Architecture	
	2.8	Reset Considerations	
	2.9	Initialization	
	2.0	2.9.1 GbE Switch Subsystem Initialization Procedure	
	2.10	Interrupt Support	
	2.10	2.10.1 Interrupt Events	
	2.11	Power Management	
•			
3	•	sters	
	3.1	Summary of Modules	
	3.2	Gigabit Ethernet (GbE) Switch Subsystem Module	
		3.2.1 Ethernet Switch Subsystem Identification and Version Register (ES_SS_IDVER)	
	3.3	Serial Gigabit Media Independent Interface (SGMII) module	
		3.3.1 SGMII Identification and Version Register (SGMII_IDVER)	
		3.3.2 SGMII Software Reset Register (SGMII_SOFT_RESET)	
		3.3.3 SGMII Control Register (SGMII_CONTROL)	
		3.3.4 SGMII Status Register (SGMI_STATUS)	
		3.3.5 SGMII Advertised Ability Register (SGMII_MR_ADV_ABILITY)	
		3.3.5.1 SGMII MODE	
		3.3.6 SGMII Link Partner Advertised Ability Register (SGMII_MR_LP_ADV_ABILITY)	
	3.4	Management Data Input/Output (MDIO) module	
		3.4.1 MDIO Version Register (MDIO_VERSION)	
			99
		3.4.3 PHY Alive Status Register (MDIO_ALIVE) 10	
		3.4.4 PHY Link Status Register (MDIO_LINK) 1	
		3.4.5 MDIO Link Status Change Interrupt (Unmasked) Register (MDIO_LINKINTRAW) 10	
		3.4.6 MDIO Link Status Change Interrupt (Masked) Register (MDIO_LINKINTMASKED) 10	
		3.4.7 MDIO User Command Complete Interrupt (Unmasked) Register (MDIO_USERINTRAW) 10	
		3.4.8 MDIO User Command Complete Interrupt (Masked) Register (MDIO_USERINTMASKED) 10	
		3.4.9 MDIO User Command Complete Interrupt Mask Set Register (MDIO_USERINTMASKSET) 10	
		3.4.10 MDIO User Command Complete Interrupt Mask Clear Register (MDIO_USERINTMASKCLEAR) . 10	
		3.4.11 MDIO User Access Register 0 (MDIO_USERACCESS0) 10	
		3.4.12 MDIO User PHY Select Register 0 (MDIO_USERPHYSEL0) 10	
		3.4.13 MDIO User Access Register 1 (MDIO_USERACCESS1) 1	
		3.4.14 MDIO User PHY Select Register 1 (MDIO_USERPHYSEL1) 1	
	3.5	Ethernet Switch Module 1	12
		3.5.1 Gigabit Ethernet (GbE) Switch Submodule 1	
		3.5.1.1 GbE Switch Identification and Version Register (CPSW_IDVER) 1	
		3.5.1.2 GbE Switch Control Register (CPSW_CONTROL) 1	
		3.5.1.3 Emulation Control Register (EM_CONTROL) 1	
		3.5.1.4 Statistics Port Enable (STAT_PORT_EN) 1	19

3.5.1.5	Priority Type Register (PTYPE)	121
3.5.1.6	KeyStone I and KeyStone II MAC Short Gap Threshold Register (GAP_THRESH)	122
3.5.1.7	Transmit FIFO Start Words Register (TX_START_WDS)	123
3.5.1.8	Flow Control Register (FLOW_CONTROL)	124
3.5.1.9	Port 0 Source Identification Register (P0_CPPI_SRC_ID)	125
3.5.1.10	Port 0 VLAN Register (P0_PORT_VLAN)	126
3.5.1.11	Port 0 Receive Packet Priority to Header Priority Mapping Register (P0_RX_PRI_MAP)	127
3.5.1.12	Port 0 Receive Maximum Length Register (P0_RX_MAXLEN)	
3.5.1.13	Port 1 Max Blocks Register (P1_MAX_BLKS)	
3.5.1.14	Port 1 Block Count Register (P1_BLK_CNT)	
3.5.1.15	Port 1 VLAN Register (P1_PORT_VLAN)	
3.5.1.16	Port 1 Transmit Header Priority to Switch Priority Mapping Register (P1_TX_PRI_MAP)	
3.5.1.17	MAC1 Source Address Low Register (MAC1_SA_LO)	
3.5.1.18	MAC1 Source Address High Register (MAC1_SA_HI)	
3.5.1.19	Port 1 Time Sync Control Register (P1_TS_CTL)	
3.5.1.20	Port 1 Time Sync Sequence ID and LTYPE Register (P1_TS_SEQ_LTYPE)	
3.5.1.21	Port 1 Time Sync Control Register 2 (P1 _TS_CTL2)	
3.5.1.22	Port 1 Time Sync Control Register and LTYPE2 (P1 _TS_CTL_LTYPE2)	
3.5.1.23	Port 1 Time Sync VLAN LTYPE Register (P1_TS_VLAN_LTYPE)	
3.5.1.24	Port 2 Max Blocks Register (P2_MAX_BLKS)	
3.5.1.25	Port 2 Block Count Register (P2_BLK_CNT)	142
3.5.1.26	Port 2 VLAN Register (P2_PORT_VLAN)	143
3.5.1.27	Port 2 Transmit Header Priority to Switch Priority Mapping Register (P2_TX_PRI_MAP)	
3.5.1.28	MAC2 Source Address Low Register (MAC2_SA_LO)	145
3.5.1.29	MAC2 Source Address High Reserved Register (MAC2_SA_HI)	
3.5.1.30	Port 2 Time Sync Control Register (P2_TS_CTL)	
3.5.1.31	Port 2 Time Sync Sequence ID and LTYPE Register (P2_TS_SEQ_LTYPE)	
3.5.1.32	Port 2 Time Sync VLAN LTYPE Register (P2_TS_VLAN_LTYPE)	150
3.5.1.33	Port 2 Time Sync Control Register 2 (P2 _TS_CTL2)	151
3.5.1.34	Port 2 Time Sync Control Register and LTYPE2 (P2 _TS_CTL_LTYPE2)	152
3.5.2 Key	Stone II Port 3 & 4 Register Descriptions	153
3.5.2.1	Port 3 Max Blocks Register (P3_MAX_BLKS)	153
3.5.2.2	Port 3 Block Count Register (P3_BLK_CNT)	154
3.5.2.3	Port 3 VLAN Register (P3_PORT_VLAN)	155
3.5.2.4	Port 3 Transmit Header Priority to Switch Priority Mapping Register (P3_TX_PRI_MAP)	156
3.5.2.5	MAC3 Source Address Low Register (MAC3_SA_LO)	157
3.5.2.6	MAC3 Source Address High Register (MAC3_SA_HI)	158
3.5.2.7	Port 3 Time Sync Control Register (P3 _TS_CTL)	159
3.5.2.8	Port 3 Time Sync Sequence ID and LTYPE Register (P3_TS_SEQ_LTYPE)	160
3.5.2.9	Port 3 Time Sync VLAN LTYPE Register (P3_TS_VLAN_LTYPE)	161
3.5.2.10	Port 3 Time Sync Control and LTYPE2 Register (P3 _TS_CTL_LTYPE2)	162
3.5.2.11	Port 3 Time Sync Control Register 2 (P3 _TS_CTL2)	163
3.5.2.12	Port 4 Max Blocks Register (P4_MAX_BLKS)	164
3.5.2.13	Port 4 Block Count Register (P4_BLK_CNT)	165
3.5.2.14	Port 4 VLAN Register (P4_PORT_VLAN)	166
3.5.2.15	Port 4 Transmit Header Priority to Switch Priority Mapping Register (P4_TX_PRI_MAP)	167
3.5.2.16	MAC4 Source Address Low Register (MAC4_SA_LO)	168
3.5.2.17	MAC4 Source Address High Register (MAC4_SA_HI)	169
3.5.2.18	Port 4 Time Sync Control Register (P4 _TS_CTL)	
3.5.2.19	Port 4 Time Sync Sequence ID and LTYPE Register (P4_TS_SEQ_LTYPE)	171
3.5.2.20	Port 4 Time Sync VLAN LTYPE Register (P4_TS_VLAN_LTYPE)	172
3.5.2.21	Port 4 Time Sync Control Register and LTYPE2 (P4 _TS_CTL_LTYPE2)	
3.5.2.22	Port 4 Time Sync Control Register 2 (P4 _TS_CTL2)	174

www.ti.com			
3	3.5.3 Ethe	rnet Media Access Controller (EMAC) Submodule	175
	3.5.3.1	MAC Identification and Version Register (MAC_IDVER)	176
	3.5.3.2	MAC Control Register (MAC_CONTROL)	177
	3.5.3.3	MAC Status Register (MACSTATUS)	179
	3.5.3.4	Software Reset Register (SOFT_RESET)	180
	3.5.3.5	Receive Maximum Length Register (RX_MAXLEN)	181
	3.5.3.6	Receive Pause Timer Register (RX_PAUSE)	182
	3.5.3.7	Transmit Pause Timer Register (TX_PAUSE)	183
	3.5.3.8	Emulation Control Register (EM_CONTROL)	184
	3.5.3.9	Receive Packet Priority to Header Priority Mapping Register (MAC_RX_PRI_MAP)	185
3	3.5.4 Stati	stics (STATS) Submodule	186
	3.5.4.1	Port n Good Receive Frames Register (STATn_RXGOODFRAMES)	
	3.5.4.2	Broadcast Receive Frames Register (RXBROADCASTFRAMES)	189
	3.5.4.3	Multicast Receive Frames Register (RXMULTICASTFRAMES)	190
	3.5.4.4	Pause Receive Frames Register (RXPAUSEFRAMES)	191
	3.5.4.5	Receive CRC Errors Register (RXCRCERRORS)	192
	3.5.4.6	Receive Align/Code Errors Register (RXALIGNCODEERRORS)	193
	3.5.4.7	Oversize Receive Frames Register (RXOVERSIZEDFRAMES)	194
	3.5.4.8	Receive Jabber Frames Register (RXJABBERFRAMES)	195
	3.5.4.9	Undersize (Short) Receive Frames Register (RXUNDERSIZEDFRAMES)	196
	3.5.4.10	Receive Fragment Register (RXFRAGMENTS)	
	3.5.4.11	Port n Receive Octets Register (STATn_RXOCTETS)	
	3.5.4.12	Good Transmit Frames Register (TXGOODFRAMES)	199
	3.5.4.13	Broadcast Transmit Frames Register (TXBROADCASTFRAMES)	200
	3.5.4.14	Multicast Transmit Frames (TXMULTICASTFRAMES)	201
	3.5.4.15	Pause Transmit Frames Register (TXPAUSEFRAMES)	202
	3.5.4.16	Deferred Transmit Frames Register (TXDEFERREDFRAMES)	
	3.5.4.17	Transmit Frames Collision Register (TXCOLLISIONFRAMES)	
	3.5.4.18	Transmit Frames Single Collision Register (TXSINGLECOLLFRAMES)	
	3.5.4.19	Transmit Frames Multiple Collision Register (TXMULTCOLLFRAMES)	206
	3.5.4.20	Transmit Excessive Collision Register (TXEXCESSIVECOLLISIONS)	
	3.5.4.21	Transmit Late Collisions Register (TXLATECOLLISIONS)	
	3.5.4.22	Transmit Frames Underrun Register (TXUNDERRUN)	
	3.5.4.23	Transmit Carrier Sense Errors Register (TXCARRIERSENSEERRORS)	
	3.5.4.24	Transmit Octets Register (TXOCTETS)	
	3.5.4.25	Receive and Transmit 64 Octet Frames Register (64OCTETFRAMES)	
	3.5.4.26	Receive and Transmit 65-127 Octet Frames Register (65T127OCTETFRAMES)	
	3.5.4.27	Receive and Transmit 128-255 Octet Frames Register (128T255OCTETFRAMES)	
	3.5.4.28	Receive and Transmit 256-511 Octet Frames Register (256T511OCTETFRAMES)	
	3.5.4.29	Receive and Transmit 512-1023 Octet Frames Register (512T1023OCTETFRAMES)	
	3.5.4.30	Receive and Transmit 1024 and Up Octet Frames Register (1024TUPOCTETFRAMES)	
	3.5.4.31	Net Octets Register (NETOCTETS)	
	3.5.4.32	Receive Start of Frame Overruns Register (RXSOFOVERRUNS)	
	3.5.4.33	Receive Middle of Frame Overruns Register (RXMOFOVERRUNS)	
-	3.5.4.34	Receive DMA Overruns Register (RXDMAOVERRUNS)	
3		Synchronization (CPTS) Submodule	
	3.5.5.1	CPTS Identification and Version Register (CPTS_IDVER)	
	3.5.5.2	Time Sync Control Register (CPTS_CTL)	
	3.5.5.3	RFTCLK Select Register (CPTS_RFTCLK_SEL)	
	3.5.5.4	Time Stamp Event Push Register (CPTS_TS_PUSH)	
	3.5.5.5	Interrupt Status Raw Register (CPTS_INTSTAT_RAW)	
	3.5.5.6	Interrupt Status Masked Register (CPTS_INTSTAT_MASKED)	
	3.5.5.7	Interrupt Enable Register (CPTS_INT_ENABLE)	229

W١	NW	.ti.	со	m

	3.5.5.8	Event Pop Register (CPTS_EVENT_POP)	230
	3.5.5.9	Event Low Register (CPTS_EVENT_LOW)	231
	3.5.5.10	Event Middle Register (CPTS_EVENT_MID)	232
	3.5.5.11	Event High Register (CPTS_EVENT_HIGH)	233
	3.5.6 Add	ress Lookup Engine (ALE) submodule	234
	3.5.6.1	ALE Identification and Version Register (ALE_IDVER)	235
	3.5.6.2	ALE Control Register (ALE_CONTROL)	236
	3.5.6.3	ALE Prescale Register (ALE_PRESCALE)	238
	3.5.6.4	ALE Unknown VLAN Register (UNKNOWN_VLAN)	239
	3.5.6.5	ALE Table Control Register (ALE_TBLCTL)	240
	3.5.6.6	ALE Table Word 2 Register (ALE_TBLW2)	241
	3.5.6.7	ALE Table Word 1 Register (ALE_TBLW1)	242
	3.5.6.8	ALE Table Word 0 Register (ALE_TBLW0)	243
	3.5.6.9	ALE Port 0 Control Register (ALE_PORTCTL0)	244
	3.5.6.10	ALE Port 1 Control Register (ALE_PORTCTL1)	245
	3.5.6.11	ALE Port 2 Control Register (ALE_PORTCTL2)	246
	3.5.6.12	ALE Port 3 Control Register (ALE_PORTCTL3)	247
	3.5.6.13	ALE Port 4 Control Register (ALE_PORTCTL4)	248
	3.5.6.14	ALE Port 5 Control Register (ALE_PORTCTL5)	249
3.6	Serializer/D	eserializer (SerDes) SGMII Boot Configuration Registers	250
	3.6.1 SGN	/II SerDes Status Register (SGMII_SERDES_STS)	251
	3.6.2 SGN	/II PLL Configuration Register (SGMII_SERDES_CFGPLL)	252
	3.6.3 SGN	/II Receive Configuration Register <i>n</i> (SGMII_SERDES_CFGRX <i>n</i>)	254
	3.6.4 SGN	/III Transmit Configuration Register <i>n</i> (SGMII_SERDES_CFGTX <i>n</i>)	256
Revision H	istory		258

List of Figures

1-1.	KeyStone I Ethernet Switch Subsystem Block Diagram	19
1-2.	KeyStone II Ethernet Switch Subsystem Block Diagram	20
2-1.	Free Table Entry	54
2-2.	Multicast Address Table Entry	54
2-3.	VLAN/Multicast Table Entry	55
2-4.	Unicast Table Entry	
2-5.	OUI Unicast Table Entry	
2-6.	VLAN/Unicast Table Entry	
2-7.	VLAN Table Entry	
2-8.	SGMII Mode with PHY Configuration	
2-9.	SGMII Master to SGMII Slave with Auto-Negotiation Configuration	
2-10.	SGMII Master to SGMII Master with Forced Link Configuration	
3-1.	Ethernet Switch Subsystem Identification and Version Register (ES_SS_IDVER)	
3-2.	SGMII Identification and Version Register (SGMII_IDVER)	
3-3.	SGMII Software Reset Register (SGMII_SOFT_RESET)	
3-4.	SGMII Control Register (SGMII_CONTROL)	
3-5.	SGMII Status Register (SGMII_STATUS)	
3-6.	SGMII Advertised Ability Register (SGMII_MR_ADV_ABILITY)	
3-7.	SGMII Link Partner Advertised Ability Register (SGMII_MR_LP_ADV_ABILITY)	
3-8.	MDIO Version Register (MDIO_VERSION)	
3-9.	MDIO Control Register (MDIO_CONTROL)	
3-10.	PHY Alive Status Register (MDIO_ALIVE)	
3-11.	PHY Link Status Register (MDIO_LINK)	
3-12.	MDIO Link Status Change Interrupt (Unmasked) Register (MDIO_LINKINTRAW)	
3-13.	MDIO Link Status Change Interrupt (Masked) Register (MDIO_LINKINTMASKED)	
3-14.	MDIO User Command Complete Interrupt (Unmasked) Register (MDIO_USERINTRAW)	
3-15.	MDIO User Command Complete Interrupt (Masked) Register (MDIO_USERINTMASKED)	
3-16.	MDIO User Command Complete Interrupt Mask Set Register (MDIO_USERINTMASKSET)	
3-17.	MDIO User Command Complete Interrupt Mask Clear Register (MDIO_USERINTMASKCLEAR) MDIO User Access Register 0 (MDIO_USERACCESS0)	
3-18.		
3-19.	MDIO User PHY Select Register 0 (MDIO_USERPHYSEL0)	
3-20. 3-21.	MDIO User Access Register 1 (MDIO_USERACCESS1) MDIO User PHY Select Register 1 (MDIO_USERPHYSEL1)	
3-21. 3-22.		
3-22. 3-23.	GbE Switch Identification and Version Register (CPSW_IDVER) GbE Switch Control Register (CPSW_CONTROL)	
3-23. 3-24.	Emulation Control Register (EM_CONTROL)	
3-24. 3-25.	KeyStone I Statistics Port Enable (STAT_PORT_EN)	
3-23. 3-26.	KeyStone II Statistics Port Enable (STAT_PORT_EN)	
3-20. 3-27.	KeyStone Priority Type Register (PTYPE)	
3-27. 3-28.	KeyStone II Priority Type Register (PTYPE)	
3-20. 3-29.	KeyStone I and KeyStone II MAC Short Gap Threshold Register (GAP_THRESH)	
3-29. 3-30.	Transmit FIFO Start Words Register (TX_START_WDS)	
3-30. 3-31.	KeyStone I Flow Control Register (FLOW_CONTROL)	
3-31. 3-32.	KeyStone II Flow Control Register (FLOW_CONTROL)	
3-32.	KeyStone I Port 0 Source Identification Register (P0_CPPI_SRC_ID)	
3-34.	KeyStone II Port 0 Source Identification Register (P0_CPPI_SRC_ID)	
3-35.	Port 0 VLAN Register (P0_PORT_VLAN)	
C 00.		0

3-36.	Port 0 Receive Packet Priority to Header Priority Mapping Register (P0_RX_PRI_MAP)	127
3-37.	Port 0 RX Maximum Length Register (P0_RX_MAXLEN)	
3-38.	Port 1 Max Blocks Register (P1_MAX_BLKS)	
3-39.	Port 1 Block Count Register (P1_BLK_CNT)	
3-40.	Port 1 VLAN Register (P1_PORT_VLAN)	
3-41.	Port 1 Transmit Header Priority to Switch Priority Mapping Register (P1_TX_PRI_MAP)	
3-42.	MAC1 Source Address Low Register (MAC1_SA_LO)	
3-43.	MAC1 Source Address High Register (MAC1_SA_HI)	
3-44.	KeyStone I Port 1 Time Sync Control Register (P1_TS_CTL)	
3-45.	KeyStone II Port 1 Time Sync Control Register (P1_TS_CTL)	
3-46.	Port 1 Time Sync Sequence ID and LTYPE Register (P1_TS_SEQ_LTYPE)	
3-47.	Port 1 Time Sync Control Register 2 (P1_TS_CTL2)	
3-48.	Port 1 Time Sync Control Register and LTYPE2 (P1_TS_CTL_LTYPE2)	
3-49.	Port 1 Time Sync VLAN LTYPE Register (P1_TS_VLAN_LTYPE)	
3-50.	Port 2 Max Blocks Register (P2_MAX_BLKS)	
3-51.	Port 2 Block Count Register (P2_BLK_CNT)	
3-52.	Port 2 VLAN Register (P2_PORT_VLAN)	
3-53.	Port 2 Transmit Header Priority to Switch Priority Mapping Register (P2_TX_PRI_MAP)	
3-54.	MAC2 Source Address Low Register (MAC2_SA_LO)	
3-54. 3-55.	MAC2 Source Address Low Register (MAC2_SA_LO)	
3-55. 3-56.	KeyStone I Port 2 Time Sync Control Register (P2_TS_CTL)	
3-50. 3-57.	KeyStone II Port 2 Time Sync Control Register (P1_TS_CTL)	
3-57. 3-58.	Port 2 Time Sync Sequence ID and LTYPE Register (P2_TS_SEQ_LTYPE)	
3-58. 3-59.	Port 2 Time Sync VLAN LTYPE Register (P2_TS_VLAN_LTYPE)	
3-59. 3-60.	Port 2Time Sync Control Register 2 (P3_TS_CTL2).	
3-61.	Port 2 Time Sync Control Register 2 (P3_13_C122).	
3-62.	Port 3 Max Blocks Register (P3_MAX_BLKS)	
3-62. 3-63.	Port 3 Block Count Register (P3_BLK_CNT)	
3-63. 3-64.	Port 3 VLAN Register (P3_PORT_VLAN)	
3-64. 3-65.	Port 3 Transmit Header Priority to Switch Priority Mapping Register (P3_TX_PRI_MAP)	
	MAC3 Source Address Low Register (MAC3_SA_LO)	
3-66. 3-67.	MAC3 Source Address Low Register (MAC3_SA_LO)	
3-67. 3-68.	Port 3 Time Sync Control Register (P3_TS_CTL).	
3-69.	Port 3 Time Sync Control Register (P3_T3_C1L).	
3-09. 3-70.	Port 3 Time Sync VLAN LTYPE Register (P3_TS_VLAN_LTYPE)	
3-70. 3-71.	Port 3 Time Sync Control and LTYPE2 Register (P3_T3_VLAN_LTYPE2)	
3-71. 3-72.		
3-72. 3-73.	Port 3 Time Sync Control Register 2 (P3_TS_CTL2) Port 4 Max Blocks Register (P4_MAX_BLKS)	
3-73. 3-74.	Port 4 Block Count Register (P4_BLK_CNT)	
3-74. 3-75.	Port 4 VLAN Register (P4_PORT_VLAN)	
3-75. 3-76.		
3-76. 3-77.	Port 4 Transmit Header Priority to Switch Priority Mapping Register (P4_TX_PRI_MAP)	
-	MAC4 Source Address Low Register (MAC4_SA_LO)	
3-78.	MAC4 Source Address High Register (MAC4_SA_HI)	
3-79.	Port 4 Time Sync Control Register (P4_TS_CTL).	
3-80.	Port 4 Time Sync Sequence ID and LTYPE Register (P4_TS_SEQ_LTYPE)	
3-81.	Port 4 Time Sync VLAN LTYPE Register (P4_TS_VLAN_LTYPE)	
3-82.	Port 4 Time Sync Control Register and LTYPE2 (P4_TS_CTL_LTYPE2)	
3-83.	Port 4 Time Sync Control Register 2 (P4_TS_CTL2)	
3-84.	MAC Identification and Version Register (MAC_IDVER)	176

www.ti.con		
3-8	5. MAC Control Register (MAC_CONTROL)	177
3-8	6. MAC Status Register (MACSTATUS)	179
3-8	7. Software Reset Register (SOFT_RESET)	180
3-8	3. Receive Maximum Length Register (RX_MAXLEN)	181
3-8	9. Receive Pause Timer Register (RX_PAUSE)	182
3-9). Transmit Pause Timer Register (TX_PAUSE)	183
3-9	I. Emulation Control Register (EM_CONTROL)	184
3-9	2. Receive Packet Priority to Header Priority Mapping Register (MAC_RX_PRI_MAP)	185
3-9	3. Port n Good Receive Frames Register (STATn_RXGOODFRAMES)	188
3-9	1. Broadcast Receive Frames Register (RXBROADCASTFRAMES)	189
3-9	5. Multicast Receive Frames Register (RXMULTICASTFRAMES)	190
3-9	6. Pause Receive Frames Register (RXPAUSEFRAMES)	191
3-9	5 ()	
3-9	3. Receive Align/Code Errors Register (RXALIGNCODEERRORS)	193
3-9	0. Oversize Receive Frames Register (RXOVERSIZEDFRAMES)	194
	00. Receive Jabber Frames Register (RXJABBERFRAMES)	
3-1	01. Undersize (Short) Receive Frames Register (RXUNDERSIZEDFRAMES)	196
	02. Receive Fragment Register (RXFRAGMENTS)	
	03. Port n Receive Octets Register (STATn_RXOCTETS)	
	04. Good Transmit Frames Register (TXGOODFRAMES)	
	05. Broadcast Transmit Frames Register (TXBROADCASTFRAMES)	
	06. Multicast Transmit Frames (TXMULTICASTFRAMES)	
	07. Pause Transmit Frames Register (TXPAUSEFRAMES)	
	08. Deferred Transmit Frames Register (TXDEFERREDFRAMES)	
	09. Transmit Frames Collision Register (TXCOLLISIONFRAMES)	
	10. Transmit Frames Single Collision Register (TXSINGLECOLLFRAMES)	
	11. Transmit Frames Multiple Collision Register (TXMULTCOLLFRAMES)	
	12. Transmit Excessive Collision Register (TXEXCESSIVECOLLISIONS)	
	13. Transmit Late Collisions Register (TXLATECOLLISIONS)	
	14. Transmit Frames Underrun Register (TXUNDERRUN)	
	15. Transmit Carrier Sense Errors Register (TXCARRIERSENSEERRORS)	
	16. Transmit Octets Register (TXOCTETS)	
	17. Receive and Transmit 64 Octet Frames Register (64OCTETFRAMES)	
	18. Receive and Transmit 65-127 Octet Frames Register (65T127OCTETFRAMES)	
	19. Receive and Transmit 128-255 Octet Frames Register (128T255OCTETFRAMES)	
	20. Receive and Transmit 256-511 Octet Frames Register (256T511OCTETFRAMES)	
	21. Receive and Transmit 512-1023 Octet Frames Register (512T1023OCTETFRAMES)	
	22. Receive and Transmit 1024 and Up Octet Frames Register (1024TUPOCTETFRAMES)	
	23. Net Octets Register (NETOCTETS)	
	24. Receive Start of Frame Overruns Register (RXSOFOVERRUNS)	
	25. Receive Middle of Frame Overruns Register (RXMOFOVERRUNS)	
	26. Receive DMA Overruns Register (RXDMAOVERRUNS) 27. CPTS Identification and Version Register (CPTS_IDVER)	
	28. Time Sync Control Register (TS_CTL)	
	29. RFTCLK Select Register (CPTS_RFTCLK_SEL)	
	30. Time Stamp Event Push Register (CPTS_TS_PUSH)	
	31. Interrupt Status Raw Register (CPTS_INTSTAT_RAW)	
	32. Interrupt Status Naw Register (CPTS_INTSTAT_NAW)	
	33. Interrupt Enable Register (CPTS_INT_ENABLE)	
5-1	So. Interrupt Enable Register (OF TO_INT_ENABLE)	223

3-134.	Event Pop Register (CPTS_EVENT_POP)	230
3-135.	Event Low Register (CPTS_EVENT_LOW)	231
3-136.	Event MIddle Register (CPTS_EVENT_MID)	232
3-137.	Event High Register (CPTS_EVENT_HIGH)	233
3-138.	ALE Identification and Version Register (ALE_IDVER)	235
3-139.	ALE Control Register (ALE_CONTROL)	236
3-140.	ALE Prescale Register (ALE_PRESCALE)	238
3-141.	ALE Unknown VLAN Register (UNKNOWN_VLAN)	239
3-142.	ALE Table Control Register (ALE_TBLCTL)	240
3-143.	ALE Table Word 2 Register (ALE_TBLW2)	241
3-144.	ALE Table Word 1 Register (ALE_TBLW1)	242
3-145.	ALE Table Word 0 Register (ALE_TBLW0)	243
3-146.	ALE Port 0 Control Register (ALE_PORTCTL0)	244
3-147.	ALE Port 1 Control Register (ALE_PORTCTL1)	245
3-148.	ALE Port 2 Control Register (ALE_PORTCTL2)	246
3-149.	ALE Port 3 Control Register (ALE_PORTCTL3)	247
3-150.	ALE Port 4 Control Register (ALE_PORTCTL4)	248
3-151.	ALE Port 5 Control Register (ALE_PORTCTL5)	249
3-152.	SGMII SerDes Status Register (SGMII_SERDES_STS)	251
3-153.	SGMII PLL Configuration Register (SGMII_SERDES_CGFPLL)	252
3-154.	SGMII Receive Configuration Register n (SGMII_SERDES_CFGRXn)	254
3-155.	SGMII Transmit Configuration Register n (SGMII_SERDES_CFGTXn)	256

List of Tables

2-1.	KeyStone I Gigabit Ethernet Switch Subsystem Modules	24
2-2.	KeyStone II Gigabit Ethernet Switch Subsystem Modules	24
2-3.	KeyStone I PS_FLAGS for GbE Switch Ingress Packets	26
2-4.	KeyStone II PS_FLAGS for GbE Switch Ingress Packets	26
2-5.	KeyStone I Time Synchronization Event Fields	46
2-6.	KeyStone II Time Synchronization Event Fields	46
2-7.	ALE Table Learned Address Control Bits	53
2-8.	Free Table Entry Field Configuration	54
2-9.	Multicast Address Table Entry Field Configuration	54
2-10.	VLAN/Multicast Address Table Entry Field Configuration	55
2-11.	Unicast Address Table Entry Field Configuration	55
2-12.	OUI Unicast Address Table Entry Field Configuration	56
2-13.	VLAN/Unicast Table Entry Field Configuration	56
2-14.	VLAN Table Entry Field Configuration	
2-15.	ALE Table Entry Field Descriptions	57
2-16.	Gigabit Ethernet Switch Subsystem Descriptor Error Flags	59
2-17.	ALE Ingress Filtering Process	<mark>60</mark>
2-18.	ALE VLAN Aware Lookup Process	
2-19.	ALE VLAN Unaware Lookup Process	62
2-20.	ALE Egress Process	63
2-21.	ALE Learning Process	64
3-1.	KeyStone I Gigabit Ethernet Switch Subsystem Modules	
3-2.	KeyStone II Gigabit Ethernet Switch Subsystem Module	74
3-3.	KeyStone I Gigabit Ethernet Switch Subsystem Complete Register Listing	74
3-4.	KeyStone II Gigabit Ethernet Switch Subsystem Complete Register Listing	
3-5.	Ethernet Switch Subsystem Module	88
3-6.	Ethernet Switch Subsystem Identification and Version Register (ES_SS_IDVER) Field Descriptions	89
3-7.	SGMII Registers	90
3-8.	SGMII Identification and Version Register (SGMII_IDVER) Field Descriptions	91
3-9.	SGMII Software Reset Register (SGMII_SOFT_RESET) Field Descriptions	92
3-10.	SGMII Control Register (SGMII_CONTROL) Field Descriptions	
3-11.	SGMII Status Register (SGMII_STATUS) Field Descriptions	
3-12.	SGMII Advertised Ability Register (SGMII_MR_ADV_ABILITY) Field Descriptions	95
3-13.	Advertised Ability and Link Partner Advertised Ability for SGMII Mode	
3-14.	SGMII Link Partner Advertised Ability Register (SGMII_MR_LP_ADV_ABILITY) Field Descriptions	
3-15.	MDIO Registers	
3-16.	MDIO Version Register (MDIO _VERSION) Field Descriptions	
3-17.	MDIO Control Register (MDIO_CONTROL) Field Descriptions	
3-18.	PHY Alive Status Register (MDIO_ALIVE) Field Descriptions	
3-19.	PHY Link Status Register (MDIO_LINK) Field Descriptions	
3-20.	MDIO Link Status Change Interrupt (Unmasked) Register (MDIO_LINKINTRAW) Field Descriptions	
3-21.	MDIO Link Status Change Interrupt (Masked) Register (MDIO_LINKINTMASKED) Field Descriptions	103
3-22.	MDIO User Command Complete Interrupt (Unmasked) Register (MDIO_USERINTRAW) Field Descriptions	104
3-23.	MDIO User Command Complete Interrupt (Masked) Register (MDIO_USERINTMASKED) Field Descriptions	105
3-24.	MDIO User Command Complete Interrupt Mask Set Register (MDIO_USERINTMASKSET) Field Descriptions	106

3-25.	MDIO User Command Complete Interrupt Mask Clear Register (MDIO_USERINTMASKCLEAR) Field Descriptions	107
3-26.	MDIO User Access Register 0 (MDIO_USERACCESS0) Field Descriptions	108
3-27.	MDIO User PHY Select Register 0 (MDIO_USERPHYSEL0) Field Descriptions	109
3-28.	MDIO User Access Register 1 (MDIO_USERACCESS1) Field Descriptions	110
3-29.	MDIO User PHY Select Register 1 (MDIO_USERPHYSEL1) Field Descriptions	111
3-30.	KeyStone I Ethernet Switch Submodules	112
3-31.	KeyStone II Ethernet Switch Submodules	112
3-32.	KeyStone I Ethernet Switch Registers	113
3-33.	KeyStone II Ethernet Switch Registers	114
3-34.	GbE Switch Identification and Version Register (CPSW_IDVER) Field Descriptions	116
3-35.	GbE Switch Control Register (CPSW_CONTROL) Field Descriptions for KeyStone I and KeyStone II	117
3-36.	Emulation Control Register (EM_CONTROL) Field Descriptions	118
3-37.	KeyStone I Statistics Port Enable (STAT_PORT_EN) Field Descriptions	119
3-38.	KeyStone II Statistics Port Enable (STAT_PORT_EN) Field Descriptions	119
3-39.	KeyStone I Priority Type Register (PTYPE) Field Descriptions	121
3-40.	KeyStone II Priority Type Register (PTYPE) Field Descriptions	121
3-41.	KeyStone I and KeyStone II MAC Short Gap Threshold Register (GAP_THRESH) Field Descriptions	122
3-42.	Transmit FIFO Start Words Register (TX_START_WDS) Field Descriptions	123
3-43.	KeyStone I Flow Control Register (FLOW_CONTROL) Field Descriptions	124
3-44.	KeyStone II Flow Control Register (FLOW_CONTROL) Field Descriptions	124
3-45.	KeyStone I Port 0 Source Identification Register (P0_CPPI_SRC_ID) Field Descriptions	125
3-46.	KeyStone II Port 0 Source Identification Register (P0_CPPI_SRC_ID) Field Descriptions	
3-47.	Port 0 VLAN Register (P0_PORT_VLAN) Field Descriptions	126
3-48.	Port 0 Receive Packet Priority to Header Priority Mapping Register (P0_RX_PRI_MAP) Field Descriptions	127
3-49.	Port 0 RX Maximum Length Register (P0_RX_MAXLEN) Field Descriptions	128
3-50.	Port 1 Max Blocks Register (P1_MAX_BLKS) Field Descriptions	129
3-51.	Port 1 Block Count Register (P1_BLK_CNT) Field Descriptions	130
3-52.	Port 1 VLAN Register (P1_PORT_VLAN) Field Descriptions	131
3-53.	Port 1 Transmit Header Priority to Switch Priority Mapping Register (P1_TX_PRI_MAP) Field Descriptions	132
3-54.	MAC1 Source Address Low Register (MAC1_SA_LO) Field Descriptions	133
3-55.	MAC1 Source Address High Register (MAC1_SA_HI) Field Descriptions	134
3-56.	KeyStone I Port 1 Time Sync Control Register (P1_TS_CTL) Field Descriptions	135
3-57.	KeyStone II Port 1 Time Sync Control Register (P1_TS_CTL) Field Descriptions	136
3-58.	Port 1 Time Sync Sequence ID and LTYPE Register (P1_TS_SEQ_LTYPE) Field Descriptions	137
3-59.	Port 1 Time Sync Control 2 Register (P1_TS_CTL2) Field Descriptions	138
3-60.	Port 1Time Sync Control Register and LTYPE2 (P1_TS_CTL_LTYPE2) Field Descriptions (KeyStone II Only)	139
3-61.	Port 1 Time Sync VLAN LTYPE Register (P1_TS_VLAN_LTYPE) Field Descriptions	140
3-62.	Port 2 Max Blocks Register (P2_MAX_BLKS) Field Descriptions	141
3-63.	Port 2 Block Count Register (P2_BLK_CNT) Field Descriptions	
3-64.	Port 2 VLAN Register (P2_PORT_VLAN) Field Descriptions	143
3-65.	Port 2 Transmit Header Priority to Switch Priority Mapping Register (P2_TX_PRI_MAP) Field Descriptions	144
3-66.	MAC2 Source Address Low Register (MAC2_SA_LO) Field Descriptions	145
3-67.	MAC2 Source Address High Reserved Register (MAC2_SA_HI) Field Descriptions	146
3-68.	KeyStone I Port 2 Time Sync Control Register (P2_TS_CTL) Field Descriptions	
3-69.	KeyStone II Port 2 Time Sync Control Register (P2_TS_CTL) Field Descriptions	148

3	3-70.	Port 2 Time Sync Sequence ID and LTYPE Register (P2_TS_SEQ_LTYPE) Field Descriptions	149
3	3-71.	Port 2 Time Sync VLAN LTYPE Register (P2_TS_VLAN_LTYPE) Field Descriptions	
3	3-72.	Port 2 Time Sync Control Register 2 (P2_TS_CTL2) Field Descriptions	151
(3-73.	Port 2 Time Sync Control Register and LTYPE2 (P2_TS_CTL_LTYPE2) Field Descriptions (KeyStone II Only)	152
3	3-74.	Port 3 Max Blocks Register (P3_MAX_BLKS) Field Descriptions	153
3	3-75.	Port 3 Block Count Register (P3_BLK_CNT) Field Descriptions	154
3	3-76.	Port 3 VLAN Register (P3_PORT_VLAN) Field Descriptions	155
(3-77.	Port 3 Transmit Header Priority to Switch Priority Mapping Register (P3_TX_PRI_MAP) Field Descriptions	156
3	3-78.	MAC3 Source Address Low Register (MAC3_SA_LO) Field Descriptions	157
3	3-79.	MAC3 Source Address High Register (MAC3_SA_HI) Field Descriptions	158
3	3-80.	Port 3 Time Sync Control Register (P3_TS_CTL) Field Descriptions	159
3	3-81.	Port 3 Time Sync Sequence ID and LTYPE Register (P3_TS_SEQ_LTYPE) Field Descriptions	160
3	3-82.	Port 3 Time Sync VLAN LTYPE Register (P3_TS_VLAN_LTYPE) Field Descriptions	161
3	3-83.	Port 3 Time Sync Control and LTYPE2 Register (P3_TS_CTL_LTYPE2) Field Descriptions	162
3	3-84.	Port 3 Time Sync Control 2 Register (P3_TS_CTL2) Field Descriptions	
3	3-85.	Port 4 Max Blocks Register (P4_MAX_BLKS) Field Descriptions	164
3	3-86.	Port 4 Block Count Register (P4_BLK_CNT) Field Descriptions	
3	3-87.	Port 4 VLAN Register (P4_PORT_VLAN) Field Descriptions	166
:	3-88.	Port 4 Transmit Header Priority to Switch Priority Mapping Register (P4_TX_PRI_MAP) Field Descriptions	167
3	3-89.	MAC4 Source Address Low Register (MAC4_SA_LO) Field Descriptions	168
3	3-90.	MAC4 Source Address High Register (MAC4_SA_HI) Field Descriptions	169
3	3-91.	Port 4 Time Sync Control Register (P4_TS_CTL) Field Descriptions	170
3	3-92.	Port 4 Time Sync Sequence ID and LTYPE Register (P4_TS_SEQ_LTYPE) Field Descriptions	171
3	3-93.	Port 4 Time Sync VLAN LTYPE Register (P4_TS_VLAN_LTYPE) Field Descriptions	
3	3-94.	Port 4 Time Sync Control Register and LTYPE2 (P4_TS_CTL_LTYPE2) Field Descriptions	
3	3-95.	Port 4 Time Sync Control 2 Register (P4_TS_CTL2) Field Descriptions	
	3-96.	EMAC Registers	
	3-97.	MAC Identification and Version Register (MAC_IDVER) Field Descriptions	
	3-98.	MAC Control Register (MAC_CONTROL) Field Descriptions	
	3-99.	MAC Status Register (MACSTATUS) Field Descriptions	
	3-100.	Software Reset Register (SOFT_RESET) Field Descriptions	180
		Receive Maximum Length Register (RX_MAXLEN) Field Descriptions	
		Receive Pause Timer Register (RX_PAUSE) Field Descriptions	
		Transmit Pause Timer Register (TX_PAUSE) Field Descriptions	
		Emulation Control Register (EM_CONTROL) Field Descriptions	
		Receive Packet Priority to Header Priority Mapping Register (MAC_RX_PRI_MAP) Field Descriptions	
		STATS Registers	186
		Port n Good Receive Frames Register (STATn_RXGOODFRAMES) Field Descriptions	
		Broadcast Receive Frames Register (RXBROADCASTFRAMES) Field Descriptions	
		Multicast Receive Frames Register (RXMULTICASTFRAMES) Field Descriptions	
		Pause Receive Frames Register (RXPAUSEFRAMES) Field Descriptions	
		Receive CRC Errors Register (RXCRCERRORS) Field Descriptions	
		Receive Align/Code Errors Register (RXALIGNCODEERRORS) Field Descriptions	
		Oversized Receive Frames Register (RXOVERSIZEDFRAMES) Field Descriptions	
		Receive Jabber Frames Register (RXJABBERFRAMES) Field Descriptions	
		Undersized (Short) Receive Frames Register (RXUNDERSIZEDFRAMES) Field Descriptions	
	3-116.	Receive Fragment Frames Register (RXFRAGMENTS) Field Descriptions	197

3-117. Port n Receive Octets Register (STATn_RXOCTETS) Field Descriptions	198
3-118. Good Transmit Frames Register (TXGOODFRAMES) Field Descriptions	199
3-119. Broadcast Transmit Frames Register TXBROADCASTFRAMES) Field Descriptions	200
3-120. Multicast Transmit Frames Register (TXMULTICASTFRAMES) Field Descriptions	201
3-121. Pause Transmit Frames Register (TXPAUSEFRAMES) Field Descriptions	202
3-122. Deferred Transmit Frames Register (TXDEFERREDFRAMES) Field Descriptions	203
3-123. Transmit Frames Collision Register (TXCOLLISIONFRAMES) Field Descriptions	204
3-124. Transmit Frames Single Collision Register (TXSINGLECOLLFRAMES) Field Descriptions	205
3-125. Transmit Frames Multiple Collision Register (TXMULTCOLLFRAMES) Field Descriptions	206
3-126. Transmit Excessive Collisions Register (TXECESSIVECOLLISIONS) Field Descriptions	207
3-127. Transmit Late Collisions Register (TXLATECOLLISIONS) Field Descriptions	208
3-128. Transmit Frames Underrun Register (TXUNDERRUNS) Field Descriptions	209
3-129. Transmit Carrier Sense Errors Register (TXCARRIERSENSEERRORS) Field Descriptions	
3-130. Transmit Octets Register (TXOCTETS) Field Descriptions	211
3-131. Receive and Transmit 64 Octet Frames Register (64OCTETFRAMES) Field Descriptions	212
3-132. Receive and Transmit 65-127 Octet Frames Register (65T127OCTETFRAMES) Field Descriptions	213
3-133. Receive and Transmit 128-255 Octet Frames Register (128T255OCTETFRAMES) Field Descriptions	214
3-134. Receive and Transmit 256-511 Octet Frames Register (256T511OCTETFRAMES) Field Descriptions	215
3-135. Receive and Transmit 512-1023 Octet Frames Register (512T1023OCTETFRAMES) Field Descriptions .	216
3-136. Receive and Transmit 1024 and Up Octet Frames Register (1024TUPOCTETFRAMES) Field	
Descriptions	
3-137. Net Octets Register (NETOCTETS) Field Descriptions	
3-138. Receive Start of Frame Overrun Register (RXSOFOVERRUNS) Field Descriptions	
3-139. Receive Middle of Frame Overrun Register (RXMOFOVERRUNS) Field Descriptions	
3-140. Receive DMA Overruns Register (RXDMAOVERRUNS) Field Descriptions	
3-141. KeyStone I CPTS Registers	
3-142. KeyStone II CPTS Registers	
3-143. CPTS Identification and Version Register (CPTS_IDVER) Field Descriptions	223
3-144. Time Sync Control Register (TS_CTL) Field Descriptions	224
3-145. RFTCLK Select Register (CPTS_RFTCLK_SEL) Field Descriptions	225
3-146. Time Stamp Event Push Register (CPTS_TS_PUSH) Field Descriptions	226
3-147. Interrupt Status Raw Register (CPTS_INTSTAT_RAW) Field Descriptions	
3-148. Interrupt Status Masked Register (CPTS_INTSTAT_MASKED) Field Descriptions	228
3-149. Interrupt Enable Register (CPTS_INT_ENABLE) Field Descriptions	229
3-150. Event Pop Register (CPTS_EVENT_POP) Field Descriptions	230
3-151. Event Low Register (CTPS_EVENT_LOW) Field Descriptions	231
3-152. Event Middle Register (CPTS_EVENT_MID) Field Descriptions	232
3-153. Event High Register (CPTS_EVENT_HIGH) Field Descriptions	233
3-154. ALE Registers	
3-155. ALE Identification and Version Register (ALE_IDVER) Field Descriptions	235
3-156. ALE Control Register (ALE_CONTROL) Field Descriptions	236
3-157. ALE Prescale Register (ALE_PRESCALE) Field Descriptions	238
3-158. ALE Unknown VLAN Register (UNKNOWN_VLAN) Field Descriptions	239
3-159. ALE Table Control Register (ALE_TBLCTL) Field Descriptions	240
3-160. ALE Table Word 2 Register (ALE_TBLW2) Field Descriptions	241
3-161. ALE Table Word 1 Register (ALE_TBLW2) Field Descriptions	242
3-162. ALE Table Word 0 Register (ALE_TBLW0) Field Descriptions	243
3-163. ALE Port 0 Control Register (ALE_PORTCTL0) Field Descriptions	244
3-164. ALE Port 1 Control Register (ALE_PORTCTL1) Field Descriptions	245

3-165.	ALE Port 2 Control Register (ALE_PORTCTL2) Field Descriptions	246
3-166.	ALE Port 3 Control Register (ALE_PORTCTL3) Field Descriptions	247
3-167.	ALE Port Control Register 4 (ALE_PORTCTL4) Field Descriptions	248
3-168.	ALE Port Control Register 5 (ALE_PORTCTL5) Field Descriptions	249
3-169.	SerDes SGMII Boot Configuration Registers	250
3-170.	SGMII SerDes Status Register (SGMII_SERDES_STS) Field Descriptions	251
3-171.	SGMII PLL Configuration Register (SGMII_SERDES_CGFPLL)Field Descriptions	252
3-172.	Ratescale Values	252
3-173.	SGMII SerDes PLL Multiply Modes	253
3-174.	SGMII RX Configuration Register <i>n</i> (SGMII_SERDES_CGFRX <i>n</i>) Field Descriptions	254
3-175.	Receiver Equalizer Configuration (EQ)	255
3-176.	SGMII TX Configuration Register <i>n</i> (SGMII_SERDES_CGFTX <i>n</i>) Field Descriptions	256
3-177.	Differential Output De-emphasis	257
3-178.	Differential Output Swing	257

Preface

About This Manual

This document gives a functional description of the Ethernet Switch Subsystem module. The Ethernet Switch Subsystem consists of the Ethernet Media Access Controller (EMAC) module, Serial Gigabit Media Independent Interface (SGMII) modules, Physical Layer (PHY) device Management Data Input/Output (MDIO) module, Ethernet Switch module, and other associated submodules that are integrated on the device.

Notational Conventions

This document uses the following conventions:

- Commands and keywords are in **boldface** font.
- Arguments for which you supply values are in *italic* font.
- Terminal sessions and information the system displays are in screen font.
- Information you must enter is in boldface screen font.
- Elements in square brackets ([]) are optional.

Notes use the following conventions:

NOTE: Means reader take note. Notes contain helpful suggestions or references to material not covered in the publication.

The information in a caution or a warning is provided for your protection. Please read each caution and warning carefully.

CAUTION

Indicates the possibility of service interruption if precautions are not taken.

WARNING

Indicates the possibility of damage to equipment if precautions are not taken.

Related Documentation from Texas Instruments

Multicore Navigator for KeyStone Devices User's Guide		
Network Coprocessor (NETCP) for KeyStone Devices User's Guide SPRUGZe		
Packet Accelerator (PA) for KeyStone Devices User's Guide	SPRUGS4	
Phase Locked Loop (PLL) Controller for KeyStone Devices User's Guide SPRUGV2		
Security Accelerator (SA) for KeyStone Devices User's Guide	SPRUGY6	

All trademarks are the property of their respective owners.

Introduction

NOTE: The information in this document should be used in conjunction with information in the device-specific Keystone Architecture data manual that applies to the part number of your device.

This document provides a functional description of the Ethernet switch subsystem and related portions of the serializer/deserializer (SerDes) module. The Ethernet switch Subsystem consists of the Ethernet media access controller (EMAC) module, serial gigabit media-independent interface (SGMII) modules, physical layer (PHY) device management data input/output (MDIO) module, Ethernet switch module, and other associated submodules that are integrated on the device. Included in this document are the features of the EMAC, MDIO, SGMII, Ethernet switch and SerDes modules, a discussion of their architecture and operation, an overview of the internal and external connections, and descriptions of the registers for each module.

То	pic

opic		Page
1.1	Purpose of the Peripheral	18
1.2	Features	18
1.3	Gigabit Ethernet Switch Subsystem Functional Block Diagram	19
1.4	Industry Standard(s) Compliance Statement	21

1.1 Purpose of the Peripheral

The gigabit Ethernet (GbE) switch subsystem is one of the main components of the network coprocessor (NetCP) peripheral. The GbE switch subsystem works together with the Packet Accelerator (PA) and Security Accelerator (SA) to form a network processing solution. The purpose of the gigabit Ethernet switch subsystem in the NetCP is to provide an interface to transfer data between the host device and another connected device in compliance with the Ethernet protocol.

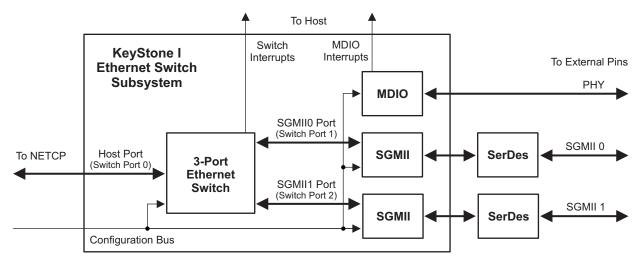
NOTE: For the purposes of this document, the terms 'ingress' and 'egress' are from the perspective of the center of the GbE switch. For example, a packet generated by the host and sent out of the device through Ethernet port 1 will go through the 'ingress' process of the switch at host port 0 and will go through the 'egress' process of the switch at port 1. As another example, a packet that is received at Ethernet port 3 that is destined for the host will go through the 'ingress' process of the switch at port 3 that is destined for the host will go through the 'ingress' process of the switch at port 3 and will go through the 'egress' process of the switch at host port 0.

1.2 Features

The GbE switch subsystem has the following features:

- Two 10/100/1000 Ethernet ports with SGMII interfaces for KeyStone I devices
 - Four SGMII ports for KeyStone II devices
- SGMII Interface (with the wiz7c2x SerDes macro)
- Wire-rate switching (802.1d)
- Non-Blocking switch fabric
- Flexible logical FIFO-based packet buffer structure
- Four priority level QOS support (802.1p)
- Host port 0 Streaming Interface
- IEEE 1588 Clock Synchronization Support
- Ethernet port reset isolation
- Address Lookup Engine
- 1024 addresses plus VLANs
- Wire-rate lookup
- VLAN support
- Host controlled time-based aging
- Spanning tree support
- L2 address lock and L2 filtering support
- MAC authentication (802.1x)
- Receive or destination-based Multicast and Broadcast limits
- MAC address blocking
- Source port locking
- OUI host accept/deny feature
- Flow Control Support (802.3x)
- EtherStats and 802.3 Stats RMON statistics gathering (shared)
- Support for external packet-dropping engine
- MAC transmit to MAC receive loopback mode (digital loopback) support
- MAC receive to MAC transmit loopback mode (FIFO loopback) support
- SGMII or SerDes loopback modes (transmit to receive)
- Maximum frame size 9500 bytes (9504 with VLAN)
- MDIO module for PHY management

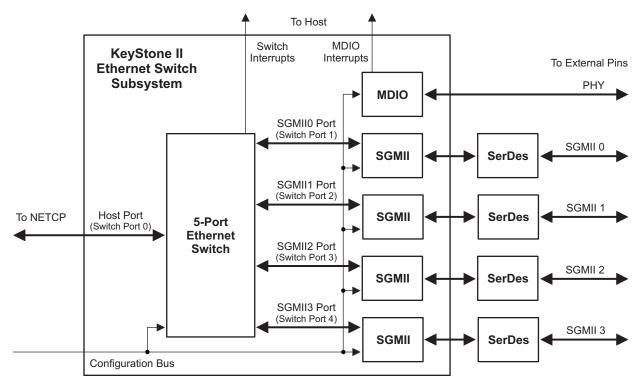
- Programmable interrupt control with selected interrupt pacing
- Emulation support
- Asynchronous Streaming Packet Interface


The gigabit Ethernet (GbE) switch subsystem does not support 1000-MHz half-duplex mode

1.3 Gigabit Ethernet Switch Subsystem Functional Block Diagram

The GbE switch subsystem consists of four major modules:

- Gigabit Ethernet switch
- MDIO module
- Two SGMII modules (KeyStone I and KeyStone II devices)
 - SGMII0
 - SGMII1
- Two additional SGMII modules (KeyStone II devices)
 - SGMII2
 - SGMII3


Figure 1-1 shows the gigabit Ethernet (GbE) switch subsystem functional block diagram for KeyStone I devices. It has three ports, bus configuration through the network coprocessor (NETCP), and a set of interrupts going to the host.

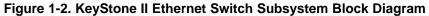


Figure 1-1. KeyStone I Ethernet Switch Subsystem Block Diagram

The KeyStone II version (Figure 1-2), has five ports: two addition SGMII ports with the same path as the original two, and the original host port.

Specifically, SGMII0 and SGMII1 are the same as in KeyStone I, and there are also SGMII2 and SGMII3. SGMII2 and SGMII3 also connect through a SerDes to external pins, and also have the Ethernet switch as their source. They follow the same protocol and methods as SGMII0 and SGMII1.

- Port 0 is the host port, which allows bidirectional communication between the GbE Switch and the NetCP.
- Port 1 is the SGMII 0 port, which allows bidirectional communication between the GbE switch and the SGMII 0 module.
- Port 2 is the SGMII 1 port, which allows bidirectional communication between the GbE switch and the SGMII 1 module.
- For KeyStone II devices, port 3 is the SGMII 2 port, which allows bidirectional communication between the GbE switch and the SGMII 2 module.
- For KeyStone II devices, port 4 is the SGMII 3 port, which allows bidirectional communication between the GbE switch and the SGMII 3 module.
- Interrupts from the GbE switch are connected to the host processor to allow communication of the switch status.
- A configuration bus connects the GbE to the NetCP to allow the user to configure the switch.

The SGMII modules each have a separate connection to the GbE switch, the SerDes, and the configuration bus.

- The SGMII connection to the GbE switch allows bidirectional communication between the SGMII module and the switch.
- The SGMII connection to the SerDes allows bidirectional communication between the SGMII module and the SerDes.
- A configuration bus connects each SGMII to the NetCP to allow the user to configure the SGMII modules.

The MDIO module, as shown in Figure 1-1, contains a connection to an external PHY device, a set of interrupts going to the host, and bus configuration through the network coprocessor.

- The connection to an external PHY device allows the MDIO module to monitor the link status of up to 32 addresses.
- Interrupts from the MDIO module are connected to the host to allow communication of changes in link status.
- A configuration bus connects the MDIO to the NetCP to allow the user to configure the MDIO.

Note that for KeyStone II devices, there are four instead of two SGMII ports to use, meaning that there are five ports total. These additional ports have the same functionality as the SGMII ports described above.

1.4 Industry Standard(s) Compliance Statement

The gigabit Ethernet switch subsystem conforms to the following industry standards:

- Supports IEEE 802.3 specification
- Supports IEEE 1588 specification

Architecture

Торіс

Page

2.1	Clock Control	23
2.2	Memory Map	24
2.3	Gigabit Ethernet Switch Architecture	24
2.4	Serial Gigabit Media Independent Interface (SGMII) Architecture	65
2.5	Management Data Input/Output (MDIO) Architecture	68
2.6	KeyStone I Serializer/Deserializer (SerDes) Architecture	71
2.7	KeyStone II Serializer/Deserializer (SerDes) Architecture	71
2.8	Reset Considerations	71
2.9	Initialization	71
2.10	Interrupt Support	72
2.11	Power Management	72

2.1 Clock Control

This section describes the clocks used by the gigabit Ethernet (GbE) switch subsystem.

The GbE switch subsystem uses the following clocks:

- GbE switch subsystem clock
- SGMII SerDes reference clock
- IEEE 1588 time synchronization clock
- MDIO clock
- GMII clock

2.1.1 Gigabit Switch Subsystem Clock

The gigabit Ethernet (GbE) switch subsystem clock, which operates at 350 MHz, is used for most of the logic in the GbE switch subsystem. The GbE switch subsystem clock domain must be enabled before using the GbE switch subsystem.

2.1.2 SGMII SerDes Reference Clock

The SGMII SerDes reference clock is a clock input to the DSP. The SGMII SerDes reference clock serves as the input to the SGMII SerDes PLL, which is configured through the SGMII_SERDES_CFGPLL Register. The output from the SGMII SerDes PLL controls the rate at which data is transferred between the SGMII and the SerDes modules. For the input clock ranges for the SGMII SerDes clock, see the device-specific data manual.

2.1.3 MDIO Clock

The MDIO clock is divided down from the peripheral system clock. The MDIO clock can operate at up to 2.5 MHz, but typically operates at 1.0 MHz.

2.1.4 IEEE 1588 Time Synchronization Clock

The IEEE 1588 time synchronization clock is used for the time synchronization module in the GbE switch. There are several possible inputs that can be used for the time synchronization clock. To select an input clock source for the CPTS_RCLK, program the CPTS_RFTCLK_SEL field in the CPTS_RFTCLK_SEL register. For a list of clock sources corresponding to the values in the CPTS_RFTCLK_SEL register, see the device-specific data manual.

2.1.5 GMII Clock

The GMII clock frequencies are fixed by the 802.3 specification as follows:

- 2.5 MHz at 10 Mbps
- 25 MHz at 100 Mbps
- 125 MHz at 1000 Mbps

2.2 Memory Map

The memory maps for the modules in the GbE switch subsystem are shown in the tables below. The addresses listed are offset addresses, which are dependent on a device-specific base address. For the base address of the GbE switch subsystem, see the memory map in the device-specific data manual.

Table 2-1. KeyStone I Gigabit Ethernet Switch Subsystem Modules

Module Region	Offset Address ⁽¹⁾
Gigabit Ethernet (GbE) switch subsystem	000h
Port 1 SGMII module	100h
Port 2 SGMII module	200h
MDIO module	300h
Reserved	400h-7FFh
Gigabit Ethernet (GbE) switch module	800h

⁽¹⁾ The addresses provided in the table are offsets from a device specific base address. To determine the base address of these registers, see the device-specific data manual.

Table 2-2. KeyStone II Gigabit Ethernet Switch Subsystem Modules

Module Region	Offset Address ⁽¹⁾
Gigabit Ethernet (GbE) switch subsystem	000h
Port 1 SGMII module	100h
Port 2 SGMII module	200h
MDIO module	300h
Port 3 SGMII module	400h
Port 4 SGMII module	500h
Reserved	600h-7FFh
Gigabit Ethernet (GbE) switch module	800h

⁽¹⁾ The addresses provided in the table are offsets from a device specific base address. To determine the base address of these registers, see the device-specific data manual.

2.3 Gigabit Ethernet Switch Architecture

This section describes the architecture of the gigabit Ethernet (GbE) switch module.

The GbE provides an interface between the packet streaming switch in the NetCP and the two SGMII modules in the Ethernet switch subsystem. The following submodules are part of the GbE switch:

- Streaming Packet Interface (Section 2.3.1)
- Media Access Controller Submodule Architecture (Section 2.3.2)
- MAC Receive FIFO Architecture (Section 2.3.3)
- Statistics Submodule Architecture (Section 2.3.4)
- Time Synchronization Submodule Architecture (Section 2.3.5)
- Address Lookup Engine (ALE) Submodule Architecture (Section 2.3.6)

NOTE: For the purposes of this document, the terms 'ingress' and 'egress' are from the perspective of the center of the GbE switch. For example, a packet generated by the host and sent out of the device through Ethernet port 1 will go through the 'ingress' process of the switch at host port 0 and will go through the 'egress' process of the switch at port 1. As another example, a packet that is received at Ethernet port 3 that is destined for the host will go through the 'ingress' process of the switch at port 3 that is destined for the host will go through the 'ingress' process of the switch at port 3 and will go through the 'egress' process of the switch at host port 0.

The KeyStone I GbE switch has three ports: port 0 communicates with the packet streaming switch, port 1 communicates with the SGMII0 module, and port 2 communicates with the SGMII1 module. The KeyStone II version has two additional ports to the SGMII module, port 3 and port 4. Port 3 communicates with the SGMII3 module and port 4 communicates with the SGMII4 module.

To interface to the packet streaming switch, the GbE switch contains transmit and receive interfaces to convert between the signals used by the GbE switch and the signals used by the packet streaming switch. To facilitate communication with the SGMII modules, KeyStone I devices have two MAC submodules (EMAC0 and EMAC1) to convert between the signals internal to the switch and the GMII signals required by the SGMII modules. KeyStone II devices have two additional MAC submodules (EMAC2 and EMAC3), for a total of four.

The GbE switch also contains several other submodules that provide additional features. The GbE switch has two modules that provide Ethernet statistics for the packets transmitted and received by the Ethernet switch subsystem. The GbE switch also contains a time synchronization submodule to support IEEE 1588 clock synchronization. The GbE switch provides an address lookup engine (ALE), which is responsible for forwarding and filtering packets based on address. Each of these submodules is covered in more detail in the respective submodule sections.

2.3.1 Streaming Packet Interface

This section describes the details of the streaming packet interface. The streaming packet interface is responsible for communication between the GbE switch and the packet streaming switch in the NetCP.

For KeyStone I devices, see the *Network Coprocessor (NETCP)* for KeyStone Devices User's Guide (SPRUGZ6) for definition of the control register for TXA and TXB.

For KeyStone II devices, see the *Network Coprocessor (NETCP)* for KeyStone Devices User's Guide (SPRUHZ0) for definition of the control register for TXA, TXB, TXC, and TXD. Note that TXC and TXD are available only in KeyStone II devices with the 5-port switch.

2.3.1.1 Transmit Streaming Packet Interface

The transmit interface is responsible for transmitting packets from the GbE switch port 0 to the packet streaming switch in the NETCP. The GbE switch has two identical transmit streaming packet interfaces. The first interface (TXA) outputs packets received on port 1 that are destined for port 0. The second interface (TXB) outputs packets that were received on port 2 and are destined for port 0. The data on the streaming interface data is equivalent to MAC output data with the difference being that instead of outputting 8-bit GMII data, the data output is formatted for transmission on the streaming interface.

In addition to the packet data, the transmit streaming interface also provides additional information that is placed in the descriptor of the received packet by the receive flow of the packet DMA. Included in this extra information is source identification. If the packet originated from port 1, then the value in the TXA_SRC_ID field of the P0_CPPI_SRC_ID Register will be placed in SRC_ID field in the descriptor of the receive packet. Similarly, if the packet originated from port 2, the value in the TXB_SRC_ID field of the P0_CPPI_SRC_ID field in the SRC_ID field in the TXB_SRC_ID field of the P0_CPPI_SRC_ID field in the SRC_ID field in the SRC_ID field in the SRC_ID field in the SRC_ID field in the receive packet descriptor.

Both TXA and TXB transmit interfaces have a 22K-byte buffer to enable more efficient transmit packet operations. The transmit interfaces do not transmit packets on the streaming interface until there is an entire packet in the output buffer or until there is at least CPPI_THRESH plus two words (not bytes) in the output buffer. The *plus two* is there because a two-word double buffer is also present.

For KeyStone II, additional ports TXC and TXD are included with functionality identical to the TXA and TXB interfaces.

2.3.1.1.1 Transmit VLAN Processing

This section covers transmit processing when in VLAN-aware mode. The GbE switch is in VLAN-aware mode when the VLAN_AWARE bit is set in the CPSW_CONTROL Register and the ALE_VLAN_AWARE bit is set in the ALE_CONTROL register. While in VLAN-aware mode, VLAN is added, removed, or replaced according to the same rules as the MAC transmit (egress) output packet VLAN process. Transmit packets are not modified when VLAN_AWARE is cleared to 0.

2.3.1.2 Receive Streaming Packet Interface

The receive streaming interface on port 0 of the GbE switch is responsible for receiving packets from the packet streaming switch in the NetCP. The GbE switch has one receive streaming packet interface for port 0. The CPPI receive port is equivalent to a MAC port with the difference being that the data is provided to the GbE switch in the streaming interface data format instead of 8-bit GMII data format.

In addition to the packet data, the receive streaming interface can also provide additional control information that resides in the PS_FLAGS field of the descriptor of the packet that was transmitted to the GbE switch.

For packets being transmitted to the GbE, the PS_FLAGS field has the following configuration:

PS_FLAGS Bits	Field	Description
3	RX_PASS_CRC	Receive pass CRC.
		 0 = The packet does not contain a CRC. The CRC should be generated by the MAC module. 1 = The packet already contains a CRC. The CRC should not be generated by the MAC module.
2-0	TO_PORT	Directed packet to port. Setting these bits to a non-zero value indicates that the packet is a directed packet. Packets with the these bits set will bypass the ALE and send the packet directly to the port indicated.
		• 0 = No effect
		 1 = Send packet to GbE switch port 1
		 2 = Send packet to GbE switch port 2
		• 3-7 = Reserved

Table 2-3. KeyStone I PS_FLAGS for GbE Switch Ingress Packets

Table 2-4. KeyStone II PS_FLAGS for GbE Switch Ingress Packets

PS_FLAGS Bits	Field	Description
3	RX_PASS_CRC	 Receive pass CRC. 0 = The packet does not contain a CRC. The CRC should be generated by the MAC module.
		 1 = The packet already contains a CRC. The CRC should be generated by the MAC module.
2-0	TO_PORT	Directed packet to port. Setting these bits to a non-zero value indicates that the packet is a directed packet. Packets with the these bits set bypass the ALE and send the packet directly to the port indicated.
		• 0 = No effect
		 1 = Send packet to GbE switch port 1
		 2 = Send packet to GbE switch port 2
		 3 = Send packet to GbE switch port 3
		 4 = Send packet to GbE switch port 4
		• Others = Reserved

Setting the RX_PASS_CRC bit indicates that the CRC is passed with the packet data. The packet is a directed packet when any of the TO_PORT bits are non-zero. The packet will be sent to the port indicated. A packet may only be directed to a single port. For directed packets the destination lookup process in the ALE is skipped. However, in VLAN aware mode (VLAN_AWARE bit set to 1 in the CPSW_CONTROL register and ALE_VLAN_AWARE set to 1 in the ALE_CONTROL register) the lookup still takes place but only to determine if the packet should have the VLAN tag removed during egress (forced untagged egress).

2.3.2 Media Access Controller Submodule Architecture

This section describes the architecture of the media-access-controller (MAC) submodule. The MAC submodule is IEEE 802.3 compliant and supports 10/100/1000 megabit per second (Mbps) modes of operation. The MAC module provides an interface between the GbE switch and the SGMII modules. For transmit operations, the MAC module converts between data signals used by the GbE switch and GMII signals used by the SGMII modules. For receive operations, the MAC module converts between GMII signals from the SGMII module to the signals used by the GbE switch. Transmit and receive operations are described in more detail in subsequent sections.

In addition to translating between the SGMII modules and the GbE switch, the MAC module is responsible for operations related to IEEE 802.3 Ethernet frames. For all packets, the MAC module adds or removes the preamble, start of frame delimiter, and interpacket gap to a packet. The MAC module verifies and optionally generates CRC checksums.

2.3.2.1 Data Receive Operations

This section describes the data-receive operations of the MAC module.

2.3.2.1.1 Receive Control

The MAC module is responsible for interpreting GMII data received from the SGMII module. Interpretation of GMII data involves the following operations:

- Detection and removal of the preamble
- Detection and removal of the start-of-frame delimiter
- Extraction of the address
- Extraction of the frame length
- Data handling
- Error checking and reporting
- Cyclic redundancy checking (CRC)
- Statistics signal generation

All statistics signal generation is reported to the proper statistics module in the GbE switch.

2.3.2.1.2 Receive Interframe Interval

The 802.3 required interpacket gap (IPG) is 24 GMII clocks (96 bit times) for 10/100 Mbps modes, and 12 GMII clocks (96 bit times) for 1000 Mbps mode. However, the MAC module can tolerate a reduced IPG (2 GMII clocks in 10/100 mode and 5 GMII clocks in 1000 mode) with a correct preamble and start of frame delimiter.

This interval between frames must include (in the following order):

- 1. An interpacket gap (IPG)
- 2. A seven-octet preamble (all octets 0x55)
- 3. A one-octet start of frame delimiter (0x5D)

2.3.2.1.3 Receive Flow Control

This section describes the receive flow control functionality. When under heavy load, the MAC module can limit further frame reception through receive frame flow control. Receive flow control is enabled by setting the RX_FLOW_EN bit in the MAC_CONTROL Register. When enabled, flow control events are triggered by the receive FIFO in the GbE switch module. When receive flow control is enabled, and a flow control event is triggered, receive flow control is initiated. When in half-duplex mode, receive flow control is collision based. While in full duplex mode, flow control is handled by issuing 802.3X pause frames. In either case, receive flow control prevents frame reception by issuing the flow control appropriate for the current mode of operation. The MAC module is configured for collision or IEEE 802.3X flow control via the FULLDUPLEX bit in the MAC_CONTROL Register.

2.3.2.1.3.1 Collision Based Receive Flow Control

2.3.2.1.3.2 IEEE 802.3X Based Receive Flow Control

IEEE 802.3x-based receive flow control provides a means of preventing frame reception when the port is operating in full-duplex mode (the FULLDUPLEX bit is set in MAC_CONTROL register). When receive flow control is enabled and triggered, the port transmits a pause frame to request that the sending station stop transmitting for the period indicated within the transmitted pause frame.

The MAC module transmits a pause frame to the reserved multicast address at the first available opportunity. If the MAC module is idle, a pause frame is transmitted immediately, otherwise the pause frame is sent following the completion of the frame currently being transmitted. When issuing a pause frame, the frame contains 0xFFFF, which is the maximum possible pause time value. The MAC module counts the receive pause frame time, decrementing 0xFF00 down to 0, and retransmits an outgoing pause frame if the count reaches 0. When the flow control request is removed, the MAC module transmits a pause frame with a zero pause time to cancel the pause request.

NOTE: Transmitted pause frames are only a request to the other end station to stop transmitting. Frames that are received during the pause interval are received normally (provided the receive FIFO is not full).

Pause frames are transmitted if enabled and triggered regardless of whether the port is observing the pause time period from an incoming pause frame.

The MAC module transmits pause frames as described below:

- The 48-bit reserved multicast destination address 01.80.C2.00.00.01
- The 48-bit source address found in the SLx_SA_HI and SLx_SA_LO Registers in the GbE switch
- The 16-bit length/type field containing the value 88.08
- The 16-bit pause opcode equal to 00.01
- The 16-bit pause time value FF.FF. A pause-quantum is 512 bit-times. Pause frames sent to cancel a pause request will have a pause time value of 00.00.
- Zero padding to 64-byte data length (The MAC module will transmit only 64-byte pause frames)
- The 32-bit frame-check sequence (CRC word)

All quantities above are hexadecimal and are transmitted most-significant byte first. The least-significant bit is transferred first in each byte.

If RX_FLOW_EN is cleared to 0 while the pause time is non-0, the pause time will be cleared to 0, and a 0-count pause frame will be sent.

2.3.2.2 Data Transmission

This section describes transmit data operations for the MAC module. The MAC module accepts data from the GbE switch, converts the data to GMII format, and transmits the data to the SGMII module. Data transmission is synchronized to the transmit clock rate. The smallest frame that can be sent is two bytes of data with four bytes of CRC (6 byte frame).

2.3.2.2.1 Transmit Control

This section describes transmit control operations for the MAC module. If a collision is detected on a transmit packet, the MAC module outputs a jam sequence. If the collision was late (after the first 64 bytes have been transmitted) the collision is ignored. If the collision is not late, the controller will back off before retrying the frame transmission. When operating in full duplex mode, the carrier sense (CRS) and collision sensing modes are disabled.

2.3.2.2.2 CRC Insertion

This section describes the procedure for inserting CRC checksums into Ethernet frames. The MAC module can generate and append a 32-bit Ethernet CRC onto transmitted data. By default, the MAC module generates and appends a CRC. If the user does not want the MAC module to generate a CRC, bit 19 of the protocol-specific flags region of the descriptor must be set before transmitting the packet via the packet DMA to the NETCP. If bit 19 of the protocol-specific flags is set in the descriptor, the last four bytes of the TX data are transmitted as the frame CRC. The four CRC data bytes should be the last four bytes of the frame and should be included in the packet byte count value. The MAC performs no error checking on the outgoing CRC when bit 19 of the protocol-specific flags field is set in the descriptor.

NOTE: The protocol-specific flags field of a descriptor is a general purpose region used to pass data to the module to which the descriptor is being transmitted. Each module interprets the bit pattern in the protocol-specific flags regions differently. Therefore, the user should set only bit 19 in the protocol-specific flags field to bypass the CRC checksum when sending the packet directly to the GbE switch through the queue manager subsystem. If the packet is sent to another module such as the Packet Accelerator (PA) (to complete a task such as a UDP checksum), or to the Security Accelerator (SA) (to perform a task such as encryption), before sending the packet to the GbE switch, setting bit 19 in the protocol-specific field will result in undefined behavior.

2.3.2.2.3 MTXER

The GMII MTXER signal is not used in the MAC module. If an underflow condition occurs on a transmitted frame, the frame CRC will be inverted to indicate the error to the network. Underflow is a hardware error.

2.3.2.2.4 Adaptive Performance Optimization (APO)

This section describes adaptive performance optimization (APO) implemented in the MAC module. The Ethernet MAC port incorporates APO logic that may be enabled by setting the TX_PACE bit in the MAC_CONTROL register. When the TX_PACE bit is set, transmission pacing to enhance performance is enabled. Adaptive performance pacing introduces delays into the normal transmission of frames, delaying transmission attempts between stations. By introducing delays, the probability of collisions will be reduced during heavy traffic (as indicated by frame deferrals and collisions), thereby increasing the chance of successful transmission.

When a frame is deferred, suffers a single collision, multiple collisions, or excessive collisions, the pacing counter is loaded with an initial value of 31. When a frame is transmitted successfully (without experiencing a deferral, single collision, multiple collision, or excessive collision) the pacing counter is decremented by 1, down to 0.

With pacing enabled, a new frame is permitted to immediately (after one IPG) attempt transmission only if the pacing counter is 0. If the pacing counter is non-0, the frame is delayed by the pacing delay, which is equivalent to approximately four Interpacket gap delays. APO affects only the IPG preceding the first attempt at transmitting a frame. It does not affect the back-off algorithm for retransmitted frames.

2.3.2.2.5 Interpacket Gap Enforcement

This section describes the enforcement of interpacket gap for the MAC module. The measurement reference for the IPG of 96 bit times is changed depending on frame traffic conditions. If a frame is successfully transmitted without collision, and the MCRS signal is deasserted within approximately 48 bit times of the MTXEN signal being deasserted, 96 bit times is measured from MTXEN. If the frame suffered a collision, or if the MCRS signal is not de-asserted until more than approximately 48 bit times after MTXEN is deasserted, 96 bit times (approximately, but not less) is measured from MCRS.

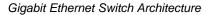
The transmit IPG can be shortened by eight bit times when enabled and triggered. The TX_SHORT_GAP_EN bit in the MAC_CONTROL register enables the TX_SHORT_GAP input to determine whether the transmit IPG is shorted by eight bit times.

2.3.2.2.6 Back Off

The MAC module implements the 802.3 binary exponential back-off algorithm .

2.3.2.2.7 Programmable Transmit Interpacket Gap

The transmit interpacket gap (IPG) is programmable through the TX_GAP register. The default value is decimal 12. The transmit IPG may be increased to the maximum value of 0x1ff. Increasing the IPG is not compatible with transmit pacing. The short gap feature will override the increased gap value, so the short gap feature may not be compatible with an increased IPG.


2.3.2.2.8 Transmit Flow Control

This section describes the IEEE 802.3X based transmit flow control implemented in the MAC module. When enabled, incoming pause frames are acted upon to prevent the MAC module from transmitting any further frames. Incoming pause frames are acted upon only when the FULLDUPLEX and TX_FLOW_EN bits are set in the MACCONTROL Register. Pause frames are not acted upon in half-duplex mode. Pause frame action will be taken if enabled, but normally the frame will be filtered and not transferred to memory. MAC control frames will be transferred to memory if the RX_CMF_EN (copy MAC Frames) bit in the MAC_CONTROL Register is set. The TX_FLOW_EN and FULLDUPLEX bits effect whether or not MAC control frames are acted upon, but they have no effect upon whether or not MAC control frames are transferred to memory or filtered.

Pause frames are a subset of MAC control frames with an opcode field=0x0001. Incoming pause frames will be acted upon by the port only if all the following conditions are met:

- TX_FLOW_EN is set in the MAC_CONTROL Pn_MAC_CTL register
- The frame's length is 64 to MAC_RX_MAXLEN RX_MAXLEN bytes inclusive
- The frame contains no CRC error or align/code errors

The pause-time value from valid frames is extracted from the two bytes following the opcode. The pause time will be loaded into the port's transmit pause timer and the transmit pause time period will begin.

If a valid pause frame is received during the transmit pause time period of a previous transmit pause frame then:

- If the destination address is not equal to the reserved multicast address or any enabled or disabled unicast address, then the transmit pause timer will immediately expire, or
- If the new pause time value is 0, then the transmit pause timer will immediately expire, else
- The port transmit pause timer will immediately be set to the new pause frame pause time value. (Any remaining pause time from the previous pause frame will be discarded.)

If the TX_FLOW_EN field in the MAC_CONTROL Pn_MAC_CTL register is cleared, then the pause-timer will immediately expire.

The port will not start the transmission of a new data frame any sooner than 512-bit times after a pause frame with a non-zero pause time has finished being received (MRXDV going inactive). No transmission will begin until the pause timer has expired (the port may transmit pause frames in order to initiate outgoing flow control). Any frame already in transmission when a pause frame is received will be completed and unaffected.

Incoming pause frames consist of:

- A 48-bit destination address equal to:
 - The reserved multicast destination address 01.80.C2.00.00.01, or
 - The 48-bit MAC source address found in the SLx_SA_HI and SLx_SA_LO Registers in the GbE switch
- The 48-bit source address of the transmitting device
- The 16-bit length/type field containing the value 88.08
- The 16-bit pause opcode equal to 00.01
- The 16-bit pause_time. A pause-quantum is 512 bit-times
- Padding to 64-byte data length
- The 32-bit frame-check sequence (CRC word)

All quantities above are hexadecimal and are transmitted most-significant byte first. The least-significant bit is transferred first in each byte.

The padding is required to make up the frame to a minimum of 64 bytes. The standard allows pause frames longer than 64 bytes to be discarded or interpreted as valid pause frames. The MAC module will recognize any pause frame between 64 bytes and MAC_RX_MAXLENRX_MAXLEN bytes in length.

2.3.2.2.9 Speed, Duplex Mode, and Pause Frame Support Negotiation

The MAC module can operate in half duplex or full duplex in 10/100 Mbps modes, and can operate only in full duplex in 1000 Mbps mode. Pause frame support is included in 10/100/1000 Mbps modes as configured by the host.

2.3.2.2.10 Frame Classification

Received frames are proper (good) frames if they are between 64 and MAC_RX_MAXLEN in length (inclusive) and contain no errors (code/align/CRC).

Received frames are long frames if their frame count exceeds the value in the MAC_RX_MAXLEN register. The default MAC_RX_MAXLEN register value is 1518 (decimal). Long received frames are either oversized or jabber frames. Long frames with no errors are oversized frames. Long frames with CRC, code, or alignment errors are jabber frames.

Received frames are short frames if their frame count is less than 64 bytes. Short frames that contain no errors are undersized frames. Short frames with CRC, code, or alignment errors are fragment frames.

- A received long packet will always contain MAC_RX_MAXLEN number of bytes transferred to memory (if RX_CEF_EN = 1). An example with MAC_RX_MAXLEN = 1518 is below:
- If the frame length is 1518, then the packet is not a long packet and there will be 1518 bytes transferred to memory
- If the frame length is 1519, there will be 1518 bytes transferred to memory. The last three bytes will be the first three CRC bytes
- If the frame length is 1520, there will be 1518 bytes transferred to memory. The last two bytes will be the first two CRC bytes
- If the frame length is 1521, there will be 1518 bytes transferred to memory. The last byte will be the first CRC byte
- If the frame length is 1522, there will be 1518 bytes transferred to memory. The last byte will be the last data byte

2.3.3 MAC Receive FIFO Architecture

This section describes the architecture of the MAC receive FIFOs. Internal to the GbE switch, both MAC ports have an identical packet FIFO. Each packet FIFO contains a single logical receive queue and four logical transmit queues (priority 0 through 3). Each packet FIFO memory contains 81,920 bytes (80k) total organized as 10240 by 64-bit words contained in a single memory instance. The packet FIFO memory is used for the associated port transmit and receive queues. The TX_MAX_BLKS field in the FIFO's associated MAX_BLKS Register determines the maximum number of 4k FIFO memory blocks to be allocated to the four logical transmit queues (transmit total). The RX_MAX_BLKS field in the FIFO's associated MAX_BLKS Register determines the maximum number of 4k memory blocks to be allocated to the logical receive queue. The TX_MAX_BLKS value plus the RX_MAX_BLKS value should sum to 20 (the total number of blocks in the FIFO). If the sum were less than 20 then some memory blocks would be unused. The default is 17 (decimal) transmit blocks and three receive blocks for a port that does not have flow control enabled. When a port is configured for flow control mode, the receive FIFO blocks allocation should be increased with a corresponding decrease in transmit FIFO blocks.

2.3.4 Statistics Submodule Architecture

This section describes the architecture of the statistics modules in the GbE switch (see Section 3.5.4.)

The GbE switch has two sets of statistics modules that record events associated with packets entering and exiting the switch. The statistics for KeyStone I switch port 0 are recorded on statistics module A (STATSA), and statistics for ports 1 and 2 are recorded on statistics module B (STATSB). For KeyStone II devices, the additional ports are recorded in the additional statistics modules STATSC and STATSD. Each statistic register is 32-bits wide and automatically increments when a certain statistics condition is met. Each statistic will rollover from 0xFFFFFFF to 0x00000000.

For Keystone II, the Ethernet switch has four sets of statistics that record events associated with frame traffic on selected switch ports. STATSA keeps statistics for port 0 receive, port 0 TXA, and port 0 TXB. STATSC keeps statistics for port 0 TXC and port 0 TXD (STATSC receive statistics are unused). STATSB keeps statistics for port 1 and STATSD keeps statistics for ports 3 and 4. The statistics are paged in the address map. STATSA/B statistics are visible in the address range when stat_sel is cleared to 0 in the Stat_Port Register. STATSC/D statistics are visible in the address range when stat_sel is set to 1 in the Stat_Port Register.

NOTE: To view the STATS for the STATS module, they must first be enabled in the Stats Configuration Register.

KeyStone I devices have only STATSA and STATSB — no STATSC or STATSD.

KeyStone II devices have STATSA and STATSB, plus STATSC and STATSD. STATSA and STATSC share the same address space, and STATSB and STATSD share the same address space.

The user must configure the STATS enable register (Statics port Enable Register STAT_PORT_EN -- Section 3.5.1.4) to pick which of the pair of STATS modules to view — either STATSA/STATSB for port 0 and port 1, or STATSC/STATSD for port 2 and port 3. All four cannot be viewed at the same time because they share the same address space.

2.3.4.1 Accessing Statistics Registers

This section describes how to correctly read and write to the registers in the statistics modules while the modules are disabled or enabled. By default, the statistics modules are disabled. While disabled, all statistics registers can be read and written normally, so writing 0x0000000 clears a statistics register. After the statistics modules are enabled, all statistics can still be read normally; however, register writes will become write to decrement, meaning that the value written to the register will be subtracted from the register value, with the result being stored in the register (new register value = old register value - write value). If the value written is greater than the value in the statistics register, then 0 will be written to that register. When a statistics module is enabled, writing a value of 0xFFFFFFF will clear a statistics location. When writing to a statistics register, 32-bit accesses must be used. The statistics modules can be enabled by writing to bits 3:0 the STAT_PORT_EN Register.

2.3.4.2 Statistics Interrupts

This section describes interrupts generated by the statistics modules. For KeyStone I, each of the two statistics modules have the ability to send an interrupt to the host. The interrupt for the STATSA module will occur on the STAT_PEND_RAW[0] signal, and the interrupt for the STATSB module will occur on the STAT_PEND_RAW[1] signal. The interrupt will be triggered when any of the values in the statistics registers become greater than or equal to 0x80000000. The statistics interrupt can be removed by writing a value greater than 0x80000000.

For KeyStone II devices, STAT_PEND_RAW is a 4-bit value, with the third and fourth bit representing STATSC and STATSD respectively.

2.3.4.3 Receive Statistics Descriptions

2.3.4.3.1 Good Receive Frames

The good receive frames statistic is the total number of good frames received on the port. A good frame has the following characteristics:

- Any data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode
- Was of length 64 to RX_MAXLEN bytes inclusive
- Had no CRC error, alignment error, or code error

See the receive align/code errors and receive CRC errors statistic descriptions for definitions of alignment, code, and CRC errors. Overruns have no effect on this statistic.

2.3.4.3.2 Broadcast Receive Frames

The broadcast receive frames statistic is the total number of good broadcast frames received on the port. A good broadcast frame has the following characteristics:

- Any data or MAC control frame that was destined for address 0xFFFFFFFFFFFFFFF only
- Was of length 64 to RX_MAXLEN bytes inclusive
- Had no CRC error, alignment error, or code error

See the receive align/code errors and receive CRC errors statistic descriptions for definitions of alignment, code, and CRC errors. Overruns have no effect on this statistic.

2.3.4.3.3 Multicast Receive Frames

The multicast receive frames statistic is total number of good multicast frames received on the port. A good multicast frame has the following characteristics:

- Any data or MAC control frame that was destined for any multicast address other than 0xFFFFFFFFFFF
- Was of length 64 to RX_MAXLEN bytes inclusive
- Had no CRC error, alignment error, or code error

See the receive align/code errors and receive CRC errors statistic descriptions for definitions of alignment, code, and CRC errors. Overruns have no effect on this statistic.

2.3.4.3.4 Pause Receive Frames

The pause receive frames statistic is the total number of IEEE 802.3X pause frames received by the port (whether acted upon or not). Such a frame has the following characteristics:

- Contained any unicast, broadcast, or multicast address
- Contained the length/type field value 88.08 (hex) and the opcode 0x0001
- Was of length 64 to RX_MAXLEN bytes inclusive
- Had no CRC error, alignment error or code error
- Pause-frames had been enabled in the MAC module on that port (TX_FLOW_EN = 1)

The port could have been in either half-duplex or full-duplex mode.

See the receive align/code errors and receive CRC errors statistic descriptions for definitions of alignment, code and CRC errors. Overruns have no effect on this statistic.

2.3.4.3.5 Receive CRC Errors

The receive CRC errors statistic is the total number of frames received on the port that experienced a CRC error. Such a frame has the following characteristics:

- Was any data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode
- Was of length 64 to RX_MAXLEN bytes inclusive
- Had no code/align error, and
- Had a CRC error

Overruns have no effect on this statistic.

A CRC error has the following characteristics:

- · A frame containing an even number of nibbles
- Fails the frame check sequence test

2.3.4.3.6 Receive Align/Code Errors

The receive align/code errors statistic is the total number of frames received on the port that experienced an alignment error or code error. Such a frame has the following characteristics:

- Was any data or MAC control frame that matched a unicast, broadcast. or multicast address, or matched due to promiscuous mode
- Was of length 64 to RX_MAXLEN bytes inclusive
- Had either an alignment error or a code error

Over-runs have no effect on this statistic.

An alignment error has the following characteristics:

- · A frame containing an odd number of nibbles
- Fails the frame check sequence test if the final nibble is ignored

A code error is defined to be a frame that has been discarded because the port's MRXER pin driven with a 1 for at least one bit-time's duration at any point during the frame's reception.

NOTE: RFC 1757 etherStatsCRCAlignErrors Ref. 1.5 can be calculated by summing the receive align/code errors and receive CRC errors (see above).

2.3.4.3.7 Oversize Receive Frames

The oversize receive frames statistic is total number of oversized frames received on the port. An oversized frame has the following characteristics:

- Was any data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode
- Was greater than RX_MAXLEN in bytes
- Had no CRC error, alignment error, or code error

See the receive align/code errors and receive CRC errors statistic descriptions for definitions of alignment, code, and CRC errors. Overruns have no effect on this statistic.

Gigabit Ethernet Switch Architecture

2.3.4.3.8 Receive Jabber Frames

The receive jabber frames statistic is the total number of jabber frames received on the port. A jabber frame has the following characteristics:

- Was any data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode
- Was more than RX_MAXLEN bytes long
- Had a CRC error, an alignment error, or a code error

See the receive align/code errors and receive CRC errors statistic descriptions for definitions of alignment, code, and CRC errors. Overruns have no effect on this statistic.

2.3.4.3.9 Undersize (Short) Receive Frames

The undersize receive frames statistic is the total number of undersized frames received on the port. An undersized frame has the following characteristics:

- Any data frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode
- Was less than 64 bytes long
- · Had no CRC error, alignment error, or code error

See the receive align/code errors and receive CRC errors statistic descriptions for definitions of alignment, code, and CRC errors. Overruns have no effect on this statistic.

2.3.4.3.10 Receive Fragments

The receive fragments statistic is the total number of frame fragments received on the port. A frame fragment has the following characteristics:

- Any data frame (address matching does not matter)
- Was less than 64 bytes long
- · Had a CRC error, an alignment error, or a code error
- · Was not the result of a collision caused by half duplex, collision based flow control

See the receive align/code errors and receive CRC errors statistic descriptions for definitions of alignment, code, and CRC errors. Overruns have no effect on this statistic.

2.3.4.3.11 Receive Start of Frame Overruns

The receive start of frame overruns statistic is the total number of frames received on the port that had a start of frame (SOF) overrun or were dropped by due to FIFO resource limitations. SOF overrun frame has the following characteristics:

- Was any data or MAC control frame that matched a unicast, broadcast or multicast address, or matched due to promiscuous mode
- Was any length (including <64 bytes and > RX_MAXLEN bytes)
- The packet was dropped due to FIFO resource limitations

2.3.4.3.12 KeyStone I Overrun Type 1

This section describes the overrun type 1 statistic. The overrun type 1 statistic represents a different event depending on whether the statistic is recorded in the STATSA or the STATSB module. The STATSA overrun type 2 and the STATSB overrun type 2 are discussed separately.

In the STATSA module, the overrun type 1 statistic records the total number of frames received on port 0 that had a START of frame (SOF) overrun and were dropped on port 0 ingress (port 0 receive FIFO). An SOF overrun frame has the following characteristics:

- Any data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode
- Was any length (including shorter than 64 bytes or longer than RX_MAXLEN bytes)
- Had a SOF of frame overrun on port 0.

In the STATSB module, the overrun type 1 statistic records the total number of frames received on port 1 or port 2 that had a START of frame (SOF) overrun and were dropped on port 1 or port 2 ingress (port 1 or port 2 receive FIFO). An SOF overrun frame has the following characteristics:

- Any data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode
- Was any length (including shorter than 64 bytes or longer than RX_MAXLEN bytes)
- Had a SOF of frame overrun

2.3.4.3.13 KeyStone II Overrun Type 1

In addition to STATSA and STATSB modules, the KeyStone II devices have two addition statistics modules STATSC and STATSD.

In the STATSC module, this overrun type is unused. For STATSD, the total number of frames received on port 3 or port 4 that had a SOF overrun and were dropped on port 3 or port 4 ingress (port 3 or port 4 FIFO). The SOF overrun frame is defined to be:

- Any data of MAC control frame that matched a unicast, broadcast, of multicast address, or matched due to promiscuous mode
- Was any length (including < 64 bytes and > RX_MAXLEN bytes)
- Had a SOF of frame overrun

2.3.4.3.14 KeyStone I Overrun Type 2

This section describes the overrun type 2 statistic. The overrun type 2 statistic represents a different event depending on whether the statistic is recorded in the STATSA or the STATSB module. The STATSA overrun type 2 and the STATSB overrun type 2 are discussed separately.

In the STATSA module, the overrun type 2 statistic records the total number of frames received on ports 1 or 2 that had a middle of frame (MOF) overrun or start of frame (SOF) overrun on CPPI (port 0) egress. An MOF/SOF overrun frame has the following characteristics:

- Any data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode
- Was any length (including shorter than 64 bytes or longer than RX_MAXLEN bytes)
- Had a MOF/SOF overrun on egress

In the STATSB module, the overrun type 2 statistic records the total number of frames received on port 2 that had a start of frame (SOF) overrun on port 1. If KeyStone II, this is for port 1, 2, or 4) egress (when attempting to load the packet into the port 1 transmit FIFO). An SOF overrun frame has the following characteristics:

- Any data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode
- Was any length (including shorter than 64 bytes or longer than RX_MAXLEN bytes)
- Had a SOF of frame overrun on port 1 egress

2.3.4.3.15 KeyStone II Overrun Type 2

For KeyStone II, STATSA and STATSB are the same statistics block as in KeyStone I.

For STATSC, the total number of frames received SOF or Middle of Frame (MOF) on CPPI (port 0) egress. SOF or MOF overrun frame is defined to be:

- Any data of control frame that matched a unicast, broadcast or multicast address or matched due to promiscuous mode
- Was any length (including shorter than 64 bytes or longer than RX_MAXLEN bytes)
- Has a MOF/SOF overrun on egress

For STATSD, it is the total number of frames received on port 4 that had a SOF overrun on port 1, 2, or 3 egress (when attempting to load the packet into the Ethernet port transmit IFIFO). SOF overrun frame is defined to be:

- Any data of control frame that matched a unicast, broadcast or multicast address or matched due to promiscuous mode
- Was any length (including shorter than 64 bytes or longer than RX_MAXLEN bytes)
- Has a SOF overrun on port 1 egress.

Note, this stat can under count dropped frames in rare conditions when port 1 and port 2 are on the same clock.

2.3.4.3.16 Overrun Type 3

This section describes the overrun type 3 statistic. The overrun type 3 statistic represents a different event depending on whether the statistic is recorded in the STATSA or the STATSB module. The STATSA overrun type 2 and the STATSB overrun type 2 will be discussed separately.

In the STATSA module, the overrun type 3 statistic records the total number of frames received on port 0 that had a START of frame (SOF) overrun on port 1 or port 2 egress (when attempting to load the packet into the port 1 or 2 transmit FIFOs). An SOF overrun has the following characteristics:

- Any data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode
- Was any length (including shorter than 64 bytes or longer than RX_MAXLEN bytes)
- Had a SOF of frame overrun on port 1 or 2 egress

In the STATSB module, the overrun type 3 statistic records the total number of frames received on port 1 that had a START of frame (SOF) overrun on port 2 egress (when attempting to load the packet into the port 2 transmit FIFO. It's port 1, 3 or 4 if KeyStone II devices). An SOF overrun frame has the following characteristics:

- Any data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode
- Was any length (including shorter than 64 bytes or longer than RX_MAXLEN bytes)
- Had a SOF of frame overrun on port 2 egress

In KeyStone II, for STATSC and STATSD for port 3 and 4 respectively, the same format is followed as for STATSA overrun Type 3 statistics records.

www.ti.com

2.3.4.3.17 KeyStone II Overrun Type 3

For KeyStone II, STATSA and STATSB have the same formatting as mentioned above.

For STATSC, it is the total number of frames received on port 0 that had a SOF overrun on port 3 or port 4 egress (when attempting to load the packet into the port 1 or 2 TX FIFOS). SOF overrun is defined to be:

- Any data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode
- Was any length (including shorter than 64 bytes or longer than RX_MAXLEN bytes)
- Had a SOF of frame overrun on port 1 or port 2 egress

STATSD has the total number of frames received on port 3 that had a SOF overrun on port 1, 2, or 4 egress (when attempting to load the packet into the Ethernet port transmit FIFO). SOF overrun frame is defined to be:

- Any data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode
- Was any length (including shorter than 64 bytes or longer than RX_MAXLEN bytes)
- Had a SOF of frame overrun on port 1 egress

2.3.4.4 Transmit (Only) Statistics Descriptions

The maximum and minimum transmit frame size is software controllable.

2.3.4.4.1 Good Transmit Frames

The good transmit frames statistic is the total number of good frames transmitted on the port. A good frame has the following characteristics:

- Any data or MAC control frame that was destined for any unicast, broadcast or multicast address
- Was any length
- · Had no late or excessive collisions, no carrier loss, and no underrun

2.3.4.4.2 Broadcast Transmit Frames

The broadcast transmit frames statistic is the total number of good broadcast frames transmitted on the port. A good broadcast frame has the following characteristics:

- Any data or MAC control frame destined for address 0xFFFFFFFFFFFFF only
- Was of any length
- · Had no late or excessive collisions, no carrier loss, and no underrun

2.3.4.4.3 Multicast Transmit Frames

The multicast transmit frames statistic is the total number of good multicast frames transmitted on the port. A good multicast frame has the following characteristics:

- Was of any length
- Had no late or excessive collisions, no carrier loss, and no underrun

2.3.4.4.4 Pause Transmit Frames

The pause transmit frames statistic indicates the number of IEEE 802.3X pause frames transmitted by the port.

Pause frames cannot underrun or contain a CRC error because they are created in the transmitting MAC, so these error conditions have no effect on the statistic. Pause frames sent by software will not be included in this count.

Because pause frames are transmitted only in full duplex, carrier loss and collisions have no effect on this statistic.

Transmitted pause frames are always 64-byte multicast frames, so they will appear in the transmit multicast frames and 64 octet frames statistics.

2.3.4.4.5 Collisions

The collisions statistic records the total number of times that the port experienced a collision. Collisions occur under two circumstances:

- 1. When a transmit data or MAC control frame has the following characteristics:
 - Was destined for any unicast, broadcast or multicast address
 - Was any size
 - Had no carrier loss and no underrun
 - Experienced a collision

A jam sequence is sent for every non-late collision, so this statistic will increment on each occasion if a frame experiences multiple collisions (and increments on late collisions). CRC errors have no effect on this statistic.

2. When the port is in half-duplex mode, flow control is active, and a frame reception begins

2.3.4.4.6 Single Collision Transmit Frames

The single collision transmit frames statistic is the total number of frames transmitted on the port that experienced exactly one collision. Such a frame has the following characteristics:

- Was any data or MAC control frame destined for any unicast, broadcast, or multicast address
- Was any size
- Had no carrier loss and no underrun
- Experienced one collision before successful transmission. The collision was not late

CRC errors have no effect on this statistic.

2.3.4.4.7 Multiple Collision Transmit Frames

The multiple collision transmit frames statistic is the total number of frames transmitted on the port that experienced multiple collisions. Such a frame has the following characteristics:

- Was any data or MAC control frame destined for any unicast, broadcast, or multicast address
- Was any size
- Had no carrier loss and no underrun
- Experienced 2 to 15 collisions before being successfully transmitted. None of the collisions were late.

CRC errors have no effect on this statistic.

2.3.4.4.8 Excessive Collisions

The excessive collisions statistic is the total number of frames for which transmission was abandoned due to excessive collisions. Such a frame has the following characteristics:

- Was any data or MAC control frame destined for any unicast, broadcast, or multicast address
- Was any size
- Had no carrier loss and no underrun
- Experienced 16 collisions before abandoning all attempts at transmitting the frame. None of the collisions were late.

CRC errors have no effect on this statistic.

2.3.4.4.9 Late Collisions

The late collisions statistic is the total number of frames on the port for which transmission was abandoned because they experienced a late collision. Such a frame has the following characteristics:

- · Was any data or MAC control frame destined for any unicast, broadcast, or multicast address
- Was any size
- Experienced a collision later than 512 bit-times into the transmission. There may have been up to 15 previous (non-late) collisions that had previously required the transmission to be re-attempted.

The late collisions statistic dominates over the single, multiple and excessive collisions statistics - if a late collision occurs the frame will not be counted in any of these other three statistics.

CRC errors, carrier loss, and underrun have no effect on this statistic.

2.3.4.4.10 Transmit Underrun

There should be no transmitted frames that experience underrun.

2.3.4.4.11 Deferred Transmit Frames

The deferred transmit frames statistic is the total number of frames transmitted on the port that first experienced deferment. Such a frame has the following characteristics:

- Was any data or MAC control frame destined for any unicast, broadcast, or multicast address
- Was any size
- Had no carrier loss and no underrun
- Experienced no collisions before being successfully transmitted
- Found the medium busy when transmission was first attempted, so had to wait

CRC errors have no effect on this statistic.

NOTE: See RFC1623 Ref. 2.6 dot3StatsDeferredTransmissions.

2.3.4.4.12 Carrier Sense Errors

The carrier sense errors statistic is the total number of frames on the port that experienced carrier loss. Such a frame has the following characteristics:

- Was any data or MAC control frame destined for any unicast, broadcast, or multicast address
- Was any size
- The carrier sense condition was lost or never asserted when transmitting the frame (the frame is not retransmitted)

This is a transmit-only statistic. Carrier Sense is a don't care for received frames. Transmit frames with carrier sense errors are sent until completion and are not aborted.

CRC errors and underrun have no effect on this statistic.

Gigabit Ethernet Switch Architecture

2.3.4.4.13 Transmit Octets

The transmit octets statistic is the total number of bytes in all good frames transmitted on the port. A good frame has the following characteristics:

- · Any data or MAC control frame that was destined for any unicast, broadcast, or multicast address
- Was any size
- Had no late or excessive collisions, no carrier loss, and no underrun

2.3.4.5 Receive and Transmit (Shared) Statistics Descriptions

2.3.4.5.1 Net Octets

The net octets statistic is the total number of bytes of frame data received and transmitted on the port. Each frame counted:

- Was any data or MAC control frame destined for any unicast, broadcast or multicast address (address match does not matter)
- Was of any size (including < 64 byte and > RX_MAXLEN byte frames).

Also counted in this statistic are:

- Every byte transmitted before a carrier-loss was experienced
- Every byte transmitted before each collision was experienced, (i.e., multiple retries are counted each time)
- Every byte received if the port is in half-duplex mode until a jam sequence was transmitted to initiate flow control. (The jam sequence was not counted to prevent double-counting)

Error conditions such as alignment errors, CRC errors, code errors, overruns and underruns do not affect the recording of bytes by this statistic.

The objective of this statistic is to give a reasonable indication of Ethernet utilization.

2.3.4.5.2 Receive + Transmit 64 Octet Frames

The receive and transmit 64 octet frames statistic is the total number of 64-byte frames received and transmitted on the port. Such a frame has the following characteristics:

- Any data or MAC control frame that was destined for any unicast, broadcast, or multicast address
- Did not experience late collisions, excessive collisions, or carrier sense error
- Was exactly 64 bytes long

If the frame was being transmitted and experienced carrier loss that resulted in a frame of this size being transmitted, then the frame will be recorded in this statistic.

CRC errors, code/align errors, and overruns do not affect the recording of frames in this statistic.

2.3.4.5.3 Receive + Transmit 65-127 Octet Frames

The receive and transmit 64-127 octet frames statistic is the total number of frames of size 65 to 127 bytes received and transmitted on the port. Such a frame has the following characteristics:

- Any data or MAC control frame that was destined for any unicast, broadcast, or multicast address
- Did not experience late collisions, excessive collisions, or carrier sense error
- Was 65 to 127 bytes long

CRC errors, code/align errors, underruns and overruns do not affect the recording of frames in this statistic.

2.3.4.5.4 Receive + Transmit 128-255 Octet Frames

The receive and transmit 128-255 octet frames statistic is the total number of frames of size 128 to 255 bytes received and transmitted on the port. Such a frame has the following characteristics:

- Any data or MAC control frame that was destined for any unicast, broadcast, or multicast address
- Did not experience late collisions, excessive collisions, or carrier sense error
- Was 128 to 255 bytes long

CRC errors, code/align errors, underruns, and overruns do not affect the recording of frames in this statistic.

NOTE: For receive reference only, see RFC1757 Ref. 1.13 etherStatsPkts128to255Octets.

2.3.4.5.5 Receive + Transmit 256-511 Octet Frames

The receive and transmit 256-511 octet frames statistic is the total number of frames of size 256 to 511 bytes received and transmitted on the port. Such a frame has the following characteristics:

- Any data or MAC control frame that was destined for any unicast, broadcast, or multicast address
- · Did not experience late collisions, excessive collisions, or carrier sense error
- Was 256 to 511 bytes long

CRC errors, code/align errors, underruns and overruns do not affect the recording of frames in this statistic.

2.3.4.5.6 Receive + Transmit 512-1023 Octet Frames

The receive and transmit 512-1023 octet frames statistic is the total number of frames of size 512 to 1023 bytes received and transmitted on the port. Such a frame has the following characteristics:

- Any data or MAC control frame that was destined for any unicast, broadcast, or multicast address
- Did not experience late collisions, excessive collisions, or carrier sense error
- Was 512 to 1023 bytes long

CRC errors, code/align errors and overruns do not affect the recording of frames in this statistic.

2.3.4.5.7 Receive + Transmit 1024 and Above Octet Frames

The receive and transmit 1024 and above octet frames statistic is the total number of frames of size 1024 to RX_MAXLEN bytes for receive or 1024 or more bytes for transmit on the port. Such a frame has the following characteristics:

- · Any data or MAC control frame that was destined for any unicast, broadcast, or multicast address
- · Did not experience late collisions, excessive collisions, or carrier sense error
- Was 1024 to RX_MAXLEN bytes long on receive, or 1024 or more bytes on transmit

CRC errors, code/align errors, underruns and overruns do not affect the recording of frames in this statistic.

2.3.5 Time Synchronization Submodule Architecture

This section describes the time synchronization module in the GbE switch.

The KeyStone 1 time synchronization module is used to facilitate host control of time synchronization operations in accordance with Annex F of the IEEE 1588 specification. Much of the IEEE 1588 standard is outside of the scope of the time synchronization module, and must be handled by host software. The main purpose of the time synchronization module is to detect time synchronization events and generate timestamps, and then provide this information to host software for processing. For receive time synchronization packets, the time synchronization module is able to support one-step or two-step operations. For transmit packets, the time synchronization module supports only the two-step operation.

www.ti.com

The time synchronization submodule for KeyStone I detects the following six types of time synchronization events:

- Ethernet receive event
- Ethernet transmit event
- Software time stamp push event
- Time stamp rollover event
- Time stamp half-rollover event

Each Ethernet port can cause transmit and receive events. The time stamp push is initiated by software. Each of these six events is covered in more detail later in this section.

2.3.5.1 KeyStone II Time Synchronization Submodule Architecture

KeyStone II uses CPTS 1.5 versus the version CPTS 1.0 in KeyStone I. For KeyStone II, the time stamping of IEEE1588 specified Annex D, E and F packets by the CPTS block is supported in addition to Annex F packets.

KeyStone II CPTS has support for hardware push events that can be used to precisely timestamp external events based of the CPTS reference clock. These events inputs are available as device pins. KeyStone II supports all the different reference clock sources for the CPTS block as in KeyStone I. In addition, KeyStone II supports an external differential clock source.

For SyncE support, KeyStone II exports recovered clocks from the four SGMII ports to device pins. The recovered clocks could be used by logic external to the device to implement a clock forwarding synchronous Ethernet solution. KeyStone I did not support exporting of recovered receive clock from Ethernet ports.

The KeyStone II Submodule can detect the following types of events:

- Time stamp push event
- Time stamp rollover event
- Time stamp half rollover event
- Hardware time stamp push event
- Ethernet receive event
- Ethernet transmit event
- Time stamp compare event

Each of these events are described in more detail in this section.

2.3.5.2 Time Synchronization Submodule Components

The time synchronization module has several components that together provide the functionality of the time synchronization module. The time synchronization module is made up of the following components:

- Time Stamp Counter (Section 2.3.5.2.1)
- Ethernet Port 1 and Port 2 Interfaces (Section 2.3.5.2.2)
- Event FIFO (Section 2.3.5.2.3)
- Event Pending Interface (Section 2.3.5.2.4)

Each component is described individually.

2.3.5.2.1 Time Stamp Counter

This section describes the time stamp counter for the time synchronization module. The time stamp counter contains a 32-bit value that is maintained internally within the time synchronization module. The value in the time stamp counter is initialized to 0 when the CPTS_EN bit in the TS_CONTROL register is cleared to 0. When the CPTS_EN bit is set to 1, the time stamp value increments on each rising edge of the CPTS_RCLK. The time stamp value can be written by using the TS_LOAD_EN and TS_LOAD_VAL Registers; however, this functionality is provided primarily for test purposes. Host software must maintain the required number of upper bits of the time stamp value, and must be incremented when the rollover event is detected.

2.3.5.2.2 Ethernet Port 1 and Port 2 Interfaces

This section describes the Ethernet port 1 and Ethernet port 2 interfaces to the time synchronization module. The time synchronization module contains two identical port interfaces. One of the interfaces is connected the port 1 of the GbE switch and one is connected to port 2 of the GbE switch. Each of the time synchronization Ethernet port interfaces contains separate receive and transmit interfaces. The receive interface is used to generate time sync events for valid time synchronization packets that are received on that port. Similarly, the transmit interface is used to generate time sync events for time synchronization packets that are transmitted on that port. Details concerning receive synchronization events can be found in Section 2.3.4.3.4.

Details concerning transmit synchronization events can be found in Section 2.3.4.3.5.

NOTE: In KeyStone II devices, the interface for port 3 and port 4 follows the format for port 1 and port 2.

2.3.5.2.3 Event FIFO

This section describes the event FIFO in the time synchronization submodule. The event FIFO contains time synchronization events that are waiting to be processed by host software. Events can be processed using interrupts by enabling the event pending interface, or by polling the INTSTAT_RAW register. The event FIFO can hold up to 16 events, and events must be processed in a timely manner to prevent overruns. The time synchronization submodule does not contain any logic to indicate when an overrun has occurred.

2.3.5.2.4 Event Pending Interface

This section describes the event pending interface. The event pending interface is used to signal to the host processor when a time synchronization event is detected in the event FIFO. This interface is valid only when using interrupts to process events. The event pending interface is active when the TS_PEND_EN bit in the TS_INT_ENABLE register is set to 1. When this bit is set, interrupts will be used to notify the host of any time synchronization events that are detected by the time synchronization module. When the TS_PEND_EN bit in the TS_INT_ENABLE register is set to 0, the event pending interface is inactive.

Gigabit Ethernet Switch Architecture

2.3.5.3 Time Synchronization Events

This section describes time synchronization events.

For KeyStone I, time synchronization events are 64-bit values that are pushed onto the event FIFO, which can then be read in the 32-bit EVENT_LOW and EVENT_HIGH registers. Table 2-5 shows the time synchronization event fields for KeyStone I devices. See the EVENT_LOW Register (Section 3.5.5.9) and EVENT_HIGH Register (Section 3.5.5.11) for register bit field information.

For KeyStone II, there is an additional register, EVENT_MID (Section 3.5.5.10). Table 2-6 shows the time synchronization event fields for KeyStone II devices.

Name	Description
Time Stamp	The time stamp field contains the 32-bit time stamp value for a given packet that contains the section where a clock cycle time stamp can be placed when configured for it. The timestamp value is valid only for time stamp push events, Ethernet receive events, and Ethernet transmit events. The time stamp value is not valid for counter roll over event types.
Port Number	The port number is used to indicate the port number of an Ethernet event.
Event Type	 The event field contains the type of event that is represented. The available event types are: Software time stamp push event Time stamp rollover event Time stamp half rollover event Ethernet receive event Ethernet transmit event
Message Type	The message type field contains the message type value that was found in an Ethernet receive or transmit event. This field is valid only for Ethernet receive and transmit events.
Sequence ID	The sequence ID field contains the 16-bit sequence ID that was contained in an Ethernet receive or transmit time sync packet. This field is valid only for Ethernet receive and transmit events.

Table 2-5. KeyStone I Time Synchronization Event Fields

Table 2-6. KeyStone II Time Synchronization Event Fields

Name	Description							
Time Stamp	Stamp The time stamp field contains the 32-bit time stamp value for a given packet that contains the section where a cycle time stamp can be placed when configured for it. The timestamp value is valid only for time stamp push events, Ethernet receive events, and Ethernet transmit events. The time stamp value is not valid for counter roll over event types.							
Port Number	The port number is used to indicate the port number of an Ethernet event.							
Event Type	The event field contains the type of event that is represented. The available event types are:							
	Software time stamp push event							
	Time stamp rollover event							
	Time stamp half rollover event							
	Ethernet receive event							
	Ethernet transmit event							
	Time Stamp Compare Event							
Message Type	The message type field contains the message type value that was found in an Ethernet receive or transmit event. This field is valid only for Ethernet receive and transmit events.							
Sequence ID	The sequence ID field contains the 16-bit sequence ID that was contained in an Ethernet receive or transmit time sync packet. This field is valid only for Ethernet receive and transmit events.							
Domain	The 8-bit Domain is the value that was contained in an Ethernet transmit or receive time sync packet. This field is valid only for Ethernet transmit or receive events.							

The subsequent sections describe the different event types supported by the time synchronization submodule.

2.3.5.3.1 Time Stamp Push Event

This section describes the time stamp push event. The time stamp push event is an event generated by host software, and is used to obtain the current time stamp value. The time stamp push event is initiated by writing the TS_PUSH register. After writing the TS_PUSH register, the time stamp event is generated and pushed into the time synchronization event FIFO with the time stamp push event code. The time stamp value that is returned will be the value of the time stamp at the time that the TS_PUSH register was written.

2.3.5.3.2 Time Stamp Counter Rollover Event

This section describes the time stamp counter rollover event. The time stamp rollover event is used to indicate that the 32-bit time stamp maintained by the time synchronization module has rolled over from 0xFFFFFFF to 0x00000000. When the rollover occurs, the time stamp rollover event will be pushed into the event FIFO for processing by host software with the time stamp counter rollover event code. The host should use this event to increment any upper time stamp bits that are being maintained in software.

2.3.5.3.3 Time Stamp Counter Half Rollover Event

This section describes the time stamp counter half-rollover event. The half-rollover event indicates to software that the time stamp value maintained internally by the time synchronization module has incremented from 0x7FFF_FFFF to 0x8000_0000. The half-rollover event is included to enable software to correct a misaligned event condition.

The half-rollover event is included to enable software to determine the correct time for each event that contains a valid timestamp value - such as an Ethernet event. If an Ethernet event occurs around a counter rollover (full rollover), then the rollover event could possibly be loaded into the event FIFO before the Ethernet event is loaded into the event FIFO even though the Ethernet event time was actually taken before the rollover. This misaligned event condition arises because an Ethernet event time stamp occurs at the beginning of a packet and time passes before the packet is determined to be a valid synchronization packet. The misaligned event condition occurs if the rollover occurs in the middle, after the packet time stamp has been taken, but before the packet has been determined to be a valid time sync packet.

Host software must detect and correct for the misaligned event condition. For every event time stamp after a rollover, and before a half-rollover, software must examine the most significant bit of the time stamp . If the most significant bit of the time stamp is 1, then the time stamp value was before the rollover occurred. If the most significant bit of the time stamp is 0, then the event time stamp was taken after the rollover and no correction is required. The misaligned event can occur only on the rollover boundary and not on the half-rollover boundary. Software does not correct for the misaligned time stamp between a half-rollover and a rollover event, only between a rollover event and a half-rollover event.

When a full rollover occurs, software increments the software time stamp upper value. The misaligned case indicates to software that the misaligned event time stamp has a valid upper value that is preincrement, so one must be subtracted from the upper value to allow software to calculate the correct time for the misaligned event.

2.3.5.3.4 Ethernet Receive Event

This section describes Ethernet port receive events. Ethernet ports 1 and 2 can generate Ethernet receive events. Each port has an identical interface and can independently generate time synchronization events for valid received time sync packets. For every packet received on the Ethernet ports, a timestamp will be captured by the receive module inside the CPTS for the corresponding port. The time stamp will be captured by the receive module regardless of whether or not the packet is a time synchronization packet to make sure that the time stamp is captured as soon as possible. The packet is sampled on both the rising and falling edges of the CPTS_RCLK, and the time stamp will be captured once the start of frame delimiter for the receive packet is detected.

After the time stamp has been captured, the receive interface will begin parsing the packet to determine if it is a valid Ethernet time synchronization packet. The GbE switch 1588v2 decoder determines if the packet is a valid ethernet receive time synchronization event. The receive interface for the port will use the following criteria to determine if the packet is a valid time synchronization Ethernet receive event.

www.ti.com

If all of the criteria described in Section 2.3.5.3.6 are met, and the packet is determined to be a valid time synchronization packet, then the RX interface will push an Ethernet receive event into the event FIFO. For more information about event formatting please see Table 2-5. For more information on how to detect and process receive events, see Section 2.3.5.5.

2.3.5.3.5 Ethernet Transmit Event

This section describes Ethernet port transmit events. Ethernet ports 1 and 2 can generate Ethernet transmit events. Each port has an identical interface and can independently generate time synchronization events for valid transmit time sync packets. For every packet transmitted on the Ethernet ports, the port transmit interface will begin parsing the packet to determine if it is a valid Ethernet time synchronization packet. The CPTS transmit interface for the port will use to the following criteria to determine if the packet is a valid time synchronization Ethernet transmit event. The GbE switch 1588v2 decoder determines if the packet is a valid ethernet receive time synchronization event. To be a valid Ethernet transmit time synchronization event, all of the 4 conditions listed below must be true.

If all of the criteria in Section 2.3.5.3.6 are met, and the packet is determined to be a valid time synchronization packet, then the time stamp for the transmit event will not be generated until the start of frame delimiter of the packet is actually transmitted. The start of frame delimiter will be sampled on every rising and falling edge of the CPTS_RCLK. Once the packet is transmitted, then the TX interface will push an Ethernet transmit event into the event FIFO. For more information about event formatting please see Table 2-5. For more information on how to detect and process transmit events, please see Section 2.3.5.5.

2.3.5.3.6 GbE Switch 1588 Decoder Rules

Annex F (for KeyStone I and KeyStone II devices)

- 1. Transmit time sync is enabled (pX_ts_tx_annex_f_en is set in the switch Px_TS_Ctl Register).
- 2. One of the sequences below is true.
 - a. The first packet LTYPE matches pX_ts_ltype1. LTYPE 1 should be used when only one time sync LTYPE is to be enabled.
 - b. The first packet LTYPE matches pX_ts_ltype2 and pX_ts_ltype2_en is set
 - c. The first packet LTYPE matches pX_ts_vlan_ltype1 and pX_ts_tx_vlan_ltype1_en is set and the second packet LTYPE matches pX_ts_ltype1
 - d. The first packet LTYPE matches pX_ts_vlan_ltype1 and pX_ts_tx_vlan_ltype1_en is set and the second packet LTYPE matches pX_ts_ltype2 and pX_ts_ltype2_en is set
 - e. The first packet LTYPE matches pX_ts_vlan_ltype2 and pX_ts_tx_vlan_ltype2_en is set and the second packet LTYPE matches pX_ts_ltype1
 - f. The first packet LTYPE matches pX_ts_vlan_ltype2 and pX_ts_tx_vlan_ltype2_en is set and the second packet LTYPE matches pX_ts_ltype2 and pX_ts_ltype2_en is set
 - g. The first packet LTYPE matches pX_ts_vlan_ltype1 and pX_ts_tx_vlan_ltype1_en is set and the second packet LTYPE matches pX_ts_vlan_ltype2 and pX_ts_tx_vlan_ltype2_en is set and the third packet LTYPE matches pX_ts_ltype1
 - h. The first packet LTYPE matches pX_ts_vlan_ltype1 and pX_ts_tx_vlan_ltype1_en is set and the second packet LTYPE matches pX_ts_vlan_ltype2 and pX_ts_tx_vlan_ltype2_en is set and the third packet LTYPE matches pX_ts_ltype2 and pX_ts_ltype2_en is set
- 3. The packet message type is enabled in the pX_ts_msg_type_en field in the Px_TS_Ctl Register.
- 4. The packet was sent by the host (port 0).

Annex E (for KeyStone II devices only)

- 5. Transmit annex E time sync is enabled (pX_ts_tx_annex_e_en is set in the Px_TS_Ctl Register).
- 6. One of the sequences below is true.
 - a. The first packet LTYPE matches 0x86dd.
 - b. The first packet LTYPE matches pX_ts_vlan_ltype1 and pX_ts_tx_vlan_ltype1_en is set and the second packet LTYPE matches 0x86dd.
 - c. The first packet LTYPE matches pX_ts_vlan_ltype2 and pX_ts_tx_vlan_ltype2_en is set and the second packet LTYPE matches 0x86dd.
 - d. The first packet LTYPE matches pX_ts_vlan_ltype1 and pX_ts_tx_vlan_ltype1_en is set and the second packet LTYPE matches pX_ts_vlan_ltype2 and pX_ts_tx_vlan_ltype2_en is set and the third packet LTYPE matches 0x86dd.
- 7. Byte 14 (the byte after the LTYPE) contains 0x6X (IP_VERSION in most significant nibble).
- 8. Byte 20 contains 0x11 (UDP Fixed Next Header).
- 9. Byte 21 contains 0x01 (Hop Limit = 1).
- 10. The pX_ts_uni_en bit in the Px_TS_Ctl_Ltype2 Register is 0 and Bytes 38 through 53 contain:
 - a. FF0M:0:0:0:0:0:0:0181 and the pX_ts_129 bit in the switch Px_TS_Ctl_Ltype2 Register is set, or
 - b. FF0M:0:0:0:0:0:0:0182 and the pX_ts_130 bit in the switch Px_TS_Ctl_Ltype2 Register is set, or
 - c. FF0M:0:0:0:0:0:0:0183 and the pX_ts_131 bit in the switch Px_TS_Ctl_Ltype2 Register is set, or
 - d. FF0M:0:0:0:0:0:0:0184 and the pX ts 132 bit in the switch Px TS Ctl Ltype2 Register is set, or
 - e. FF0M:0:0:0:0:0:0:006B and the pX_ts_107 bit in the switch Px_TS_Ctl_Ltype2 Register is set (all values above are 16-bit hex numbers with M is enabled in the pX_ts_mcast_type_en field in the PX_TS_Ctl2 Register.

Or:

- f. The pX_ts_uni_en bit in the Px_TS_Ctl_Ltype2 Register is set and Bytes 38 through 53 contain
- g. any value.
- h. Bytes 56 and 57 contain (UDP Header in bytes 54 through 61):

- a. Decimal 0x01 and 0x3f respectively and the pX_ts_319 bit in the Px_TS_Ctl_Ltype2 Register is set, or
- b. Decimal 0x01 and 0x40 respectively and the pX_ts_320 bit in the Px_TS_Ctl_Ltype2 Register is set.
- i. The PTP message begins in byte 62.
- j. The packet message type is enabled in the pX_ts_msg_type_en field in Px_TS_Ctl.
- k. The packet was sent by the host (port 0).

Annex D (for KeyStone II devices only)

- 1. Transmit time sync is enabled (pX_ts_tx_annex_d_en is set in the switch Px_TS_Ctl Register).
- 2. One of the sequences below is true.
 - a. The first packet LTYPE matches 0x0800
 - b. The first packet LTYPE matches pX_ts_vlan_ltype1 and pX_ts_tx_vlan_ltype1_en is set and the second packet LTYPE matches 0x0800
 - c. The first packet LTYPE matches pX_ts_vlan_ltype2 and pX_ts_tx_vlan_ltype2_en is set and the second packet LTYPE matches 0x0800
 - d. The first packet LTYPE matches pX_ts_vlan_ltype1 and pX_ts_tx_vlan_ltype1_en is set and the second packet LTYPE matches pX_ts_vlan_ltype2 and pX_ts_tx_vlan_ltype2_en is set and the third packet LTYPE matches 0x0800
- 3. Byte 14 (the byte after the LTYPE) contains 0x45 (IP_VERSION).

NOTE: * The byte numbering assumes that there are no VLANs. The byte number is intended to show the relative order of the bytes. If VLAN(s) are present, then the byte numbers push down.

- 4. Byte 20 contains 0bXXX00000 (5 lower bits are 0) and Byte 21 contains 0x00 (fragment offset 0)
- 5. Byte 22 contains 0x00 if the pX_ts_ttl_nonzero bit in the switch Px_TS_Ctl Register is 0 or byte 22 contains any value if pX_ts_ttl_nonzero is set. Byte 22 is the time to live field.
- 6. Byte 23 contains 0x11 (Next Header UDP Fixed).
- 7. The pX_ts_uni_en bit in the Px_TS_Ctl_Ltype2 Register is 0 and bytes 30 through 33 contain:
 - a. Decimal 224.0.1.129 and the pX_ts_129 bit in the switch Px_TS_Ctl_Ltype2 Register is set, or
 - b. Decimal 224.0.1.130 and the pX_ts_130 bit in the switch Px_TS_Ctl_Ltype2 Register is set, or
 - c. Decimal 224.0.1.131 and the pX_ts_131 bit in the switch Px_TS_Ctl_Ltype2 Register is set, or
 - d. Decimal 224.0.1.132 and the pX_ts_132 bit in the switch Px_TS_Ctl_Ltype2 Register is set, or
 - e. Decimal 224.0.0.107 and the pX_ts_107 bit in the switch Px_TS_Ctl_Ltype2 Register is set Or:
- 8. The pX_ts_uni_en bit in the Px_TS_Ctl_Ltype2 Register is set and Bytes 30 through 33 contain any values.
- 9. Bytes 36 and 37 contain:
 - a. Decimal 0x01 and 0x3f respectively and the pX_ts_319 bit in the Px_TS_CTL_Ltype2 Register is set, or
 - b. Decimal 0x01 and 0x40 respectively and the pX_ts_320 bit in the Px_TS_CTL_Ltype2 Register is set.
- 10. The PTP message begins in byte 42 (this is offset 0).
- 11. The packet message type is enabled in pX_ts_msg_type_en field in the Px_TS_Ctl Register.
- 12. The packet was sent by the host (port 0).

2.3.5.4 Time Synchronization Initialization

The time synchronization registers and GbE switch should be configured as shown below:

2.3.5.4.1 Time Synchronization Module Configuration

- Step 1. Clear the CPTS_EN bit to 0 in the TS_CONTROL register. The CPTS module is in reset while this bit is 0.
- Step 2. Write the CPTS_RFTCLK_SEL value in the CPTS_RFTCLK_SEL register with the desired reference clock multiplexor value. This value is allowed to be written only when the CPTS_EN bit is cleared to 0.
- Step 3. Write a 1 to the CPTS_EN bit in the TS_CONTROL register.
- Step 4. Program the P1/2_TS_Ctl, P1/2_TS_LTYPE1/2, P1/2_TS_VLAN_LTYPE1/2, P1/2_TS_VLAN_LTYPE_1/2_en and P1/2_TS_MSG_EN Registers according to the decoder rules described in Section 2.3.5.3.6.

2.3.5.5 Detecting and Processing Time Synchronization Events

This section describes detecting and processing time synchronization events. Section 2.3.5.5.1 discusses how to detect time synchronization events through the use of interrupts and through the use of register polling. Section 2.3.5.5.2 discusses how to use the register interface to pop time synchronization events from the event FIFO.

NOTE: These sections cover only how to detect an event, and pop the event from the event FIFO for processing. It is up to the application software as to how to process the time synchronization event.

2.3.5.5.1 Detecting Time Synchronization Events

This section describes detecting time synchronization events. The time synchronization module allows time synchronization events to be detected through the use of interrupts or through the use of polling.

If using interrupts, then the time synchronization event pending interrupt will signal when an event is pending. See Section 2.3.5.5.1 for more information about how to configure the time synchronization event pending interrupt. To enable the time synchronization interrupt write a 1 to the TS_PEND_EN bit in the CPTS_INT_ENABLE register. This will enable the TS_PEND interrupt to be passed to the Network Coprocessor.

If polling is the preferred method for detecting time synchronization events, then events can be detected by directly reading the CPTS_INTSTAT_RAW register. When the TS_PEND_RAW bit in the CPTS_INTSTAT_RAW register is a 1, then it means that there are one or more events pending in the event FIFO. If using polling make sure that the TS_PEND_EN bit in the CPTS_INT_ENABLE register is set to 0.

Gigabit Ethernet Switch Architecture

2.3.5.5.2 Popping Time Synchronization Events from the Event FIFO

This section describes how to pop time synchronization events from the event FIFO. Once a time synchronization event has been detected, Section 2.3.5.5.2.1 can be used to pop time synchronization events from the event FIFO. If there is more than one event in the event FIFO, multiple events can be processed back-to-back before returning from the event processing routine. Assume that Step 1 below takes place either after a TS_PEND interrupt has occurred -OR- after the TS_PEND_RAW bit in the CPTS_INTSTAT_RAW register has changed to 1 as discovered through polling.

2.3.5.5.2.1 Popping Time Synchronization Events from the Event FIFO

- Step 1. Read the CPTS_EVENT_INFO0, CPTS_EVENT_INFO1, CPTS_EVENT_INFO2, and CPTS_EVENT_INFO3 register values.
- Step 2. Write a 1 to the EVENT_POP bit of the CPTS_EVENT_POP register to pop the previously read values off the event FIFO.
- Step 3. If not processing multiple events, go to step 5. Otherwise, wait for at least 4 CPTS_RCLK periods, plus 4 CPU/3 clock periods.
- Step 4. Read the TS_PEND_RAW bit in the CPTS_INTSTAT_RAW register to determine if another valid event is in the event FIFO. If the TS_PEND_RAW bit is nonzero, go to step 1. Otherwise, go to the next step.
- Step 5. Return from the event processing routine. If using interrupts instead of polling this includes processing the end of interrupt as required by upper level modules which is outside the scope of this document.

2.3.6 Address Lookup Engine (ALE) Submodule Architecture

The Address Lookup Engine (ALE) processes all received packets to determine which port(s) if any that the packet should the forwarded to. The ALE uses the incoming packet received port number, destination address, source address, length/type, and VLAN information to determine how the packet should be forwarded. The ALE outputs the port mask to the switch fabric that indicates the port(s) the packet should be forwarded to. The ALE is enabled when the ENABLE_ALE bit in the ALE_CONTROL Register is set. All packets are dropped when the ENABLE_ALE bit is cleared to 0.

In normal operation, the MAC modules are configured to issue an abort, instead of an end of packet, at the end of a packet that contains an error (runt, frag, oversize, jabber, CRC, alignment, code, etc.) or at the end of a mac control packet. However, when the CEF, CSF, or CMF MAC configuration bit(s) are set, error frames, short frames or MAC control frames have a normal end of packet instead of an abort at the end of the packet. When the ALE receives a packet that contains errors, or a MAC control frame, and does not receive an abort, the packet will be forwarded only to the host port (port 0). No ALE learning occurs on packets with errors or MAC control frames. Learning is based on source address and lookup is based on destination address.

The ALE may be configured to operate in bypass mode by setting the ALE_BYPASS bit in the ALE_CONTROL register. When in bypass mode, all packets received by the MAC modules are forwarded only to the host port (port 0). In bypass mode, the ALE processes host port transmit packets (packets coming into the switch on port 0, destined for port 1 or port 2) the same as it would when in normal mode. The host port is also capable of sending packets directly to either or both of the MAC ports, bypassing the ALE, using directed packets.

The ALE may be configured to operate in OUI deny mode by setting the ENABLE_OUI_DENY bit in the ALE_CONTROL Register. When in OUI deny mode, a packet with a non-matching OUI source address will be dropped unless the destination address matches a multicast table entry with the super bit set.

Broadcast packets will be dropped unless the broadcast address is entered into the table with the super bit set. Unicast packets will be dropped unless the unicast address is in the table with block and secure both set (supervisory unicast packet).

Multicast supervisory packets are designated by the super bit in the table entry. Unicast supervisory packets are indicated when block and secure are both set. Supervisory packets are not dropped due to rate limiting, OUI, or VLAN processing.

2.3.6.1 ALE Table

Gigabit Ethernet Switch Architecture

The ALE table contains 1024 entries. Each table entry represents a free entry, an address, a VLAN, an address/VLAN pair, or an OUI address. Software should ensure that there are not double address entries in the table. The double entry used would be indeterminate.

Source Address learning occurs for packets with a unicast, multicast or broadcast destination address, and a unicast or multicast (including broadcast) source address. Multicast source addresses have the group bit (bit 40) cleared before ALE processing begins, which changes the multicast source address to a unicast source address. A multicast address of all ones is the broadcast address, which may be added to the table. A learned unicast source address is added to the table with the following control bits:

Unicast Type	11
Block	0
Secure	0

Table 2-7. ALE Table Learned Address Control Bits

If a received packet has a source address that is equal to the destination address, the following occurs:

- The address is learned if the address is not found in the table
- The address is updated if the address is found
- The packet is dropped

2.3.6.2 Reading Entries from the ALE Table

This section provides the procedure for reading entries from the ALE table. To read an entry from the ALE table, the user must perform the following steps:

- 1. Program the ENTRY_POINTER field and the WRITE_RDZ field in the ALE_TBLCTL Register
 - The ENTRY_POINTER value is the entry number that will be accessed in the ALE table. Valid entry numbers are 0-1023.
 - Setting the WRITE_RDZ field to 0 will cause the entry values to be read from the table
- 2. Once the write to ALE_TBLCTL Register has completed, the entry in the ALE table at the ENTRY_POINTER location will be programmed in to the ALE_TBLW[0:2] Registers

2.3.6.3 Writing Entries to the ALE Table

This section provides the procedure for writing entries to the ALE table. To add an entry to the ALE table, the user must use the following steps:

- 1. Program the ALE_TBLW[0:2] registers with the desired values for the desired entry type.
- 2. Program the ENTRY_POINTER and WRITE_RDZ fields of the ALE_TBLCTL register to add the entry to the table.
 - The ENTRY_POINTER value is the entry number that will be written to in the ALE table. Valid entry numbers are 0-1023.
 - Setting the WRITE_RDZ field to 1 will cause the entry to be added to the table.

When adding an entry to the ALE Table, the entry must be one of the types defined in the ALE Table Entry Types section. Before adding an entry to the ENTRY_POINTER location in the ALE table, the user may want to read the entry to see if the entry is free (ENTRY_TYPE = 00). For the procedure to read an entry from the ALE table, see Section 2.3.6.2.

2.3.6.4 ALE Table Entry Types

This section will describe the allowable configurations for entries to the ALE table. All entries in the ALE table must be one of the following types. ALE table entries can be read using the procedure described in Section 2.3.6.2. Entries can be added to ALE table using the procedure described in Section 2.3.6.3.

2.3.6.4.1 Free Table Entry

The format for a free table entry is shown in Figure 2-1, and the required field configuration is described in Table 2-8. A free table entry is an entry in the table this is currently unused.

Figure 2-1. Free Table Entry

71 62	2	61	60	59		0
Reserved		ENTRY	_TYPE		Reserved	

For a free table entry, the fields must be set as shown in Table 2-8. General descriptions of the ALE table entry fields are provided in Table 2-15.

Table 2-8. Free Table Entry Field Configuration

Field Name	Configuration
ENTRY_TYPE[1:0]	00

2.3.6.4.2 Multicast Address Table Entry

The format for a multicast address table entry is shown in Figure 2-2, and the required field configuration is described in Table 2-9.

Figure 2-2. Multicast Address Table Entry

71	69	68	66	65	64	63	62	61	60	59	48	47	0
Rese	erved	PORT	_MASK	SUPER	Rsvd	MCAST STA		ENTRY_	_TYPE	Reserv	ed	_	FICAST DRESS

For a multicast address table entry, the fields must be set as shown in Table 2-9. General descriptions of the ALE table entry fields are provided in Table 2-15.

Table 2-9. Multicast Address Table Entry Field Configuration

Field Name	Configuration
PORT_MASK[2:0]	User configurable
SUPER	User configurable
MCAST_FWD_STATE[1:0]	User configurable
ENTRY_TYPE[1:0]	01
MULTICAST_ADDRESS[47:0]	User configurable

2.3.6.4.3 VLAN/Multicast Address Table Entry

The format for a VLAN/multicast address table entry is shown in Figure 2-3, and the required field configuration is described in Table 2-10.

	Figure 2-3. VLAN/Multicast Table Entry														
71	69	68	66	65	64	63	62	61	60	59	4	48	47	(0
Rese	erved	PORT_	MASK	SUPER	Rsvd	MCAST _ST	「_FWD ATE	ENTRY	_TYPE		VLAN_ID		-	TICAST DRESS	

Figure 2-3	. VL	AN/Multicast	Table Entry	1
------------	------	--------------	--------------------	---

For a VLAN/multicast address table entry, the fields must be set as shown in Table 2-10. General descriptions of the ALE table entry fields are provided in Table 2-15.

Table 2-10. VLAN/Multicast Address Table Entry Field Configuration

Field Name	Configuration
PORT_MASK[2:0]	User configurable
SUPER	User configurable
MCAST_FWD_STATE[1:0]	User configurable
ENTRY_TYPE[1:0]	11
VLAN_ID[11:0]	User configurable
MULTICAST_ADDRESS[47:0]	User configurable

2.3.6.4.4 Unicast Address Table Entry

The format for a unicast address table entry is shown in Figure 2-4, and the required field configuration is described in Table 2-11.

Figure 2-4. Unicast Table Entry

71 68	67 66	65	64	63	62	61	60	59	48	47	0
Reserved	PORT _NUMBER	BLOCK	SECURE	UNIC _TY	AST PE	ENTR	Y_TYPE		Reserved	UNICAS	T_ADDRESS

For a unicast address table entry, the fields must be set as shown in Table 2-11. General descriptions of the ALE table entry fields are provided in Table 2-15.

Table 2-11. Unicast Address Table Entry Field Configuration

Field Name	Configuration
PORT_NUMBER[1:0]	User configurable
BLOCK	User configurable
SECURE	User configurable
UNICAST_TYPE[1:0]	00 or X1
ENTRY_TYPE[1:0]	01
UNICAST_ADDRESS[47:0]	User configurable

2.3.6.4.5 OUI Unicast Address Table Entry

The format for an OUI unicast address table entry is shown in Figure 2-5, and the required field configuration is described in Table 2-12.

Figure 2	-5. OUI	Unicast	Table	Entry
----------	---------	---------	-------	-------

71	64	63	62	61	60	59	48	47	24	23	0
Reserved			CAST YPE	ENTRY	(_TYPE	Rese	erved	-	CAST DUI	Rese	erved

For an OUI unicast address table entry, the fields must be set as shown in Table 2-12. General descriptions of the ALE table entry fields are provided in Table 2-15.

Table 2-12. OUI Unicast Address Table Entry Field Configuration

Field Name	Configuration
UNICAST_TYPE[1:0]	10
ENTRY_TYPE[1:0]	01
UNICAST_OUI[23:0]	User configurable

2.3.6.4.6 VLAN/Unicast Table Entry

The format for a VLAN/unicast address table entry is shown in Figure 2-6, and the required field configuration is described in Table 2-13.

Figure	2-6.	VLAN/Unicast	Table	Entry
--------	------	---------------------	-------	-------

71 68	67 66	65	64	63 6	2	61 6	60	59	-	48	47	0
Reserved	PORT _NUMBER	BLOCK	SECURE	UNICAS _TYPE	-	NTRY_T	YPE		VLAN_ID		UNICAST	ADDRESS

For a VLAN/unicast address table entry, the fields must be set as shown in Table 2-13. General descriptions of the ALE table entry fields are provided in Table 2-15.

Field Name	Configuration
PORT_NUMBER[1:0]	User configurable
BLOCK	User configurable
SECURE	User configurable
UNICAST_TYPE[1:0]	00 or X1
ENTRY_TYPE[1:0]	11
VLAN_ID[11:0]	User configurable
UNICAST_ADDRESS[47:0]	User configurable

www.ti.com

2.3.6.4.7 VLAN Table Entry

The format for a VLAN table entry is shown in Figure 2-7, and the required field configuration is described in Table 2-14.

									Fig	ure 2	2-7. V	LAN	lab	le Er	ntry						
71	62	61	60	59	48	47	27	26	24	23	19	18	16	15	11	10	8	7	3	2	0
Rese	erved	EN _T\	ΓRΥ ′PE	VLA	N_ID	Rese	erved	_UN GED	RCE ITAG D_EG ISS	Rese	erved	_FLC	EG AST DOD ASK	Rese	erved	_MC _FLC	REG AST DOD NSK	Rese	erved	_MEI	AN MBER IST

2-7 VI AN Table Ent

For a VLAN table entry, the fields must be set as shown in Table 2-14. General descriptions of the ALE table entry fields are provided in Table 2-15.

Table 2-14	. VLAN Table	Entry Field	Configuration
------------	--------------	--------------------	---------------

Field Name	Configuration
ENTRY_TYPE[1:0]	10
VLAN_ID[11:0]	User configurable
FORCE_UNTAGGED_EGRESS[2:0]	User configurable
REG_MCAST_FLOOD_MASK[2:0]	User configurable
UNREG_MCAST_FLOOD_MASK[2:0]	User configurable
VLAN_MEMBER_LIST [2:0]	User configurable

2.3.6.4.8 ALE Table Entry Field Descriptions

General ALE Table entry field descriptions are shown below in Table 2-15.

ALE Table Entry Field Name	Description
ENTRY_TYPE[1:0]	Table Entry Type. • 00 = Free Entry
	 01 = Address Entry: unicast or multicast determined by bit 40 of the MAC destination address 10 = VLAN entry
	 11 = VLAN Address Entry: unicast or multicast determined by bit 40 of the MAC destination address
SUPER	Supervisory Packet. Indicates that the packet with a matching multicast destination address is a supervisory packet.
	 0 = Non-supervisory packet
	 1 = Supervisory packet
PORT_MASK[2:0]	Port Mask. This field is the port bit mask that is returned with a found multicast destination address. There may be multiple bits set indicating that the multicast packet may be forwarded to multiple ports (but not the receiving port).
PORT_NUMBER[1:0]	Port Number. This field indicates which port number (not port mask) that the packet with a unicast destination address may be forwarded. Packets with unicast destination addresses are forwarded only to a single port (but not the receiving port).
BLOCK	Block. The block bit indicates that a packet with a matching source or destination address should be dropped (block the address).
	• 0 = Address is not blocked.
	 1 = Drop a packet with a matching source or destination address (SECURE must be 0)
	If BLOCK and SECURE are both set, then they no longer mean block and secure. When both are set, the BLOCK and SECURE bits indicate that the packet is a unicast supervisory (SUPER) packet and they determine the unicast forward state test criteria. If both bits are set then the packet is forwarded if the receive port is in the Forwarding/Blocking/Learning state. If both bits are not set then the packet is forwarded if the receive port is in the forwarding state.

ALE Table Entry Field Name	Description	
SECURE	Secure. This bit indicates that a packet with a matching source address should be dropped if the received port number is not equal to the table entry PORT_NUMBER.	
	• 0 = Received port number is a don't care	
	 1 = Drop the packet if the received port is not the secure port for the source address and do not update the address (BLOCK must be 0) 	
UNICAST_TYPE[1:0]	Unicast Type. This field indicates the type of unicast address the table entry contains.	
	• 00 = Unicast address that is not ageable	
	• 01 = Ageable unicast address that has not been touched	
	 10 = OUI address - lower 24-bits are don't cares (not ageable) 	
	 11 = Ageable unicast address that has been touched 	
MCAST_FWD_STATE[1:0]	Multicast Forward State. Indicates the port state(s) required for the received port on a destination address lookup in order for the multicast packet to be forwarded to the transmit port(s). A transmit port must be in the Forwarding state in order to forward the packet. If the transmit PORT_MASK has multiple set bits then each forward decision is independent of the other transmit port(s) forward decision.	
	• 00 = Forwarding	
	 01 = Blocking/Forwarding/Learning 	
	 10 = Forwarding/Learning 	
	• 11 = Forwarding	
	The forward state test returns a true value if both the receive and transmit ports are in the required state.	
VLAN_ID	VLAN_ID. This is the 12-bit VLAN ID.	
ADDRESS	Packet Address. This is the 48-bit packet MAC address. For an OUI address, only the upper 24-bits of the address are used in the source or destination address lookup. Otherwise, all 48-bits are used in the lookup.	
VLAN_MEMBER_LIST	VLAN Member List. This six bit field indicates which port(s) are a member of the associated VLAN.	
UNREG_MCAST_FLOOD_ MASK	Unregistered Multicast Flood Mask. Mask used for multicast when the multicast address is not found	
REG_MCAST_FLOOD_MA SK	Registered Multicast Flood Mask. Mask used for multicast when the multicast address is found.	
FORCE_UNTAGGED _EGRESS	Force Untagged Packet Egress. Causes the packet VLAN tag to be removed on egress.	

Table 2-15. ALE Table Entry Field Descriptions (continued)

2.3.6.5 ALE Packet Forwarding Process

This section describes the packet forwarding process used by the ALE. For each packet sent to the ALE, it will decide whether or not the packet should be dropped or forwarded. If the packet is forwarded, then the ALE needs to determine which switch port or ports a packet the should be forwarded to. Each port has an associated packet forwarding state that can be set to one of four values:

- Disabled
- Blocked
- Learning
- Forwarding

By default, all ports are disabled. To enable a port, the host must set the packet forwarding state in the respective ALE_PORTCTL register. The receive packet processes are described in the following sections. The state of each port will affect whether or not a packet is forwarded.

There are four processes that an packet may go through to determine packet forwarding. The processes are:

- Ingress Filtering
- VLAN Aware Lookup
- VLAN Unaware Lookup
- Egress

The packet forwarding process begins with the ingress filtering process. In the packet ingress process, there is one forward state test for unicast destination addresses, and another forward state test for multicast addresses. The forward state test that is used is determined by bit 40 of the destination address in the packet, which will designate the packet as multicast or unicast. The multicast forward state test indicates the port states required for the receiving port in order for the multicast packet to be forwarded to the transmit port(s). A transmit port must be in the Forwarding state for the packet to be forwarded for transmission. The MCAST_FWD_STATE indicates the required port state for the receiving port as indicated in the ALE table entry field descriptions above.

The unicast forward state test indicates the port state required for the receiving port in order to forward the unicast packet. The transmit port must be in the Forwarding state in order to forward the packet. The block and secure bits determine the unicast forward state test criteria. If both bits are set then the packet is forwarded if the receive port is in the Forwarding/Blocking/Learning state. If both bits are not set then the packet is forwarded if the receive port is in the Forwarding state. The transmit port must be in the Forwarding state. The transmit port must be in the Forwarding state regardless.

In general, packets received with errors are dropped by the address lookup engine in the ingress filtering process without learning, updating, or touching the addresses in the ALE table. The error condition and the abort are indicated by the MAC module to the ALE. Packets with errors may be passed to the host (not aborted) by a MAC port if the RX_CMF_EN, RX_CEF_EN, or RX_CSF_EN bit(s) have been set in the MAC_CONTROL register in the MAC module. Error packets that are passed to the host by the MAC module are considered to be bypass packets by the ALE and are sent only to the host. Error packets do not learn, update, or touch addresses in the ALE table regardless of whether they are aborted or sent to the host. Packets with errors received by the host are dropped.

- RX_CEF_EN This bit in the MAC_CONTROL register enables frames that are fragments, long, jabber, CRC, code, and alignment errors to be forwarded
- RX_CSF_EN This bit in the MAC_CONTROL register enables short frames to be forwarded
- RX_CMF_EN This bit in the MAC_CONTROL register enables MAC control frames to be forwarded.

If RX_CEF_EN, RX_CSF_EN, RX_CMF_EN bits are enabled in the configuration, then the packets that are sent with the errors that correspond to these flags' descriptions (i.e., these bits) will be copied to memory. Their corresponding error flag in the descriptor will be enabled. The error values are shown in Table 2-16.

Table 2-16. Gigabit Ethernet Switch Subsystem Descriptor Error Flags

Error

The values listed in the error flags field of the descriptor are defined as follows:

- x000 = no error
- x001 = packet CRC error on ingress
- x010 = packet code error on ingress
- x011 = packet alignment error on ingress
- x1xx = middle of packet overrun on egress
- 1xxx = Indicates that the descriptor protocol specific flags section has a set long, short, or mac_ctl bit

2.3.6.5.1 ALE Ingress Filtering Process

This section outlines the ALE ingress packet filtering process.

Table 2-17. ALE Ingress Filtering Process

If (Receive PORT_STATE is Disabled) then discard the packet	
if ((ALE_BYPASS or error packet) and (host port is not the receive port)) then use host portmask and go to Egress process	
<pre>if (((BLOCK) and (unicast source address found)) or ((BLOCK) and (unicast desti found))) then discard the packet</pre>	nation address
<pre>if ((ENABLE_RATE_LIMIT) and (rate limit exceeded) and (not RATE_LIMIT_TX) then if (((multicast or broadcast destination address found) and (not SUPER (multicast/broadcast destination address not found)) then discard the packet</pre>)) or
<pre>if ((not forward state test valid) and (destination address found)) then discard the packet for any port not meeting the requirements Unicast destination addresses use the unicast forward state test and multic addresses use the multicast forward state test.</pre>	ast destination
<pre>if ((destination address not found) and ((not transmit port forwarding) or (not forwarding))) then discard the packet to any ports not meeting the above requirements</pre>	receive port
if (source address found) and (SECURE) and (receive port number!= PORT_NUMBER)) then discard the packet	
<pre>if ((not SUPER) and (DROP_UNTAGGED) and ((non-tagged packet) or ((priority tagged) and not(EN_VID0_MODE)) then discard the packet</pre>	
<pre>If (VLAN_Unaware) FORCE_UNTAGGED_EGRESS = "000000" REG_MCAST_FLOOD_MASK = "111111" UNREG_MCAST_FLOOD_MASK = "111111" VLAN_MEMBER_LIST = "111111" else if (VLAN not found) FORCE_UNTAGGED_EGRESS = UNKNOWN_FORCE_UNTAGGED_EGRESS REG_MCAST_FLOOD_MASK = UNKNOWN_REG_MCAST_FLOOD_MASK UNREG_MCAST_FLOOD_MASK = UNKNOWN UNREG_MCAST_FLOOD_MASK VLAN_MEMBER_LIST = UNKNOWN_VLAN_MEMBER_LIST else FORCE_UNTAGGED_EGRESS = FOUND FORCE_UNTAGGED_EGRESS REG_MCAST_FLOOD_MASK = FOUND FORCE_UNTAGGED_EGRESS REG_MCAST_FLOOD_MASK = FOUND REG_MCAST_FLOOD_MASK UNREG_MCAST_FLOOD_MASK = FOUND REG_MCAST_FLOOD_MASK</pre>	
VLAN_MEMBER_LIST = FOUND VLAN_MEMBER_LIST IF ((NOT SUPER) AND (VID_INGRESS_CHECK) AND (RECEIVE PORT IS NOT VLAN MEMBER))	
THEN DISCARD THE PACKET	
<pre>if ((ENABLE_AUTH_MODE) and (source address not found) and not (destination address found and (SUPER))) then discard the packet</pre>	
if (destination address not found) and (destination address equals source addre then discard the packet	ss)
if (VLAN_AWARE) go to VLAN aware lookup process else go to VLAN unaware lookup process	

Gigabit Ethernet Switch Architecture

2.3.6.5.2 ALE VLAN Aware Lookup Process

This section describes the behavior of the ALE VLAN aware lookup process.

Table 2-18. ALE VLAN Aware Lookup Process

<pre>if ((unicast packet) AND (destination address matches an ALE unicast entry address OR destination address and VLAN matches an ALE unicast/VLAN entry) AND (not a supervisory packet)) then portmask is the logical "AND" of the PORT_NUMBER from the matching ALE entry and the VLAN_MEMBER_LIST and go to Egress process (supervisory packets are multicast packets found in an ALE table entry with their SUPER bit set, broadcast packets found in an ALE table entry with their SUPER bit packets found in an ALE table entry with both the BLOCK and SECURE bits set)</pre>
if ((unicast packet) AND (destination address matches an ALE unicast entry address OR destination address and VLAN matches an ALE unicast/VLAN entry) AND (packet is a supervisory packet)) then portmask is the PORT_NUMBER from the matching ALE entry and go to Egress process (supervisory packets are multicast packets found in an ALE table entry with their SUPER bit set, broadcast packets found in an ALE table entry with their SUPER bit packets found in an ALE table entry with their SUPER bit set, or unicast
<pre>if (unicast packet) #destination address not found to match an ALE unicast or unicast/VLAN table entry then use VLAN_MEMBER_LIST excluding the host port and go to Egress process (the UNI_FLOOD_TO_HOST bit is in the ALE_CONTROL register. If UNI_FLOOD_TO_HOST is set to 1 then the host port is not excluded from the port mask and depending on the VLAN_MEMBER_LIST the packets may be forwarded to the host. If UNI_FLOOD_TO_HOST is cleared to 0 then unicast packets that do not match a ALE table entry are never forwarded to the host port)</pre>
<pre>if ((multicast packet) AND (destination address matches an ALE multicast entry address OR destination address and VLAN matches an ALE multicast/VLAN entry) AND (not a supervisory packet)) then portmask is the logical "AND" of REG_MCAST_FLOOD_MASK and the PORT_MASK from the matching multicast or multicast/VLAN table entry and VLAN_MEMBER_LIST and go to Egress process (supervisory packets are multicast packets found in an ALE table entry with their SUPER bit set, broadcast packets found in an ALE table entry with their SUPER bit packets found in an ALE table entry with their SUPER bit set, or unicast packets found in an ALE table entry with both the BLOCK and SECURE bits set)</pre>
<pre>if ((multicast packet) AND (destination address matches an ALE multicast entry address OR destination address and VLAN matches an ALE multicast/VLAN entry) AND (packet is a supervisory packet)) then portmask is the PORT_MASK from the matching multicast or multicast/VLAN table entry and go to Egress process (supervisory packets are multicast packets found in an ALE table entry with their SUPER bit set, broadcast packets found in an ALE table entry with their SUPER bit set, or unicast packets found in an ALE table entry with the BLOCK and SECURE bits set)</pre>
<pre>if ((multicast packet) #destination address not found to match an ALE multicast or multicast/VLAN table entry then portmask is the logical "AND" of UNREG_MCAST_FLOOD_MASK and VLAN_MEMBER_LIST then go to Egress process</pre>
if (broadcast packet) then use VLAN MEMBER LIST and go to Egress process

www.ti.com

2.3.6.5.3 ALE VLAN Unaware Lookup Process

This section describes the behavior of the ALE VLAN unaware lookup process.

Table 2-19. ALE VLAN Unaware Lookup Process

<pre>if ((unicast packet) AND (destination address matches an ALE unicast entry address OR destination address and VLAN matches an ALE unicast/VLAN entry) AND (not a supervisory packet)) then portmask is the logical "AND" of the PORT_NUMBER from the matching ALE entry and the VLAN_MEMBER_LIST and go to Egress process (supervisory packets are multicast packets found in an ALE table entry with their SUPER bit set, broadcast packets found in an ALE table entry with their SUPER bit packets found in an ALE table entry with both the BLOCK and SECURE bits set)</pre>
<pre>if ((unicast packet) AND (destination address matches an ALE unicast entry address OR destination address and VLAN matches an ALE unicast/VLAN entry) AND (packet is a supervisory packet)) then portmask is the PORT_NUMBER from the matching ALE entry and go to Egress process (supervisory packets are multicast packets found in an ALE table entry with their SUPER bit set, broadcast packets found in an ALE table entry with their SUPER bit packets found in an ALE table entry with both the BLOCK and SECURE bits set)</pre>
<pre>if (unicast packet) # destination address not found to match an ALE unicast or unicast/VLAN table entry then use VLAN_MEMBER_LIST excluding the host port and go to Egress process (the UNI_FLOOD_TO_HOST bit is in the ALE_CONTROL register. If UNI_FLOOD_TO_HOST is set to 1 then the host port is not excluded from the port mask and depending on the VLAN_MEMBER_LIST the packets may be forwarded to the host. If UNI_FLOOD_TO_HOST is cleared to 0 then unicast packets that do not match a ALE table entry are never forwarded to the host port)</pre>
<pre>if ((multicast packet) AND (destination address matches an ALE multicast entry address OR destination address and VLAN matches an ALE multicast/VLAN entry) AND (not a supervisory packet)) then portmask is the logical "AND" of REG_MCAST_FLOOD_MASK and the PORT_MASK from the matching multicast or multicast/VLAN table entry and VLAN_MEMBER_LIST and go to Egress process (supervisory packets are multicast packets found in an ALE table entry with their SUPER bit set, broadcast packets found in an ALE table entry with their SUPER bit packets found in an ALE table entry with the BLOCK and SECURE bits set)</pre>
<pre>if ((multicast packet) AND (destination address matches an ALE multicast entry address OR destination address and VLAN matches an ALE multicast/VLAN entry) AND (packet is a supervisory packet)) then portmask is the PORT_MASK from the matching multicast or multicast/VLAN table entry and go to Egress process (supervisory packets are multicast packets found in an ALE table entry with their SUPER bit set, broadcast packets found in an ALE table entry with their SUPER bit packets found in an ALE table entry with both the BLOCK and SECURE bits set)</pre>
<pre>if ((multicast packet) # destination address not found to match an ALE multicast or multicast/VLAN table entry then portmask is the logical "AND" of UNREG_MCAST_FLOOD_MASK and VLAN_MEMBER_LIST then go to Egress process if(broadcast packet)</pre>
then use VLAN MEMBER LIST and go to Egress process

2.3.6.5.4 ALE Egress Process

This section describes behavior of the ALE egress process.

Table 2-20. ALE Egress Process

Clear receive port from portmask (don't send packet to receive port)
Clear disabled ports from portmask
<pre>if ((EN_OUI_DENY) AND (OUI source address not found) AND (not ALE_BYPASS) AND (not error packet) AND (not a supervisory packet)) then clear host port from portmask (EN_OUI_DENY is found in the ALE_CONTROL) (supervisory packets are multicast packets found in an ALE table entry with their SUPER bit set, broadcast packets found in an ALE table entry with their SUPER bit set, or unicast packets found in an ALE table entry with both the BLOCK and SECURE bits set)</pre>
<pre>if ((ENABLE_RATE_LIMIT) AND (RATE_LIMIT_TX)) then if (not a supervisory packet) AND (rate limit exceeded on any tx port) then clear rate limited tx port from portmask</pre>
if (portmask is 0) then discard packet
Send packet to portmask ports

Gigabit Ethernet Switch Architecture

2.3.6.6 ALE Learning Process

The learning process is applied to each receive packet that is not aborted. The learning process is a concurrent process with the packet forwarding process.

Table 2-21. ALE Learning Process

<pre>(NOT (Learning or Forwarding) OR (EN_AUTH_MODE) OR (packet error) OR (NO_LEARN)) then do not learn or update address else continue (EN_AUTH_MODE is found in the ALE_CONTROL register) (NO_LEARN is found in the ALE_PORTCTLn register where n is the port where the packet entered the switch)</pre>
((Non-tagged packet) AND (DROP_UNTAGGED)) then do not learn or update address else continue (DROP_UNTAGGED is found in the ALE_PORTCTLn register where n is the port where the packet entered the switch)
((VLAN_AWARE) AND (packet VLAN ID does not match a VLAN table entry) AND NKNOWN_VLAN_MEMBER_LIST = "000")) then do not learn or update address else continue (VLAN_AWARE means that the VLAN_AWARE bit in the CPSW_CONTROL register as well as the ALE_VLAN_AWARE bit are bot set to 1)
((VID_INGRESS_CHECK) AND (Receive port is not in VLAN_MEMBER_LIST) AND (packet VLAN ID tches a VLAN table entry)) then do not learn or update address else continue (VID_INGRESS_CHECK is found in the ALE_PORTCTLn register where n is the port where the packet entered the switch)
((source address matches unicast or unicast/VLAN table entry) AND (receive port number != RT_NUMBER from the matching table entry) AND (SECURE or BLOCK)) then do not update address else continue
((source address matches a table entry) AND (receive port number != PORT_NUMBER)) then update address else continue
((source address matches unicast or unicast/VLAN table entry) AND (AGEABLE) AND (not UCHED)) then set TOUCHED else continue (AGEABLE and TOUCHED are set in the unicast type field of the ALE table entry)
((source address does not match an ALE table entry) AND (VLAN_AWARE) AND NOT (LEARN_NO_VID)) then learn address with VLAN (VLAN_AWARE means that the VLAN_AWARE bit in the CPSW_CONTROL register as well as the ALE_VLAN_AWARE bit are bot set to 1) (LEARN_NO_VID is found in the ALE_CONTROL register)
<pre>((source address does not match an ALE table entry) AND ((not VLAN_AWARE) OR (VLAN_AWARE AND ARN_NO_VID))) then learn address without VLAN (VLAN_AWARE means that the VLAN_AWARE bit in the CPSW_CONTROL register as well as the ALE_VLAN_AWARE bit in the ALE_CONTROL register are bot set to 1) (LEARN_NO_VID is found in the ALE_CONTROL register)</pre>

2.4 Serial Gigabit Media Independent Interface (SGMII) Architecture

This section provides an overview of the SGMII architecture. The main function of this module is to translate between the GMII data format used by the CPGMAC module and the 8B/10B encoded data format used by the SerDes module. The SGMII module is also responsible for establishing a link and autonegotiating with other devices. This section will cover the receive interface, the transmit interface, and several configurations for connecting to other PHY or SGMII devices.

2.4.1 SGMII Receive Interface

The SGMII receive interface converts the 8B/10B encoded receive input from the SerDes into the GMII signals required by the MAC module.

2.4.2 SGMII Transmit Interface

The SGMII transmit interface converts the GMII input data from the MAC module into the 8B/10B encoded output required by the SerDes module. The MAC module does not source the transmit error signal. Any transmit frame from the MAC with an error will be indicated as an error. Transmit error is assumed to be zero at all times, and is not input to the CRC module.

When operating in 10/100 mode, the GMII_MTXD(7:0) data bus uses only the lower nibble.

Any packet in data transmission from the CPGMAC while the link signal is deasserted will be ignored. Only packets that begin after the rising edge of link will be transferred.

2.4.3 Modes of Operation

This section describes the modes of operation supported by the SGMII module.

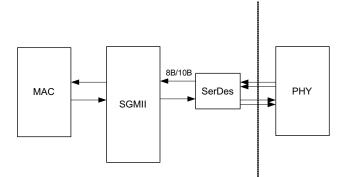
2.4.3.1 Digital Loopback

This section describes the loopback mode supported by the SGMII, and give instructions on how to configure the SGMII module in loopback mode.

The SGMII module supports the ability to internally connect the transmit signals to the receive signals. It is important to note that this is digital loopback, because the transmit and receive signals are connected before reaching the SerDes module. When in this configuration, the transmit clock (TX_CLK) is used for transmit and receive clocking. Loopback mode can be entered by asserting the LOOPBACK bit in the SGMII_CONTROL register. When entering or exiting loopback mode, it is important to reset the transmit and receive logic using the RT_SOFT_RESET bit in the SOFT_RESET register.

The sequence for entering or exiting loopback mode is shown in Procedure 2-3.

2.4.3.1.1 Digital Loopback Configuration


- Step 1. Clear to 0 the MR_AN_ENABLE bit in the SGMII_CONTROL register.
- Step 2. Write to 1 the RT SOFT RESET bit in the SOFT RESET register.
- Step 3. Write to 1 the LOOPBACK bit in the SGMII_CONTROL register.
- Step 4. Write to zero the RT_SOFT_RESET bit in the SOFT_RESET register.

2.4.3.2 SGMII to PHY Configuration

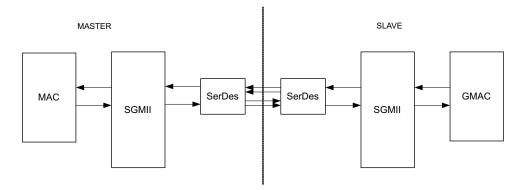
This section describes how to configure the SGMII to connect with an external PHY when operating SGMII mode. Figure 2-8 shows an example of this configuration.

Figure 2-8. SGMII Mode with PHY Configuration

To connect with an external PHY, the PHY will be the master, and the SGMII module needs to be configured in slave mode. The procedure for setting the SGMII in slave mode is shown below:

- Step 1. Set up the SGMII and enable autonegotiation:
 - a. Set bit 0 of the MR_ADV_ABILITY register

MR_ADV_ABILITY &=0xFFFF0000; /* Clear the register contents */ MR_ADV_ABILITY |= 0x00000001;


b. Enable auto-negotiation by setting the MR_AN_ENABLE bit in the SGMII_CONTROL register:

SGMII_CONTROL |= 0x00000001; /* Enable autonegotiation */

- Step 2. Poll the SGMII_STATUS register to determine when auto-negotiation is complete without error. The AN_ERROR bit in the SGMII_STATUS register will be set if the mode was commanded to be half-duplex gigabit.
- Step 3. In the MAC module, set the EXT_EN bit in the MAC_CONTROL register to allow the speed and duplex mode to be set by the signals from the SGMII.

2.4.3.3 SGMII to SGMII with Auto-Negotiation Configuration

This section describes how to configure an SGMII device to connect with another SGMII device with autonegotiation. The diagram below shows an example of this configuration.

Figure 2-9. SGMII Master to SGMII Slave with Auto-Negotiation Configuration

When connecting two SGMII devices with auto-negotiation, one SGMII device must be configured as the master, and the other SGMII device must be configured as the slave.

2.4.3.3.1 SGMII Master Mode with Auto-Negotiation

- The procedure for setting the SGMII in master mode with auto-negotiation is shown below:
 - Step 1. Set up the SGMII and enable auto-negotiation:
 - a. Set the MR_ADV_ABILITY register

MR_ADV_ABILITY |= 0x00009801; /* Full duplex gigabit configuration */ MR_ADV_ABILITY &= 0xFFFF0000; /*Clear the register contents */

b. Enable auto-negotiation by setting the MR_AN_ENABLE bit in the SGMII_CONTROL register:

SGMII_CONTROL |= 0x00000021; /* Master Mode with autonegotiation enabled */

- Step 2. Poll the LINK and MR_AN_COMPLETE bits in the SGMII_STATUS register to determine when the link is up and auto-negotiation is complete.
- Step 3. In the MAC module, the user can optionally set the EXT_EN bit in the MAC_CONTROL register to allow the speed and duplex mode to be set by the signals from the SGMII.

2.4.3.3.2 SGMII Slave Mode with Auto-Negotiation

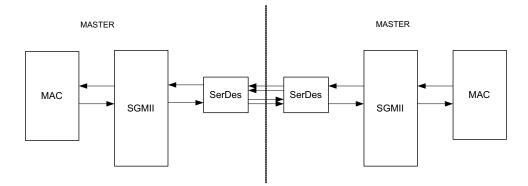
The procedure for setting the SGMII in slave mode with auto-negotiation is shown below:

Step 1. Set up the SGMII and enable auto-negotiation:

a. Set the MR_ADV_ABILITY register

```
MR_ADV_ABILITY &= 0xFFFF0000; /*Clear the register contents*/
MR_ADV_ABILITY |= 0x00000001;
```

b. Enable auto-negotiation by setting the MR_AN_ENABLE bit in the SGMII_CONTROL register:


```
SGMII_CONTROL |= 0x00000001; /* Enable auto-negotiation */
```

- Step 2. Poll the SGMII_STATUS register to determine when auto-negotiation is complete without error. The AN_ERROR bit in the SGMII_STATUS register will be set if the mode was commanded to be half-duplex gigabit.
- Step 3. In the MAC module, set the EXT_EN bit in the MAC_CONTROL register to allow the speed and duplex mode to be set by the signals from the SGMII.

2.4.3.4 SGMII to SGMII with Forced Link Configuration

This section describes how to configure an SGMII device to connect with another SGMII device with a forced link. in Figure 2-10 shows an example of this configuration.

Figure 2-10. SGMII Master to SGMII Master with Forced Link Configuration

When connecting two SGMII devices with forced link, both SGMII devices must be configured as masters.

The procedure for setting the SGMII in master mode with forced link is shown below:

Step 1. Setup the SGMII:

a. Set the MR_ADV_ABILITY register

MR_ADV_ABILITY &= 0xFFFF0000; /* Clear the register contents */
MR_ADV_ABILITY |= 0x00009801; /* Full duplex gigabit configuration */

b. Set the device in master mode without auto-negotiation by setting the MASTER bit in the SGMII_CONTROL register:

SGMII_CONTROL |= 0x00000020; /* Master Mode, no auto-negotiation */

- Step 2. Poll the LINK bit in the SGMII_STATUS register to determine when the link is up.
- Step 3. In the MAC module, the user must set the EXT_EN bit in the MAC_CONTROL register to allow the speed and duplex mode to be set by the signals from the SGMII.

2.5 Management Data Input/Output (MDIO) Architecture

This section describes the architecture of the Management Data Input/Output (MDIO) module. The MDIO module manages up to 32 physical layer (PHY) devices connected to the Ethernet Media Access Controller (EMAC). The MDIO module allows almost transparent operation of the MDIO interface with little maintenance from the DSP.

The MDIO module enumerates all PHY devices in the system by continuously polling 32 MDIO addresses. Once it detects a PHY device, the MDIO module reads the PHY status register to monitor the PHY link state. The MDIO module stores link change events that can interrupt the CPU. The event storage allows the DSP to poll the link status of the PHY device without continuously performing MDIO module accesses. When the system must access the MDIO module for configuration and negotiation, the MDIO module performs the MDIO read or write operation independent of the DSP. This independent operation allows the DSP to poll for completion or interrupt the CPU once the operation has completed.

2.5.1 Global PHY Detection and Link State Monitoring

The MDIO module enumerates all PHY devices in the system by continuously polling the link status from the Generic Status Register of all 32 MDIO addresses. The module tracks whether a PHY on a particular address has responded, storing the results in the MDIO_ALIVE Register. The MDIO module also tracks whether the PHY currently has a link, storing the results in the MDIO_LINK Register. This information allows the software application to quickly determine which MDIO address the PHY is using and if the system is using more than one PHY. The software application can then quickly switch between PHYs based on their current link status. The link status of two of the 32 possible PHY addresses can also be determined using the MLINK pin inputs. The LINKSEL bit in the MDIO_USERPHYSEL *n* Register determines the status input that is used. A change in the link status of the two PHYs being monitored will set the appropriate bit in the MDIO_LINKINTRAW Register and the MDIO_LINKINTMASKED Register, if enabled by the LINKINTENB bit in the MDIO_USERPHYSEL *n* Register.

2.5.2 PHY Register User Access

When the DSP must access the MDIO for configuration and negotiation, the PHY access module performs the actual MDIO read or write operation independent of the DSP. Thus, the DSP can poll for completion or receive an interrupt when the read or write operation has been performed. There are two user access registers, MDIO_USERACCESS0 and MDIO_USERACCESS1, which allow the software to submit up to two access requests simultaneously. The requests are processed sequentially.

At any time, the host can define a transaction for the MDIO module to undertake using the DATA, PHYADR, REGADR, and WRITE fields in the MDIO_USERACCESS *n* register . When the host sets the GO bit in this register, the MDIO module will begin the transaction without any further intervention from the host. Upon completion, the MDIO interface will clear the GO bit and set the MDIO_USERINTRAW bit in the MDIO_USERINTRAW register corresponding to the MDIO_USERACCESS *n* register being used. The corresponding bit in the MDIO_USERINTMASKED register may also be set depending on the mask setting in the MDIO_USERINTMASKSET and MDIO_USERINTMASKCLR registers. A round-robin arbitration scheme is used to schedule transactions that may be queued by the host in different MDIO_USERACCESS *n* registers. The host should check the status of the GO bit in the MDIO_USERACCESS *n* register before initiating a new transaction to ensure that the previous transaction has completed. The host can use the ACK bit in the MDIO_USERACCESS *n* register to determine the status of a read transaction. In addition, any PHY register read transactions initiated by the host also cause the MDIO_ALIVE register to be updated.

Management Data Input/Output (MDIO) Architecture

www.ti.com

2.5.2.1 Writing Data to a PHY Register

The MDIO module includes a user access register (MDIO_USERACCESS *n*) to directly access a specified PHY device. To write a PHY register, perform the following steps:

- 1. Ensure that the GO bit in the MDIO_USERACCESS *n* register is cleared.
- 2. Write to the GO, WRITE, REGADR , PHYADR, and DATA bits in MDIO_USERACCESS *n* corresponding to the desired PHY and PHY register.
- 3. The write operation to the PHY is scheduled and completed by the MDIO module.
- 4. Completion of the write operation will clear the GO bit to 0, and sets the corresponding bit in the MDIO_USERINTRAW register for the corresponding MDIO_USERACCESS *n*.
 - If interrupts have been enabled on this bit using the MDIO_USERINTMASKSET register, then the bit is also set in the MDIO_USERINTMASKED register and an interrupt is triggered on the DSP.
 - If interrupts have not been enabled, then completion can be determined by polling the GO bit in MDIO_USERACCESS *n* for a 0.
 - polling the GO bit in USERACCESSn for a 0.

2.5.2.2 Reading Data from a PHY Register

The MDIO module includes a user access register (MDIO_USERACCESS *n*) to directly access a specified PHY device. To read a PHY register, perform the following:

- 1. Ensure that the GO bit in the MDIO_USERACCESS *n* register is cleared.
- 2. Write to the GO, REGADR , and PHYADR bits in USERACCESS *n* corresponding to the desired PHY and PHY register .
- 3. The read data value is available in the DATA bits of MDIO_USERACCESS *n* after the module completes the read operation on the serial bus.
- 4. Completion of a successful read operation will clear the GO bit, set the ACK bit, and set the corresponding bit in the MDIO_USERINTRAW register for the MDIO_USERACCESS *n* used.
 - If interrupts have been enabled on this bit using the MDIO_USERINTMASKSET register, then the bit is also set in the MDIO_USERINTMASKED register and an interrupt is triggered on the DSP.
 - If interrupts have not been enabled, then completion can be determined by polling the GO bit in MDIO_USERACCESS *n* for a 0, and the ACK bit for a 1.

2.5.3 MDIO Interrupts

The MDIO module provides two sets of interrupts that can be enabled by the user. The first set of interrupts is triggered when there is a change in link state of a PHY that is being monitored. The second set of interrupts will occur when a PHY register access initiated through the MDIO_USERACCESS registers has completed.

2.5.3.1 MDIO User Access Interrupts

When the GO bit in the MDIO_USERACCESS registers transitions from 1 to 0, indicating the completion of a user access, and the corresponding MDIO_USERINTMASKED bit in the MDIO_USERINTMASKSET register is set, the MDIO_USERINTMASKED signal is asserted to 1.

The MDIO_USERINTMASKED event is also captured in the MDIO_USERINTMASKED register. MDIO_USERINTMASKED[0] and MDIO_USERINTMASKED[1] correspond to the MDIO_USERACCESS0 and MDIO_USERACCESS1 registers, respectively.

2.5.4 Initializing the MDIO Module

To have the application software or device driver initialize the MDIO device, perform the following steps:

- 1. Configure the PREAMBLE and CLKDIV bits in the MDIO_CONTROL register.
- 2. Enable the MDIO module by setting the ENABLE bit in the MDIO_CONTROL register.
- 3. The MDIO_ALIVE register can be read after a delay to determine which PHYs responded, and the MDIO_LINK register can determine which of those (if any) already have a link.
- 4. Set up the appropriate PHY addresses in the MDIO_USERPHYSEL *n* register, and set the LINKINTENB bit to enable a link change event interrupt if desirable.
- 5. If an interrupt on a general MDIO register access is desired, set the corresponding bit in the MDIO_USERINTMASKSET register to use the MDIO_USERACCESS *n* register. If only one PHY is to be used, the application software can set up one of the MDIO_USERACCESS *n* registers to trigger a completion interrupt. The other register is not set up.

2.6 KeyStone I Serializer/Deserializer (SerDes) Architecture

The SerDes macro is a self-contained macro that includes two transmitter (TX) and receiver (RX) pairs, and phase-locked-loop (PLL). Each transmitter and receiver pair interfaces to one of the SGMII modules. The internal PLL multiplies a user-supplied reference clock.

2.7 KeyStone II Serializer/Deserializer (SerDes) Architecture

SerDes module information for KeyStone II devices is not provided in this user's guide. Check for availability of the SerDes User's Guide for KeyStone II Devices on the device product page.

2.8 Reset Considerations

The GbE switch subsystem supports reset isolation of the two Ethernet switch ports in KeyStone I, or four in KeyStone II. The intent of reset isolation is to allow packets to switch between the two Ethernet ports while the remainder of the system is undergoing a reset. When the ISOLATE input is asserted the below occur simultaneously:

- The GbE switch host port (port 0) is removed from ALE processing (packets received on ports 1 and 2 intended for port 0 will be dropped)
- Packets from the queue manager subsystem intended the GbE switch host port (port 0) are dropped. Any packet currently in progress when ISOLATE is asserted is dropped due to a receive packet code error (and possible a CRC or FRAG error)
- GbE switch host port (port 0) egress packets in queue are dropped
- (For KeyStone II) The asynchronous FIFOs on the streaming packet interface are reset.

For more information about reset isolation for the GbE switch subsystem, see the device-specific data manual.

2.9 Initialization

This section describes the GbE switch subsystem initialization procedure.

2.9.1 GbE Switch Subsystem Initialization Procedure

- Step 1. Configure the CPSW_CONTROL register
- Step 2. Configure the MAC1_SA and MAC2_SA (MAC3_SA and MAC4_SA if KeyStone II) source address hi and lo registers
- Step 3. Enable the desired statistics ports by programming the CPSW_STAT_PORT_EN register
- Step 4. Configure the ALE
- Step 5. Configure MAC modules
- Step 6. Configure the MDIO and external PHY (if used)
- Step 7. Configure the SGMII modules

NOTE: The SGMII_SERDES registers are located in the chip configuration section of the device. Before writing to these registers, the kicker mechanism must be used to unlock these registers. For more information about using the kicker mechanism, see the device specific data manual.

2.10 Interrupt Support

2.10.1 Interrupt Events

This section describes the interrupts generated in the GbE switch subsystem. Within the GbE switch subsystem, there are three modules that can generate interrupts: the MDIO module, the statistics module, and the time synchronization module. For more information about the interrupts generated by the MDIO module, see Section 2.5. For more information about the interrupts generated by the statistics modules, see Section 2.3.4. For more information about the interrupts generated by the time synchronization module, see Section 2.3.5.

2.11 Power Management

The gigabit Ethernet (GbE) switch subsystem provides power management in the form of clock gating. Although the NETCP does have a power domain that can be enabled or disabled, the GbE switch subsystem is only one of the modules in that power domain, and the power cannot be enabled or disabled for the individual modules in the NETCP. For more information, see the device specific data manual.

Registers

This chapter describes the registers available in the Ethernet switch subsystem, its submodules, and the related registers in the SerDes module. For clarity, the registers for each module and submodule are described separately. Provided for each register is a bit field description and a memory offset address. The offset address values provided are relative to the associated base address of the module. See the device-specific data manual for the memory address of these registers.

Торіс		Page
3.1	Summary of Modules	74
3.2	Gigabit Ethernet (GbE) Switch Subsystem Module	88
3.3	Serial Gigabit Media Independent Interface (SGMII) module	90
3.4	Management Data Input/Output (MDIO) module	97
3.5	Ethernet Switch Module	112
3.6	Serializer/Deserializer (SerDes) SGMII Boot Configuration Registers	2 50

3.1 Summary of Modules

Table 3-1 shows the module regions in the gigabit Ethernet switch subsystem and the corresponding address offset for each module for KeyStone I.

Offset Address ⁽¹⁾	Module Region	Section
000h	Gigabit Ethernet (GbE) switch subsystem	Section 3.2
100h	Port 1 SGMII module	Section 3.3
200h	Port 2 SGMII module	Section 3.3
300h	MDIO module	Section 3.4
400h-7FFh	Reserved	Reserved
800h	Gigabit Ethernet (GbE) switch module	Section 3.5

⁽¹⁾ The addresses provided in the table are offsets from a device specific base address. To determine the base address of these registers, see the device-specific data manual.

Table 3-2 shows the module regions in the gigabit Ethernet switch subsystem and the corresponding address offset for each module for KeyStone II.

Offset Address ⁽¹⁾	Module Region	Section
000h	Gigabit Ethernet (GbE) switch subsystem	Section 3.2
100h	Port 1 SGMII module	Section 3.3
200h	Port 2 SGMII module	Section 3.3
300h	MDIO module	Section 3.4
400h	Port 3 SGMII modules	Section 3.3
500	Port 4 SGMII Modules	Section 3.3
600h-7FFh	Reserved	Reserved
800h	Gigabit Ethernet (GbE) switch module	Section 3.5

Table 3-2. KeyStone II Gigabit Ethernet Switch Subsystem Module

⁽¹⁾ The addresses provided in the table are offsets from a device specific base address. To determine the base address of these registers, see the device-specific data manual.

Table 3-3 lists all gigabit Ethernet switch subsystem registers in KeyStone I devices.

Offset Address ⁽¹⁾	Module	Acronym	Register Name	Section
000h	GbE Switch Subsystem	ES_SS_IDVER	Ethernet switch subsystem Identification and Version Register	Section 3.2.1
004h-0FFh	Reserved	Reserved	Reserved	Reserved
100h	Port 1 SGMII	SGMII_IDVER	Identification and Version Register	Section 3.3.1
104h	Port 1 SGMII	SGMII_SOFT_RESET	Soft Reset Register	Section 3.3.2
108h-10Ch	Port 1 SGMII	Reserved	Reserved	Reserved
110h	Port 1 SGMII	SGMII_CONTROL	Control Register	Section 3.3.3
114h	Port 1 SGMII	SGMII_STATUS	Status Register (read only)	Section 3.3.4
118h	Port 1 SGMII	SGMII_MR_ADV _ABILITY	Advertised Ability Register	Section 3.3.5
11Ch	Port 1 SGMII	Reserved	Reserved	Reserved
120h	Port 1 SGMII	SGMII_MR_LP_ADV _ABILITY	Link Partner Advertised Ability (read only)	Section 3.3.6
124h-1FCh	Reserved	Reserved	Reserved	Reserved

⁽¹⁾ The actual addresses of these registers are device specific. See your device-specific data manual to verify the register addresses.

Offset Address ⁽¹⁾	Module	Acronym	Register Name	Section
200h	Port 2 SGMII	SGMII_IDVER	Identification and Version Register	Section 3.3.1
204h	Port 2 SGMII	SGMII_SOFT_RESET	Soft Reset Register	Section 3.3.2
208h-20Ch	Port 2 SGMII	Reserved	Reserved	Reserved
210h	Port 2 SGMII	SGMII_CONTROL	Control Register	Section 3.3.3
214h	Port 2 SGMII	SGMII_STATUS	Status Register (read only)	Section 3.3.4
218h	Port 2 SGMII	SGMII_MR_ADV _ABILITY	Advertised Ability Register	Section 3.3.5
21Ch	Port 2 SGMII	Reserved	Reserved	Reserved
220h	Port 2 SGMII	SGMII_MR_LP_ADV _ABILITY	Link Partner Advertised Ability (read only)	Section 3.3.6
224h-2FCh	Reserved	Reserved	Reserved	Reserved
300h	MDIO	MDIO_VERSION	MDIO Version Register	Section 3.4.1
304h	MDIO	MDIO_CONTROL	MDIO Control Register	Section 3.4.2
308h	MDIO	MDIO_ALIVE	PHY Alive Status Register	Section 3.4.3
30Ch	MDIO	MDIO_LINK	PHY Link Status Register	Section 3.4.4
310h	MDIO	MDIO_LINKINTRAW	MDIO Link Status Change Interrupt (Unmaksed) Register	Section 3.4.5
314h	MDIO	MDIO_LINKINT MASKED	MDIO Link Status Change Interrupt (Masked) Register	Section 3.4.6
318h-31Ch	MDIO	Reserved	Reserved	Reserved
320h	MDIO	MDIO_USERINTRAW	MDIO User Command Complete Interrupt (Unmasked) Register	Section 3.4.7
324h	MDIO	MDIO_USERINT MASKED	MDIO User Command Complete Interrupt (Masked) Register	Section 3.4.8
328h	MDIO	MDIO_USERINT MASKSET	MDIO User Interrupt Mask Set Register	Section 3.4.9
32Ch	MDIO	MDIO_USERINT MASKCLEAR	MDIO User Interrupt Mask Clear Register	Section 3.4.10
330h-37Ch	Reserved	Reserved	Reserved	Reserved
380h	MDIO	MDIO_USERACCESS0	MDIO User Access Register 0	Section 3.4.11
384h	MDIO	MDIO_USERPHYSEL0	MDIO User PHY Select Register 0	Section 3.4.12
388h	MDIO	MDIO_USERACCESS1	MDIO User Access Register 1	Section 3.4.13
38Ch	MDIO	MDIO_USERPHYSEL1	MDIO User PHY Select Register 1	Section 3.4.14
390h-7FCh	Reserved	Reserved	Reserved	Reserved
800h	GbE Switch	CPSW_IDVER	GbE switch identification and version register	Section 3.5.1.1
804h	GbE Switch	CPSW_CONTROL	GbE switch Control Register	Section 3.5.1.2
808h	GbE Switch	CPSW_EMCONTROL	GbE switch Emulation Control Register	Section 3.5.1.3
80Ch	GbE Switch	CPSW_STAT_PORT _EN	GbE switch Statistics Port Enable Register	Section 3.5.1.4
810h	GbE Switch	CPSW_PTYPE	GbE switch Transmit Priority Type Register	Section 3.5.1.5
814h-818h	GbE Switch	Reserved	Reserved	Reserved
81Ch	GbE Switch	CPSW_GAP_THRESH	Transmit FIFO Short Gap Threshold Register	Section 3.5.1.6
820h	GbE Switch	CPSW_TX_START _WDS	Transmit FIFO Start Words Register	Section 3.5.1.7
824h	GbE Switch	CPSW_FLOW _CONTROL	Flow Control Register	Section 3.5.1.8
828h-830h	GbE Switch	Reserved	Reserved	Reserved
834h	GbE Switch	P0_CPPI_SRC_ID	Port 0 Source ID Register	Section 3.5.1.9
838h	GbE Switch	P0_PORT_VLAN	Port 0 VLAN Register	Section 3.5.1.10

Offset Address ⁽¹⁾	Module	Acronym	Register Name	Section
83Ch	GbE Switch	P0_RX_PRI_MAP	Port 0 Receive Packet Priority to Header Priority Mapping Register	Section 3.5.1.11
840h	GbE Switch	P0_RX_MAXLEN	Port 0 Receive Frame Max Length Register	Section 3.5.1.12
844h- 805Ch	Reserved	Reserved	Reserved	Reserved
860h	GbE Switch	P1_MAX_BLKS	Port 1 Maximum FIFO blocks Register	Section 3.5.1.13
864h	GbE Switch	P1_BLK_CNT	Port 1 FIFO Block Usage Count	Section 3.5.1.14
868h	GbE Switch	P1_PORT_VLAN	Port 1 VLAN Register	Section 3.5.1.15
86Ch	GbE Switch	P1_TX_PRI_MAP	Port 1 TX Header Priority to switch Queue Mapping Reg	Section 3.5.1.16
870h	GbE Switch	MAC1_SA_LO	MAC1 Source Address Low Register	Section 3.5.1.17
874h	GbE Switch	MAC1_SA_HI	MAC1 Source Address High Register	Section 3.5.1.18
878h	GbE Switch	P1_TS_CTL	Port 1 Time Sync Control Register	Section 3.5.1.19
87Ch	GbE Switch	P1_TS_SEQ_LTYPE	Port 1 Time Sync LTYPE (and SEQ_ID_OFFSET)	Section 3.5.1.20
880h	GbE Switch	P1_TS_VLAN	Port 1 Time Sync VLAN2 and VLAN2 Register	Section 3.5.1.21
884h- 808Ch	Reserved	Reserved	Reserved	Reserved
890h	GbE Switch	P2_MAX_BLKS	Port 2 Maximum FIFO blocks Register	Section 3.5.1.24
894h	GbE Switch	P2_BLK_CNT	Port 2 FIFO Block Usage Count	Section 3.5.1.25
898h	GbE Switch	P2_PORT_VLAN	Port 2 VLAN Register	Section 3.5.1.26
89Ch	GbE Switch	P2_TX_PRI_MAP	Port 2 TX Header Priority to switch Queue Mapping Register	Section 3.5.1.27
8A0h	GbE Switch	MAC2_SA_LO	MAC2 Source Address Low Register	Section 3.5.1.28
8A4h	GbE Switch	MAC2_SA_HI	MAC2 Source Address High Register	Section 3.5.1.29
8A8h	GbE Switch	P2_TS_CTL	Port 2 Time Sync Control Register	Section 3.5.1.30
8ACh	GbE Switch	P2_TS_SEQ_LTYPE	Port 2 Time Sync LTYPE (and SEQ_ID_OFFSET)	
8B0h	GbE Switch	P2_TS_VLAN	Port 2 Time Sync VLAN2 and VLAN2 Register	Section 3.5.1.32
8B4h-8FCh	Reserved	Reserved	Reserved	Reserved
900h	Port 1 MAC	MAC_IDVER	MAC Identification and Version Register	Section 3.5.3.
904h	Port 1 MAC	MAC_MAC_CTL	MAC Control Register	Section 3.5.3.
908h	Port 1 MAC	MAC_MAC_STATUS	MAC Status Register	Section 3.5.3.
90Ch	Port 1 MAC	MAC_SOFT_RESET	Soft Reset Register	
910h	Port 1 MAC	MAC_RX_MAXLEN	RX Maximum Length Register	Section 3.5.3.
914h	Port 1 MAC	Reserved	Reserved	Reserved
918h	Port 1 MAC	MAC_RX_PAUSE	Receive Pause Timer Register	Section 3.5.3.
91Ch	Port 1 MAC	MAC_TX_PAUSE	Transmit Pause Timer Register	Section 3.5.3.
920h	Port 1 MAC	MAC_EM_CTL	Emulation Control	Section 3.5.3.

Offset Address ⁽¹⁾	Module	Acronym	Register Name	Section
924h	Port 1 MAC	MAC_RX_PRI_MAP	Priority Mapping Register	Section 3.5.3.9
928-93C	Reserved	Reserved	Reserved	Reserved
940h	Port 2 MAC	MAC_IDVER	MAC Identification and Version Register	Section 3.5.3.1
944h	Port 2 MAC	MAC_MAC_CTL	MAC Control Register	Section 3.5.3.3
948h	Port 2 MAC	MAC_MAC_STATUS	MAC Status Register	Section 3.5.3.3
94Ch	Port 2 MAC	MAC_SOFT_RESET	Soft Reset Register	
950h	Port 2 MAC	MAC_RX_MAXLEN	RX Maximum Length Register	Section 3.5.3.5
954h	Port 2 MAC	Reserved	Reserved	Reserved
958h	Port 2 MAC	MAC_RX_PAUSE	Receive Pause Timer Register	Section 3.5.3.6
95Ch	Port 2 MAC	MAC_TX_PAUSE	Transmit Pause Timer Register	Section 3.5.3.7
960h	Port 2 MAC	MAC_EM_CTL	Emulation Control	Section 3.5.3.8
964h	Port 2 MAC	MAC_RX_PRI_MAP	Priority Mapping Register	Section 3.5.3.9
968-AFC	Reserved	Reserved	Reserved	Reserved
B00h	STATSA	RXGOODFRAMES	Total number of good frames received	Section 3.5.4.1
B04h	STATSA	RXBROADCAST FRAMES	Total number of good broadcast frames received	Section 3.5.4.2
B08h	STATSA	RXMULTICAST FRAMES	Total number of good multicast frames received	Section 3.5.4.3
B0Ch	STATSA	RXPAUSEFRAMES	Total number of pause frames received	Section 3.5.4.4
B10h	STATSA	RXCRCERRORS	Total number of CRC errors frames received	Section 3.5.4.5
B14h	STATSA	RXALIGNCODEERRO RS	Total number of alignment/code errors received	Section 3.5.4.6
B18h	STATSA	RXOVERSIZEDFRAM ES	Total number of oversized frames received	Section 3.5.4.7
B1Ch	STATSA	RXJABBERFRAMES	Total number of jabber frames received	Section 3.5.4.8
B20h	STATSA	RXUNDERSIZED FRAMES	Total number of undersized frames received	Section 3.5.4.9
B24h	STATSA	RXFRAGMENTS	Total number of fragment frames received	Section 3.5.4.10
B28h-B2Fh	STATSA	Reserved	Reserved	Reserved
B30h	STATSA	RXOCTETS	Total number of received bytes in good frames	Section 3.5.4.11
B34h	STATSA	TXGOODFRAMES	Total number of good frames transmitted	Section 3.5.4.12
B38h	STATSA	TXBROADCAST FRAMES	Total number of good broadcast frames transmitted	Section 3.5.4.13
B3Ch	STATSA	TXMULTICAST FRAMES	Total number of good multicast frames transmitted	Section 3.5.4.14
B40h	STATSA	TXPAUSEFRAMES	Total number of pause frames transmitted	Section 3.5.4.15
B44h	STATSA	TXDEFERRED FRAMES	Total number of frames deferred	Section 3.5.4.16
B48h	STATSA	TXCOLLISION FRAMES	Total number of collisions	Section 3.5.4.17
B4Ch	STATSA	TXSINGLECOLL FRAMES	Total number of single collision transmit frames	Section 3.5.4.18
B50h	STATSA	TXMULTCOLL FRAMES	Total number of multiple collision transmit frames	Section 3.5.4.19
B54h	STATSA	TXEXCESSIVE COLLISIONS	Total number of transmit frames aborted due to excessive collisions	Section 3.5.4.20
B58h	STATSA	TXLATECOLLISIONS	Total number of late collisions	Section 3.5.4.21

Offset Address ⁽¹⁾	Module	Acronym	Register Name	Section
B5Ch	STATSA	TXUNDERRUN	Total number of transmit underrun errors	Section 3.5.4.22
B60h	STATSA	TXCARRIERSENSEE RRORS	Total number of carrier sense errors	Section 3.5.4.23
B64h	STATSA	TXOCTETS	Total number of octets transmitted	Section 3.5.4.24
B68h	STATSA	640CTETFRAMES	Total number of 64 octet frames transmitted	Section 3.5.4.25
B6Ch	STATSA	65T127OCTET FRAMES	Total number of 65-127 octet frames transmitted	Section 3.5.4.26
B70h	STATSA	128T255OCTET FRAMES	Total number of 128-255 octet frames transmitted	Section 3.5.4.27
B74h	STATSA	256T511OCTET FRAMES	Total number of 256-511 octet frames transmitted	Section 3.5.4.28
B78h	STATSA	512T1023OCTET FRAMES	Total number of 512-1023 octet frames transmitted	Section 3.5.4.29
B7Ch	STATSA	1024TUPOCTET FRAMES	Total number of 1023-1518 octet frames transmitted	Section 3.5.4.30
B80h	STATSA	NETOCTETS	Total number of net octets	Section 3.5.4.31
B84h	STATSA	RXSOFOVERRUNS	Total number of receive FIFO or DMA start of frame overruns	Section 3.5.4.32
B88h	STATSA	RXMOFOVERRUNS	Total number of receive FIFO or DMA middle of frame overruns	Section 3.5.4.33
B8Ch	STATSA	RXDMAOVERRUNS	Total number of receive DMA start of frame and middle of frame overruns	Section 3.5.4.34
B90h-BFCh	Reserved	Reserved	Reserved	Reserved
C00h	STATSB	RXGOODFRAMES	Total number of good frames received	Section 3.5.4.1
C04h	STATSB	RXBROADCAST FRAMES	Total number of good broadcast frames received	Section 3.5.4.2
C08h	STATSB	RXMULTICAST FRAMES	Total number of good multicast frames received	Section 3.5.4.3
C0Ch	STATSB	RXPAUSEFRAMES	Total number of pause frames received	Section 3.5.4.4
C10h	STATSB	RXCRCERRORS	Total number of CRC errors frames received	Section 3.5.4.5
C14h	STATSB	RXALIGNCODE ERRORS	Total number of alignment/code errors received	Section 3.5.4.6
C18h	STATSB	RXOVERSIZED FRAMES	Total number of oversized frames received	Section 3.5.4.7
C1Ch	STATSB	RXJABBERFRAMES	Total number of jabber frames received	Section 3.5.4.8
C20h	STATSB	RXUNDERSIZED FRAMES	Total number of undersized frames received	Section 3.5.4.9
C24h	STATSB	RXFRAGMENTS	Total number of fragment frames received	Section 3.5.4.10
C28h-C2Fh	Reserved	Reserved	Reserved	Reserved
C30h	STATSB	RXOCTETS	Total number of received bytes in good frames	Section 3.5.4.11
C34h	STATSB	TXGOODFRAMES	Total number of good frames transmitted	Section 3.5.4.12
C38h	STATSB	TXBROADCAST FRAMES	Total number of good broadcast frames transmitted	Section 3.5.4.13
C3Ch	STATSB	TXMULTICAST FRAMES	Total number of good multicast frames transmitted	Section 3.5.4.14
C40h	STATSB	TXPAUSEFRAMES	Total number of pause frames transmitted	Section 3.5.4.15

Offset Address ⁽¹⁾	Module	Acronym	Register Name	Section
C44h	STATSB	TXDEFERRED FRAMES	Total number of frames deferred	Section 3.5.4.16
C48h	STATSB	TXCOLLISION FRAMES	Total number of collisions	Section 3.5.4.17
C4Ch	STATSB	TXSINGLECOLL FRAMES	Total number of single collision transmit frames	Section 3.5.4.18
C50h	STATSB	TXMULTCOL LFRAMES	Total number of multiple collision transmit frames	Section 3.5.4.19
C54h	STATSB	TXEXCESSIVE COLLISIONS	Total number of transmit frames aborted due to excessive collisions	Section 3.5.4.20
C58h	STATSB	TXLATECOLLISIONS	Total number of late collisions	Section 3.5.4.21
C5Ch	STATSB	TXUNDERRUN	Total number of transmit underrun errors	Section 3.5.4.22
C60h	STATSB	TXCARRIERSENSE ERRORS	Total number of carrier sense errors	Section 3.5.4.23
C64h	STATSB	TXOCTETS	Total number of octets transmitted	Section 3.5.4.24
C68h	STATSB	64OCTETFRAMES	Total number of 64 octet frames transmitted	Section 3.5.4.25
C6Ch	STATSB	65T127OCTET FRAMES	Total number of 65-127 octet frames transmitted	Section 3.5.4.26
C70h	STATSB	128T255OCTET FRAMES	Total number of 128-255 octet frames transmitted	Section 3.5.4.27
C74h	STATSB	256T511OCTET FRAMES	Total number of 256-511 octet frames transmitted	Section 3.5.4.28
C78h	STATSB	512T1023OCTET FRAMES	Total number of 512-1023 octet frames transmitted	Section 3.5.4.29
C7Ch	STATSB	1024TUPOCTET FRAMES	Total number of 1023-1518 octet frames transmitted	Section 3.5.4.30
C80h	STATSB	NETOCTETS	Total number of net octets	Section 3.5.4.31
C84h	STATSB	RXSOFOVERRUNS	Total number of receive FIFO or DMA start of frame overruns	Section 3.5.4.32
C88h	STATSB	RXMOFOVERRUNS	Total number of receive FIFO or DMA middle of frame overruns	Section 3.5.4.33
C8Ch	STATSB	RXDMAOVERRUNS	Total number of receive DMA start of frame and middle of frame overruns	Section 3.5.4.34
C90h- CFCh	Reserved	Reserved	Reserved	Reserved
D00	Time Sync	CPTS_IDVER	Identification and Version Register	Section 3.5.5.7
D04	Time Sync	CPTS_CTL	Time Sync Control Register	Section 3.5.5.2
D08	Time Sync	CPTS_RFTCLK_SEL	Reference Clock Select Register	Section 3.5.5.3
D0C	Time Sync	CPTS_PUSH	Time Stamp Event Push Register	Section 3.5.5.4
D10h- D1Ch	Reserved	Reserved	Reserved	Reserved
D20h	Time Sync	CPTS_INTSTAT_RAW	Interrupt Status Raw Register	Section 3.5.5.5
D24h	Time Sync	CPTS_INTSTAT _MASKED	Interrupt Status Masked Register	Section 3.5.5.6
D28h	Time Sync	CPTS_INT_ENABLE	Interrupt Enable Register	Section 3.5.5.7
D2Ch	Reserved	Reserved	Reserved	Reserved
D30h	Time Sync	CPTS_EVENT_POP	Event Interrupt Pop Register	Section 3.5.5.8
D34h	Time Sync	CPTS_EVENT_LOW	Lower 32-bits of the event value	Section 3.5.5.9

Offset Address ⁽¹⁾	Module	Acronym	Register Name	Section
D38h	Time Sync	CPTS_EVENT_HIGH	Upper 32-bits of the event value	Section 3.5.5.11
D3Ch- DFCh	Reserved	Reserved	Reserved	Reserved
E00h	ALE	ALE_IDVER	Address Lookup Engine ID/Version Register	Section 3.5.6.1
E04h	Reserved	Reserved	Reserved	Reserved
E08h	ALE	ALE_CONTROL	Address Lookup Engine Control Register	Section 3.5.6.2
E0Ch	Reserved	Reserved	Reserved	Reserved
E10h	ALE	ALE_PRESCALE	Address Lookup Engine Prescale Register	Section 3.5.6.3
E14h	Reserved	Reserved	Reserved	Reserved
E18h	ALE	ALE_UNKNOWN _VLAN	Address Lookup Engine Unknown VLAN Register	Section 3.5.6.4
E1Ch	Reserved	Reserved	Reserved	Reserved
E20h	ALE	ALE_TBLCTL	Address Lookup Engine Table Control	Section 3.5.6.5
E24h-E30h	Reserved	Reserved	Reserved	Reserved
E34h	ALE	ALE_TBLW2	Address Lookup Engine Table Word 2 Register	Section 3.5.6.6
E38h	ALE	ALE_TBLW1	Address Lookup Engine Table Word 1 Register	Section 3.5.6.7
E3Ch	ALE	ALE_TBLW0	Address Lookup Engine Table Word 0 Register	Section 3.5.6.8
E40h	ALE	ALE_PORTCTL0	Address Lookup Engine Port 0 Control Register	Section 3.5.6.9
E44h	ALE	ALE_PORTCTL1	Address Lookup Engine Port 1 Control Register	Section 3.5.6.10
E48h	ALE	ALE_PORTCTL2	Address Lookup Engine Port 2 Control Register	Section 3.5.6.11
E4Ch- FFCh	Reserved	Reserved	Reserved	Reserved

Table 3-3. KeyStone I Gigabit Ethernet Switch Subsystem Complete Register Listing (continued)

KeyStone II Devices have a different memory map, due to the extended memory that accompanies the additional SGMII ports and static blocks. Note that the STATSA and STATSB registers share the same addresses as the STATSC and STATSD registers. See Section 2.3.4 for more information

Table 3-4 lists all gigabit Ethernet switch subsystem registers in KeyStone II devices.

Table 3-4. KeyStone II Gigabit Ethernet Switch Subsystem Complete Register Listing

Offset Address ⁽¹⁾	Module	Acronym	Register Name	Section	
000h	GbE Switch Subsystem	ES_SS_IDVER	Ethernet switch subsystem Identification and Version Register	Section 3.2.1	
004h-0FFh	Reserved	Reserved	Reserved	Reserved	
100h	Port 1 SGMII	SGMII_IDVER	Identification and Version Register	Section 3.3.1	
104h	Port 1 SGMII	SGMII_SOFT_RESET	Soft Reset Register	Section 3.3.2	
108h-10Ch	Reserved	Reserved	Reserved		
110h	Port 1 SGMII	SGMII_CONTROL	ROL Control Register		
114h	Port 1 SGMII	SGMII_STATUS	Status Register (read only)	Section 3.3.4	
118h	Port 1 SGMII	SGMII_MR_ADV_ABILITY	Advertised Ability Register	Section 3.3.5	
11Ch	Reserved	Reserved	Reserved	Reserved	
120h	Port 1 SGMII	SGMII_MR_LP_ADV_ABILITY	Link Partner Advertised Ability (read only)	Section 3.3.6	
124h-1FCh	Reserved	Reserved	Reserved	Reserved	
200h	Port 2 SGMII	SGMII_IDVER	Identification and Version Register	Section 3.3.1	
204h	Port 2 SGMII	SGMII_SOFT_RESET	Soft Reset Register	Section 3.3.2	
208h-20Ch	Reserved	Reserved	Reserved	Reserved	
210h	Port 2 SGMII	SGMII_CONTROL	Control Register	Section 3.3.3	
214h	Port 2 SGMII	SGMII_STATUS	Status Register (read only)	Section 3.3.4	
218h	Port 2 SGMII	SGMII_MR_ADV_ABILITY	Advertised Ability Register	Section 3.3.5	
21Ch	Reserved	Reserved	Reserved	Reserved	
220h	Port 2 SGMII	SGMII_MR_LP_ADV_ABILITY	Link Partner Advertised Ability (read only)	Section 3.3.6	
224h-2FCh	Reserved	Reserved	Reserved	Reserved	
300h	MDIO	MDIO_VERSION	MDIO Version Register	Section 3.4.1	
304h	MDIO	MDIO_CONTROL	MDIO Control Register	Section 3.4.2	
308h	MDIO	MDIO_ALIVE	PHY Alive Status Register	Section 3.4.3	
30Ch	MDIO	MDIO_LINK	PHY Link Status Register	Section 3.4.4	
310h	MDIO	MDIO_LINKINTRAW	MDIO Link Status Change Interrupt (Unmaksed) Register	Section 3.4.5	
314h	MDIO	MDIO_LINKINTMASKED	MDIO Link Status Change Interrupt (Masked) Register	Section 3.4.6	
318h–31Ch	MDIO	Reserved	Reserved	Reserved	
320h	MDIO	MDIO_USERINTRAW	MDIO User Command Complete Interrupt (Unmasked) Register	Section 3.4.7	
324h	MDIO	MDIO_USERINTMASKED	MDIO User Command Complete Interrupt (Masked) Register	Section 3.4.8	
328h	MDIO	MDIO_USERINTMASKSET	MDIO User Interrupt Mask Set Register	Section 3.4.9	
32Ch	MDIO	MDIO_USERINTMASKCLEAR	MDIO User Interrupt Mask Clear Register	Section 3.4.10	
330h–37Ch	Reserved	Reserved	Reserved	Reserved	
380h	MDIO	MDIO_USERACCESS0	MDIO User Access Register 0	Section 3.4.11	
384h	MDIO	MDIO_USERPHYSEL0	MDIO User PHY Select Register 0	Section 3.4.12	
388h	MDIO	MDIO_USERACCESS1	MDIO User Access Register 1	Section 3.4.13	
38Ch	MDIO	MDIO_USERPHYSEL1	MDIO User PHY Select Register 1	Section 3.4.14	
390h-3FCh	Reserved	Reserved	Reserved	Reserved	
400h	Port 3 SGMII	SGMII_IDVER	Identification and Version Register	Section 3.3.1	
404h	Port 3 SGMII	SGMII_SOFT_RESET	Soft Reset Register	Section 3.3.2	
408h-40Ch	Reserved	Reserved	Reserved	Reserved	
410h	Port 3 SGMII	SGMII_CONTROL	Control Register	Section 3.3.3	
414h	Port 3 SGMII	SGMII_STATUS	Status Register (read only)	Section 3.3.4	
418h	Port 3 SGMII	SGMII_MR_ADV_ABILITY	Advertised Ability Register	Section 3.3.5	

⁽¹⁾ The actual addresses of these registers are device specific. See your device-specific data manual to verify the register addresses.

Offset Address ⁽¹⁾	Module	Acronym	Register Name	Section	
41Ch	Reserved	Reserved	Reserved	Reserved	
420h	Port 3 SGMII	SGMII_MR_LP_ADV_ABILITY	Link Partner Advertised Ability (read only)	Section 3.3.6	
424h-4FC	Reserved	Reserved	Reserved	Reserved	
500h	Port 4 SGMII	SGMII_IDVER	Identification and Version Register	Section 3.3.1	
504h	Port 4 SGMII	SGMII_SOFT_RESET	Soft Reset Register	Section 3.3.2	
508h-50Ch	Reserved	Reserved	Reserved	Reserved	
510h	Port 4 SGMII	SGMII_CONTROL	Control Register	Section 3.3.3	
514h	Port 4 SGMII	Port 4 SGMII SGMII_STATUS Status Register (read only)		Section 3.3.4	
518h	Port 4 SGMII	SGMII_MR_ADV_ABILITY Advertised Ability Register		Section 3.3.5	
51Ch–7FCh	Reserved	Reserved	Reserved Reserved I		
800h	GbE Switch	CPSW_IDVER	GbE switch identification and version register	Section 3.5.1.1	
804h	GbE Switch	bE Switch CPSW_CONTROL GbE switch Control Register		Section 3.5.1.2	
808h	GbE Switch	CPSW_EMCONTROL	GbE switch Emulation Control Register	Section 3.5.1.3	
80Ch	GbE Switch	ritch CPSW_STAT_PORT_EN GbE switch Statistics Port Enable Register		Section 3.5.1.4	
810h	GbE Switch	bE Switch CPSW_PTYPE GbE switch Transmit Priority Type Register		Section 3.5.1.5	
814h-818h	818h Reserved Reserved Reserved		Reserved		
81Ch	GbE Switch	CPSW_GAP_THRESH	Transmit FIFO Short Gap Threshold Register	Section 3.5.1.6	
820h	GbE Switch	CPSW_TX_START_WDS	Transmit FIFO Start Words Register	Section 3.5.1.7	
824h	GbE Switch CPSW_FLOW_CONTROL Flow Control Register		Section 3.5.1.8		
828h-830h	Reserved	Reserved	Reserved	Reserved	
834h	GbE Switch	P0_CPPI_SRC_ID	P0_CPPI_SRC_ID Port 0 Source ID Register S		
838h	GbE Switch	P0_PORT_VLAN	Port 0 VLAN Register	Section 3.5.1.10	
83Ch	GbE Switch	P0_RX_PRI_MAP	Port 0 Receive Packet Priority to Header Priority Mapping Register	Section 3.5.1.11	
840h	GbE Switch	P0_RX_MAXLEN	Port 0 Receive Frame Max Length Register	Section 3.5.1.12	
844h-805Ch	Reserved	Reserved	Reserved	Reserved	
860h	GbE Switch	P1_MAX_BLKS	Port 1 Maximum FIFO blocks Register	Section 3.5.1.13	
864h	GbE Switch	P1_BLK_CNT	Port 1 FIFO Block Usage Count	Section 3.5.1.14	
868h	GbE Switch	P1_PORT_VLAN	Port 1 VLAN Register	Section 3.5.1.15	
86Ch	GbE Switch	P1_TX_PRI_MAP	Port 1 TX Header Priority to switch Queue Mapping Reg	Section 3.5.1.16	
870h	GbE Switch	MAC1_SA_LO	MAC1 Source Address Low Register	Section 3.5.1.17	
874h	GbE Switch	MAC1_SA_HI	MAC1 Source Address High Register	Section 3.5.1.18	
878h	GbE Switch	P1_TS_CTL	Port 1 Time Sync Control Register	Section 3.5.1.19	
87Ch	GbE Switch	P1_TS_SEQ_LTYPE	Port 1 Time Sync LTYPE (and SEQ_ID_OFFSET)	Section 3.5.1.20	
880h	GbE Switch	P1_TS_VLAN_LTYPE	Port 1 Time Sync VLAN2 and VLAN2 Register	Section 3.5.1.21	
884h	GbE Switch	P1_TS_CTL_LTYPE2	Port 1 Time Sync Control and LTYPE2 Register	Section 3.5.1.22	
888h	GbE Switch	P1_TS_CTL2	Port 1 Time Sync Control 2 Register	Section 3.5.1.21	
88Ch	Reserved	Reserved	Reserved	Reserved	
890h	GbE Switch	P2_MAX_BLKS	Port 2 Maximum FIFO blocks Register	Section 3.5.1.24	
894h	GbE Switch	P2_BLK_CNT	Port 2 FIFO Block Usage Count	Section 3.5.1.25	
898h	GbE Switch	P2_PORT_VLAN	Port 2 VLAN Register	Section 3.5.1.26	
89Ch	GbE Switch	P2_TX_PRI_MAP	Port 2 TX Header Priority to switch Queue Mapping Register	Section 3.5.1.27	

Offset Address ⁽¹⁾ Module Acronym		Acronym	Register Name	Section
8A0h	GbE Switch	MAC2_SA_LO	MAC2 Source Address Low Register	Section 3.5.1.28
8A4h	GbE Switch	MAC2_SA_HI	MAC2 Source Address High Register	Section 3.5.1.29
8A8h	GbE Switch	P2_TS_CTL	Port 2 Time Sync Control Register	Section 3.5.1.30
8ACh	GbE Switch	P2_TS_SEQ_LTYPE	Port 2 Time Sync LTYPE (and SEQ_ID_OFFSET)	Section 3.5.1.20
8B0h	GbE Switch	P2_TS_VLAN_LTYPE2	N_LTYPE2 Port 2 Time Sync VLAN2 and VLAN2 Register	
8B4h	GbE Switch	P2_TS_CTL_LTYPE2	Port 2 Time Sync Control and LTYPE2 Register	Section 3.5.1.34
8B8h	GbE Switch	P2_TS_CTL2	Port 2 Time Sync Control 2 Register	Section 3.5.1.33
8FCh	Reserved	Reserved	Reserved	Reserved
900h	Port 1 MAC	MAC_IDVER	MAC Identification and Version Register	Section 3.5.3.1
904h	Port 1 MAC	MAC_MAC_CTL	MAC Control Register	Section 3.5.3.3
908h	Port 1 MAC	MAC_MAC_STATUS	MAC Status Register	Section 3.5.3.3
90Ch	Port 1 MAC	MAC_SOFT_RESET	Soft Reset Register	
910h	Port 1 MAC	MAC_RX_MAXLEN	RX Maximum Length Register	Section 3.5.3.5
914h	Reserved	Reserved	Reserved	Reserved
918h	Port 1 MAC	MAC_RX_PAUSE	Receive Pause Timer Register	Section 3.5.3.6
91Ch	Port 1 MAC	MAC_TX_PAUSE	Transmit Pause Timer Register	Section 3.5.3.7
920h	Port 1 MAC	MAC_EM_CTL	Emulation Control	Section 3.5.3.8
924h	Port 1 MAC	MAC_RX_PRI_MAP	Priority Mapping Register	Section 3.5.3.9
928-93C	Reserved	Reserved	Reserved	Reserved
940h	Port 2 MAC	MAC_IDVER	MAC Identification and Version Register	Section 3.5.3.1
944h	Port 2 MAC	MAC_MAC_CTL	MAC Control Register	Section 3.5.3.3
948h	Port 2 MAC	MAC_MAC_STATUS	MAC Status Register	Section 3.5.3.3
94Ch	Port 2 MAC	MAC_SOFT_RESET	Soft Reset Register	
950h	Port 2 MAC	MAC_RX_MAXLEN	RX Maximum Length Register	Section 3.5.3.5
954h	Reserved	Reserved	Reserved	Reserved
958h	Port 2 MAC	MAC_RX_PAUSE	Receive Pause Timer Register	Section 3.5.3.6
95Ch	Port 2 MAC	MAC_TX_PAUSE	Transmit Pause Timer Register	Section 3.5.3.7
960h	Port 2 MAC	MAC_EM_CTL	Emulation Control	Section 3.5.3.8
964h	Port 2 MAC	MAC_RX_PRI_MAP	Priority Mapping Register	Section 3.5.3.9
968-97C	Reserved	Reserved	Reserved	Reserved
980h	Port 3 MAC	MAC_IDVER	MAC Identification and Version Register	Section 3.5.3.1
984h	Port 3 MAC	MAC_MAC_CTL	MAC Control Register	Section 3.5.3.3
988h	Port 3 MAC	MAC_MAC_STATUS	MAC Status Register	Section 3.5.3.3
98Ch	Port 3 MAC	MAC_SOFT_RESET	Soft Reset Register	
990h	Port 3 MAC	MAC_RX_MAXLEN	RX Maximum Length Register	Section 3.5.3.5
994h	Reserved	Reserved	Reserved	Reserved
998h	Port 3 MAC	MAC_RX_PAUSE	Receive Pause Timer Register	Section 3.5.3.6
99Ch	Port 3 MAC	MAC_TX_PAUSE	Transmit Pause Timer Register	Section 3.5.3.7
9A0h	Port 3 MAC	MAC_EM_CTL	Emulation Control	Section 3.5.3.8
9a4h	Port 3 MAC	MAC RX PRI MAP	Priority Mapping Register	Section 3.5.3.9
948h-9BCh	Reserved	Reserved	Reserved	Reserved
9C0h	Port 4 MAC	MAC_IDVER	MAC Identification and Version Register	Section 3.5.3.1
9C4h	Port 4 MAC	MAC_MAC_CTL	MAC Control Register	Section 3.5.3.3
9C8h	Port 4 MAC	MAC_MAC_STATUS	MAC Status Register	Section 3.5.3.3
00011	Port 4 MAC	MAC_SOFT_RESET	Soft Reset Register	000001 0.0.0.0

Offset Address ⁽¹⁾	Module	Acronym	Register Name	Section	
9D0h	Port 4 MAC	MAC_RX_MAXLEN	RX Maximum Length Register	Section 3.5.3.5	
9D4h	Reserved	Reserved	Reserved	Reserved	
9D8h	Port 4 MAC	MAC_RX_PAUSE	Receive Pause Timer Register	Section 3.5.3.6	
9DCh	Port 4 MAC	MAC_TX_PAUSE	Transmit Pause Timer Register	Section 3.5.3.7	
9E0h	Port 4 MAC	MAC_EM_CTL	Emulation Control	Section 3.5.3.8	
9E4h	Port 4 MAC	MAC_RX_PRI_MAP	Priority Mapping Register	Section 3.5.3.9	
9E8h-9FCh	Reserved	Reserved	Reserved	Reserved	
A00h	GbE Switch	P3_MAX_BLKS	Port 3 Maximum FIFO Blocks Register	Section 3.5.1.24	
A04h	GbE Switch	P3_BLK_CNT	Port 3 FIFO Block Usage Count (Read Only)	Section 3.5.1.25	
A08h	GbE Switch	P3_PORT_VLAN	Port 3 VLAN Register	Section 3.5.1.26	
A0C	GbE Switch	P3_TX_PRI_MAP	Port 3 TX Header Priority to switch Queue Mapping Register	Section 3.5.1.27	
A10h	GbE Switch	MAC3_SA_LO	MAC 3 Source Address Low Register	Section 3.5.1.28	
A14h	GbE Switch	MAC3_SA _HI	MAC 3 Source Address High Register	Section 3.5.1.29	
A18h	GbE Switch	P3_TS_CTL	Port 3 Time Sync Control Register	Section 3.5.1.30	
A1Ch	GbE Switch	P3_TS_SEQ_LTYPE	Port 3 Time Sync LTYPE (and SEQ_ID_OFFSET)		
A20h	GbE Switch	P3_TS_VLAN_LTYPE	Port 3 Time Sync VLAN2 and VLAN2 Register	Section 3.5.1.32	
A24h	GbE Switch	P3_TS_CTL_LTYPE2	Port 3 Time Sync LTYPE 2 Register	Section 3.5.2.10	
A28h	GbE Switch	PS_TS_CTL2	Port 3 Time Sync Control 2 Register	Section 3.5.2.11	
A30h	GbE Switch	P4_MAX_BLKS	Port 4 Maximum FIFO Blocks Register	Section 3.5.1.24	
A34h	GbE Switch	P4_BLK_CNT	Port 4 FIFO Block Usage Count (Read Only)	Section 3.5.1.25	
A38h	GbE Switch	P4_PORT_VLAN	Port 4 VLAN Register	Section 3.5.1.26	
A3Ch	GbE Switch	P4_TX_PRI_MAP	Port 4Tx Header Priority to switch Queue Mapping Register	Section 3.5.1.27	
A40h	GbE Switch	MAC4_SA_LO	MAC 4 Source Address Low Register	Section 3.5.1.28	
A44h	GbE Switch	MAC4_SA _HI	MAC 4 Source Address High Register	Section 3.5.1.29	
A48h	GbE Switch	P4_TS_CTL	Port 4 Time Sync Control Register	Section 3.5.1.30	
A4Ch	GbE Switch	P4_TS_SEQ_LTYPE	Port 4 Time Sync LTYPE (and SEQ_ID_OFFSET)		
A50h	GbE Switch	P4_TS_VLAN_LTYPE	Port 4 Time Sync VLAN2 and VLAN2 Register	Section 3.5.1.32	
A54h	GbE Switch	P4_TS_CTL_LTYPE2	Port 4 Time Sync LTYPE 2 Register	Section 3.5.2.21	
A58h	GbE Switch	P4_TS_CTL2	Port 4 Time Sync Control 2 Register	Section 3.5.2.22	
B00h	STATSA/STATSC	RXGOODFRAMES	Total number of good frames received	Section 3.5.4.1	
B04h	STATSA/STATSC	RXBROADCASTFRAMES	Total number of good broadcast frames received	Section 3.5.4.2	
B08h	Reserved	RXMULTICASTFRAMES	Total number of good multicast frames received	Section 3.5.4.3	
B0Ch	STATSA/STATSC	RXPAUSEFRAMES	Total number of pause frames received	Section 3.5.4.4	
B10h	STATSA/STATSC	RXCRCERRORS	Total number of CRC errors frames received	Section 3.5.4.5	
B14h	STATSA/STATSC	RXALIGNCODEERRORS	Total number of alignment/code errors received	Section 3.5.4.6	
B18h	STATSA/STATSC	RXOVERSIZEDFRAMES	Total number of oversized frames received	Section 3.5.4.7	
B1Ch	STATSA/STATSC	RXJABBERFRAMES	Total number of jabber frames received	Section 3.5.4.8	
B20h	STATSA/STATSC	RXUNDERSIZEDFRAMES	Total number of undersized frames received	Section 3.5.4.9	

Offset Address ⁽¹⁾	Module	Acronym	Register Name	Section	
B24h	STATSA/STATSC	RXFRAGMENTS	Total number of fragment frames received	Section 3.5.4.10	
B28h-B2Fh	Reserved	Reserved	Reserved	Reserved	
B30h	STATSA/STATSC	RXOCTETS	Total number of received bytes in good frames	Section 3.5.4.11	
B34h	STATSA/STATSC	TXGOODFRAMES	Total number of good frames transmitted	Section 3.5.4.12	
B38h	STATSA/STATSC	TXBROADCASTFRAMES	Total number of good broadcast frames transmitted	Section 3.5.4.13	
B3Ch	STATSA/STATSC	TXMULTICASTFRAMES	transmitted		
B40h	STATSA/STATSC	TXPAUSEFRAMES	PAUSEFRAMES Total number of pause frames transmitted Se		
B44h	STATSA/STATSC	TXDEFERREDFRAMES	Total number of frames deferred	Section 3.5.4.16	
B48h	STATSA/STATSC	TXCOLLISIONFRAMES	Total number of collisions	Section 3.5.4.17	
B4Ch	STATSA/STATSC	TXSINGLECOLLFRAMES	Total number of single collision transmit frames	Section 3.5.4.18	
B50h	STATSA/STATSC	TSA/STATSC TXMULTCOLLFRAMES Total number of multiple collision transmit S frames		Section 3.5.4.19	
B54h	STATSA/STATSC	TXEXCESSIVECOLLISIONS	Total number of transmit frames aborted due to excessive collisions	Section 3.5.4.20	
B58h	STATSA/STATSC	TXLATECOLLISIONS	Total number of late collisions	Section 3.5.4.21	
B5Ch	STATSA/STATSC	TXUNDERRUN	Total number of transmit underrun errors	Section 3.5.4.22	
B60h	STATSA/STATSC	TXCARRIERSENSEERRORS	Total number of carrier sense errors	Section 3.5.4.23	
364h	STATSA/STATSC	TXOCTETS	Total number of octets transmitted	Section 3.5.4.24	
B68h	STATSA/STATSC	64OCTETFRAMES	Total number of 64 octet frames transmitted	Section 3.5.4.25	
B6Ch	STATSA/STATSC	65T127OCTETFRAMES	Total number of 65-127 octet frames transmitted	Section 3.5.4.26	
B70h	STATSA/STATSC	128T255OCTETFRAMES	Total number of 128-255 octet frames transmitted	Section 3.5.4.27	
B74h	STATSA/STATSC	256T511OCTETFRAMES	Total number of 256-511 octet frames transmitted	Section 3.5.4.28	
B78h	STATSA/STATSC	512T1023OCTETFRAMES	Total number of 512-1023 octet frames transmitted	Section 3.5.4.29	
B7Ch	STATSA/STATSC	1024TUPOCTETFRAMES	Total number of 1023-1518 octet frames transmitted	Section 3.5.4.30	
B80h	STATSA/STATSC	NETOCTETS	Total number of net octets	Section 3.5.4.31	
B84h	STATSA/STATSC	RXSOFOVERRUNS	Total number of receive FIFO or DMA start of frame overruns	Section 3.5.4.32	
B88h	STATSA/STATSC	RXMOFOVERRUNS	Total number of receive FIFO or DMA middle of frame overruns	Section 3.5.4.33	
B8Ch	STATSA/STATSC	RXDMAOVERRUNS	Total number of receive DMA start of frame and middle of frame overruns	Section 3.5.4.34	
B90h-BFCh	Reserved	Reserved	Reserved	Reserved	
C00h	STATSB/ STATSD	RXGOODFRAMES	Total number of good frames received	Section 3.5.4.1	
C04h	STATSB/ STATSD	RXBROADCASTFRAMES	Total number of good broadcast frames received	Section 3.5.4.2	
C08h	STATSB/ STATSD	RXMULTICASTFRAMES	RXMULTICASTFRAMES Total number of good multicast frames received		
C0Ch	STATSB/ STATSD	RXPAUSEFRAMES	Total number of pause frames received	Section 3.5.4.4	
C10h	STATSB/ STATSD	RXCRCERRORS	Total number of CRC errors frames received	Section 3.5.4.5	
C14h	STATSB/ STATSD	RXALIGNCODEERRORS	Total number of alignment/code errors received	Section 3.5.4.6	

Offset Address ⁽¹⁾ Module		Acronym	Register Name	Section
C18h	STATSB/ STATSD	RXOVERSIZEDFRAMES	Total number of oversized frames received	Section 3.5.4.7
C1Ch	STATSB/ STATSD	RXJABBERFRAMES	Total number of jabber frames received	Section 3.5.4.8
C20h	STATSB/ STATSD	RXUNDERSIZEDFRAMES	Total number of undersized frames received	Section 3.5.4.9
C24h	STATSB/ STATSD	RXFRAGMENTS	Total number of fragment frames received	Section 3.5.4.10
C28h-C2Fh	Reserved	Reserved	Reserved	Reserved
C30h	STATSB/ STATSD	RXOCTETS	Total number of received bytes in good frames	Section 3.5.4.11
C34h	STATSB/ STATSD	TXGOODFRAMES	Total number of good frames transmitted	Section 3.5.4.12
C38h	STATSB/ STATSD	TXBROADCASTFRAMES	Total number of good broadcast frames transmitted	Section 3.5.4.13
C3Ch	STATSB/ STATSD	TXMULTICASTFRAMES	Total number of good multicast frames transmitted	Section 3.5.4.14
C40h	STATSB/ STATSD	TXPAUSEFRAMES	Total number of pause frames transmitted	Section 3.5.4.15
C44h	STATSB/ STATSD	TXDEFERREDFRAMES	Total number of frames deferred	Section 3.5.4.16
C48h	STATSB/ STATSD	TXCOLLISIONFRAMES	Total number of collisions	Section 3.5.4.17
C4Ch	STATSB/ STATSD	TXSINGLECOLLFRAMES	Total number of single collision transmit frames	Section 3.5.4.18
C50h	STATSB/ STATSD	TXMULTCOLLFRAMES	Total number of multiple collision transmit frames	Section 3.5.4.19
C54h	STATSB/ STATSD	TXEXCESSIVECOLLISIONS	Total number of transmit frames aborted due to excessive collisions	Section 3.5.4.20
C58h	STATSB/ STATSD	TXLATECOLLISIONS	Total number of late collisions	Section 3.5.4.21
C5Ch	STATSB/ STATSD	TXUNDERRUN	Total number of transmit underrun errors	Section 3.5.4.22
C60h	STATSB/ STATSD	TXCARRIERSENSEERRORS	Total number of carrier sense errors	Section 3.5.4.23
C64h	STATSB/ STATSD	TXOCTETS	Total number of octets transmitted	Section 3.5.4.24
C68h	STATSB/ STATSD	64OCTETFRAMES	Total number of 64 octet frames transmitted	Section 3.5.4.25
C6Ch	STATSB/ STATSD	65T127OCTETFRAMES	Total number of 65-127 octet frames transmitted	Section 3.5.4.26
C70h	STATSB/ STATSD	128T255OCTETFRAMES	Total number of 128-255 octet frames transmitted	Section 3.5.4.27
C74h	STATSB/ STATSD	256T511OCTETFRAMES	Total number of 256-511 octet frames transmitted	Section 3.5.4.28
C78h	STATSB/ STATSD	512T1023OCTETFRAMES	Total number of 512-1023 octet frames transmitted	Section 3.5.4.29
C7Ch	STATSB/ STATSD	1024TUPOCTETFRAMES	Total number of 1023-1518 octet frames transmitted	Section 3.5.4.30
C80h	STATSB/ STATSD	NETOCTETS	Total number of net octets	Section 3.5.4.31
C84h	STATSB/ STATSD	RXSOFOVERRUNS	Total number of receive FIFO or DMA start of frame overruns	Section 3.5.4.32
C88h	STATSB/ STATSD	RXMOFOVERRUNS	Total number of receive FIFO or DMA middle of frame overruns	Section 3.5.4.33
C8Ch	STATSB/ STATSD	RXDMAOVERRUNS	Total number of receive DMA start of frame and middle of frame overruns	Section 3.5.4.34
C90h-CFCh	Reserved	Reserved	Reserved	Reserved
D00	GbE Switch	CPTS_IDVER	Identification and Version Register	Section 3.5.5.1
D04	GbE Switch	CPTS_CTL	Time Sync Control Register	Section 3.5.5.2
D08	GbE Switch	CPTS_RFTCLK_SEL	Reference Clock Select Register	Section 3.5.5.3
D0C	GbE Switch	CPTS_TS_PUSH	Time Stamp Event Push Register	Section 3.5.5.4
D10h-D1Ch	Reserved	Reserved	Reserved	Reserved
D20h	GbE Switch	CPTS_INTSTAT_RAW	Interrupt Status Raw Register	Section 3.5.5.5
D24h	GbE Switch	CPTS_INTSTAT_MASKED	Interrupt Status Masked Register	Section 3.5.5.6

Offset Address ⁽¹⁾	Module	Acronym	Register Name	Section	
D28h	GbE Switch	CPTS_INT_ENABLE	Interrupt Enable Register	Section 3.5.5.7	
D2Ch	Reserved	Reserved	Reserved	Reserved	
D30h	GbE Switch	CPTS_EVENT_POP	VENT_POP Event Interrupt Pop Register Se		
D34h	GbE Switch	CPTS_EVENT_LOW	Lower 32-bits of the event value	Section 3.5.5.9	
D38h	GbE Switch	CPTS_EVENT_HIGH	Upper 32-bits of the event value	Section 3.5.5.11	
D3Ch-DFCh	Reserved	Reserved	Reserved	Reserved	
E00h	ALE	ALE_IDVER	Address Lookup Engine ID/Version Register	Section 3.5.6.1	
E04h	Reserved	Reserved	Reserved	Reserved	
E08h	ALE	ALE_CONTROL	Address Lookup Engine Control Register	Section 3.5.6.2	
E0Ch	Reserved	Reserved	Reserved	Reserved	
E10h	ALE	ALE_PRESCALE	Address Lookup Engine Prescale Register	Section 3.5.6.3	
E14h	Reserved	Reserved	Reserved	Reserved	
E18h	ALE	ALE_UNKNOWN_VLAN	Address Lookup Engine Unknown VLAN Register	Section 3.5.6.4	
E1Ch	Reserved	Reserved	Reserved Reserved R		
E20h	ALE	ALE_TBLCTL	Address Lookup Engine Table Control	Section 3.5.6.5	
E24h-E30h	Reserved	Reserved	Reserved	Reserved	
E34h	ALE	ALE_TBLW2	Address Lookup Engine Table Word 2 Register	Section 3.5.6.6	
E38h	ALE	ALE_TBLW1	Address Lookup Engine Table Word 1 Register	Section 3.5.6.7	
E3Ch	ALE	ALE_TBLW0	Address Lookup Engine Table Word 0 Register	Section 3.5.6.8	
E40h	ALE	ALE_PORTCTL0	Address Lookup Engine Port 0 Control Register	Section 3.5.6.9	
E44h	ALE	ALE_PORTCTL1	Address Lookup Engine Port 1 Control Register	Section 3.5.6.10	
E48h	ALE	ALE_PORTCTL2	Address Lookup Engine Port 2 Control Register		
E4Ch	ALE	ALE_PORTCTL3	Address Lookup Engine Port 3 Control Register	Section 3.5.6.12	
E50h	ALE	ALE_PORTCTL4	Address Lookup Engine Port 4 Control Register	Section 3.5.6.13	
E54h-FFCh	Reserved	Reserved	Reserved	Reserved	

3.2 Gigabit Ethernet (GbE) Switch Subsystem Module

This section describes the registers for the gigabit Ethernet switch subsystem.

Table 3-5 lists the registers in the gigabit Ethernet switch subsystem and the corresponding offset address for each register.

Table 3-5. Ethernet Switch Subsystem Module

Offset Address ⁽¹⁾	Acronym	Register Name	Section
000h	ES_SS_IDVER	Ethernet switch subsystem Identification and Version Register	Section 3.2.1
004h-0FCh	Reserved	Reserved	Reserved

⁽¹⁾ The actual addresses of these registers are device specific. See your device-specific data manual to verify the register addresses.

Gigabit Ethernet (GbE) Switch Subsystem Module

3.2.1 Ethernet Switch Subsystem Identification and Version Register (ES_SS_IDVER)

The gigabit Ethernet switch subsystem Identification and Version Register is shown in Figure 3-1 and described in Table 3-6.

Figure 3-1. Ethernet Switch Subsystem Identification and Version Register (ES_SS_IDVER)

31						16
			ES_SS	_IDENT		
			R-48	ED9h		
15		11 10	8	7		0
	ES_SS_RTL_VER	ES_SS_	MAJ_VER		ES_SS_MINOR_VER	
	R-0h	F	-0h		R-8h	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-6. Ethernet Switch Subsystem Identification and Version Register (ES_SS_IDVER) Field Descriptions

Bits	Field	Description
31-16	ES_SS_IDENT	Ethernet switch subsystem identification value
15-11	ES_SS_RTL_VER	Ethernet switch subsystem RTL version value
10-8	ES_SS_MAJ_VER	Ethernet switch subsystem major version value
7-0	ES_SS_MINOR_VER	Ethernet switch subsystem minor version value

3.3 Serial Gigabit Media Independent Interface (SGMII) module

This section describes the registers available in the gigabit Ethernet switch subsystem SGMII module.

There are two SGMII modules in the gigabit Ethernet switch subsystem, each with its own set of identical registers. The register address offsets listed in Table 3-7 are relative to the SGMII module. See Table 3-1 for the address offset of each SGMII module,

A complete list of all of the registers in the GbE switch subsystem is provided in Table 3-3 (KeyStone I) and in Table 3-4 (KeyStone II). For information regarding the SerDes SGMII registers, see Section 3.6.

Table 3-7 lists the registers in the SGMII module and the corresponding address offset for each register.

Offset Address ⁽¹⁾	Acronym	Register Name	Section
00h	SGMII_IDVER	Identification and Version Register	Section 3.3.1
04h	SGMII_SOFT_RESET	Soft Reset Register	Section 3.3.2
08h-0Ch	Reserved	Reserved	Reserved
10h	SGMII_CONTROL	Control Register	Section 3.3.3
14h	SGMII_STATUS	Status Register (read only)	Section 3.3.4
18h	SGMII_MR_ADV_ABILITY	Advertised Ability Register	Section 3.3.5
1Ch	Reserved	Reserved	Reserved
20h	SGMII_MR_LP_ADV_ABILITY	Link Partner Advertised Ability (read only)	Section 3.3.6
24h-7Fh	Reserved	Reserved	Reserved

Table 3-7. SGMII Registers

⁽¹⁾ The actual addresses of these registers are device specific. See your device-specific data manual to verify the register addresses.

3.3.1 SGMII Identification and Version Register (SGMII_IDVER)

The SGMII Identification and Version Register is shown in Figure 3-2 and described in Table 3-8.

Figure 3-2. SGMII Identification and Version Register (SGMII_IDVER)

31					16
			SGMII_IDENT		
	R-4EC2h				
15		11 10	8 7		0
	SGMII_RTL_VER	SGMII_	_MAJ_VER	SGMII_MINOR_VER	
	R-0h	F	R-1h	R-1h	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-8. SGMII Identification and Version Register (SGMII_IDVER) Field Descriptions

Bits	Field	Description
31-16	SGMII_IDENT	SGMII identification value
15-11	SGMII_RTL_VER	SGMII RTL version value
10-8	SGMII_MAJOR_VER	SGMII major version value
7-0	SGMII_MINOR_VER	SGMII minor version value

Serial Gigabit Media Independent Interface (SGMII) module

www.ti.com

3.3.2 SGMII Software Reset Register (SGMI_SOFT_RESET)

The Software Reset Register is shown in Figure 3-3 and described in Table 3-9.

Figure 3-3. SGMII Software Reset Register (SGMII_SOFT_RESET)

31 2	1	0
Reserved	RT_SOFT _RESET	SOFT _RESET
R-0h	R/W-0h	R/W-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-9. SGMII Software Reset Register (SGMII_SOFT_RESET) Field Descriptions

Bits	Field	Description
31-2	Reserved	Reserved
1	RT_SOFT_RESET	Receive and Transmit Software Reset. Writing a 1 to this bit causes the CPSGMII transmit and receive logic to be in the reset condition. The reset condition is removed when a 0 is written to this bit. This bit is intended to be used when changing between loopback mode and normal mode of operation.
0	SOFT_RESET	Software Reset. Writing a 1 to this bit causes the CPSGMII logic to be reset. Software reset occurs immediately. This bit reads as a 0.

3.3.3 SGMII Control Register (SGMII_CONTROL)

The SGMII Control Register is shown in Figure 3-4 and described in Table 3-10.

Figure 3-4. SGMII Control Register (SGMII_CONTROL)

31	6 5	4	3	2 1	0
Reserved	MASTER	LOOP BACK	Reserved	MR_AN _RESTART	MR_AN _ENABLE
R-0h	R/W-0h	R/W-0h	R-0h	R/W-0h	R/W-0h

Legend: R = Read only; R/W = Read/Write; - *n* = value after reset

Table 3-10. SGMII Control Register (SGMII_CONTROL) Field Descriptions

Bits	Field	Description	
31-6	Reserved	Reserved	
5	MASTER	Master Mode.	
		• 0 = Slave Mode	
		• 1 = Master mode	
		Set to 1 for one side of a direct connection. When this bit is set, the control logic uses the Mr_Adv_Ability register to determine speed and duplexity instead of the Mr_Lp_Adv_Ability register. Master mode allows a CPSGMII direct connection with auto-negotiation or with a forced link.	
4	LOOPBACK	Loopback mode.	
		• 0 = Not in internal loopback mode	
		• 1 = Internal loopback mode. The transmit clock (TX_CLK) is used for transmit and receive.	
3-2	Reserved	Reserved	
1	MR_AN_RESTART	Auto-Negotiation Restart. Writing a 1 and then a 0 to this bit causes the auto-negotiation process to be restarted.	
0	MR_AN_ENABLE	Auto-Negotiation Enable. Writing a 1 to this bit enables the auto-negotiation process.	

Serial Gigabit Media Independent Interface (SGMII) module

3.3.4 SGMII Status Register (SGMI_STATUS)

The SGMII Status Register is shown in Figure 3-5 and described in Table 3-11.

Figure 3-5. SGMII Status Register (SGMII_STATUS)

31	5 4	3	2	1	0
Reserved	LOCK	Reserved	MR_AN _COMPLETE	AN _ERROR	LINK
R-0	R-0	R-0	R-0	R-0	R-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-11. SGMII Status Register (SGMII_STATUS) Field Descriptions

Bits	Field	Description
31-5	Reserved	Reserved
4	LOCK	Lock. This is the LOCK input pin. Indicates that the SerDes PLL is locked.
3	Reserved	Reserved
2	MR_AN_COMPLE	Auto-negotiation complete. This value is not valid until the LOCK status bit is asserted.
	TE	• 0 = Auto-negotiation is not complete.
		• 1 = Auto-negotiation is completed.
1	AN_ERROR	Auto-negotiation error. For SGMII mode, an auto-negotiation error occurs when halfduplex gigabit is commanded. This value is not valid until the LOCK status bit is asserted.
		• 0 = No auto-negotiation error.
		• 1 = Auto-negotiation error.
0	LINK	Link indicator. This value is not valid until the LOCK status bit is asserted.
		• 0 = Link is not up.
		• 1 = Link is up.

Serial Gigabit Media Independent Interface (SGMII) module

3.3.5 SGMII Advertised Ability Register (SGMII_MR_ADV_ABILITY)

The Advertised Ability Register is shown in Figure 3-6 and described in Table 3-12.

Figure 3-6. SGMII Advertised Ability Register (SGMII_MR_ADV_ABILITY)

31 16	15 0
Reserved	MR_ADV_ABILITY
R-0	R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-12. SGMII Advertised Ability Register (SGMII_MR_ADV_ABILITY) Field Descriptions

Bits	Field	Description
31-16	Reserved	Reserved
15-0	MR_ADV_ABILITY	Advertised Ability. This value corresponds to the tx_config_reg[15-0] register value in the SGMII specification.

The following tables show the MR_ADV_ABILITY and MR_LP_ADV_ABILITY register values for SGMII mode.

3.3.5.1 SGMII MODE

The advertised ability and link partner advertised ability settings for SGMII mode are shown in Table 3-13.

TX_CONFIG_REG[15-0]	MAC	PHY
15	Link. • 0 = Link is down • 1 = Link is up	0
14	auto-negotiation acknowledge	1
13	0	0
12	Duplex mode.0 = Half-duplex mode1 = Fullduplex mode	0
11-10	Speed. • 10 = gig • 01 = 100 mbit • 00 = 10 mbit	00
9-1	0	0
0	1	1

Table 3-13. Advertised Ability and Link Partner Advertised Ability for SGMII Mode

Serial Gigabit Media Independent Interface (SGMII) module

www.ti.com

3.3.6 SGMII Link Partner Advertised Ability Register (SGMII_MR_LP_ADV_ABILITY)

The Link Partner Advertised Ability Register is shown in Figure 3-7 and described in Table 3-14.

Figure 3-7. SGMII Link Partner Advertised Ability Register (SGMII_MR_LP_ADV_ABILITY)

31 16	15 0
Reserved	MR_LP_ADV_ABILITY
R-0	R-0

Legend: R = Read only; R/W = Read/Write; - *n* = value after reset

Table 3-14. SGMII Link Partner Advertised Ability Register (SGMII_MR_LP_ADV_ABILITY) Field Descriptions

Bits	Field	Description	
31-16	Reserved	Reserved	
15-0	MR_LP_ADV_ABILITY	Link Partner Advertised Ability. Readable when auto-negotiation is complete. This value corresponds to the TX_CFG[15-0] register value in the SGMII specification.	

3.4 Management Data Input/Output (MDIO) module

This section describes the registers available in the Ethernet switch subsystem MDIO module.

The register offset addresses listed in Table 3-15 are relative to the MDIO module offset address. See Table 3-1 for the offset address of the MDIO module. A complete list of all of the registers in the GbE switch subsystem is provided in Table 3-3 (KeyStone I) and in Table 3-4 (KeyStone II).

Table 3-15 lists the registers in the Ethernet switch subsystem and the corresponding address offset for each register.

Offset Address ⁽¹⁾	Acronym	Register Name	Section
00h	MDIO_VERSION	MDIO Version Register	Section 3.4.1
04h	MDIO_CONTROL	MDIO Control Register	Section 3.4.2
08h	MDIO_ALIVE	PHY Alive Status Register	Section 3.4.3
0Ch	MDIO_LINK	PHY Link Status Register	Section 3.4.4
10h	MDIO_LINKINTRAW	MDIO Link Status Change Interrupt (Unmaksed) Register	Section 3.4.5
14h	MDIO_LINKINTMASKED	MDIO Link Status Change Interrupt (Masked) Register	Section 3.4.6
18h–1Ch	Reserved	Reserved	Reserved
20h	MDIO_USERINTRAW	MDIO User Command Complete Interrupt (Unmasked) Register	Section 3.4.7
24h	MDIO_USERINTMASKED	MDIO User Command Complete Interrupt (Masked) Register	Section 3.4.8
28h	MDIO_USERINTMASKSET	MDIO User Interrupt Mask Set Register	Section 3.4.9
2Ch	MDIO_USERINTMASKCLEAR	MDIO User Interrupt Mask Clear Register	Section 3.4.10
30h–7Ch	Reserved	Reserved	Reserved
80h	MDIO_USERACCESS0	MDIO User Access Register 0	Section 3.4.11
84h	MDIO_USERPHYSEL0	MDIO User PHY Select Register 0	Section 3.4.12
88h	MDIO_USERACCESS1	MDIO User Access Register 1	Section 3.4.13
8Ch	MDIO_USERPHYSEL1	MDIO User PHY Select Register 1	Section 3.4.14
90h–FFh	Reserved	Reserved	Reserved

Table 3-15. MDIO Registers

⁽¹⁾ The actual addresses of these registers are device specific. See your device-specific data manual to verify the register addresses.

Management Data Input/Output (MDIO) module

3.4.1 MDIO Version Register (MDIO_VERSION)

The MDIO Version Register is shown in Figure 3-8 and described in Table 3-16.

Figure 3-8. MDIO Version Register (MDIO_VERSION)

31 16	15 8	7 0
MDIO_MODID	MDIO_REVMAJ	MDIO_REVMIN
R-7h	R-1h	R-4h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-16. MDIO Version Register (MDIO _VERSION) Field Descriptions

Bits	Field	Description
31-16	MDIO_MODID	Identifies the type of peripheral.
15-8	MDIO_REVMAJ	Management Interface module major revision value.
7-0	MDIO_REVMIN	Management Interface module minor revision value.

Management Data Input/Output (MDIO) module

3.4.2 MDIO Control Register (MDIO_CONTROL)

The MDIO Control Register is shown in Figure 3-9 and described in Table 3-17.

Figure 3-9. MDIO Control Register (MDIO_CONTROL) 30 20 31 29 28 24 23 21 19 18 17 16 IDLE ENABLE Rsvd HIGHEST_USER Reserved PREAMB FAULT FAULTEN Reserved CHAN S LE В R/W-0 R/W-0 R/W-0 R/W-0 R-0 R-1 R-0 R-1 R-0 15 0 CLKDIV

R/W-00FFh

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-17. MDIO Control Register (MDIO_CONTROL) Field Descriptions

Bits	Field	Description	
31	IDLE	MDIO state machine IDLE status bit.	
		• 0 = State machine is not in the idle state.	
		• 1 = State machine is in the idle state.	
30	ENABLE	Enable control. If the MDIO state machine is active at the time it is disabled, it will complete the current operation before halting and setting the idle bit.	
		• 0 =Disables the MDIO state machine.	
		• 1 = Enables the MDIO state machine.	
29	Reserved	Reserved	
28-24	HIGHEST_USER_CHAN	Highest user channel. This field specifies the highest user access channel that is available in the module and is currently set to 1. This implies that USERACCESS1 is the highest available user access channel.	
23-21	Reserved	Reserved	
20	PREAMBLE	Preamble disable.	
		• 0 = Standard MDIO preamble is used.	
		• 1 = Disables this device from sending MDIO frame preambles.	
19	FAULT	Fault indicator. This bit is set to 1 if the MDIO pins fail to read back what the device is driving onto them. This indicates a physical layer fault and the module state machine is reset. Writing a 1 to it clears this bit.	
		• 0 = No failure.	
		• 1 = Physical layer fault. The MDIO state machine is reset.	
18	FAULTENB	Fault detect enable. This bit has to be set to 1 to enable the physical layer fault detection.	
		• 0 = Disables the physical layer fault detection.	
		• 1 = Enables the physical layer fault detection.	
17-16	Reserved	Reserved	
15-0	CLKDIV	Clock Divider. This field specifies the division ratio between the VBUS peripheral clock and the frequency of MDCLK. MDCLK is disabled when CLKDIV is set to 0. The Peripheral clock frequency is driven by the DSERDES line rate divided by 10 on KeyStone I devices. The peripheral clock frequency is driven by NETCP clock on KeyStone II devices. MDCLK frequency = peripheral clock frequency/(CLKDIV+1).	

Management Data Input/Output (MDIO) module

3.4.3 PHY Alive Status Register (MDIO_ALIVE)

The PHY Alive Status Register is shown in Figure 3-10 and described in Table 3-18.

Figure 3-10. PHY Alive Status Register (MDIO_ALIVE)

31

ALIVE R/W-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-18. PHY Alive Status Register (MDIO_ALIVE) Field Descriptions

Bits	Field	Description
31-0	ALIVE	MDIO Alive. Each of the 32 bits of this register is set if the most recent access to the PHY with address corresponding to the register bit number was acknowledged by the PHY, the bit is reset if the PHY fails to acknowledge the access. Both the user and polling accesses to a PHY will cause the corresponding alive bit to be updated. The alive bits are meant only to be used to give an indication of the presence or not of a PHY with the corresponding address. Writing a 1 to any bit will clear it, writing a 0 has no effect.
		 0 = The PHY fails to acknowledge the access 1 = The most recent access to the PHY with an address corresponding to the register bit number was acknowledged by the PHY

www.ti.com

0

3.4.4 PHY Link Status Register (MDIO_LINK)

The PHY Link Status Register is shown in Figure 3-11 and described in Table 3-19.

Figure 3-11. PHY Link Status Register (MDIO_LINK)

31	0
	LINK
	R-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-19. PHY Link Status Register (MDIO_LINK) Field Descriptions

Bits	Field	Description	
31-0	LINK	MDIO Link state. This register is updated after a read of the Generic Status Register of a PHY. The bit is set if the PHY with the corresponding address has link and the PHY acknowledges the read transaction. The bit is reset if the PHY indicates it does not have link or fails to acknowledge the read transaction. Writes to the register have no effect.	
		In addition, the status of the two PHYs specified in the MDIO_USERPHYSEL registers can be determined using the MLINK input pins. This is determined by the LINKSEL bit in the MDIO_USERPHYSEL register.	
		 0 = The PHY indicates that it does not have a link or fails to acknowledge the read transaction 	
		 1 = The PHY with the corresponding address has a link and the PHY acknowledges the read transaction 	

SPRUGV9D-November 2010-Revised June 2013 Submit Documentation Feedback

Management Data Input/Output (MDIO) module

www.ti.com

3.4.5 MDIO Link Status Change Interrupt (Unmasked) Register (MDIO_LINKINTRAW)

The PHY Link Status Change Interrupt (unmasked) Register is shown in Figure 3-12 and described in Table 3-20.

Figure 3-12. MDIO Link Status Change Interrupt (Unmasked) Register (MDIO_LINKINTRAW)

31 2	1	0
Reserved	LINKINTRAW	1
R-0h	R/W-0h	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-20. MDIO Link Status Change Interrupt (Unmasked) Register (MDIO_LINKINTRAW) Field Descriptions

Bits	Field	Description	
31-2	Reserved	Reserved	
1-0	LINKINTRAW	Normal Mode Operation:	
		MDIO link change event, raw value. When asserted 1, a bit indicates that there was an MDIO link change event (i.e. change in the MDIO_LINK register) corresponding to the PHY address in the MDIO_USERPHYSEL register. LINKINTRAW[0] and LINKINTRAW[1] correspond to MDIO_USERPHYSEL0 and MDIO_USERPHYSEL1, respectively. Writing a 1 will clear the event and writing 0 has no effect.	

Management Data Input/Output (MDIO) module

3.4.6 MDIO Link Status Change Interrupt (Masked) Register (MDIO_LINKINTMASKED)

The MDIO Link Status Change Interrupt (masked) Register is shown in Figure 3-13 and described in Table 3-21.

Figure 3-13. MDIO Link Status Change Interrupt (Masked) Register (MDIO_LINKINTMASKED)

31	2	1 0
Reserved		LINKINTMASK ED
R-0h		R/W-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-21. MDIO Link Status Change Interrupt (Masked) Register (MDIO_LINKINTMASKED) Field Descriptions

Bits	Field	Description
31-2	Reserved	Reserved
1-0	LINKINTMASKED	Normal Mode Operation: MDIO link change interrupt, masked value. When asserted 1, a bit indicates that there was an MDIO link change event (i.e. change in the MDIO_LINK register) corresponding to the PHY address in the MDIO_USERPHYSEL register and the corresponding LINKINTENB bit was set. LINKINTMASKED[0] and LINKINTMASKED[1] correspond to MDIO_USERPHYSEL0 and MDIO_USERPHYSEL1, respectively. Writing a 1 will clear the interrupt and writing 0 has no effect.

Management Data Input/Output (MDIO) module

www.ti.com

3.4.7 MDIO User Command Complete Interrupt (Unmasked) Register (MDIO_USERINTRAW)

The MDIO User Command Complete Interrupt (unmasked) Register is shown in Figure 3-14 and described in Table 3-22.

Figure 3-14. MDIO User Command Complete Interrupt (Unmasked) Register (MDIO_USERINTRAW)

31	2	1 0
Reserved		USERINTRAW
R-0h		R/W-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-22. MDIO User Command Complete Interrupt (Unmasked) Register (MDIO_USERINTRAW) Field Descriptions

Bits	Field	Description
31-2	Reserved	Reserved
1-0	USERINTRAW	MDIO user command complete event bits. When asserted to 1, a bit indicates that the previously scheduled PHY read or write command using that particular MDIO_USERACCESS register has completed. Writing a 1 will clear the event. Writing 0 has no effect.

Management Data Input/Output (MDIO) module

3.4.8 MDIO User Command Complete Interrupt (Masked) Register (MDIO_USERINTMASKED)

The MDIO User Command Complete Interrupt (masked) Register is shown in Figure 3-15 and described in Table 3-23.

Figure 3-15. MDIO User Command Complete Interrupt (Masked) Register (MDIO_USERINTMASKED)

31		2	1 0
	Reserved		USERINT MASKED
	R-0h		R/W-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-23. MDIO User Command Complete Interrupt (Masked) Register (MDIO_USERINTMASKED) Field Descriptions

Bits	Field	Description
31-2	Reserved	Reserved
1-0	USERINTMASKED	Masked value of MDIO user command complete interrupt. When asserted to 1, a bit indicates that the previously scheduled PHY read or write command using that particular MDIO_USERACCESS register has completed and the corresponding USERINTMASKSET bit is set to 1. Writing a 1 will clear the interrupt. Writing a 0 has no effect.

Management Data Input/Output (MDIO) module

www.ti.com

3.4.9 MDIO User Command Complete Interrupt Mask Set Register (MDIO_USERINTMASKSET)

The MDIO user command complete interrupt mask set register is shown in Figure 3-16 and described in Table 3-24.

Figure 3-16. MDIO User Command Complete Interrupt Mask Set Register (MDIO_USERINTMASKSET)

31	2 1	0
Reserved		USERINT MASKSET
R-0h		R/W-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-24. MDIO User Command Complete Interrupt Mask Set Register (MDIO_USERINTMASKSET) Field Descriptions

Bits	Field	Description
31-2	Reserved	Reserved
1-0	USERINTMASKSET	MDIO user interrupt mask set for USERINTMASKED[1-0], respectively. Setting a bit to 1 will enable MDIO user command complete interrupts for that particular MDIO_USERACCESS register. MDIO user interrupt for a particular MDIO_USERACCESS register is disabled if the corresponding bit is 0. Writing a 0 to this register has no effect.

3.4.10 MDIO User Command Complete Interrupt Mask Clear Register (MDIO_USERINTMASKCLEAR)

The MDIO User Command Complete Interrupt Mask Clear Register is shown in Figure 3-17 and described in Table 3-25.

Figure 3-17. MDIO User Command Complete Interrupt Mask Clear Register (MDIO_USERINTMASKCLEAR)

31	2 1	0
Reserved	USERINT MASKCLEAF	2
R-0h	R/W-0h	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-25. MDIO User Command Complete Interrupt Mask Clear Register (MDIO_USERINTMASKCLEAR) Field Descriptions

Bits	Field	Description
31-2	Reserved	Reserved
1-0	USERINTMASKCLEAR	MDIO user command complete interrupt mask clear for USERINTMASKED[1-0], respectively. Setting a bit to 1 will disable further user command complete interrupts for that particular MDIO_USERACCESS register. Writing a 0 to this register has no effect.

Management Data Input/Output (MDIO) module

Texas Instruments

www.ti.com

3.4.11 MDIO User Access Register 0 (MDIO_USERACCESS0)

The MDIO User Access Register is shown in Figure 3-18 and described in Table 3-26.

Figure 3-18. MDIO User Access Register 0 (MDIO_USERACCESS0)

				-	•	-	
31	30	29	28	26 25	21 20		16
GO	WRIT E	ACK	Reserved	REGADR		PHYADR	
R/W- 0h	R/W- 0h	R/W- 0h	R-0h	R/W-0h		R/W-0h	
15							0
				DATA			
				R/W-0h			

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-26. MDIO User Access Register 0 (MDIO_USERACCESS0) Field Descriptions

Bits	Field	Description	
31	GO	Go bit. Writing a 1 to this bit causes the MDIO state machine to perform an MDIO access when it is convenient for it to do sothis is not an instantaneous process. Writing a 0 to this bit has no effect. This bit can be written only if the MDIO state machine is enabled. This bit will self clear when the requested access has been completed. Any writes to the MDIO_USERACCESS0 register are blocked when the GO bit is 1.	
30	WRITE	/rite enable bit. Setting this bit to 1 causes the MDIO transaction to be a register write, otherwise it is a gister read.	
29	ACK	Acknowledge bit. This bit is set if the PHY acknowledged the read transaction.	
28-26	Reserved	Reserved	
25-21	REGADR	Register address bits. This field specifies the PHY register to be accessed for this transaction .	
20-16	PHYADR	PHY address bits. This field specifies the PHY to be accessed for this transaction.	
15-0	DATA	User data bits. These bits specify the data value read from or to be written to the specified PHY register.	

3.4.12 MDIO User PHY Select Register 0 (MDIO_USERPHYSEL0)

The MDIO User PHY Select Register 0 is shown in Figure 3-19 and described in Table 3-27.

Figure 3-19. MDIO User PHY Select Register 0 (MDIO_USERPHYSEL0)

31 8	7	6	5	4 0
Reserved	LINKSEL	LINKINT ENB	Reserved	PHYADR_MON
R-0h	R/W-0h	R/W-0h	R-0h	R/W-0h

Legend: R = Read only; R/W = Read/Write; - *n* = value after reset

Table 3-27. MDIO User PHY Select Register 0 (MDIO_USERPHYSEL0) Field Descriptions

Bits	Field	Description
31-8	Reserved	Reserved
7	LINKSEL	Link status determination select bit. Default value is 0, which implies that the link status is determined by the MDIO state machine. This is the only option supported on this device.
6	LINKINTENB	Link change interrupt enable. Set to 1 to enable link change status interrupts for PHY address specified in PHYADR_MON. Link change interrupts are disabled if this bit is set to 0.
		• 0 = Link change interrupts are disabled.
		 1 = Link change status interrupts for PHY address specified in PHYADR_MON bits are enabled.
5	Reserved	Reserved
4-0	PHYADR_MON	PHY address whose link status is to be monitored.

Texas Instruments

Management Data Input/Output (MDIO) module

www.ti.com

3.4.13 MDIO User Access Register 1 (MDIO_USERACCESS1)

The MDIO User Access Register 1 is shown in Figure 3-20 and described in Table 3-28.

Figure 3-20. MDIO User Access Register 1 (MDIO_USERACCESS1)

31	30	29	28	26 25		21	20	16
GO	WRIT E	ACK	Reserved		REGADR		PHYADR	
R/W- 0h	R/W- 0h	R/W- 0h	R-0h		R/W-0h		R/W-0h	
15								0
					DATA			
					R/W-0h			

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-28. MDIO User Access Register 1 (MDIO_USERACCESS1) Field Descriptions

Bits	Field	Description
31	GO	Go bit. Writing a 1 to this bit causes the MDIO state machine to perform an MDIO access when it is convenient for it to do sothis is not an instantaneous process. Writing a 0 to this bit has no effect. This bit can be written only if the MDIO state machine is enabled. This bit will self clear when the requested access has been completed. Any writes to the USERACCESS1 register are blocked when the GO bit is 1.
30	WRITE	Write enable bit. Setting this bit to 1 causes the MDIO transaction to be a register write, otherwise it is a register read.
29	ACK	Acknowledge bit. This bit is set if the PHY acknowledged the read transaction.
28-26	Reserved	Reserved
25-21	REGADR	Register address bits. This field specifies the PHY register to be accessed for this transaction .
20-16	PHYADR	PHY address bits. This field specifies the PHY to be accessed for this transaction.
15-0	DATA	User data bits. These bits specify the data value read from or to be written to the specified PHY register.

3.4.14 MDIO User PHY Select Register 1 (MDIO_USERPHYSEL1)

The MDIO User PHY Select Register 1 is shown in Figure 3-21 and described in Table 3-29.

Figure 3-21. MDIO User PHY Select Register 1 (MDIO_USERPHYSEL1)

31	8 7	6	5	4 0
Reserved	LINKSEL	LINKINT ENB	Reserved	PHYADR_MON
R-0h	R/W-0h	R/W-0h	R-0h	R/W-0h
R-0h		R/W-0h	R-0h	R/W-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-29. MDIO User PHY Select Register 1 (MDIO_USERPHYSEL1) Field Descriptions

Bits	Field	Description				
31-8	Reserved	Reserved				
7	LINKSEL	Link status determination select bit. Default value is 0, which implies that the link status is determined by the MDIO state machine. This is the only option supported on this device.				
6	LINKINTENB	Link change interrupt enable. Set to 1 to enable link change status interrupts for PHY address specified in PHYADR_MON. Link change interrupts are disabled if this bit is set to 0.				
		• 0 = Link change interrupts are disabled.				
		 1 = Link change status interrupts for PHY address specified in PHYADR_MON bits are enabled. 				
5	Reserved	Reserved				
4-0	PHYADR_MON	PHY address whose link status is to be monitored.				

Ethernet Switch Module

. . .

3.5 Ethernet Switch Module

This section describes the registers available in the Ethernet switch module.

The submodule offset addresses listed in Table 3-30 are relative to the Ethernet switch module offset address. See Table 3-1 for the offset address of the Ethernet switch module. A complete list of all of the registers in the GbE switch subsystem is provided in Table 3-3 (KeyStone I) and in Table 3-4 (KeyStone II).

Table 3-30 shows the submodules contained in the Ethernet switch module.

Table 3-30. KeyStone I Ethernet Switch Submodules

Offset Address ⁽¹⁾	Acronym	Submodule Name	Section
000h	GbE Switch	Ethernet switch submodule	Section 3.5.1
100h	EMAC1	Port 1 Ethernet MAC submodule	Section 3.5.3
140h	EMAC2	Port 2 Ethernet MAC submodule	Section 3.5.3
300h	STATSA	Ethernet statistics A submodule	Section 3.5.4
400h	STATSB	Ethernet statistics B submodule	Section 3.5.4
500h	CPTS	Time Sync submodule	Section 3.5.5
600h	ALE	Address lookup engine submodule	Section 3.5.6

⁽¹⁾ The actual addresses of these registers are device specific. See your device-specific data manual to verify the register addresses.

Offset Address ⁽¹⁾	Acronym	Submodule Name	Section
000h	GbE Switch	Ethernet switch submodule	Section 3.5.1
100h	EMAC1	Port 1 Ethernet MAC submodule	Section 3.5.3
140h	EMAC2	Port 2 Ethernet MAC submodule	Section 3.5.3
180h	EMAC3	Port 3 Ethernet MAC submodule	Section 3.5.3
1C0h	EMAC4	Port 4 Ethernet MAC submodule	Section 3.5.3
300h	STATSA / STATSC	Ethernet statistics A and statistics C submodule (See note in Section 2.3.4)	Section 3.5.4
400h	STATSB / STATSD	Ethernet statistics B and statistics D submodule (See note in Section 2.3.4)	Section 3.5.4
500h	CPTS	Time Sync submodule	Section 3.5.5
600h	ALE	Address lookup engine submodule	Section 3.5.6

Table 3-31. KeyStone II Ethernet Switch Submodules

⁽¹⁾ The actual addresses of these registers are device specific. See your device-specific data manual to verify the register addresses.

3.5.1 Gigabit Ethernet (GbE) Switch Submodule

This section describes the registers available in the gigabit Ethernet switch submodule.

The register offset addresses listed in Table 3-32 are relative to the Ethernet switch module offset address for KeyStone I, and followed by Table 3-33 for KeyStone II. See Table 3-1 for the offset address of the Ethernet switch module. A complete list of all of the registers in the GbE switch subsystem is provided in Table 3-3 (KeyStone I) and in Table 3-4 (KeyStone II).

Offset Address ⁽¹⁾	Acronym	Description	Section
000h	CPSW_IDVER	GbE switch identification and version register	Section 3.5.1.1
004h	CPSW_CONTROL	GbE switch Control Register	Section 3.5.1.2
008h	CPSW_EMCONTROL	GbE switch Emulation Control Register	Section 3.5.1.3
00Ch	CPSW_STAT_PORT_EN	GbE switch Statistics Port Enable Register	Section 3.5.1.4
010h	CPSW_PTYPE	GbE switch Transmit Priority Type Register	Section 3.5.1.5
014h-018h	Reserved	Reserved	Reserved
01Ch	CPSW_GAP_THRESH	Transmit FIFO Short Gap Threshold Register	Section 3.5.1.6
020h	CPSW_TX_START_WDS	Transmit FIFO Start Words Register	Section 3.5.1.7
024h	CPSW_FLOW_CONTROL	Flow Control Register	Section 3.5.1.8
028h-030h	Reserved	Reserved	Reserved
034h	P0_CPPI_SRC_ID	Port 0 Source ID Register	Section 3.5.1.9
038h	P0_PORT_VLAN	Port 0 VLAN Register	Section 3.5.1.10
03Ch	P0_RX_PRI_MAP	Port 0 Receive Packet Priority to Header Priority Mapping Register	Section 3.5.1.11
040h	P0_RX_MAXLEN	Port 0 Receive Frame Max Length Register	Section 3.5.1.12
044h-05Ch	Reserved	Reserved	Reserved
060h	P1_MAX_BLKS	Port 1 Maximum FIFO blocks Register	Section 3.5.1.13
064h	P1_BLK_CNT	Port 1 FIFO Block Usage Count	Section 3.5.1.14
068h	P1_PORT_VLAN	Port 1 VLAN Register	Section 3.5.1.15
06Ch	P1_TX_PRI_MAP	Port 1 TX Header Priority to switch Queue Mapping Reg	Section 3.5.1.16
070h	MAC1_SA_LO	MAC1 Source Address Low Register	Section 3.5.1.17
074h	MAC1_SA_HI	MAC1 Source Address High Register	Section 3.5.1.18
078h	P1_TS_CTL	Port 1 Time Sync Control Register	Section 3.5.1.19
07Ch	P1_TS_SEQ_LTYPE	Port 1 Time Sync LTYPE (and SEQ_ID_OFFSET)	Section 3.5.1.20
080h	P1_TS_VLAN	Port 1 Time Sync VLAN2 and VLAN2 Register	Section 3.5.1.21
084h-08Ch	Reserved	Reserved	Reserved
090h	P2_MAX_BLKS	Port 2 Maximum FIFO blocks Register	Section 3.5.1.24
094h	P2_BLK_CNT	Port 2 FIFO Block Usage Count	Section 3.5.1.25
098h	P2_PORT_VLAN	Port 2 VLAN Register	Section 3.5.1.26
09Ch	P2_TX_PRI_MAP	Port 2 TX Header Priority to switch Queue Mapping Register	Section 3.5.1.27
0A0h	MAC2_SA_LO	MAC2 Source Address Low Register	Section 3.5.1.28
0A4h	MAC2_SA_HI	MAC2 Source Address High Register	Section 3.5.1.29
0A8h	P2_TS_CTL	Port 2 Time Sync Control Register	Section 3.5.1.30
0ACh	P2_TS_SEQ_LTYPE	Port 2 Time Sync LTYPE (and SEQ_ID_OFFSET)	Section 3.5.1.31
0B0h	P2_TS_VLAN	Port 2 Time Sync VLAN2 and VLAN2 Register	Section 3.5.1.32
0B4h-0FCh	Reserved	Reserved	Reserved

Table 3-32. KeyStone I Ethernet Switch Registers

⁽¹⁾ The actual addresses of these registers are device specific. See your device-specific data manual to verify the register addresses.

Table 3-33. KeyStone II Ethernet Switch Registers

Offset Address ⁽¹⁾	Acronym	Description	Section
000h	CPSW_IDVER	GbE Switch Identification And Version Register	Section 3.5.1.1
004h	CPSW_CONTROL	GbE Switch Control Register	Section 3.5.1.2
008h	CPSW_EMCONTROL	GbE Switch Emulation Control Register	Section 3.5.1.3
00Ch	CPSW_STAT_PORT_EN	GbE Switch Statistics Port Enable Register	Section 3.5.1.4
010h	CPSW_PTYPE	GbE Switch Transmit Priority Type Register	Section 3.5.1.5
014h-018h	Reserved	Reserved	Reserved
01Ch	CPSW_GAP_THRESH	Transmit FIFO Short Gap Threshold Register	Section 3.5.1.6
020h	CPSW_TX_START_WDS	Transmit FIFO Start Words Register	Section 3.5.1.7
024h	CPSW_FLOW_CONTROL	Flow Control Register	Section 3.5.1.8
028h-030h	Reserved	Reserved	Reserved
034h	P0_CPPI_SRC_ID	Port 0 Source ID Register	Section 3.5.1.9
038h	P0_PORT_VLAN	Port 0 VLAN Register	Section 3.5.1.10
03Ch	P0_RX_PRI_MAP	Port 0 Receive Packet Priority to Header Priority Mapping Register	Section 3.5.1.11
040h	P0_RX_MAXLEN	Port 0 Receive Frame Max Length Register	Section 3.5.1.12
044h-05Ch	Reserved	Reserved	Reserved
060h	P1_MAX_BLKS	Port 1 Maximum FIFO blocks Register	Section 3.5.1.13
064h	P1_BLK_CNT	Port 1 FIFO Block Usage Count	Section 3.5.1.14
068h	P1_PORT_VLAN	Port 1 VLAN Register	Section 3.5.1.15
06Ch	P1_TX_PRI_MAP	Port 1 TX Header Priority to Switch Queue Mapping Reg	Section 3.5.1.16
070h	MAC1_SA_LO	MAC1 Source Address Low Register	Section 3.5.1.17
074h	MAC1_SA_HI	MAC1 Source Address High Register	Section 3.5.1.18
078h	P1_TS_CTL	Port 1 Time Sync Control Register	Section 3.5.1.19
07Ch	P1_TS_SEQ_LTYPE	Port 1 Time Sync LTYPE (and SEQ_ID_OFFSET)	Section 3.5.1.20
080h	P1_TS_VLAN	Port 1 Time Sync VLAN2 and VLAN2 Register	Section 3.5.1.21
084h	P1_TS_CTL_LTYPE2	Port 1 Time Sync Control and LTYPE2 Register	Section 3.5.1.22
088h	P1_TS_CTL2	Port 1 Time Sync Control 2 Register	Section 3.5.1.21
08Ch	Reserved	Reserved	Reserved
090h	P2_MAX_BLKS	Port 2 Maximum FIFO blocks Register	Section 3.5.1.24
094h	P2_BLK_CNT	Port 2 FIFO Block Usage Count	Section 3.5.1.25
098h	P2_PORT_VLAN	Port 2 VLAN Register	Section 3.5.1.26
09Ch	P2_TX_PRI_MAP	Port 2 TX Header Priority to switch Queue Mapping Register	Section 3.5.1.27
0A0h	MAC2_SA_LO	MAC2 Source Address Low Register	Section 3.5.1.28
0A4h	MAC2_SA_HI	MAC2 Source Address High Register	Section 3.5.1.29
0A8h	P2_TS_CTL	Port 2 Time Sync Control Register	Section 3.5.1.30
0ACh	P2_TS_SEQ_LTYPE	Port 2 Time Sync LTYPE (and SEQ_ID_OFFSET)	
0B0h	P2_TS_VLAN	Port 2 Time Sync VLAN2 and VLAN2 Register	Section 3.5.1.32
0B4h	P2_TS_CTL_LTYPE2	Port 2 Time Sync Control and LTYPE2 Register	Section 3.5.1.34
0B8h	P2_TS_CTL2	Port 2 Time Sync Control 2 Register	Section 3.5.1.33
0BCh-19Ch	Reserved	Reserved	Reserved
200h	P3_MAX_BLKS	Port 3 Maximum FIFO Blocks Register	Section 3.5.1.24
204h	P3_BLK_CNT	Port 3 FIFO Block Usage Count (Read Only)	Section 3.5.1.25
208h	P3_PORT_VLAN	Port 3 VLAN Register	Section 3.5.1.26
20Ch	P3_TX_PRI_MAP	Port 3 TX Header Priority to switch Queue Mapping Register	Section 3.5.1.27
210h	MAC3_SA_LO	MAC 3 Source Address Low Register	Section 3.5.1.28
214h	MAC3_SA _HI	MAC 3 Source Address High Register	Section 3.5.1.29

⁽¹⁾ The actual addresses of these registers are device specific. See your device-specific data manual to verify the register addresses.

Offset Address ⁽¹⁾	Acronym	Description	Section
218h	P3_TS_CTL	Port 3 Time Sync Control Register	Section 3.5.1.30
21Ch	P3_TS_SEQ_LTYPE	Port 3 Time Sync LTYPE (and SEQ_ID_OFFSET)	Section 3.5.2.8
220h	P3_TS_VLAN_LTYPE	Port 3 Time Sync VLAN2 and VLAN2 Register	Section 3.5.1.32
224h	P3_TS_CTL_LTYPE2	Port 3 Time Sync LTYPE 2 Register	Section 3.5.2.10
228h	PS_TS_CTL2	Port 3 Time Sync Control 2 Register	Section 3.5.2.11
22Ch	Reserved	Reserved	Reserved
230h	P4_MAX_BLKS	Port 4 Maximum FIFO Blocks Register	Section 3.5.1.24
234h	P4_BLK_CNT	Port 4 FIFO Block Usage Count (Read Only)	Section 3.5.1.25
238h	P4_PORT_VLAN	Port 4 VLAN Register	Section 3.5.1.26
23Ch	P4_TX_PRI_MAP	Port 4Tx Header Priority to switch Queue Mapping Register	Section 3.5.1.27
240h	MAC4_SA_LO	MAC 4 Source Address Low Register	Section 3.5.1.28
244h	MAC4_SA _HI	MAC 4 Source Address High Register	Section 3.5.1.29
248h	P4_TS_CTL	Port 4 Time Sync Control Register	Section 3.5.1.30
24Ch	P4_TS_SEQ_LTYPE	Port 4 Time Sync LTYPE (and SEQ_ID_OFFSET)	Section 3.5.2.19
250h	P4_TS_VLAN_LTYPE	Port 4 Time Sync VLAN2 and VLAN2 Register	Section 3.5.1.32
254h	P4_TS_CTL_LTYPE2	Port 4 Time Sync LTYPE 2 Register	Section 3.5.2.21
258h	P4_TS_CTL2	Port 4 Time Sync Control 2 Register	Section 3.5.2.22
25Ch-2FCh	Reserved	Reserved	Reserved

Table 3-33. KeyStone II Ethernet Switch Registers (continued)

Ethernet Switch Module

3.5.1.1 GbE Switch Identification and Version Register (CPSW_IDVER)

The GbE Switch Identification and Version Register is shown in Figure 3-22 and described in Table 3-34.

Figure 3-22. GbE Switch Identification and Version Register (CPSW_IDVER)

31					16
			CPSW_I	DVER	
			R-4ED	801h	
15		11 10	8	7	0
	CPSW_RTL_VER	CPSW	_MAJ_VER	CPSW_MINOR_VER	
	R-0h	I	R-1h	R-1h	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-34. GbE Switch Identification and Version Register (CPSW_IDVER) Field Descriptions

Bits	Field	Description
31-16	CPSW_IDENT	Identification Value
15-11	CPSW_RTL_VER	RTL Version Value
10-8	CPSW_MAJ_VER	Major Version Value
7-0	CPSW_MINOR_VERS	CPSW_3GF Minor Version Value

3.5.1.2 GbE Switch Control Register (CPSW_CONTROL)

The GbE Switch Control Register is shown in Figure 3-23 and described in Table 3-35.

Figure 3-23. GbE Switch Control Register (CPSW_CONTROL)

31	9		8		7	6
Reserved		P4_F	PASS_PRI_TAG	P3_PASS	_PRI_TAG	Reserved
R-0			R/W-0	RA	N-0	R-0
5	4		3	2	1	0
P2_PASS_PRI_TAG	P1_PASS_PRI_T	AG I	P0_PASS_PRI_TAG	P0_ENABLE	VLAN_AWARE	FIFO_LB
R/W-0 R/W-0			R/W-0	R/W-0	R/W-0	R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-35. GbE Switch Control Register (CPSW_CONTROL) Field Descriptions for KeyStone I and KeyStone II

Bits	Field	Description
31-9	Reserved	Reserved
8	P4_PASS_PRI_TAG	Port 4 Pass Priority Tagged (For 5 Port CPSW Only in KeyStone II Devices).
		 0 = Priority tagged packets have the zero VID replaced with the input port P2_PORT_VLAN[11-0] on ingress.
		 1 = Priority tagged packets are processed unchanged.
7	P3_PASS_PRI_TAG	Port 3 Pass Priority Tagged (For 5 Port CPSW Only in KeyStone II Devices).
		 0 = Priority tagged packets have the zero VID replaced with the input port P2_PORT_VLAN[11-0] on ingress.
		• 1 = Priority tagged packets are processed unchanged.
6	Reserved	Reserved
5	P2_PASS_PRI_TAG	Port 2 Pass Priority Tagged (For 5 Port CPSW Only in KeyStone II Devices).
		 0 = Priority tagged packets have the zero VID replaced with the input port P2_PORT_VLAN[11-0] on ingress.
		 1 = Priority tagged packets are processed unchanged.
4	P1_PASS_PRI_TAG	Port 1 Pass Priority Tagged.
		 0 = Priority tagged packets have the zero VID replaced with the input port P1_PORT_VLAN[11-0] on ingress.
		 1 = Priority tagged packets are processed unchanged.
3	P0_PASS_PRI_TAG	Port 0 Pass Priority Tagged.
		 0 = Priority tagged packets have the zero VID replaced with the input port P0_PORT_VLAN[11-0] on ingress.
		 1 = Priority tagged packets are processed unchanged.
2	P0_ENABLE	Port 0 Enable.
		• 0 = Port 0 packet operations are disabled.
		• 1 = Port 0 packet operations are enabled.
1	VLAN_AWARE	VLAN Aware Mode.
		• 0 = GbE switch is in the VLAN unaware mode.
		 1 = CPSW_3GF is in the VLAN aware mode.
0	FIFO_LB	FIFO Loopback Mode.
		• 0 = Loopback is disabled
		 1 = FIFO Loopback mode enabled. Each packet received is turned around and sent out on the same port's transmit path. RXSOFOVERRUN will increment for each loopback mode packet.

Ethernet Switch Module

3.5.1.3 Emulation Control Register (EM_CONTROL)

The Emulation Control Register is shown in Figure 3-24 and described in Table 3-36.

Figure 3-24. Emulation Control Register (EM_CONTROL)

31	2	1	0
Reserved		SOFT	FREE
R-0		R/W-0	R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-36. Emulation Control Register (EM_CONTROL) Field Descriptions

Bits	Field	Description
31-2	Reserved	Reserved
1	SOFT	Emulation soft bit
0	FREE	Emulation free bit

3.5.1.4 Statistics Port Enable (STAT_PORT_EN)

The KeyStone I Statistics Port Enable Register is shown below.

Figure 3-25. KeyStone I Statistics Port Enable (STAT_PORT_EN)

31 4	3	2	1	0
Reserved	P2_STAT_EN	P1_STAT_EN	P0B_STAT_EN	P0A_STAT_EN
R-0	R/W-0	R/W-0	R/W-0	R/W-0

Legend: R = Read only; R/W = Read/Write; - *n* = value after reset

Table 3-37. KeyStone I Statistics Port Enable (STAT_PORT_EN) Field Descriptions

Bits	Field	Description
31-4	Reserved	Reserved
3	P2_STAT_EN	Port 2 (GMII 2 and Port 2 FIFO) statistics enable.
		• 0= Port 2 statistics are not enabled.
		• 1 = Port 2 statistics are enabled.
2	P1_STAT_EN	Port 2 (GMII 2 and Port 2 FIFO) statistics enable.
		• 0 = Port 2 statistics are not enabled.
		• 1 = Port 2 statistics are enabled.
1	P0B_STAT_EN	Port 0 (Port 0) statistics enable.
		• 0 = Port 0 statistics are not enabled.
		• 1 = Port 0 TX from Port 2 statistics are enabled.
0	P0A_STAT_EN	Port 0 (Port 0) statistics enable.
		• 0 = Port 0 statistics are not enabled.
		• 1 = Port 0 TX from Port 1 and P0 RX statistics are enabled.

For KeyStone II, additional fields accommodate the additional Ethernet ports and respective statistics.

Figure 3-26. KeyStone II Statistics Port Enable (STAT_PORT_EN)

31	29	28	27					8
Reser	ved	STAT_SEL			Rese	erved		
R-0)	R/W-0			R	-0		
7		6	5	4	3	2	1	0
P4_STA	T_EN	P3_STAT_EN	P0D_STAT_EN	P0C_STAT_EN	P2_STAT_EN	P1_STAT_EN	P0B_STAT_EN	P0A_STAT_EN
R/W	-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
Legend: F	Legend: R = Read only; R/W = Read/Write; - n = value after reset							

Table 3-38. KeyStone II Statistics Port Enable (STAT_PORT_EN) Field Descriptions

Field	Description
Reserved	Reserved
STAT_SEL	Statistics Modules Page Mapping Select
	0= STATSA and STATSB are visible in the memory
	1= STATSC and STATSD are visible in the memory
Reserved	Reserved
P4_STAT_EN	Port 4 (SGMII 4 and PORT 4 FIFO) statistics enable (STATSD)
	0= Port 4 statistics are not enabled
	• 1= Port 4 statistics are enabled
P3_STAT_EN	Port 3 (SGMII and Port 3 FIFO) statistics enable (STATSD)
	0=Port 3 statistics are not enabled
	1= Port 3 statistics are enabled
P0D_STAT_EN	Port 0 Statistics ENable (STATSC)
	0= Port 0 statistics are not enabled
	1=Port 0 TX from Port 4 statistics are enabled
	Reserved STAT_SEL Reserved P4_STAT_EN P3_STAT_EN

Table 3-38. KeyStone II Statistics Port Enable (STAT_PORT_EN) Field Descriptions (continued)

Bits	Field	Description
4	P0C_STAT_EN	Port Statistics Enable (STATSC)
		0=Port 0 Statistics not enabled
		1= Port 0 TX from Port 3statistics are enabled
3	P2_STAT_EN	Port 2 (GMII 2 and Port 2 FIFO) Statistics Enable (STATSB).
		• 0= Port 2 statistics are not enabled.
		• 1 = Port 2 statistics are enabled.
2	P1_STAT_EN	Port 2 (GMII 1and Port 1 FIFO) Statistics Enable (STATSB).
		• 0 = Port 1statistics are not enabled.
		• 1 = Port 1statistics are enabled.
1	P0B_STAT_EN	Port 0 (Port 0) Statistics Enable (STATSA).
		• 0 =Port 0 statistics are not enabled.
		• 1 =Port 0 TX from Port 2 statistics are enabled.
0	P0A_STAT_EN	Port 0 (Port 0) Statistics Enable (STATSA).
		• 0 =Port 0 statistics are not enabled.
		• 1 =Port 0 TX from Port 1 and P0 RX statistics are enabled.

The Priority Type Register is shown below.

	Figure 3-27. KeyStone I Priority Type Register (PTYPE)							
31	11	10	9	8	7	5	4	0
Reserved		P2_PTYPE _ESC	P1_PTYPE _ESC	P0_PTYPE _ESC		Reserved	ESC_PRI_LD_VAL	
R-0		R/W-0	R/W-0	R/W-0		R/W-0	R/W-0	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-39. KeyStone I Priority Type Register (PTYPE) Field Descriptions

Bits	Field	Description
31-11	Reserved	Reserved
10	P2_PTYPE_ESC	Port 2 Priority Type Escalate.
		• 0 = Port 2 priority type fixed.
		• 1 = Port 2 priority type escalate.
9	P1_PTYPE_ESC	Port 1 Priority Type Escalate.
		• 0 = Port 1 priority type fixed.
		• 1 = Port 1 priority type escalate.
8	P0_PTYPE_ESC	Port 0 Priority Type Escalate.
		• 0 = Port 0 priority type fixed.
		• 1 = Port 0 priority type escalate.
7-5	Reserved	Reserved
4-0	ESC_PRI_LD_VAL	Escalate Priority Load Value. When a port is in escalate priority, this is the number of higher priority packets sent before the next lower priority is allowed to send a packet. Escalate priority allows lower priority packets to be sent at a fixed rate relative to the next higher priority.

Figure 3-28. KeyStone II Priority Type Register (PTYPE)

			-			• •	
31	13	12	11	10	9	8	540
R	leserved	P4_PTYPE _ESC	P3_PTYPE _ESC	P2_PTYPE _ESC	P1_PTYPE_ESC	Reserved	ESC_PRI_LD_VAL
	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	المعام ما						

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-40. KeyStone II Priority Type Register (PTYPE) Field Descriptions

Bits	Field	Description
31-13	Reserved	Reserved
12	P4_PTYPE_ESC	Port 4 Priority Type Escalate.
		• 0 = Port 4 priority type fixed.
		• 1 = Port 4 priority type escalate.
11	P3_PTYPE_ESC	Port 3 Priority Type Escalate.
		• 0 = Port 3 priority type fixed.
		• 1 = Port 3 priority type escalate.
10	P2_PTYPE_ESC	Port 2 Priority Type Escalate.
		• 0 = Port 2 priority type fixed.
		• 1 = Port 2 priority type escalate.
9	P1_PTYPE_ESC	Port 1 Priority Type Escalate.
		• 0 = Port 1 priority type fixed.
		• 1 = Port 1 priority type escalate.
8-5	Reserved	Reserved
4-0	ESC_PRI_LD_VAL	Escalate Priority Load Value. When a port is in escalate priority, this is the number of higher priority packets sent before the next lower priority is allowed to send a packet. Escalate priority allows lower priority packets to be sent at a fixed rate relative to the next higher priority.

121

3.5.1.6 KeyStone I and KeyStone II MAC Short Gap Threshold Register (GAP_THRESH)

The MAC Short Gap Threshold Register is shown in Figure 3-29 and described in Table 3-41 for both KeyStone I and KeyStone II.

Figure 3-29. KeyStone I and KeyStone II MAC Short Gap Threshold Register (GAP_THRESH)

31 5	4 0
Reserved	GAP_THRESH
R-0	R/W-Bh

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-41. KeyStone I and KeyStone II MAC Short Gap Threshold Register (GAP_THRESH) Field Descriptions

Bits	Field	Description
31-5	Reserved	Reserved
4-0	GAP_THRESH	MAC Short Gap Threshold. This is the MAC associated FIFO transmit block usage value for triggering TX_SHORT_GAP.

3.5.1.7 Transmit FIFO Start Words Register (TX_START_WDS)

The Transmit FIFO Start Words Register is shown in Figure 3-30 and described in Table 3-42.

Figure 3-30. Transmit FIFO Start Words Register (TX_START_WDS)

31 11	10 0
Reserved	TS_START_WDS
R-0	R/W-20h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-42. Transmit FIFO Start Words Register (TX_START_WDS) Field Descriptions

Bits	Field	Description	
31-11	Reserved	Reserved	
10-0	TX_START_WDS	Packet Transmit (egress) Start Words.	
		This value is the number of required packet words in the transmit FIFO before the packet egress will begin. This value is non-zero to preclude underrun. Decimal 32 is the recommended value. It should not be increased unnecessarily to prevent adding to the switch latency.	

Ethernet Switch Module

3.5.1.8 Flow Control Register (FLOW_CONTROL)

The flow control register is shown below.

Figure 3-31. KeyStone I Flow Control Register (FLOW_CONTROL)

31 3	2	1	0
Reserved	P2_FLOW_EN	P1_FLOW_EN	P0_FLOW_EN
R-0	R/W-0	R/W-0	R/W-1

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-43. KeyStone I Flow Control Register (FLOW_CONTROL) Field Descriptions

Bits	Field	Description	
31-3	Reserved	Reserved	
2	P2_FLOW_EN	Port 2 Receive flow control enable.	
1	P1_FLOW_EN	Port 1 Receive flow control enable.	
0	P0_FLOW_EN	Port 0 Receive flow control enable.	

Figure 3-32. KeyStone II Flow Control Register (FLOW_CONTROL)

	-		-	•	•	
31	5	4	3	2	1	0
Reserved		P4_FLOW_EN	P3_FLOW_EN	P2_FLOW_EN	P1_FLOW_EN	P0_FLOW_EN
R-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
Legend: R - Read only: R/M - Read/Mrite: -	n – val	up ofter reset				

Legend: R = Read only; R/W = Read/Write; - *n* = value after reset

Table 3-44. KeyStone II Flow Control Register (FLOW_CONTROL) Field Descriptions

Bits	Field	Description
31-5	Reserved	Reserved
4	P4_FLOW_EN	Port 4 Receive flow control enable.
3	P3_FLOW_EN	Port 3 Receive flow control enable.
2	P2_FLOW_EN	Port 2 Receive flow control enable.
1	P1_FLOW_EN	Port 1 Receive flow control enable.
0	P0_FLOW_EN	Port 0 Receive flow control enable.

www.ti.com

3.5.1.9 Port 0 Source Identification Register (P0_CPPI_SRC_ID)

The Port 0 Source Identification Register is shown below.

Figure 3-33. KeyStone I Port 0 Source Identification Register (P0_CPPI_SRC_ID)

31 16	15 8	7 0
Reserved	TXB_SCR_ID	TXA_SRC_ID
R-0	R/W-2h	R/W-1h

Legend: R = Read only; R/W = Read/Write; - *n* = value after reset

Table 3-45. KeyStone I Port 0 Source Identification Register (P0_CPPI_SRC_ID) Field Descriptions

Bits	Field	Description
31-16	Reserved	Reserved
15-8	TXB_SRC_ID	CPPI Info Word0 Source ID Value on TXB. This value is contained in the CPPI Info Word 0 SRC_ID field for packets received on port 2 (which go to CPPI TXB).
7-0	TXA_SRC_ID	CPPI Info Word0 Source ID Value on TXA. This value is contained in the CPPI Info Word 0 SRC_ID field for packets received on port 1 (which go to CPPI TXA).

Figure 3-34. KeyStone II Port 0 Source Identification Register (P0_CPPI_SRC_ID)

31	24	23 16	6 15	8 7	0
	TXD_SRC_ID	TXC_SRC_ID	TXB_SCR_ID	TXA_S	SRC_ID
	R/W-4h	R/W-3h	R/W-2h	R/V	V-1h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-46. KeyStone II Port 0 Source Identification Register (P0_CPPI_SRC_ID) Field Descriptions

Bits	Field	Description
31-24	TXD_SRC_ID	CPPI Info Word0 Source ID Value on TXD. This value is contained in the CPPI Info Word 0 SRC_ID field for packets received on port 4 (which go to CPPI TXD).
23-16	TXC_SRC_ID	CPPI Info Word0 Source ID Value on TXC. This value is contained in the CPPI Info Word 0 SRC_ID field for packets received on port 3 (which go to CPPI TXC).
15-8	TXB_SRC_ID	CPPI Info Word0 Source ID Value on TXB. This value is contained in the CPPI Info Word 0 SRC_ID field for packets received on port 2 (which go to CPPI TXB).
7-0	TXA_SRC_ID	CPPI Info Word0 Source ID Value on TXA. This value is contained in the CPPI Info Word 0 SRC_ID field for packets received on port 1 (which go to CPPI TXA).

3.5.1.10 Port 0 VLAN Register (P0_PORT_VLAN)

The Port 0 VLAN Register is shown in Figure 3-35 and described in Table 3-47.

Figure 3-35. Port 0 VLAN Register (P0_PORT_VLAN)

31					1	6
					Reserved	
					R-0	
15		13	12	11		0
	PORT_PRI		PORT _CFI		PORT_VID	
	R/W-0		R/W-0		R/W-0	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-47. Port 0 VLAN Register (P0_PORT_VLAN) Field Descriptions

Bits	Field	Description
31-16	Reserved	Reserved
15-13	PORT_PRI	Port VLAN Priority (7 is highest priority).
12	PORT _CFI	Port CFI bit.
11-0	PORT_VID	Port VLAN ID.

3.5.1.11 Port 0 Receive Packet Priority to Header Priority Mapping Register (P0_RX_PRI_MAP)

The Port 0 Receive Packet Priority To Header Priority Mapping Register is shown in Figure 3-36 and described in Table 3-48.

Figure 3-36. Port 0 Receive Packet Priority to Header Priority Mapping Register (P0_RX_PRI_MAP)

										<i>,</i> , , ,		0	· –		,
31	30		28	27	26		24	23	22		20	19	18		16
Reserve d		P0_PRI7		Rsvd		P0_PRI6		Rsvd		P0_PRI5		Rsvd		P0_PRI4	
R-0		R/W-7		R-0		R/W-6		R-0		R/W-5		R-0		R/W-4	
15	14		12	11	10		8	7	6		4	3	2		0
Reserve d		P0_PRI3		Rsvd		P0_PRI2		Rsvd		P0_PRI1		Rsvd		P0_PRI0	
R-0		R/W-3		R-0		R/W-2		R-0		R/W-1		R-0		R/W-0	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-48. Port 0 Receive Packet Priority to Header Priority Mapping Register (P0_RX_PRI_MAP) Field Descriptions

Bits	Field	Description
31	Reserved	Reserved
30-28	P0_PRI7	Port 0 Priority 7. A packet priority of 7h is mapped (changed) to this header packet priority.
27	Reserved	Reserved
26-24	P0_PRI6	Port 0 Priority 6. A packet priority of 6h is mapped (changed) to this header packet priority.
23	Reserved	Reserved
22-20	P0_PRI5	Port 0 Priority 5. A packet priority of 5h is mapped (changed) to this header packet priority.
19	Reserved	Reserved
18-16	P0_PRI4	Port 0 Priority 4. A packet priority of 4h is mapped (changed) to this header packet priority.
15	Reserved	Reserved
14-12	P0_PRI3	Port 0 Priority 3. A packet priority of 3h is mapped (changed) to this header packet priority.
11	Reserved	Reserved
10-8	P0_PRI2	Port 0 Priority 2. A packet priority of 2h is mapped (changed) to this header packet priority.
7	Reserved	Reserved
6-4	P0_PRI1	Port 0 Priority 1. A packet priority of 1h is mapped (changed) to this header packet priority.
3	Reserved	Reserved
2-0	P0_PRI0	Port 0 Priority 0. A packet priority of 0h is mapped (changed) to this header packet priority.

Texas Instruments

Ethernet Switch Module

www.ti.com

3.5.1.12 Port 0 Receive Maximum Length Register (P0_RX_MAXLEN)

The Port 0 Receive Maximum Length Register is shown in Figure 3-37 and described in Table 3-49.

Figure 3-37. Port 0 RX Maximum Length Register (P0_RX_MAXLEN)

31 14	13 0
Reserved	RX_MAXLEN
R-0	R/W-5EEh

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-49. Port 0 RX Maximum Length Register (P0_RX_MAXLEN) Field Descriptions

Bits	Field	Description
31-14	Reserved	Reserved
13-0	RX_MAXLEN	Receive Maximum Frame Length. This field determines the maximum length of a received frame. The reset value is 1518 (dec). Frames with byte counts greater than RX_MAXLEN are long frames. Long frames with no errors are oversized frames. Long frames with CRC, code, or alignment error are jabber frames. The maximum value is 9504 (including VLAN).

3.5.1.13 Port 1 Max Blocks Register (P1_MAX_BLKS)

The Port 1 Max Blocks Register is shown in Figure 3-38 and described in Table 3-50.

	Figure 3-38. Port 1 Max Bl	ocks Regist	ter (P1_MA	X_BLKS)		
31		9	8	4	3	0
	Reserved		P1_TX_N	IAX_BLKS	P1_R	X_MAX_BLKS
	R-0		R/V	/-11h		R/W-3h

Legend: R = Read only; R/W = Read/Write; - *n* = value after reset

Table 3-50. Port 1 Max Blocks Register (P1_MAX_BLKS) Field Descriptions

Bits	Field	Description
31-9	Reserved	Reserved
8-4	P1_TX_MAX_BLKS	Transmit FIFO Maximum Blocks. This value is the maximum number of 4k memory blocks that may be allocated to the FIFO's logical transmit priority queues. 11h is the recommended value of P1_TX_MAX_BLKS unless the port is in fullduplex flow control mode. In flow control mode, the P1_RX_MAX_BLKS will need to increase in order to accept the required run out in fullduplex mode. This value will need to decrease by the amount of increase in P1_RX_MAX_BLKS. Eh is the minimum value of this field.
3-0	P1_RX_MAX_BLKS	Receive FIFO Maximum Blocks. This value is the maximum number of 4k memory blocks that may be allocated to the FIFO's logical receive queue. It should be increased in fullduplex flow control mode to accommodate the required runout space. The P1_TX_MAX_BLKS value must be decreased by the amount of increase in P1_TX_MAX_BLKS. 3h is the minimum value and 0xF is the maximum value of this field.

Ethernet Switch Module

Texas Instruments

www.ti.com

Ethernet Switch Module

3.5.1.14 Port 1 Block Count Register (P1_BLK_CNT)

The port 1 block count register is shown in Figure 3-37 and described in Table 3-49.

Figure 3-39. Port 1 Block Count Register (P1_BLK_CNT)

31 9	8 4	3 0
Reserved	P1_TX_BLK_CNT	P1_RX_BLK_CNT
R-0	R-4h	R/W-1h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-51. Port 1 Block Count Register (P1_BLK_CNT) Field Descriptions

Bits	Field	Description
31-9	Reserved	Reserved
8-4	P1_TX_BLK_CNT	Port 1 Transmit Block Count Usage. This value is the number of blocks allocated to the FIFO logical transmit queues.
3-0	P1_RX_BLK_CNT	Port 1 Receive Block Count Usage. This value is the number of blocks allocated to the FIFO logical receive queues.

3.5.1.15 Port 1 VLAN Register (P1_PORT_VLAN)

The Port 1 VLAN Register is shown in Figure 3-40 and described in Table 3-52.

Figure 3-40. Port 1 VLAN Register (P1_PORT_VLAN)

31					16
				Reserved	
				R-0	
15	13	12	11		0
P1_P0	ORT_PRI	P1_PORT _CFI		P1_PORT_VID	
R	W-0	R/W-0		R/W-0	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-52. Port 1 VLAN Register (P1_PORT_VLAN) Field Descriptions

Bits	Field	Description
31-16	Reserved	Reserved
15-13	P1_PORT_PRI	Port VLAN Priority (7 is highest priority)
12	P1_PORT_CFI	Port CFI bit
11-0	P1_PORT_VID	Port VLAN ID

3.5.1.16 Port 1 Transmit Header Priority to Switch Priority Mapping Register (P1_TX_PRI_MAP)

The Port 1 Transmit Header Priority to Switch Priority Mapping Register is shown in Figure 3-41 and described in Table 3-53.

Figure 3-41. Port 1 Transmit Header Priority to Switch Priority Mapping Register (P1_TX_PRI_MAP)

		•										•	•	• -		,
3	1	30		28	27	26		24	23	22		20	19	18		16
Rs	svd		P1_PRI7		Rsvd		P1_PRI6		Rsvd		P1_PRI5		Rsvd		P1_PRI4	
R	-0		R/W-3h		R-0		R/W-3h		R-0		R/W-2h		R-0		R/W-2h	
1	5	14		12	11	10		8	7	6		4	3	2		0
Rs	vd		P1_PRI3		Rsvd		P1_PRI2		Rsvd		P1_PRI1		Rsvd		P1_PRI0	
R	-0		R/W-1h		R-0		R/W-0		R-0		R/W-0		R-0		R/W-1h	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-53. Port 1 Transmit Header Priority to Switch Priority Mapping Register (P1_TX_PRI_MAP) Field Descriptions

Bits	Field	Description
31	Reserved	Reserved
30-28	P1_PRI7	Port 1 Priority 7. A packet header priority of 7h is given this switch queue priority.
27	Reserved	Reserved
26-24	P1_PRI6	Port 1 Priority 6. A packet header priority of 6h is given this switch queue priority.
23	Reserved	Reserved
22-20	P1_PRI5	Port 1 Priority 5. A packet header priority of 5h is given this switch queue priority.
19	Reserved	Reserved
18-16	P1_PRI4	Port 1 Priority 4. A packet header priority of 4h is given this switch queue priority.
15	Reserved	Reserved
14-12	P1_PRI3	Port 1 Priority 3. A packet header priority of 3h is given this switch queue priority.
11	Reserved	Reserved
10-8	P1_PRI2	Port 1 Priority 2. A packet header priority of 2h is given this switch queue priority.
7	Reserved	Reserved
6-4	P1_PRI1	Port 1 Priority 1. A packet header priority of 1h is given this switch queue priority.
3	Reserved	Reserved
2-0	P1_PRI0	Port 1 Priority 0. A packet header priority of 0h is given this switch queue priority.

3.5.1.17 MAC1 Source Address Low Register (MAC1_SA_LO)

The MAC1 Source Address Low Register is shown in Figure 3-42 and described in Table 3-54.

Figure 3-42. MAC1 Source Address Low Register (MAC1_SA_LO)

31			16
		Reserved	
		R-0	
15		8 7	0
	MACSRCADDR0	M	ACSRCADDR1
	R/W-0		R/W-0

Legend: R = Read only; R/W = Read/Write; - *n* = value after reset

Table 3-54. MAC1 Source Address Low Register (MAC1_SA_LO) Field Descriptions

Bits	Field	Description
31-16	Reserved	Reserved
15-8	MACSRCADDR0	Source address bits 7-0 (byte 0).
7-0	MACSRCADDR1	Source Address bits 15-8 (byte 1).

Texas Instruments

www.ti.com

Ethernet Switch Module

3.5.1.18 MAC1 Source Address High Register (MAC1_SA_HI)

The MAC1 Source Address High Register is shown in Figure 3-43 and described in Table 3-55.

Figure 3-43. MAC1 Source Address High Register (MAC1_SA_HI)

31		24 23		16
	MACSRCADDR2		MACSRCADDR3	
	R/W-0		R/W-0	
15		8 7		0
	MACSRCADDR4		MACSRCADDR5	
	R/W-0		R/W-0	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-55. MAC1 Source Address High Register (MAC1_SA_HI) Field Descriptions

Bits	Field	Description
31-24	MACSRCADDR2	Source Address bits 23-16 (byte 2)
23-16	MACSRCADDR3	Source Address bits 31-24 (byte 3)
15-8	MACSRCADDR4	Source Address bits 39-32 (byte 4)
7-0	MACSRCADDR5	Source Address bits 47-40 (byte 5)

3.5.1.19 Port 1 Time Sync Control Register (P1_TS_CTL)

The Port 1 Time Sync Control Register is shown below.

Figure 3-44. KeyStone I Port 1 Time Sync Control Register (P1_TS_CTL)

31 16	15			7		6
P1_TX_MSG_TYPE_EN			Reserved			_VLAN_LTYPE2 _EN
R/W-0			R-0		F	R/W-0
5	4	3	2		1	0
P1_TS_TX_VLAN_LTYPE1 _EN	P1_TS_TX _EN	Reserved	P1_TS_RX_VLAN_LTYPE2 _EN	P1_TX_1 _LTYP	TX_VLAN E1_EN	P1_TS_RX _EN
R/W-0	R/W-0	R-0	R/W-0	R/V	V-0	R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-56. KeyStone I Port 1 Time Sync Control Register (P1_TS_CTL) Field Descriptions

Bits	Field	Description
31-16	P1_TX_MSG_TYPE_EN	Port 1 Time Sync Message Type Enable. Each bit in this field enables the corresponding message type in receive and transmit time sync messages (Bit 0 enables message type 0 etc.).
15-7	Reserved	Reserved
6	P1_TS_TX_VLAN_LTYPE2_EN	Port 1 Time Sync Transmit VLAN LTYPE 2 enable.
5	P1_TS_TX_VLAN_LTYPE1_EN	Port 1 Time Sync Transmit VLAN LTYPE 1 enable.
4	P1_TS_TX_EN	Port 1 Time Sync Transmit Enable.
		• 0 = Port 1 Transmit Time Sync disabled
		 1 = Port 1 Transmit Time Sync enabled
3	Reserved	Reserved
2	P1_TS_RX_VLAN_LTYPE2_E N	Port 1 Time Sync Receive VLAN LTYPE 2 enable.
1	P1_TX_TX_VLAN_LTYPE1_EN	Port 1 Time Sync Receive VLAN LTYPE 1 enable.
0	P1_TS_RX_EN	Port 1 Time Sync Receive Enable.
		• 0 = Port 1 Transmit Time Sync disabled
		 1 = Port 1 Transmit Time Sync enabled

Ethernet Switch Module www.ti.com Figure 3-45. KeyStone II Port 1 Time Sync Control Register (P1_TS_CTL) 31 16 15 11 10 9 P1_TX_MSG_TYPE_EN P1_TS_TX_ANNEX_E_EN P1_TS_RX_ANNEX_E_EN Reserved R/W-0 R-0 R/W-0 R/W-0 8 7 6 5 P1_TS_LYTPE2_EN P1_TS_TX_ANNEX_E_EN P1_TS_TX_ANNEX_D_EN P1_TS_TX_VLAN_LTYPE1_EN R/W-0 R/W-0 R/W-0 R/W-0 4 3 2 1 0 P1_TS_RX_VLAN P1_TS_TX_ANNEX P1_TS_RX_ANNEX P1_TS_TX_VLAN_LTYPE1_EN P1_TS_RX_ANNEX _F_EN _D_EN LTYPE2_EN F_EN R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-57. KeyStone II Port 1 Time Sync Control Register (P1_TS_CTL) Field Descriptions

Bits	Field	Description
31-16	P1_TX_MSG_TYPE_EN	Port 1 Time Sync Message Type Enable. Each bit in this field enables the corresponding message type in receive and transmit time sync messages (Bit 0 enables message type 0 etc.).
15-11	Reserved	Reserved
10	P1_TS_TX_ANNEX_E_EN	Port 1 Time Sync Transmit Annex E Enable
		• 0 = Port 1 Transmit Time Sync Annex E disabled
		• 1 = Port 1 Transmit Time Sync Annex E enabled
9	P1_TS_RX_ANNEX_E_EN	Port 1 Time Sync Receive Annex E Enable
		• 0 = Port 1 Transmit Time Sync RX Annex E disabled
		• 1 = Port 1 Transmit Time Sync RX Annex E enabled
8	P1_TS_LYTPE2_EN	Port 1 Time Sync LTYPE2 Enable (transmit and receive)
		• 0 = Port 1 Transmit Time Sync LTYPE2 disabled
		• 1 = Port 1 Transmit Time Sync LTYPE2 enabled
7	P1_TS_TX_ANNEX_E_EN	Port 1 Time Sync Transmit Annex E Enable
		• 0 = Port 1 Transmit Time Sync TX Annex E disabled
		1 = Port 1 Transmit Time Sync TX Annex E enabled
6	P1_TS_TX_ANNEX_D_EN	Port 1 Time Sync Transmit Annex D Enable
		• 0 = Port 1 Transmit Time Sync TX Annex D disabled
		• 1 = Port 1 Transmit Time Sync TX Annex D enabled
5	P1_TS_TX_VLAN_LTYPE1_EN	Port 1 Time Sync Transmit VLAN LTYPE 1 enable.
		• 0 = Port 1 Transmit Time Sync TX VLAN LTYPE1 disabled
		 1 = Port 1 Transmit Time Sync TX VLAN LTYPE1 enabled
4	P1_TS_TX_ANNEX_F_EN	Port 1 Time Sync Transmit Annex F Enable
		• 0 = Port 1 Transmit Time Sync TX Annex F disabled
		• 1 = Port 1 Transmit Time Sync TX Annex F enabled
3	P1_TS_RX_ANNEX_D_EN	Port 1 Time Sync Receive Annex D Enable
		• 0 = Port 1 Transmit Time Sync RX Annex D disabled
		• 1 = Port 1 Transmit Time Sync RX Annex D enabled
2	P1_TS_RX_VLAN_LTYPE2_EN	Port 1 Time Sync Receive VLAN LTYPE 2 enable.
		• 0 = Port 1 Transmit Time Sync Receive VLAN LTYPE 2 disabled
		1 = Port 1 Transmit Time Sync Receive VLAN LTYPE 2 enabled
1	P1_TS_TX_VLAN_LTYPE1_EN	Port 1 Time Sync Receive VLAN LTYPE 1 enable.
		0 = Port 1 Transmit Time Sync Receive VLAN LTYPE 1 disabled
		1 = Port 1 Transmit Time Sync Receive VLAN LTYPE 1 enabled
0	P1_TS_RX_ANNEX_F_EN	Port 1 Time Sync Receive Annex F Enable
		• 0 = Port 1 Transmit Time Sync RX Annex F disabled
		• 1 = Port 1 Transmit Time Sync RX Annex F enabled

3.5.1.20 Port 1 Time Sync Sequence ID and LTYPE Register (P1_TS_SEQ_LTYPE)

The Port 1 Time Sync Sequence ID and LTYPE Register is shown in Figure 3-46 and described in Table 3-58.

Figure 3-46. Port 1 Time Sync Sequence ID and LTYPE Register (P1_TS_SEQ_LTYPE)

	-	• •	\bullet \cdot $ \cdot$ \cdot
3	31 22	21 16	15 0
	Reserved	P1_TS_SEQ_ID _OFFSET	P1_TS_LTYPE
	R-0	R/W-1Eh	R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-58. Port 1 Time Sync Sequence ID and LTYPE Register (P1_TS_SEQ_LTYPE) Field Descriptions

Bits	Field	Description
31-22	Reserved	Reserved
21-16	P1_TS_SEQ_ID_OFFSET	Port 1 Time Sync Sequence ID Offset. This is the number of octets that the sequence ID is offset in the transmit and receive time sync message header. The minimum value is 6.
15-0	P1_TS_LTYPE	Port 1 Time Sync LTYPE. This is the LTYPE value to match for transmit and receive time sync messages.

Ethernet Switch Module

3.5.1.21 Port 1 Time Sync Control Register 2 (P1 _TS_CTL2)

The Port 1 Time Sync Control Register LTYPE2 is shown in Figure 3-47 and described in Table 3-59. This is in KeyStone II devices only.

Figure 3-47. Port 1 Time Sync Control Register 2 (P1_TS_CTL2)

31	22	21	16	15	0
Reserved		P1_TS_DO	MAIN_OFFSET	P1_TS_N	ICAST_TYPE_EN
R-0		R	2/W-0		R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-59. Port 1 Time Sync Control 2 Register (P1_TS_CTL2) Field Descriptions

Bits	Field	Description
31-22	Reserved	Reserved
21-16	P1_TS_DOMAIN_OFFSET	Port 1Time Sync Domain Offset. This is the number of octets that the domain is offset in the TX and RX time sync PTP message header. The minimum value is 24.
15-0	P1_TS_MCAST_TYPE_EN	Port 1 Time Sync Multicast Destination Address Type Enable. Each bit in this field enables the corresponding destination address in receive and transmit time sync messages; i.e., bit 0 enables destination type 0x0, bit1 enables 0x1, and so on.

3.5.1.22 Port 1 Time Sync Control Register and LTYPE2 (P1 _TS_CTL_LTYPE2)

The Port 1Time Sync Control Register LTYPE2 is shown in Figure 3-48 and described in Table 3-60. This is only for KeyStone II Devices.

Figure 3-48. Port 1 Time Sync Control Register and LTYPE2 (P1_TS_CTL_LTYPE2)

04	-		•	05			
31				25	24		23
		Reserved			P1_TS_UNI_	EN P1	_TS_TTL_NONZERO
		R-0			R/W-0		R/W-0
22	21	20	19	18	17	16	15 0
P1_TS_320	P1_TS_319	P1_TS_132	P1_TS_131	P1_TS_130	P1_TS_129	P1_TS_1	07 P1_TS _LTYPE2
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-60. Port 1Time Sync Control Register and LTYPE2 (P1_TS_CTL_LTYPE2) Field Descriptions (KeyStone II Only)

Bits	Field	Description
31-25	Reserved	Reserved
24	P1_TS_UNI_EN	Port 1 Time Sync Unicast Address Enable
		 0 = Port 1 Transmit Time Sync RX VLAN LTYPE1 disabled 1 = Port 1 Transmit Time Sync RX VLAN LTYPE1 enabled
23	P1_TS_TTL_NONZERO	Port 1 Time Sync to Live Non-Zero Enable
		• 0 = TTL must be 0
		• 1 = TTL may be non-zero
22	P1_TS_320	Port 1 Time Sync Destination Port Number 320 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) destination port number 320 (Decimal) is enabled.
21	P1_TS_319	Port 1 Time Sync Destination Port Number 319 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) destination port number 319 (Decimal) is enabled.
20	P1_TS_132	Port 1 Time Sync Destination IP Address 132 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) Destination IP Address (Decimal) 224.0.0.132 is enabled
19	P1_TS_131	Port 1 Time Sync Destination IP Address 131 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) Destination IP Address (Decimal) 224.0.0.131 is enabled
18	P1_TS_130	Port 1 Time Sync Destination IP Address 130 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) Destination IP Address (Decimal) 224.0.0.130 is enabled
17	P1_TS_129	Port 1 Time Sync Destination IP Address 129Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) Destination IP Address (Decimal) 224.1.1.129 is enabled
16	P1_TS_107	Port 1 Time Sync Destination IP Address 132 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) Destination IP Address (Decimal) 224.0.0.107 is enabled
15-0	P1_TS_LTYPE2	Port 1 Time Sync LTYLPE2. This is the time sync value for LTYPE2 for port 3.

Texas Instruments

www.ti.com

Ethernet Switch Module

3.5.1.23 Port 1 Time Sync VLAN LTYPE Register (P1_TS_VLAN_LTYPE)

The Port 1 Time Sync VLAN LTYPE Register is shown in Figure 3-49 and described in Table 3-61.

Figure 3-49. Port 1 Time Sync VLAN LTYPE Register (P1_TS_VLAN_LTYPE)

31 16	15 0
P1_TS_VLAN_LTYPE2	P1_TS_VLAN_LTYPE1
R/W-8100h	R/W-8100h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-61. Port 1 Time Sync VLAN LTYPE Register (P1_TS_VLAN_LTYPE) Field Descriptions

Bits	Field	escription	
31-16	P1_TS_VLAN_LTYPE2	Port 1 Time Sync VLAN LTYPE2. This VLAN LTYPE value is used for port 1 transmit and receive time sync decode.	
15-0	P1_TS_VLAN_LTYPE1	Port 1 Time Sync VLAN LTYPE1. This VLAN LTYPE value is used for port 1 transmit and receive time sync decode.	

3.5.1.24 Port 2 Max Blocks Register (P2_MAX_BLKS)

The Port 2 Max Blocks Register is shown in Figure 3-50 and described in Table 3-62.

Figure 3-50. Port 2 Max Blocks Register (P2_MAX_BLKS)

31	98	4	3 0
Reserved	P2_TX_N	IAX_BLKS	P2_RX_MAX_BLKS
R-0	R/W	/-11h	R/W-3h

Legend: R = Read only; R/W = Read/Write; - *n* = value after reset

Table 3-62. Port 2 Max Blocks Register (P2_MAX_BLKS) Field Descriptions

Bits	Field	Description
31-9	Reserved	Reserved
8-4	P2_TX_MAX_BLKS	Transmit FIFO Maximum Blocks. This value is the maximum number of 4k memory blocks that may be allocated to the FIFO's logical transmit priority queues. 11h is the recommended value of P2_TX_MAX_BLKS unless the port is in fullduplex flow control mode. In flow control mode, the P2_rX_MAX_BLKS will need to increase in order to accept the required run out in fullduplex mode. This value will need to decrease by the amount of increase in P2_RX_MAX_BLKS. Eh is the minimum value of this field.
3-0	P2_RX_MAX_BLKS	Receive FIFO Maximum Blocks – This value is the maximum number of 4k memory blocks that may be allocated to the FIFO's logical receive queue. This value must be greater than or equal to 3h. It should be increased In fullduplex flow control mode to accommodate the required runout space. The P2_TX_MAX_BLKS value must be decreased by the amount of increase in P2_rX_MAX_BLKS. 3h is the minimum value and 0xf is the maximum value of this field.

Ethernet Switch Module

Texas Instruments

www.ti.com

Ethernet Switch Module

3.5.1.25 Port 2 Block Count Register (P2_BLK_CNT)

The port 2 block count register is shown in Figure 3-51 and described in Table 3-63.

Figure 3-51. Port 2 Block Count Register (P2_BLK_CNT)

31	98	4 3 0
Reserved	P2_TX_BLK_CNT	P2_RX_BLK_CNT
R-0	R-4h	R/W-1h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-63. Port 2 Block Count Register (P2_BLK_CNT) Field Descriptions

Bits	Field	Description
31-9	Reserved	Reserved
8-4	P2_TX_BLK_CNT	Port 2 Transmit Block Count Usage. This value is the number of blocks allocated to the FIFO logical transmit queues.
3-0	P2_RX_BLK_CNT	Port 2 Receive Block Count Usage. This value is the number of blocks allocated to the FIFO logical receive queues.

3.5.1.26 Port 2 VLAN Register (P2_PORT_VLAN)

The Port 2 VLAN High Register is shown in Figure 3-52 and described in Table 3-64.

Figure 3-52. Port 2 VLAN Register (P2_PORT_VLAN)

31						16
					Reserved	
					R-0	
15		13	12	11		0
	PORT_PRI		PORT _CFI		PORT_VID	
	R/W-0		R/W-0		R/W-0	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-64. Port 2 VLAN Register (P2_PORT_VLAN) Field Descriptions

Bits	Field	Description
31-16	Reserved	Reserved
15-13	PORT_PRI	Port VLAN Priority (7 is highest priority).
12	PORT_CFI	Port CFI bit.
11-0	PORT_VID	Port VLAN ID.

3.5.1.27 Port 2 Transmit Header Priority to Switch Priority Mapping Register (P2_TX_PRI_MAP)

The Port 2 Transmit Header Priority To Switch Priority Mapping Register is shown in Figure 3-53 and described in Table 3-65.

Figure 3-53. Port 2 Transmit Header Priority to Switch Priority Mapping Register (P2_TX_PRI_MAP)

		0									<i>,</i> , , ,		0	· –		
	31	30		28	27	26		24	23	22		20	19	18		16
	Rsvd		P2_PRI7		Rsvd		P2_PRI6		Rsvd		P2_PRI5		Rsvd		P2_PRI4	
	R-0		R/W-3h		R-0		R/W-3h		R-0		R/W-2h		R-0		R/W-2h	
	15	14		12	11	10		8	7	6		4	3	2		0
	Rsvd		P2_PRI3		Rsvd		P2_PRI2		Rsvd		P2_PRI1		Rsvd		P2_PRI0	
_	R-0		R/W-1h		R-0		R/W-0		R-0		R/W-0		R-0		R/W-1h	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-65. Port 2 Transmit Header Priority to Switch Priority Mapping Register (P2_TX_PRI_MAP) Field Descriptions

Bits	Field	Description
31	Reserved	Reserved
30-28	P2_PRI7	Port 2 Priority 7. A packet header priority of 7h is given this switch queue priority.
27	Reserved	Reserved
26-24	P2_PRI6	Port 2 Priority 6. A packet header priority of 6h is given this switch queue priority.
23	Reserved	Reserved
22-20	P2_PRI5	Port 2 Priority 5. A packet header priority of 5h is given this switch queue priority.
19	Reserved	Reserved
18-16	P2_PRI4	Port 2 Priority 4. A packet header priority of 4h is given this switch queue priority.
15	Reserved	Reserved
14-12	P2_PRI3	Port 2 Priority 3. A packet header priority of 3h is given this switch queue priority.
11	Reserved	Reserved
10-8	P2_PRI2	Port 2 Priority 2. A packet header priority of 2h is given this switch queue priority.
7	Reserved	Reserved
6-4	P2_PRI1	Port 2 Priority 1. A packet header priority of 1h is given this switch queue priority.
3	Reserved	Reserved
2-0	P2_PRI0	Port 2 Priority 0. A packet header priority of 0h is given this switch queue priority.

3.5.1.28 MAC2 Source Address Low Register (MAC2_SA_LO)

The MAC2 Source Address Low Register is shown in Figure 3-54 and described in Table 3-66.

Figure 3-54. MAC2 Source Address Low Register (MAC2_SA_LO)

31				16
		Reserved		
		R-0		
15		8 7		0
	MACSRCADDR0		MACSRCADDR1	
	R/W-0		R/W-0	

Legend: R = Read only; R/W = Read/Write; - *n* = value after reset

Table 3-66. MAC2 Source Address Low Register (MAC2_SA_LO) Field Descriptions

Bits	Field	Description
31-16	Reserved	Reserved
15-8	MACSRCADDR0	Source address bits 7-0 (byte 0).
7-0	MACSRCADDR1	Source address bits 15-8 (byte 1).

Ethernet Switch Module

3.5.1.29 MAC2 Source Address High Reserved Register (MAC2_SA_HI)

The MAC2 Source Address High Reserved Register is shown in Figure 3-55 and described in Table 3-67.

Figure 3-55. MAC2 Source Address High Reserved Register (MAC2_SA_HI)

	-	-	• • • •	
31		24 23		16
	MACSRCADDR2		MACSRCADDR3	
	R/W-0		R/W-0	
15		8 7		0
	MACSRCADDR4		MACSRCADDR5	
	R/W-0		R/W-0	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-67. MAC2 Source Address High Reserved Register (MAC2_SA_HI) Field Descriptions

Bits	Field	Description
31-24	MACSRCADDR2	Source address bits 23-16 (byte 2).
23-16	MACSRCADDR3	Source address bits 31-24 (byte 3).
15-8	MACSRCADDR4	Source address bits 39-32 (byte 4).
7-0	MACSRCADDR5	Source address bits 47-40 (byte 5).

3.5.1.30 Port 2 Time Sync Control Register (P2_TS_CTL)

The Port 2 Time Sync Control Register is shown below.

Figure 3-56. KeyStone I Port 2 Time Sync Control Register (P2_TS_CTL)

31 16	15			7		6
P2_TX_MSG_TYPE_EN			Reserved			_VLAN_LTYPE2 _EN
R/W-0			R-0		F	R/W-0
5	4	3	2		1	0
P2_TS_TX_VLAN_LTYPE1 _EN	P2_TS_TX _EN	Reserved	P2_TS_RX_VLAN_LTYPE2 _EN	P2_TS_1 _LTYP	TX_VLAN E1_EN	P2_TS_RX _EN
R/W-0	R/W-0	R-0	R/W-0	R/V	V-0	R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-68. KeyStone I Port 2 Time Sync Control Register (P2_TS_CTL) Field Descriptions

Bits	Field	Description			
31-16	P2_TX_MSG_TYPE_EN	Port 2 Time Sync Message Type Enable. Each bit in this field enables the corresponding message type in receive and transmit time sync messages (Bit 0 enables message type 0 etc.).			
15-7	Reserved	Reserved			
6	P2_TS_TX_VLAN_LTYPE2_EN	Port 2 Time Sync Transmit VLAN LTYPE 2 enable.			
5	P2_TS_TX_VLAN_LTYPE1_EN	Port 2 Time Sync Transmit VLAN LTYPE 1 enable.			
4	P2_TS_TX_EN	Port 2 Time Sync Transmit Enable.			
		• 0 = Port 2 Transmit Time Sync disabled.			
		 1 = Port 2 Transmit Time Sync enabled. 			
3	Reserved	Reserved			
2	P2_TS_RX_VLAN_LTYPE2_E N	Port 2 Time Sync Receive VLAN LTYPE 2 enable.			
1	P2_TS_RX_VLAN_LTYPE1_E N	Port 2 Time Sync Receive VLAN LTYPE 1 enable.			
0	P2_TS_RX_EN	Port 2 Time Sync Receive Enable.			
		• 0 = Port 2 Transmit Time Sync disabled.			
		 1 = Port 2 Transmit Time Sync enabled. 			

Ethernet Switch Module

www.ti.com

	Figure 3-57. KeyStone II Port 2 Time Sync Control Register (P1_TS_CTL)						
31	16	15	11		10		9
P2_TX_MSG_TYPE	_EN	Re	eserved	P2_	TS_TX_ANNEX_E_EN	P2_1	S_RX_ANNEX_E_EN
R/W-0			R-0		R/W-0		R/W-0
8			7		6		5
PS_TS_LTYPE2_E	ĪN	P2_TS_TX	_ANNEX_D_EN	P2_T	S_TX_VLAN_LTYPE2_E N	P2_TS	_TX_VLAN_LTYPE1_EN
R/W-0		F	R/W-0		R/W-0		R/W-0
4		3	2		1		0
P2_TS_TX_ANNEX _F_EN	P2_T	S_RX_ANNEX _D_EN	P2_TS_RX_VLA _LTYPE2_EN		P2_TS_RX_VLAN _LTYPE1_EN	1	P2_TS_RX_ANNEX _F_EN
R/W-0		R/W-0	R/W-0		R/W-0		R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-69. KeyStone II Port 2 Time Sync Control Register (P2_TS_CTL) Field Descriptions

Bits	Field	Description
31-16	P2_TX_MSG_TYPE_EN	Port 2 Time Sync Message Type Enable. Each bit in this field enables the corresponding message type in receive and transmit time sync messages (Bit 0 enables message type 0 etc.).
15-11	Reserved	Reserved
10	P2_TS_TX_ANNEX_E_EN	Port 2 Time Sync Transmit Annex E Enable
9	P2_TS_RX_ANNEX_E_EN	Port 2 Time Sync Receive Annex E Enable
8	PS_TS_LTYPE2_EN	Port 2 TIme Sync LTYPE 2 Enable (Transmit and Receive)
7	P2_TS_TX_ANNEX_D_EN	Port 2 Time Sync Transmit Annex D Enable
6	P2_TS_TX_VLAN_LTYPE2_EN	Port 2 Time Sync Transmit VLAN LTYPE 2 enable.
5	P2_TS_TX_VLAN_LTYPE1_EN	Port 2 Time Sync Transmit VLAN LTYPE 1 enable.
4	P2_TS_TX_ANNEX_F_EN	Port 2 Time Sync Transmit Annex F Enable
3	P2_TS_RX_ANNEX_D_EN	Port 2 Time Sync Receive Annex D Enable
2	P2_TS_RX_VLAN_LTYPE2_EN	Port 2 Time Sync Receive VLAN LTYPE 2 enable.
1	P2_TS_RX_VLAN_LTYPE1_EN	Port 2 Time Sync Receive VLAN LTYPE 1 enable.
0	P2_TS_RX_ANNEX_F_EN	Port 2 Time Sync Receive Annex F Enable

3.5.1.31 Port 2 Time Sync Sequence ID and LTYPE Register (P2_TS_SEQ_LTYPE)

The Port 2 Time Sync Sequence ID and LTYPE Register is shown in Figure 3-58 and described in Table 3-70.

Figure 3-58. Port 2 Time Sync Sequence ID and LTYPE Register (P2_TS_SEQ_LTYPE)

31	-	22 21 16	15	0
	Reserved	P2_TS_SEQ_ID _OFFSET	P2_TS_LTYPE	
	R-0	R/W-1Eh	R/W-0	

Legend: R = Read only; R/W = Read/Write; - *n* = value after reset

Table 3-70. Port 2 Time Sync Sequence ID and LTYPE Register (P2_TS_SEQ_LTYPE) Field Descriptions

Bits	Field	Description
31-22	Reserved	Reserved
21-16	P2_TX_SEQ_ID_OFFSET	Port 2 Time Sync Sequence ID Offset. This is the number of octets that the sequence ID is offset in the transmit and receive time sync message header. The minimum value is 6.
15-0	P2_TS_LTYPE	Port 2 Time Sync LTYPE. This is the LTYPE value to match for transmit and receive time sync messages.

Copyright © 2010–2013, Texas Instruments Incorporated

Texas *TRUMENTS*

www.ti.com

Ethernet Switch Module

3.5.1.32 Port 2 Time Sync VLAN LTYPE Register (P2_TS_VLAN_LTYPE)

The Port 2 Time Sync VLAN LTYPE Register is shown in Figure 3-59 and described in Table 3-71.

Figure 3-59. Port 2 Time Sync VLAN LTYPE Register (P2_TS_VLAN_LTYPE)

31 16	15 0
P2_TS_VLAN_LTYPE2	P2_TS_VLAN_LTYPE1
R/W-8100h	R/W-8100h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-71. Port 2 Time Sync VLAN LTYPE Register (P2_TS_VLAN_LTYPE) Field Descriptions

Bits	Field	Description
31-16	P2_TS_VLAN_LTYPE2	Port 2 Time Sync VLAN LTYPE2. This VLAN LTYPE value is used for port 1 transmit and receive time sync decode.
15-0	P2_TS_VLAN_LTYPE1	Port 2 Time Sync VLAN LTYPE1. This VLAN LTYPE value is used for port 1 transmit and receive time sync decode.

NOTE: For KeyStone II devices, the port 3 and port 4 registers (such as P3_TS_VLAN_TYPE, P4_TS_SEQ_LTYPE, etc.) follow the same field description format as the port 1 and port 2 registers described above.

3.5.1.33 Port 2 Time Sync Control Register 2 (P2 _TS_CTL2)

The Port 2 Time Sync Control Register 2 LTYPE2 is shown in Figure 3-60 and described in Table 3-72. This is in KeyStone II devices only.

Figure 3-60. Port 2Time Sync Control Register 2 (P3_TS_CTL2)

31	22	21	16	15	0
Reserved		P2_TS_DC	DMAIN_OFFSET	P2_TS_M	CAST_TYPE_EN
R-0			R/W-0		R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-72. Port 2 Time Sync Control Register 2 (P2_TS_CTL2) Field Descriptions

Bits	Field	Description
31-22	Reserved	Reserved
21-16	P2_TS_DOMAIN_OFFSET	Port 2 Time Sync Domain Offset. This is the number of octets that the domain is offset in the TX and RX time sync PTP message header. The minimum value is 24.
15-0	P2_TS_MCAST_TYPE_EN	Port 2 Time Sync Multicast Destination Address Type Enable. Each bit in this field enables the corresponding destination address in receive and transmit time sync messages; i.e., bit 0 enables destination type 0x0, bit1 enables 0x1, and so on.

Ethernet Switch Module

www.ti.com

3.5.1.34 Port 2 Time Sync Control Register and LTYPE2 (P2 _TS_CTL_LTYPE2)

The Port 2 Time Sync Control Register LTYPE2 is shown in Figure 3-61 and described in Table 3-73. This is only for KeyStone II Devices.

Figure 3-61. Port 2 Time Sync Control Register and LTYPE2 (P2_TS_CTL_LTYPE2)

	-		-	-	•		•
31				25	24		23
		Reserved			P2_TS_UNI	_EN P2_	TS_TTL_NONZERO
		R-0			R/W-0		R/W-0
22	21	20	19	18	17	16	15 0
P2_TS_320	P2_TS_319	P2_TS_132	P2_TS_131	P2_TS_130	P2_TS_129	P2_TS_107	7 P2_TS _LTYPE2
R/W-0							

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-73. Port 2 Time Sync Control Register and LTYPE2 (P2_TS_CTL_LTYPE2) Field Descriptions (KeyStone II Only)

Bits	Field	Description
31-25	Reserved	Reserved
24	P2_TS_UNI_EN	Port 2 Time Sync Unicast Address Enable
		• 0 = Port 1 Transmit Time Sync RX VLAN LTYPE1 disabled
		 1 = Port 1 Transmit Time Sync RX VLAN LTYPE1 enabled
23	P2_TS_TTL_NONZERO	Port 2 Time Sync to Live Non-Zero Enable
		• 0 = TTL must be zero
		• 1 = TTL may be non-zero
22	P2_TS_320	Port 2 Time Sync Destination Port Number 320 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) destination port number 320 (Decimal) is enabled.
21	P2_TS_319	Port 2 Time Sync Destination Port Number 319 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) destination port number 319 (Decimal) is enabled.
20	P2_TS_132	Port 2 Time Sync Destination IP Address 132 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) Destination IP Address (Decimal) 224.0.0.132 is enabled
19	P2_TS_131	Port 2 Time Sync Destination IP Address 131 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) Destination IP Address (Decimal) 224.0.0.131 is enabled
18	P2_TS_130	Port 2 Time Sync Destination IP Address 130 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) Destination IP Address (Decimal) 224.0.0.130 is enabled
17	P2_TS_129	Port 2 Time Sync Destination IP Address 129Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) Destination IP Address (Decimal) 224.1.1.129 is enabled
16	P2_TS_107	Port 2 Time Sync Destination IP Address 132 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) Destination IP Address (Decimal) 224.0.0.107 is enabled
15-0	P2_TS_LTYPE2	Port 2 Time Sync LTYLPE2. This is the time sync value for LTYPE2 for port 3.

3.5.2 KeyStone II Port 3 & 4 Register Descriptions

For KeyStone II Devices, there are two additional ports along with additional registers to correspond with those. These register are not in KeyStone I devices. See the device-specific page or data manual to confirm KeyStone I or KeyStone II status.

3.5.2.1 Port 3 Max Blocks Register (P3_MAX_BLKS)

The Port 3 Max Blocks Register is shown in Figure 3-62 and described in Table 3-74.

Figure 3-62. Port 3 Max Blocks Register (P3_MAX_BLKS)

31	98	4 3 0
Reserved	P3_TX_MAX_BLKS	P3_RX_MAX_BLKS
R-0	R/W-11h	R/W-3h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-74. Port 3 Max Blocks Register (P3_MAX_BLKS) Field Descriptions

Bits	Field	Description
31-9	Reserved	Reserved
8-4	P3_TX_MAX_BLKS	Transmit FIFO Maximum Blocks. This value is the maximum number of 4k memory blocks that may be allocated to the FIFO's logical transmit priority queues. 11h is the recommended value of P3_TX_MAX_BLKS unless the port is in fullduplex flow control mode. In flow control mode, the P3_rX_MAX_BLKS will need to increase in order to accept the required run out in fullduplex mode. This value will need to decrease by the amount of increase in P3_RX_MAX_BLKS. Eh is the minimum value of this field.
3-0	P3_RX_MAX_BLKS	Receive FIFO Maximum Blocks – This value is the maximum number of 4k memory blocks that may be allocated to the FIFO's logical receive queue. This value must be greater than or equal to 3h. It should be increased In fullduplex flow control mode to accommodate the required runout space. The P3_TX_MAX_BLKS value must be decreased by the amount of increase in P3_rX_MAX_BLKS. 3h is the minimum value and 0xf is the maximum value of this field.

Texas Instruments

www.ti.com

Ethernet Switch Module

3.5.2.2 Port 3 Block Count Register (P3_BLK_CNT)

The Port 3 Block Count Register is shown in Figure 3-63 and described in Table 3-75.

Figure 3-63. Port 3 Block Count Register (P3_BLK_CNT)

31	98	4 3 0
Reserved	P3_TX_BLK_CNT	P3_RX_BLK_CNT
R-0	R-4h	RW=1h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-75. Port 3 Block Count Register (P3_BLK_CNT) Field Descriptions

Bits	Field	Description
31-9	Reserved	Reserved
8-4	P3_TX_BLK_CNT	Port 3 Transmit Block Count Usage. This value is the number of blocks allocated to the FIFO logical transmit queues.
3-0	P3_RX_BLK_CNT	Port 2 Receive Block Count Usage. This value is the number of blocks allocated to the FIFO logical receive queues.

3.5.2.3 Port 3 VLAN Register (P3_PORT_VLAN)

The Port 3 VLAN Register is shown in Figure 3-64 and described in Table 3-76.

Figure 3-64. Port 3 VLAN Register (P3_PORT_VLAN)

31						16
					Reserved	
					R-0	
15		13	12	11		0
	PORT_PRI		PORT _CFI		PORT_VID	
	R/W-0		R/W-0		R/W-0	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-76. Port 3 VLAN Register (P3_PORT_VLAN) Field Descriptions

Bits	Field	Description
31-16	Reserved	Reserved
15-13	PORT_PRI	Port VLAN Priority (7 is highest priority).
12	PORT_CFI	Port CFI bit.
11-0	PORT_VID	Port VLAN ID.

3.5.2.4 Port 3 Transmit Header Priority to Switch Priority Mapping Register (P3_TX_PRI_MAP)

The Port 3 Transmit Header Priority To Switch Priority Mapping Register is shown in Figure 3-65 and described in Table 3-77.

Figure 3-65. Port 3 Transmit Header Priority to Switch Priority Mapping Register (P3_TX_PRI_MAP)

	•									•	•	• -		
31	30	28	27	26		24	23	22		20	19	18		16
Reee	P3_PRI	7	Rsvd		P3_PRI6		Rsvd		P3_PRI5		Rsvd		P3_PRI4	
R-0	R/W-3h		R-0		R/W-3h		R-0		R/W-2h		R-0		R/W-2h	
15	14	12	11	10		8	7	6		4	3	2		0
Rsvd	P3_PRI	3	Rsvd		P3_PRI2		Rsvd		P3_PRI1		Rsvd		P3_PRI0	
R-0	R/W-1h		R-0		R/W-0		R-0		R/W-0		R-0		R/W-1h	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-77. Port 3 Transmit Header Priority to Switch Priority Mapping Register (P3_TX_PRI_MAP) Field Descriptions

Bits	Field	Description
31	Reserved	Reserved
30-28	P3_PRI7	Port 3 Priority 7. A packet header priority of 7h is given this switch queue priority.
27	Reserved	Reserved
26-24	P3_PRI6	Port 3 Priority 6. A packet header priority of 6h is given this switch queue priority.
23	Reserved	Reserved
22-20	P3_PRI5	Port 3 Priority 5. A packet header priority of 5h is given this switch queue priority.
19	Reserved	Reserved
18-16	P3_PRI4	Port 3 Priority 4. A packet header priority of 4h is given this switch queue priority.
15	Reserved	Reserved
14-12	P3_PRI3	Port 3 Priority 3. A packet header priority of 3h is given this switch queue priority.
11	Reserved	Reserved
10-8	P3_PRI2	Port 3 Priority 2. A packet header priority of 2h is given this switch queue priority.
7	Reserved	Reserved
6-4	P3_PRI1	Port 3 Priority 1. A packet header priority of 1h is given this switch queue priority.
3	Reserved	Reserved
2-0	P3_PRI0	Port 3 Priority 0. A packet header priority of 0h is given this switch queue priority.

3.5.2.5 MAC3 Source Address Low Register (MAC3_SA_LO)

The MAC3 Source Address Low Register is shown in Figure 3-66 and described in Table 3-78.

Figure 3-66. MAC3 Source Address Low Register (MAC3_SA_LO)

31				16
		Reserved		
		R-0		
15		8 7		0
	MACSRCADDR0		MACSRCADDR1	
	R/W-0		R/W-0	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-78. MAC3 Source Address Low Register (MAC3_SA_LO) Field Descriptions

Bits	Field	Description	
31-16	Reserved	Reserved	
15-8	MACSRCADDR0	purce address bits 7-0 (byte 0).	
7-0	MACSRCADDR1	Source address bits 15-8 (byte 1).	

TEXAS INSTRUMENTS

www.ti.com

Ethernet Switch Module

3.5.2.6 MAC3 Source Address High Register (MAC3_SA_HI)

The MAC3 Source Address High Register is shown in Figure 3-67 and described in Table 3-79.

Figure 3-67. MAC3 Source Address High Register (MAC3_SA_HI)

31		24 23	16
	MACSRCADDR2	M	IACSRCADDR3
	R/W-0		R/W-0
15		8 7	0
	MACSRCADDR4	M	IACSRCADDR5
	R/W-0		R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-79. MAC3 Source Address High Register (MAC3_SA_HI) Field Descriptions

Bits	Field	Description
31-24	MACSRCADDR2	Source address bits 23-16 (byte 2).
23-16	MACSRCADDR3	Source address bits 31-24 (byte 3).
15-8	MACSRCADDR4	Source address bits 39-32 (byte 4).
7-0	MACSRCADDR5	Source address bits 47-40 (byte 5).

3.5.2.7 Port 3 Time Sync Control Register (P3 _TS_CTL)

The Port 3 Time Sync Control Register is shown in Figure 3-68 and described in .

Figure 3-68. Port 3 Time Sync Control Register (P3_TS_CTL)

31	16		7	6		
P3_TX_MSG_TYPE_EN		Rese	erved	P3_TS_TX_VLAN_LTYPE2_EN		
R/W-0		R-	-0	R/W-0		
5	4	3	2	1	0	
P3_TS_TX_VLAN_LTYPE1 _EN	P2_TS_TX _EN	Reserved	P3_TS_RX_VLAN_LTYPE2 _EN	P3_TX_TX_VLAN_LTYPE1 _EN	P3_TS_RX_EN	
R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-80. Port 3 Time Sync Control Register (P3_TS_CTL) Field Descriptions

Bits	Field	Description
31-16	P3_TX_MSG_TYPE_EN	Port 3 Time Sync Message Type Enable. Each bit in this field enables the corresponding message type in receive and transmit time sync messages (Bit 0 enables message type 0 etc.).
15-11	Reserved	Reserved
10	P3_TS_TX_ANNEX_E_EN	Port 3 Time Sync Transmit Annex E Enable
		• 0 = Port 1 Transmit Time Sync TX Annex E disabled
		1 = Port 1 Transmit Time Sync TX Annex E enabled
9	P3_TS_RX_ANNEX_E_EN	Port 3 Time Sync Receive Annex E Enable
		• 0 = Port 1 Transmit Time Sync RX Annex E disabled
		• 1 = Port 1 Transmit Time Sync RX Annex E enabled
8	PS_TS_LTYPE2_EN	Port 3 TIme Sync LTYPE 2 Enable (Transmit and Receive)
		• 0 = Port 1 Transmit Time Sync LTYPE 2 disabled
		• 1 = Port 1 Transmit Time Sync LTYPE 2 enabled
7	P3_TS_TX_ANNEX_D_EN	Port 3 Time Sync Transmit Annex D Enable
		• 0 = Port 1 Transmit Time Sync TX Annex D disabled
		• 1 = Port 1 Transmit Time Sync TX Annex D enabled
6	P3_TS_TX_VLAN_LTYPE2_EN	Port 3 Time Sync Transmit VLAN LTYPE 2 enable.
		• 0 = Port 1 Transmit Time Sync TX VLAN LTYPE 2 disabled
		• 1 = Port 1 Transmit Time Sync TX VLAN LTYPE 2 enabled
5	P3_TS_TX_VLAN_LTYPE1_EN	Port 3 Time Sync Transmit VLAN LTYPE 1 enable.
		• 0 = Port 1 Transmit Time Sync TX VLAN LTYPE1 disabled
		• 1 = Port 1 Transmit Time Sync TX VLAN LTYPE1 enabled
4	P3_TS_TX_ANNEX_F_EN	Port 3 Time Sync Transmit Annex F Enable
		• 0 = Port 1 Transmit Time Sync TX Annex F disabled
		• 1 = Port 1 Transmit Time Sync TX Annex F enabled
3	P3_TS_RX_ANNEX_D_EN	Port 3 Time Sync Receive Annex D Enable
		• 0 = Port 1 Transmit Time Sync RX Annex D disabled
		• 1 = Port 1 Transmit Time Sync RX Annex D enabled
2	P3_TS_RX_VLAN_LTYPE2_EN	Port 3 Time Sync Receive VLAN LTYPE 2 enable.
		• 0 = Port 1 Transmit Time Sync RX VLAN LTYPE 2 disabled
		• 1 = Port 1 Transmit Time Sync RX VLAN LTYPE 2 enabled
1	P3_TS_RX_VLAN_LTYPE1_EN	Port 3 Time Sync Receive VLAN LTYPE 1 enable.
		• 0 = Port 1 Transmit Time Sync RX VLAN LTYPE1 disabled
		• 1 = Port 1 Transmit Time Sync RX VLAN LTYPE1 enabled
0	P3_TS_RX_ANNEX_F_EN	Port 3 Time Sync Receive Annex F Enable
		 0 = Port 1 Transmit Time Sync RX Annex F disabled
		• 1 = Port 1 Transmit Time Sync RX Annex F enabled

Ethernet Switch Module

3.5.2.8 Port 3 Time Sync Sequence ID and LTYPE Register (P3_TS_SEQ_LTYPE)

The Port 3 Time Sync Sequence ID and LTYPE Register is shown in Figure 3-69 and described in Table 3-81.

Figure 3-69. Port 3 Time Sync Sequence ID and LTYPE Register (P3_TS_SEQ_LTYPE)

	•		\mathbf{c} \mathbf{c} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z}
31		22 21 1	6 15 0
	Reserved	P3_TS_SEQ_ID _OFFSET	P3_TS_LTYPE
	R-0	R/W-1Eh	R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-81. Port 3 Time Sync Sequence ID and LTYPE Register (P3_TS_SEQ_LTYPE) Field Descriptions

Bits	Field	Description
31-22	Reserved	Reserved
21-16	P3_TX_SEQ_ID_OFFSET	Port 3 Time Sync Sequence ID Offset. This is the number of octets that the sequence ID is offset in the transmit and receive time sync message header. The minimum value is 6.
15-0	P3_TS_LTYPE	Port 3 Time Sync LTYPE. This is the LTYPE value to match for transmit and receive time sync messages.

3.5.2.9 Port 3 Time Sync VLAN LTYPE Register (P3_TS_VLAN_LTYPE)

The Port 3 Time Sync VLAN LTYPE Register is shown in Figure 3-70 and described in Table 3-82.

Figure 3-70. Port 3 Time Sync VLAN LTYPE Register (P3_TS_VLAN_LTYPE)

31 16	15 0
P3_TS_VLAN_LTYPE2	P3_TS_VLAN_LTYPE1
R/W-8100h	R/W-8100h

Legend: R = Read only; R/W = Read/Write; - *n* = value after reset

Table 3-82. Port 3 Time Sync VLAN LTYPE Register (P3_TS_VLAN_LTYPE) Field Descriptions

Bits	Field	Description
31-16	P3_TS_VLAN_LTYPE2	Port 3 Time Sync VLAN LTYPE2. This VLAN LTYPE value is used for port 1 transmit and receive time sync decode.
15-0	P3_TS_VLAN_LTYPE1	Port 3 Time Sync VLAN LTYPE1. This VLAN LTYPE value is used for port 1 transmit and receive time sync decode.

Ethernet Switch Module

www.ti.com

3.5.2.10 Port 3 Time Sync Control and LTYPE2 Register (P3 _TS_CTL_LTYPE2)

The Port 3 Time Sync Control Register LTYPE2 is shown in Figure 3-71 and described in Table 3-83.

Figure 3-71. Port 3 Time Sync Control and LTYPE2 Register (P3_TS_CTL_LTYPE2)

	3				· J · · · · -		,
31				25	24		23
		Reserved			P3_TS_UNI	_EN P3_TS	_TTL_NONZER
		R-0			R/W-0		R/W-0
22	21	20	19	18	17	16	15 0
P3_TS_320	P3_TS_319	P3_TS_132	P3_TS_131	P3_TS_130	P3_TS_129	P3_TS_107	P3_TS _LTYPE2
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

Legend: R = Read only; R/W = Read/Write; - *n* = value after reset

Table 3-83. Port 3 Time Sync Control and LTYPE2 Register (P3_TS_CTL_LTYPE2) Field Descriptions

Bits	Field	Description
31-25	Reserved	Reserved
24	P3_TS_UNI_EN	Port 3 Time Sync Unicast Address Enable
		0 = Port 1 Transmit Time Sync RX VLAN LTYPE1 disabled
		 1 = Port 1 Transmit Time Sync RX VLAN LTYPE1 enabled
23	P3_TS_TTL_NONZER	Port 3 Time Sync to Live Non-Zero Enable
	0	• 0 = TTL must be 0
		• 1 = TTL may be non-zero
22	P3_TS_320	Port 3 Time Sync Destination Port Number 320 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) destination port number 320 (Decimal) is enabled.
21	P3_TS_319	Port 3 Time Sync Destination Port Number 319 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) destination port number 319 (Decimal) is enabled.
20	P3_TS_132	Port 3 Time Sync Destination IP Address 132 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) Destination IP Address (Decimal) 224.0.0.132 is enabled
19	P3_TS_131	Port 3 Time Sync Destination IP Address 131 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) Destination IP Address (Decimal) 224.0.0.131 is enabled
18	P3_TS_130	Port 3 Time Sync Destination IP Address 130 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) Destination IP Address (Decimal) 224.0.0.130 is enabled
17	P3_TS_129	Port 3 Time Sync Destination IP Address 129Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) Destination IP Address (Decimal) 224.1.1.129 is enabled
16	P3_TS_107	Port 3 Time Sync Destination IP Address 132 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) Destination IP Address (Decimal) 224.0.0.107 is enabled
15-0	P3_TS_LTYPE2	Port 3 Time Sync LTYLPE2. This is the time sync value for LTYPE2 for port 3.

3.5.2.11 Port 3 Time Sync Control Register 2 (P3 _TS_CTL2)

The Port 3 Time Sync Control Register 2 is shown in Figure 3-72 and described in Table 3-84 .

Figure 3-72. Port 3 Time Sync Control Register 2 (P3_TS_CTL2)

31 22	21	16	15	0
Reserved	P3_TS_DOMAIN	_OFFSET	P3_TS_MC	AST_TYPE_EN
R-0	R/W-0		F	2/W-0

Legend: R = Read only; R/W = Read/Write; - *n* = value after reset

Table 3-84. Port 3 Time Sync Control 2 Register (P3_TS_CTL2) Field Descriptions

Bits	Field	Description
31-22	Reserved	Reserved
21-16	P3_TS_DOMAIN_OFFSET	Port 3 Time Sync Domain Offset. This is the number of octets that the domain is offset in the TX and RX time sync PTP message header. The minimum value is 24.
15-0	P3_TS_MCAST_TYPE_EN	Port 3 Time Sync Multicast Destination Address Type Enable. Each bit in this field enables the corresponding destination address in receive and transmit time sync messages; i.e., bit 0 enables destination type 0x0, bit1 enables 0x1, and so on.

Texas Instruments

www.ti.com

Ethernet Switch Module

3.5.2.12 Port 4 Max Blocks Register (P4_MAX_BLKS)

The Port 4 Max Blocks Register is shown in Figure 3-73 and described in Table 3-85.

31 9	8 4	3 0
Reserved	P4_TX_MAX_BLKS	P4_RX_MAX_BLKS
R-0	R/W-11h	R/W-3h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-85. Port 4 Max Blocks Register (P4_MAX_BLKS) Field Descriptions

Bits	Field	Description
31-9	Reserved	Reserved
8-4	P4_TX_MAX_BLKS	Transmit FIFO Maximum Blocks. This value is the maximum number of 4k memory blocks that may be allocated to the FIFO's logical transmit priority queues. 11h is the recommended value of P4_TX_MAX_BLKS unless the port is in fullduplex flow control mode. In flow control mode, the P4_RX_MAX_BLKS will need to increase in order to accept the required run out in fullduplex mode. This value will need to decrease by the amount of increase in P4_RX_MAX_BLKS. Eh is the minimum value of this field.
3-0	P4_RX_MAX_BLKS	Receive FIFO Maximum Blocks – This value is the maximum number of 4k memory blocks that may be allocated to the FIFO's logical receive queue. This value must be greater than or equal to 3h. It should be increased In fullduplex flow control mode to accommodate the required runout space. The P4_TX_MAX_BLKS value must be decreased by the amount of increase in P4_RX_MAX_BLKS. 3h is the minimum value and 0xf is the maximum value of this field.

3.5.2.13 Port 4 Block Count Register (P4_BLK_CNT)

The Port 4 Block Count Register is shown in Figure 3-74 and described in Table 3-86.

Figure 3-74. Port 4 Block Count Register (P4_BLK_CNT)

31 9	8 4	3 0
Reserved	P4_TX_BLK_CNT	P4_RX_BLK_CNT
R-0	R-4h	R/W-1h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-86. Port 4 Block Count Register (P4_BLK_CNT) Field Descriptions

Bits	Field	Description
31-9	Reserved	Reserved
8-4	P4_TX_BLK_CNT	Port 4 Transmit Block Count Usage. This value is the number of blocks allocated to the FIFO logical transmit queues.
3-0	P4_RX_BLK_CNT	Port 4 Receive Block Count Usage. This value is the number of blocks allocated to the FIFO logical receive queues.

Ethernet Switch Module

3.5.2.14 Port 4 VLAN Register (P4_PORT_VLAN)

The Port 4 VLAN Register is shown in Figure 3-75 and described in Table 3-87.

Figure 3-75. Port 4 VLAN Register (P4_PORT_VLAN)

31					1	6
					Reserved	
					R-0	
15		13	12	11		0
	PORT_PRI		PORT _CFI		PORT_VID	
	R/W-0		R/W-0		R/W-0	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-87. Port 4 VLAN Register (P4_PORT_VLAN) Field Descriptions

Bits	Field	Description
31-16	Reserved	Reserved
15-13	PORT_PRI	Port VLAN Priority (7 is highest priority).
12	PORT_CFI	Port CFI bit.
11-0	PORT_VID	Port VLAN ID.

3.5.2.15 Port 4 Transmit Header Priority to Switch Priority Mapping Register (P4_TX_PRI_MAP)

The Port 4 Transmit Header Priority To Switch Priority Mapping Register is shown in Figure 3-76 and described in Table 3-88.

Figure 3-76. Port 4 Transmit Header Priority to Switch Priority Mapping Register (P4_TX_PRI_MAP)

	•										•	0	• -		,
 31	30		28	27	26		24	23	22		20	19	18		16
Rsvd		P4_PRI7		Rsvd		P4_PRI6		Rsvd		P4_PRI5		Rsvd		P4_PRI4	
R-0		R/W-3h		R-0		R/W-3h		R-0		R/W-2h		R-0		R/W-2h	
15	14		12	11	10		8	7	6		4	3	2		0
Rsvd		P4_PRI3		Rsvd		P4_PRI2		Rsvd		P4_PRI1		Rsvd		P4_PRI0	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-88. Port 4 Transmit Header Priority to Switch Priority Mapping Register (P4_TX_PRI_MAP) Field Descriptions

Bits	Field	Description
31	Reserved	Reserved
30-28	P4_PRI7	Port 4 Priority 7. A packet header priority of 7h is given this switch queue priority.
27	Reserved	Reserved
26-24	P4_PRI6	Port 4 Priority 6. A packet header priority of 6h is given this switch queue priority.
23	Reserved	Reserved
22-20	P4_PRI5	Port 4 Priority 5. A packet header priority of 5h is given this switch queue priority.
19	Reserved	Reserved
18-16	P4_PRI4	Port 4 Priority 4. A packet header priority of 4h is given this switch queue priority.
15	Reserved	Reserved
14-12	P4_PRI3	Port 4 Priority 3. A packet header priority of 3h is given this switch queue priority.
11	Reserved	Reserved
10-8	P4_PRI2	Port 4 Priority 2. A packet header priority of 2h is given this switch queue priority.
7	Reserved	Reserved
6-4	P4_PRI1	Port 4 Priority 1. A packet header priority of 1h is given this switch queue priority.
3	Reserved	Reserved
2-0	P4_PRI0	Port 4 Priority 0. A packet header priority of 0h is given this switch queue priority.

3.5.2.16 MAC4 Source Address Low Register (MAC4_SA_LO)

The MAC4 Source Address Low Register is shown in Figure 3-77 and described in Table 3-89.

Figure 3-77. MAC4 Source Address Low Register (MAC4_SA_LO)

31				16
		Rese	erved	
		R	-0	
15		8	7	0
	MACSRCADDR0		MACSRCADDR1	
	R/W-0		R/W-0	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-89. MAC4 Source Address Low Register (MAC4_SA_LO) Field Descriptions

Bits	Field	Description			
31-16	Reserved	eserved			
15-8	MACSRCADDR0	Source address bits 7-0 (byte 0).			
7-0	MACSRCADDR1	Source address bits 15-8 (byte 1).			

3.5.2.17 MAC4 Source Address High Register (MAC4_SA_HI)

The MAC4 Source Address High Register is shown in Figure 3-78 and described in Table 3-90.

Figure 3-78. MAC4 Source Address High Register (MAC4_SA_HI)

31	-	24	23		16
	MACSRCADDR2			MACSRCADDR3	
	R/W-0			R/W-0	
15		8	7		0
	MACSRCADDR4			MACSRCADDR5	
	R/W-0			R/W-0	

Legend: R/W = Read/Write; - n = value after reset

Table 3-90. MAC4 Source Address High Register (MAC4_SA_HI) Field Descriptions

Bits	Field	Description	
31-24	MACSRCADDR2	Source address bits 23-16 (byte 2).	
23-16	MACSRCADDR3	urce address bits 31-24 (byte 3).	
15-8	MACSRCADDR4	Source address bits 39-32 (byte 4).	
7-0	MACSRCADDR5	Source address bits 47-40 (byte 5).	

3.5.2.18 Port 4 Time Sync Control Register (P4 _TS_CTL)

The Port 4 Time Sync Control Register is shown in Figure 3-79 and described in .

Figure 3-79. Port 4 Time Sync Control Register (P4_TS_CTL)

31	16	15	7	6				
P4_TX_MSG_TYPE_EN		Rese	Reserved P4_TS_TX_VLAN_LTYPE2		EN			
R/W-0	R/W-0 R-0 R/W-0			R/W-0				
5 4		3	2	1	0			
P4_TS_TX_VLAN_LTYPE1 _EN	P4_TS_TX _EN	Reserved	P4_TS_RX_VLAN_LTYPE2 _EN	P4_TX_TX_VLAN_LTYPE1 _EN	P4_TS_RX_EN			
R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0			

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-91. Port 4 Time Sync Control Register (P4_TS_CTL) Field Descriptions

Bits	Field	Description
31-16	P4_TX_MSG_TYPE_EN	Port 4 Time Sync Message Type Enable. Each bit in this field enables the corresponding message type in receive and transmit time sync messages (Bit 0 enables message type 0 etc.).
15-11	Reserved	Reserved
10	P4_TS_TX_ANNEX_E_EN	Port 4 Time Sync Transmit Annex E Enable
9	P4_TS_RX_ANNEX_E_EN	Port 4 Time Sync Receive Annex E Enable
8	P4_TS_LTYPE2_EN	Port 4 TIme Sync LTYPE 2 Enable (Transmit and Receive)
7	P4_TS_TX_ANNEX_D_EN	Port 4 Time Sync Transmit Annex D Enable
6	P4_TS_TX_VLAN_LTYPE2_EN	Port 4 Time Sync Transmit VLAN LTYPE 2 enable.
5	P4_TS_TX_VLAN_LTYPE1_EN	Port 4 Time Sync Transmit VLAN LTYPE 1 enable.
4	P4_TS_TX_ANNEX_F_EN	Port 4 Time Sync Transmit Annex F Enable
3	P4_TS_RX_ANNEX_D_EN	Port 4 Time Sync Receive Annex D Enable
2	P4_TS_RX_VLAN_LTYPE2_EN	Port 4 Time Sync Receive VLAN LTYPE 2 enable.
1	P4_TS_RX_VLAN_LTYPE1_EN	Port 4 Time Sync Receive VLAN LTYPE 1 enable.
0	P4_TS_RX_ANNEX_F_EN	Port 4 Time Sync Receive Annex F Enable

3.5.2.19 Port 4 Time Sync Sequence ID and LTYPE Register (P4_TS_SEQ_LTYPE)

The Port 4 Time Sync Sequence ID and LTYPE Register is shown in Figure 3-80 and described in Table 3-92.

Figure 3-80. Port 4 Time Sync Sequence ID and LTYPE Register (P4_TS_SEQ_LTYPE)

31	-	22 21 16	5 15	0
	Reserved	P4_TS_SEQ_ID _OFFSET	P4_TS_LTYPE	
	R-0	R/W-1Eh	R/W-0	

Legend: R = Read only; R/W = Read/Write; - *n* = value after reset

Table 3-92. Port 4 Time Sync Sequence ID and LTYPE Register (P4_TS_SEQ_LTYPE) Field Descriptions

Bits	Field	Description
31-22	Reserved	Reserved
21-16	P4_TX_SEQ_ID_OFFSET	Port 4 Time Sync Sequence ID Offset. This is the number of octets that the sequence ID is offset in the transmit and receive time sync message header. The minimum value is 6.
15-0	P4_TS_LTYPE	Port 4 Time Sync LTYPE. This is the LTYPE value to match for transmit and receive time sync messages.

Texas Instruments

www.ti.com

Ethernet Switch Module

3.5.2.20 Port 4 Time Sync VLAN LTYPE Register (P4_TS_VLAN_LTYPE)

The Port 4 Time Sync VLAN LTYPE Register is shown in Figure 3-81 and described in Table 3-93.

Figure 3-81. Port 4 Time Sync VLAN LTYPE Register (P4_TS_VLAN_LTYPE)

•	\bullet \cdot $ \cdot$ \cdot
31 16	15 0
P4_TS_VLAN_LTYPE2	P4_TS_VLAN_LTYPE1
RW=8100h	RW=8100h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-93. Port 4 Time Sync VLAN LTYPE Register (P4_TS_VLAN_LTYPE) Field Descriptions

Bits	Field	Description
31-16	P4_TS_VLAN_LTYPE2	Port 4 Time Sync VLAN LTYPE2. This VLAN LTYPE value is used for port 1 transmit and receive time sync decode.
15-0	P4_TS_VLAN_LTYPE1	Port 4 Time Sync VLAN LTYPE1. This VLAN LTYPE value is used for port 1 transmit and receive time sync decode.

3.5.2.21 Port 4 Time Sync Control Register and LTYPE2 (P4 _TS_CTL_LTYPE2)

The Port 4 Time Sync Control Register LTYPE2 is shown in Figure 3-82 and described in Table 3-94.

Figure 3-82. Port 4 Time Sync Control Register and LTYPE2 (P4_TS_CTL_LTYPE2)

	-		-	-	•		•
31				25	24		23
Reserved				P4_TS_UNI	_EN P4_	TS_TTL_NONZER	
		R-0			R/W-0		R/W-0
22	21	20	19	18	17	16	15 0
P4_TS_320	P4_TS_319	P4_TS_132	P4_TS_131	P4_TS_130	P4_TS_129	P4_TS_10	P4_TS _LTYPE2
R/W-0	R/W-0						

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-94. Port 4 Time Sync Control Register and LTYPE2 (P4_TS_CTL_LTYPE2) Field Descriptions

Bits	Field	Description
31-25	Reserved	Reserved
24	P4_TS_UNI_EN	Port 4 Time Sync Unicast Address Enable
		• 0 = Port 1 Transmit Time Sync RX VLAN LTYPE1 disabled
		 1 = Port 1 Transmit Time Sync RX VLAN LTYPE1 enabled
23	P4_TS_TTL_NONZERO	Port 4 Time Sync to Live Non-Zero Enable
		• 0 = TTL must be 0
		• 1 = TTL may be non-zero
22	P4_TS_320	Port 4 Time Sync Destination Port Number 320 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) destination port number 320 (decimal) is enabled.
21	P4_TS_319	Port 4 Time Sync Destination Port Number 319 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) destination port number 319 (decimal) is enabled.
20	P4_TS_132	Port 4 Time Sync Destination IP Address 132 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) Destination IP Address (decimal) 224.0.0.132 is enabled
19	P4_TS_131	Port 4 Time Sync Destination IP Address 131 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) Destination IP Address (decimal) 224.0.0.131 is enabled
18	P4_TS_130	Port 4 Time Sync Destination IP Address 130 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) Destination IP Address (decimal) 224.0.0.130 is enabled
17	P4_TS_129	Port 4 Time Sync Destination IP Address 129Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) Destination IP Address (decimal) 224.1.1.129 is enabled
16	P4_TS_107	Port 4 Time Sync Destination IP Address 132 Enable
		• 0 = Disabled
		• 1 = UDP (Annex D/E) Destination IP Address (decimal) 224.0.0.107 is enabled
15-0	P4_TS_LTYPE2	Port 4 Time Sync LTYLPE2. This is the time sync value for LTYPE2 for port 4.

Texas Instruments

www.ti.com

Ethernet Switch Module

3.5.2.22 Port 4 Time Sync Control Register 2 (P4 _TS_CTL2)

The Port 4 Time Sync Control Register 2 is shown in Figure 3-83 and described in Table 3-84.

Figure 3-83. Port 4 Time Sync Control Register 2 (P4_TS_CTL2)

31 22	21	16	15	0
Reserved	P3_TS_DOMAIN_OFF	SET	P3_TS_MC/	AST_TYPE_EN
R-0	R/W-0		R	/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-95. Port 4 Time Sync Control 2 Register (P4_TS_CTL2) Field Descriptions

Bits	Field	Description	
31-22	Reserved	Reserved	
21-16	P4_TS_DOMAIN_OFFSET	Port 4 Time Sync Domain Offset. This is the number of octets that the domain is offset in the TX and RX time sync PTP message header. The minimum value is 24.	
15-0	P4_TS_MCAST_TYPE_EN	Port 4 Time Sync Multicast Destination Address Type Enable. Each bit in this field enables the corresponding destination address in receive and transmit time sync messages; ie. bit 0 enables destination type 0x0, bit1 enables 0x1, and so on.	

3.5.3 Ethernet Media Access Controller (EMAC) Submodule

This section describes the registers available in the Ethernet Media Access Controller (EMAC) modules.

There are two EMAC modules in the Ethernet switch. EMAC1 is used with switch port 1 and EMAC2 is used with port 2. The EMAC1 and EMAC2 modules each have identical registers.

The memory offset addresses listed in this section in Table 3-106 are relative to the EMAC module. See Table 3-1 for the offset address of the EMAC modules. A complete list of all of the registers in the GbE switch subsystem is provided in Table 3-3 (KeyStone I) and in Table 3-4 (KeyStone II).

Table 3-96 lists the registers in the Ethernet Media Access Controller (EMAC) module and the corresponding offset address for each register.

Offset Address ⁽¹⁾	Acronym	Register Name	Section
000h	MAC_IDVER	MAC Identification and Version Register	Section 3.5.3.1
004h	MAC_MAC_CTL	MAC Control Register	Section 3.5.3.3
008h	MAC_MAC_STATUS	MAC Status Register	Section 3.5.3.3
00Ch	MAC_SOFT_RESET	Soft Reset Register	Section 3.5.3.4
010h	MAC_RX_MAXLEN	RX Maximum Length Register	Section 3.5.3.5
014h	Reserved	Reserved	Reserved
018h	MAC_RX_PAUSE	Receive Pause Timer Register	Section 3.5.3.6
01Ch	MAC_TX_PAUSE	Transmit Pause Timer Register	Section 3.5.3.7
020h	MAC_EM_CTL	Emulation Control	Section 3.5.3.8
024h	MAC_RX_PRI_MAP	Priority Mapping Register	Section 3.5.3.9
028-0FC	Reserved	Reserved	Reserved

Table 3-96. EMAC Registers

⁽¹⁾ The actual addresses of these registers are device specific. See your device-specific data manual to verify the register addresses.

Ethernet Switch Module

3.5.3.1 MAC Identification and Version Register (MAC_IDVER)

The MAC Identification and Version Register is shown in Figure 3-84 and described in Table 3-97.

Figure 3-84. MAC Identification and Version Register (MAC_IDVER)

31					16
		I	MAC_IDENT		
			R-17h		
15		11 10	8 7		0
	MAC_RTL_VER	MAC_MAJOR_V	ER	MAC_MINOR_VER	
	R-0	R-1h		R-Eh	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-97. MAC Identification and Version Register (MAC_IDVER) Field Descriptions

Bits	Field	Description
31-16	MAC_IDENT	Identification value
15-11	MAC_RTL_VER	RTL version value
10-8	MAC_MAJOR_VER	Major version value
7-0	MAC_MINOR_VER	Minor version value

3.5.3.2 MAC Control Register (MAC_CONTROL)

The MAC Control Register is shown in Figure 3-85 and described in Table 3-98.

					(· — ,	
31						25	24
			Reserved				RX_CMF_EN
			R-0				R/W-0
23	22	21		19	18	17	16
RX_CSF_EN	RX_CEF_EN		Reserved		EXT_EN	GIG_FORCE	IFCTL_B
R/W-0	R/W-0		R-0		R/W-0	R/W-0	R/W-0
15	14		12	11	10	9	8
IFCTL_A		Reserved		CMD_IDLE	TX_SHORT_GAP _EN	Rese	erved
R/W-0		R-0		R/W-0	R/W-0	R	-0
7	6	5	4	3	2	1	0
GIG	TX_PACE	GMII_EN	TX_FLOW_EN	RX_FLOW_EN	Reserved	LOOPBACK	FULLDUPLEX
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		a a al () A / aita a					

Figure 3-85. MAC Control Register (MAC_CONTROL)

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-98. MAC Control Register (MAC_CONTROL) Field Descriptions

Bits	Field	Description	
31-25	Reserved	Reserved	
24	RX_CMF_EN	Receive Copy MAC Control Frames Enable. Enables MAC control frames to be transferred to memory. MAC control frames are normally acted upon (if enabled), but not copied to memory. MAC control frames that are pause frames will be acted upon if enabled in the MAC_CTL register, regardless of the value of RX_CMF_EN. Frames transferred to memory due to RX_CMF_EN will have the CONTROL bit set in their EOP buffer descriptor.	
		• 0 = MAC control frames are filtered (but acted upon if enabled).	
		• 1 = MAC control frames are transferred to memory.	
23	RX_CSF_EN	RX Copy Short Frames Enable – Enables frames or fragments shorter than 64 bytes to be copied to memory. Frames transferred to memory due to RX_CSF_EN will have the FRAGMENT or UNDERSIZED bit set in their receive footer. Fragments are short frames that contain CRC/align/code errors and undersized are short frames without errors.	
		• 0 = Short frames are filtered.	
		• 1 = Short frames are transferred to memory.	
22	RX_CEF_EN	RX Copy Error Frames Enable – Enables frames containing errors to be transferred to memory. The appropriate error bit will be set in the frame receive footer. Frames containing errors will be filtered when RX_CEF_EN is not set.	
		• 0 = Frames containing errors are filtered.	
		• 1 = Frames containing errors are transferred to memory.	
21-19	Reserved	Reserved	
18	EXT_EN	Control Enable. Enables the fullduplex and gigabit mode to be selected from the FULLDUPLEX_IN and GIG_IN input signals and not from the FULLDUPLEX and GIG bits in this register. The FULLDUPLEX MODE bit reflects the actual fullduplex mode selected.	
17	GIG_FORCE	Gigabit Mode Force. This bit is used to force the MAC into gigabit mode if the input GMII_MTCLK has been stopped by the PHY.	
16	IFCTL_B	Interface Control B. Intended as a general purpose output bit to be used to control external gaskets associated with the GMII (GMII to RGMII etc.).	
15	IFCTL_A	Interface Control A. Intended as a general purpose output bit to be used to control external gaskets associated with the GMII (GMII to RGMII etc.).	
14-12	Reserved	Reserved	
11	CMD_IDLE	Command Idle.	
		• 0 = Idle not commanded.	
		• 1 = Idle Commanded (read IDLE in MACSTATUS).	

Table 3-98. MAC Control Register (MAC_CONTROL) Field Descriptions (continued)

Bits	Field	Description
10	TX_SHORT_GAP_EN	Transmit Short Gap Enable.
		• 0 = Transmit with a short IPG is disabled.
		 1 = Transmit with a short IPG (when TX_SHORT_GAP input is asserted) is enabled.
9-8	Reserved	Reserved
7	GIG	Gigabit Mode. The GIG_OUT output is the value of this bit.
		• 0 = 10/100 mode.
		• 1 = Gigabit mode (full duplex only).
6	TX_PACE	Transmit Pacing Enable.
		• 0 = Transmit Pacing Disabled.
		 1 = Transmit Pacing Enabled.
5	GMII_EN	GMII Enable.
		 0 = GMII receive and transmit held in reset.
		 1 = GMII receive and transmit released from reset.
4	TX_FLOW_EN	Transmit Flow Control Enable. Determines if incoming pause frames are acted upon in full-duplex mode.
		Incoming pause frames are not acted upon in half-duplex mode regardless of this bit setting. The
		RX_MBP_ENABLE bits determine whether or not received pause frames are transferred to memory.
		• 0 = Transmit Flow Control Disabled.
		Full-duplex mode – Incoming pause frames are not acted upon.
		• 1 = Transmit Flow Control Enabled.
0		Full-duplex mode – Incoming pause frames are acted upon.
3	RX_FLOW_EN	Receive Flow Control Enable.
		• 0 = Receive Flow Control Disabled
		Half-duplex mode – No flow control generated collisions are sent. Full-duplex mode – No outgoing pause frames are sent.
		 1 = Receive Flow Control Enabled
		Half-duplex mode – Collisions are initiated when receive flow control is triggered.
		Full-duplex mode - Outgoing pause frames are sent when receive flow control is triggered.
2	Reserved	Reserved
-	LOOPBACK	Loop Back Mode. Loopback mode forces internal fullduplex mode regardless of whether the
1	LOOI BACK	FULLDUPLEX bit is set or not. The LOOPBACK bit should be changed only when GMII_EN is
		deasserted.
		• 0 = Not looped back.
		 1 = Loop Back Mode enabled.
0	FULLDUPLEX	Full Duplex mode. Gigabit mode forces fullduplex mode regardless of whether the FULLDUPLEX bit is set or not. The FULLDUPLEX_OUT output is the value of this register bit.
		• 0 = half duplex mode.
		• 1 = full duplex mode.

3.5.3.3 MAC Status Register (MACSTATUS)

The MAC Status Register is shown in Figure 3-86 and described in Table 3-99.

Figure 3-86. MAC Status Register (MACSTATUS)

31	30 5	4	3	2	1	0
IDL E	Reserved	EXT_GIG	EXT_FD	Reserved	RX_FLOW _ACT	TX_FLOW _ACT
R- 1h	R-0	R-0	R-0	R-0	R-0	R-0

Legend: R = Read only; W = Write only; - n = value after reset

Table 3-99. MAC Status Register (MACSTATUS) Field Descriptions

Bits	Field	Description	
31	IDLE	IDLE – The MAC is in the idle state (valid after an idle command).	
		• 0 = The MAC is not in the idle state.	
		• 1 = The MAC is in the idle state.	
30-5	Reserved	served	
4	EXT_GIG	External GIG. This is the value of the EXT_GIG input bit.	
3	EXT_FD	External Fullduplex. This is the value of the EXT_FULLDUPLEX input bit.	
2	Reserved	Reserved	
1	RX_FLOW_ACT	Receive Flow Control Active. When asserted, indicates that receive flow control is enabled and triggered.	
0	TX_FLOW_ACT	Transmit Flow Control Active. When asserted, this bit indicates that the pause time period is being observed for a received pause frame. No new transmissions will begin while this bit is asserted except for the transmission of pause frames. Any transmission in progress when this bit is asserted will complete.	

3.5.3.4 Software Reset Register (SOFT_RESET)

The Software Reset Register is shown in Figure 3-87 and described in Table 3-100.

Figure 3-87. Software Reset Register (SOFT_RESET)

31	1	0
Reserved		SOFT _RESET
R-0		R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-100. Software Reset Register (SOFT_RESET) Field Descriptions

Bits	Field	Description
31-1	Reserved	Reserved
0	SOFT_RESET	Software reset. Writing a 1 to this bit causes the MAC logic to be reset. After writing a 1 to this bit, it may be polled to determine if the reset has occurred. If a 1 is read, the reset has not yet occurred. If a 0 is read then reset has occurred.

3.5.3.5 Receive Maximum Length Register (RX_MAXLEN)

The Receive Maximum Length Register is shown in Figure 3-88 and described in Table 3-101.

Figure 3-88. Receive Maximum Length Register (RX_MAXLEN)

31 14	13 0
Reserved	RX_MAXLEN
R-0	R/W-5EEh

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-101. Receive Maximum Length Register (RX_MAXLEN) Field Descriptions

Bits	Field	Description
31-14	Reserved	Reserved
13-0	RX_MAXLEN	Reserved Maximum Frame Length. This field determines the maximum length of a received frame. The reset value is 1518 (dec). Frames with byte counts greater than RX_MAXLEN are long frames. Long frames with no errors are oversized frames. Long frames with CRC, code, or alignment error are jabber frames. The maximum value is 16,383.

Texas Instruments

Ethernet Switch Module

3.5.3.6 Receive Pause Timer Register (RX_PAUSE)

The Receive Pause Timer Register is shown in Figure 3-89 and described in Table 3-102.

Figure 3-89. Receive Pause Timer Register (RX_PAUSE)

31 16	15 0
Reserved	RX_PAUSETIMER
R-0	R-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-102. Receive Pause Timer Register (RX_PAUSE) Field Descriptions

Bits	Field	Description
31-16	Reserved	Reserved
15-0	RX_PAUSETIMER	Receive Pause Timer Value. This field allows the contents of the receive pause timer to be observed. The receive pause timer is loaded with FF00h when the MAC sends an outgoing pause frame (with pause time of FFFFh). The receive pause timer is decremented at slot time intervals. If the receive pause timer decrements to 0, then another outgoing pause frame will be sent and the load/decrement process will be repeated.

3.5.3.7 Transmit Pause Timer Register (TX_PAUSE)

The Transmit Pause Timer Register is shown in Figure 3-90 and described in Table 3-103.

Figure 3-90. Transmit Pause Timer Register (TX_PAUSE)

31 16	15 0
Reserved	TX_PAUSETIMER
R-0	R-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-103. Transmit Pause Timer Register (TX_PAUSE) Field Descriptions

Bits	Field	Description
31-16	Reserved	Reserved
15-0	TX_PAUSETIMER	Transmit Pause Timer Value. This field allows the contents of the transmit pause timer to be observed. The transmit pause timer is loaded by a received (incoming) pause frame, and then decremented, at slot time intervals, down to 0, at which time MAC transmit frames are again enabled.

Ethernet Switch Module

Ethernet Switch Module

3.5.3.8 Emulation Control Register (EM_CONTROL)

The Emulation Control Register is shown in Figure 3-91 and described in Table 3-104.

Figure 3-91. Emulation Control Register (EM_CONTROL)

31	2	1	0
Reserved		SOFT	FREE
R-0		R/W-0	R/W-0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-104. Emulation Control Register (EM_CONTROL) Field Descriptions

Bits	Field	Description
31-2	Reserved	Reserved
1	SOFT	Emulation soft bit.
0	FREE	Emulation free bit.

3.5.3.9 Receive Packet Priority to Header Priority Mapping Register (MAC_RX_PRI_MAP)

The Receive Packet to Priority Header Priority Mapping Register is shown in Figure 3-92 and described in Table 3-105.

Figure 3-92. Receive Packet Priority to Header Priority Mapping Register (MAC_RX_PRI_MAP)

		0										•	_		'
_	31	30	28	27	26		24	23	22		20	19	18		16
	Rsvd	MAC_PRI7		Rsvd		MAC_PRI6		Rsvd		MAC_PRI5		Rsvd		MAC_PRI4	
	R-0	R/W-7h		R-0		R/W-6h		R-0		R/W-5h		R-0		R/W-4h	
	15	14	12	11	10		8	7	6		4	3	2		0
	15 Rsvd	14 MAC_PRI3	12	11 Rsvd	10	MAC_PRI2	8	7 Rsvd	6	MAC_PRI1	4	3 Rsvd	2	MAC_PRI0	0
[-	1	12		10	MAC_PRI2 R/W-2h	8	7 Rsvd R-0	6	MAC_PRI1 R/W-1h	4	3 Rsvd R-0	2	MAC_PRI0 R/W-0h	0

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-105. Receive Packet Priority to Header Priority Mapping Register (MAC_RX_PRI_MAP) Field Descriptions

Bits	Field	Description
31	Reserved	Reserved
30-28	MAC_PRI7	Priority 7. A packet priority of 7h is mapped (changed) to this value.
27	Reserved	Reserved
26-24	MAC_PRI6	Priority 6. A packet priority of 6h is mapped (changed) to this value.
23	Reserved	Reserved
22-20	MAC_PRI5	Priority 5. A packet priority of 5h is mapped (changed) to this value.
19	Reserved	Reserved
18-16	MAC_PRI4	Priority 4. A packet priority of 4h is mapped (changed) to this value.
15	Reserved	Reserved
14-12	MAC_PRI3	Priority 3. A packet priority of 3h is mapped (changed) to this value.
11	Reserved	Reserved
10-8	MAC_PRI2	Priority 2 A packet priority of 2h is mapped (changed) to this value.
7	Reserved	Reserved
6-4	MAC_PRI1	Priority 1. A packet priority of 1h is mapped (changed) to this value.
3	Reserved	Reserved
2-0	MAC_PRI0	Priority 0. A packet priority of 0h is mapped (changed) to this value.

3.5.4 Statistics (STATS) Submodule

This section describes the registers available in the Statistics (STATS) modules.

There are two STATS modules in the Ethernet switch. STATSA records statistics on switch port 0. STATSB records statistics on switch port 1 and port 2. The STATSA and STATSB modules each have an identical registers.

The memory address offsets listed in this section in Table 3-106 are relative to the STATS module. See Table 3-1 for the offset address of each STATS module. A complete list of all of the registers in the GbE switch subsystem is provided in Table 3-3 (KeyStone I) and in Table 3-4 (KeyStone II).

Table 3-106 lists the registers in the Statistics (STATS) module and the corresponding offset address for each register.

Offset Address ⁽¹⁾	Acronym	Register Name	Section
00h	RXGOODFRAMES	Total number of good frames received	Section 3.5.4.1
04h	RXBROADCASTFRAMES	Total number of good broadcast frames received	Section 3.5.4.2
08h	RXMULTICASTFRAMES	Total number of good multicast frames received	Section 3.5.4.3
0Ch	RXPAUSEFRAMES	Total number of pause frames received	Section 3.5.4.4
10h	RXCRCERRORS	Total number of CRC errors frames received	Section 3.5.4.5
14h	RXALIGNCODEERRORS	Total number of alignment/code errors received	Section 3.5.4.6
18h	RXOVERSIZEDFRAMES	Total number of oversized frames received	Section 3.5.4.7
1Ch	RXJABBERFRAMES	Total number of jabber frames received	Section 3.5.4.8
20h	RXUNDERSIZEDFRAMES	Total number of undersized frames received	Section 3.5.4.9
24h	RXFRAGMENTS	Total number of fragment frames received	Section 3.5.4.10
28h-32Fh	Reserved	Reserved	Reserved
30h	RXOCTETS	Total number of received bytes in good frames	Section 3.5.4.11
34h	TXGOODFRAMES	Total number of good frames transmitted	Section 3.5.4.12
38h	TXBROADCASTFRAMES	Total number of good broadcast frames transmitted	Section 3.5.4.13
3Ch	TXMULTICASTFRAMES	Total number of good multicast frames transmitted	Section 3.5.4.14
40h	TXPAUSEFRAMES	Total number of pause frames transmitted	Section 3.5.4.15
44h	TXDEFERREDFRAMES	Total number of frames deferred	Section 3.5.4.16
48h	TXCOLLISIONFRAMES	Total number of collisions	Section 3.5.4.17
4Ch	TXSINGLECOLLFRAMES	Total number of single collision transmit frames	Section 3.5.4.18
50h	TXMULTCOLLFRAMES	Total number of multiple collision transmit frames	Section 3.5.4.19
54h	TXEXCESSIVECOLLISIONS	Total number of transmit frames aborted due to excessive collisions	Section 3.5.4.20
58h	TXLATECOLLISIONS	Total number of late collisions	Section 3.5.4.21
5Ch	TXUNDERRUN	Total number of transmit underrun errors	Section 3.5.4.22
60h	TXCARRIERSENSEERRORS	Total number of carrier sense errors	Section 3.5.4.23
64h	TXOCTETS	Total number of octets transmitted	Section 3.5.4.24
68h	640CTETFRAMES	Total number of 64 octet frames transmitted	Section 3.5.4.25
6Ch	65T127OCTETFRAMES	Total number of 65-127 octet frames transmitted	Section 3.5.4.26
70h	128T255OCTETFRAMES	Total number of 128-255 octet frames transmitted	Section 3.5.4.27
74h	256T511OCTETFRAMES	Total number of 256-511 octet frames transmitted	Section 3.5.4.28
78h	512T1023OCTETFRAMES	Total number of 512-1023 octet frames transmitted	Section 3.5.4.29
7Ch	1024TUPOCTETFRAMES	Total number of 1023-1518 octet frames transmitted	Section 3.5.4.30
80h	NETOCTETS	Total number of net octets	Section 3.5.4.31
84h	RXSOFOVERRUNS	Total number of receive FIFO or DMA start of frame overruns	Section 3.5.4.32

Table 3-106. STATS Registers

⁽¹⁾ The actual addresses of these registers are device specific. See your device-specific data manual to verify the register addresses.

Offset Address ⁽¹⁾	Acronym	Register Name	Section
88h	RXMOFOVERRUNS	Total number of receive FIFO or DMA middle of frame overruns	Section 3.5.4.33
8Ch	RXDMAOVERRUNS	Total number of receive DMA start of frame and middle of frame overruns	Section 3.5.4.34
90h-FFh	Reserved	Reserved	Reserved

Table 3-106. STATS Registers (continued)

TEXAS INSTRUMENTS

www.ti.com

3.5.4.1 Port n Good Receive Frames Register (STATn_RXGOODFRAMES)

The Good Receive Frames Register is shown in Figure 3-93 and described in Table 3-107.

Figure 3-93. Port n Good Receive Frames Register (STATn_RXGOODFRAMES)

31 0
RXGOODFRAMES
R-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-107. Port n Good Receive Frames Register (STATn_RXGOODFRAMES) Field Descriptions

Bits	Field	Description	
31-0	RXGOODFRAMES	The total number of good frames received on the port. A frame must match all of the following criteria to be considered a good frame:	
		The frame was a data or MAC control frame that matched a unicast, broadcast or multicast address, or matched due to promiscuous mode	
		 The frame was of length 64 to RX_MAXLEN bytes inclusive 	
		The frame did not have a CRC error, alignment error, or code error	
		Overruns have no effect on this statistic.	

0

3.5.4.2 Broadcast Receive Frames Register (RXBROADCASTFRAMES)

The Broadcast Receive Frames Register is shown in Figure 3-94 and described in Table 3-108.

Figure 3-94. Broadcast Receive Frames Register (RXBROADCASTFRAMES)

	3	1
-		

RXBROADCASTFRAMES

R-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-108. Broadcast Receive Frames Register (RXBROADCASTFRAMES) Field Descriptions

Bits	Field	Description	
31-0	RXBROADCASTFRAMES	The total number of good broadcast frames received on the port. A frame must match all of the following criteria to be considered a good broadcast frame:	
		The frame was a data or MAC control frame that was destined for address FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	
		 The frame was of length 64 to RX_MAXLEN bytes inclusive 	
		 The frame did not have a CRC error, alignment error, or code error 	
		Overruns have no effect on this statistic.	

3.5.4.3 Multicast Receive Frames Register (RXMULTICASTFRAMES)

The Multicast Receive Frames Register is shown in Figure 3-95 and described in Table 3-109.

Figure 3-95. Multicast Receive Frames Register (RXMULTICASTFRAMES)

31	0
RXMULTICASTFR	MES

R-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-109. Multicast Receive Frames Register (RXMULTICASTFRAMES) Field Descriptions

Bits	Field	Description	
31-0	RXMULTICASTFRAMES	The total number of good multicast frames received on the port. A frame must match all of the following criteria to be considered a good multicast frame:	
		 The frame was a data or MAC control frame that was destined for any multicast address other than FFFFFFFFFFh 	
		The frame was of length 64 to RX_MAXLEN bytes inclusive	
		The frame did not have a CRC error, alignment error, or code error	
		Overruns have no effect on this statistic.	

0

3.5.4.4 Pause Receive Frames Register (RXPAUSEFRAMES)

The Pause Receive Frames Register is shown in Figure 3-96 and described in Table 3-110.

Figure 3-96. Pause Receive Frames Register (RXPAUSEFRAMES)

		3	ſ
	1	-	
Г			

RXPAUSEFRAMES R-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-110. Pause Receive Frames Register (RXPAUSEFRAMES) Field Descriptions

Bits	Field	Description	
31-0	RXPAUSEFRAMES	The total number of IEEE 802.3X pause frames received on the port. A frame must match all of the following criteria to be considered a pause frame:	
		 The frame contained a unicast, broadcast, or multicast address 	
		The frame contains the length/type field value 88.08h and the opcode 0001h	
		 The frame was of length 64 to RX_MAXLEN bytes inclusive 	
		The frame did not have a CRC error, alignment error or code error	
		 Pause-frames were enabled on the port (TX_FLOW_EN = 1). 	
		The port could have been in half or full-duplex mode. Overruns have no effect on this statistic.	

0

3.5.4.5 Receive CRC Errors Register (RXCRCERRORS)

The Receive CRC Errors Register is shown in Figure 3-97 and described in Table 3-111.

Figure 3-97. Receive CRC Errors Register (RXCRCERRORS)

_31
RXCRCERRORS
R-0h

Table 3-111. Receive CRC Errors Register (RXCRCERRORS) Field Descriptions

Bits	Field	Description	
31-0	RXCRCERRORS	The total number of frames received on the port that experienced a CRC error. A frame must match all of the following criteria to be considered a CRC error frame:	
		• The frame was a data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode	
		The frame was of length 64 to RX_MAXLEN bytes inclusive	
		The frame did not have an alignment error or code error	
		The frame had a CRC error	
		A CRC error must meet the following two conditions:	
		A frame that contains an even number of nibbles	
		A frame that fails the Frame Check Sequence test	
		Overruns have no effect on this statistic.	

0

3.5.4.6 Receive Align/Code Errors Register (RXALIGNCODEERRORS)

The Receive Align/Code Errors Register is shown in Figure 3-98 and described in Table 3-112.

Figure 3-98. Receive Align/Code Errors Register (RXALIGNCODEERRORS)

	З	1
_	-	

RXALIGNCODEERRORS R-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-112. Receive Align/Code Errors Register (RXALIGNCODEERRORS) Field Descriptions

Bits	Field	Description	
31-0	RXALIGN CODEERRORS	The total number of frames received on the port that experienced an alignment error or code error. A frame must match all of the following criteria to be considered an alignment or code error frame:	
		 The frame was a data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode 	
		 The frame was of length 64 to RX_MAXLEN bytes inclusive 	
		The frame had an alignment error or code error	
		An alignment error must meet the following two conditions:	
		A frame that contains an odd number of nibbles	
		 A frame that fails the Frame Check Sequence test if the final nibble is ignored 	
		A code error must meet the following condition:	
		 A frame that has been discarded because the port's MRXER pin driven with a 1 for at least one bit-time's duration at any point during the frame's reception 	
		Overruns have no effect on this statistic.	

0

3.5.4.7 Oversize Receive Frames Register (RXOVERSIZEDFRAMES)

The Oversize Receive Frames Register is shown in Figure 3-99 and described in Table 3-113.

Figure 3-99. Oversize Receive Frames Register (RXOVERSIZEDFRAMES)

31

RXOVERSIZEDFRAMES R-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-113. Oversized Receive Frames Register (RXOVERSIZEDFRAMES) Field Descriptions

Bits	Field	escription	
31-0	RXOVERSIZED FRAMES	The total number of oversized frames received on the port. A frame must match all of the following criteria be considered an oversized frame:	
		 The frame was a data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode 	
		 The frame was greater than RX_MAXLEN bytes 	
		 The frame did not have a CRC error, alignment error, or code error 	
		Overruns have no effect on this statistic.	

0

3.5.4.8 Receive Jabber Frames Register (RXJABBERFRAMES)

The Receive Jabber Frames Register is shown in Figure 3-100 and described in Table 3-114.

Figure 3-100. Receive Jabber Frames Register (RXJABBERFRAMES)

31

RXJABBERFRAMES R-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-114. Receive Jabber Frames Register (RXJABBERFRAMES) Field Descriptions

Bits	Field	Description	
31-0	RXJABBER FRAMES	The total number of jabber frames received on the port. A frame must match all of the following criteria to be considered a jabber frame:	
		 The frame was a data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode 	
		The frame was greater than RX_MAXLEN bytes	
		 The frame did had a CRC error, alignment error, or code error 	
		Overruns have no effect on this statistic.	

3.5.4.9 Undersize (Short) Receive Frames Register (RXUNDERSIZEDFRAMES)

The Undersize (Short) Receive Frames Register is shown in Figure 3-101 and described in Table 3-115.

Figure 3-101. Undersize (Short) Receive Frames Register (RXUNDERSIZEDFRAMES)

31	0
RXUNDERSIZEDFRAMES	
R-0h	

Table 3-115. Undersized (Short) Receive Frames Register (RXUNDERSIZEDFRAMES) Field
Descriptions

Bits	Field	Description	
31-0	RXUNDERSIZED FRAMES	The total number of undersized frames received on the port. A frame must match all of the following crite to be considered an undersized frame:	
		The frame was a data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode	
		The frame was less than 64 bytes	
		The frame did not have a CRC error, alignment error, or code error	
		Overruns have no effect on this statistic.	

3.5.4.10 Receive Fragment Register (RXFRAGMENTS)

The Receive Fragment Register is shown in Figure 3-102 and described in Table 3-116.

Figure 3-102. Receive Fragment Register (RXFRAGMENTS)

31	0
	RXFRAGMENTS
	R-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-116. Receive Fragment Frames Register (RXFRAGMENTS) Field Descriptions

Bits	Field	Description	
31-0	RXFRAGMENTS	The total number of frame fragments received on the port. A frame fragment must match all of the following riteria to be considered a frame fragment:	
		The frame was a data frame (address matching does not matter)	
		The frame was less than 64 bytes	
		The frame had a CRC error, alignment error, or code error	
		 The frame was not the result of a collision caused by half duplex, collision based flow control 	
		Overruns have no effect on this statistic.	

Ethernet Switch Module

TEXAS INSTRUMENTS

www.ti.com

0

Ethernet Switch Module

3.5.4.11 Port n Receive Octets Register (STATn_RXOCTETS)

The Receive Octets Register is shown in Figure 3-103 and described in Table 3-117.

Figure 3-103. Port n Receive Octets Register (STATn_RXOCTETS)

31

RXOCTETS R-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-117. Port n Receive Octets Register (STATn_RXOCTETS) Field Descriptions

Bits	Field	Description	
31-0	RXOCTETS	The total number of bytes in all good frames received on the port. A frame must match all of the following criteria to be considered a good frame:	
		The frame was a data or MAC control frame that matched a unicast, broadcast or multicast address, or matched due to promiscuous mode	
		 The frame was of length 64 to RX_MAXLEN bytes inclusive 	
		The frame did not have a CRC error, alignment error, or code error	
		Overruns have no effect on this statistic.	

0

3.5.4.12 Good Transmit Frames Register (TXGOODFRAMES)

The Good Transmit Frames Register is shown in Figure 3-104 and described in Table 3-118.

Figure 3-104. Good Transmit Frames Register (TXGOODFRAMES)

•	3	1	1

TXGOODFRAMES R-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-118. Good Transmit Frames Register (TXGOODFRAMES) Field Descriptions

Bits	Field	Description	
31-0	TXGOODFRAMES	he total number of good frames transmitted on the port. A frame must match all of the following criteria to be considered a good frame:	
		The frame was a data or MAC control frame that was destined for a unicast, broadcast or multicast address	
		The frame was of any length	
		The frame did not have late or excessive collisions, no carrier loss, and no underrun	

0

3.5.4.13 Broadcast Transmit Frames Register (TXBROADCASTFRAMES)

The Broadcast Transmit Frames Register is shown in Figure 3-105 and described in Table 3-119.

Figure 3-105. Broadcast Transmit Frames Register (TXBROADCASTFRAMES)

	З	1
_	-	

TXBROADCASTFRAMES R-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-119. Broadcast Transmit Frames Register TXBROADCASTFRAMES) Field Descriptions

Bits	Field	Description
31-0	TXBROADCAST FRAMES	The total number of good broadcast frames transmitted on the port. A frame must match all of the following criteria to be considered a good broadcast frame:
		The frame was a data or MAC control frame that was destined for address FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
		The frame was of any length
		 The frame did not have late or excessive collisions, no carrier loss, and no underrun

Ethernet Switch Module

3.5.4.14 Multicast Transmit Frames (TXMULTICASTFRAMES)

The Multicast Transmit Frames Register is shown in Figure 3-106 and described in Table 3-120.

Figure 3-106. Multicast Transmit Frames (TXMULTICASTFRAMES)

31		0
	TXMULTICASTFRAMES	
	R-0h	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-120. Multicast Transmit Frames Register (TXMULTICASTFRAMES) Field Descriptions

Bits	Field	Description
31-0	TXMULTICAST FRAMES	The total number of good multicast frames transmitted on the port. A frame must match all of the following criteria to be considered a good multicast frame:
		The frame was a data or MAC control frame that was destined for any multicast address other than FFFFFFFFFFFFFh
		The frame was of any length
		The frame did not have late or excessive collisions, no carrier loss, and no underrun

0

3.5.4.15 Pause Transmit Frames Register (TXPAUSEFRAMES)

The Pause Transmit Frames Register is shown in Figure 3-107 and described in Table 3-121.

Figure 3-107. Pause Transmit Frames Register (TXPAUSEFRAMES)

	3	1	1
_			

TXPAUSEFRAMES R-0h

Table 3-121. Pause Transmit Frames Register (TXPAUSEFRAMES) Field Descriptions

Bits	Field	Description
31-0	TXPAUSE	The total number of IEEE 802.3X pause frames transmitted on the port.
	FRAMES	Pause frames cannot underrun or contain a CRC error because they are created in the transmitting MAC, so these error conditions have no effect on the statistic. Pause frames sent by software will not be included in this count.
		Since pause frames are only transmitted in full duplex mode, carrier loss and collisions have no effect on this statistic.
		Transmitted pause frames are always 64 byte multicast frames, so these frames will appear in the TXMULTICASTFRAMES and 64OCTECTFRAMES statistics.

0

3.5.4.16 Deferred Transmit Frames Register (TXDEFERREDFRAMES)

The Deferred Transmit Frames Register is shown in Figure 3-108 and described in Table 3-122.

Figure 3-108. Deferred Transmit Frames Register (TXDEFERREDFRAMES)

3	1

TXDEFERREDFRAMES R-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-122. Deferred Transmit Frames Register (TXDEFERREDFRAMES) Field Descriptions

Bits	Field	Description
31-0	TXDEFERRED FRAMES	The total number of frames transmitted on the port that first experienced deferment. A frame must match all of the following criteria to be considered a deferred frame:
		 The frame was a data or MAC control frame that was destined for a unicast, broadcast or multicast address
		The frame was of any length
		The frame did not have carrier loss or underrun
		 The frame did not experience any collisions before being successfully transmitted
		 The frame found the medium busy when transmission was first attempted, so had to wait
		CRC errors have no effect on this statistic.

0

3.5.4.17 Transmit Frames Collision Register (TXCOLLISIONFRAMES)

The Transmit Frames Collision Register is shown in Figure 3-109 and described in Table 3-123.

Figure 3-109. Transmit Frames Collision Register (TXCOLLISIONFRAMES)

- 3	1
_	

TXCOLLISIONFRAMES R-0h

Table 3-123. Transmit Frames Collision Register (TXCOLLISIONFRAMES) Field Descriptions
--

Bits	Field	Description
31-0	TXCOLLISION FRAMES	This statistic records the total number of times that this port has experienced a collision. Collisions occur under two circumstances:
		1. When all of the following conditions are true for a transmit data or MAC control frame:
		The frame was destined for any unicast, broadcast or multicast address
		The frame was of any size
		The frame had no carrier loss and no underrun
		• The frame experienced a collision. A jam sequence is sent for every non-late collision, so this statistic will increment on each occasion if a frame experiences multiple collisions (and increments on late collisions).
		CRC errors have no effect on this statistic.
1		2. When the port is in half-duplex mode, flow control is active, and a frame reception begins.

3.5.4.18 Transmit Frames Single Collision Register (TXSINGLECOLLFRAMES)

The Transmit Frames Single Collision Register is shown in Figure 3-110 and described in Table 3-124.

Figure 3-110. Transmit Frames Single Collision Register (TXSINGLECOLLFRAMES)

31	0
TXSINGLECOLLFRAMES	
R-0h	

Table 3-124. Transmit Frames Single Collision Register (TXSINGLECOLL	FRAMES) Field
Descriptions	

Bits	Field	Description
31-0	TXSINGLECOLL FRAMES	The total number of frames transmitted on the port that experience exactly one collision. A frame must match all of the following criteria to be considered a single collision frame:
		 The frame was a data or MAC control frame that was destined for a unicast, broadcast or multicast address
		The frame was of any length
		The frame did not have carrier loss or underrun
		The frame experienced one collision before successful transmission, and the collision was not late
		CRC errors have no effect on this statistic.

Texas Instruments

www.ti.com

3.5.4.19 Transmit Frames Multiple Collision Register (TXMULTCOLLFRAMES)

The Transmit Frames Multiple Collision Register is shown in Figure 3-111 and described in Table 3-125.

Figure 3-111. Transmit Frames Multiple Collision Register (TXMULTCOLLFRAMES)

31	0
TXMULTCOLLFRAMES	
R-0h	

Table 3-125. Transmit Frames Multiple Collision Register (TXMULTCOLLFRAMES) Field
Descriptions

Bits	Field	Description
31-0	TXMULTCOLL FRAMES	The total number of frames transmitted on the port that experience multiple collisions. A frame must match all of the following criteria to be considered a multiple collision frame:
		 The frame was a data or MAC control frame that was destined for a unicast, broadcast or multicast address
		The frame was of any length
		The frame did not have carrier loss or underrun
		The frame experienced 2-15 collisions before successful transmission, and none of the collisions were late
		CRC errors have no effect on this statistic.

-

www.ti.com

24

~

3.5.4.20 Transmit Excessive Collision Register (TXEXCESSIVECOLLISIONS)

The Transmit Excessive Collision Register is shown in Figure 3-112 and described in Table 3-126.

Figure 3-112. Transmit Excessive Collision Register (TXEXCESSIVECOLLISIONS)

3	31 0
	TXEXCESSIVECOLLISIONS
	R-0h

Table 3-126.	Transmit Excessive Collisions Register (TXECESSIVECOLLISIONS) Field
	Descriptions

Bits	Field	Description
31-0	TXEXCESSIVE COLLISIONS	The total number of frames on the port where transmission was abandoned due to excessive collisions. Such a frame must match all of the following criteria:
		The frame was a data or MAC control frame that was destined for a unicast, broadcast or multicast address
		The frame was of any length
		The frame did not have carrier loss or underrun
		The frame experienced 16 collisions before abandoning all attempts at transmitting the frame, and none of the collisions were late
		CRC errors have no effect on this statistic.

TEXAS INSTRUMENTS

www.ti.com

0

3.5.4.21 Transmit Late Collisions Register (TXLATECOLLISIONS)

The Transmit Late Collisions Register is shown in Figure 3-113 and described in Table 3-127.

Figure 3-113. Transmit Late Collisions Register (TXLATECOLLISIONS)

TXLATECOLLISIONS R-0h

Table 3-127. Transmit Late Collisions Register (TXLATECOLLISIONS) Field Descriptions

Bits	Field	Description
31-0	TXLATECOLLISIONS	The total number of frames on the port where transmission was abandoned due to a late collision. Such a frame must match all of the following criteria:
		The frame was a data or MAC control frame that was destined for a unicast, broadcast or multicast address
		The frame was of any length
		The frame did not have carrier loss or underrun
		• The frame experienced a collision later than 512 bit-times into the transmission. There may have been up to 15 previous (non-late) collisions that had previously required the transmission to be re-attempted. The Late Collisions statistic dominates over the single, multiple and excessive Collisions statistics - if a late collision occurs the frame will not be counted in any of these other three statistics.
		CRC errors, carrier loss, and underrun have no effect on this statistic.

24

~

3.5.4.22 Transmit Frames Underrun Register (TXUNDERRUN)

The Transmit Frames Underrun Register is shown in Figure 3-114 and described in Table 3-128.

Figure 3-114. Transmit Frames Underrun Register (TXUNDERRUN)

31	0
	TXUNDERRUN
	R-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-128. Transmit Frames Underrun Register (TXUNDERRUNS) Field Descriptions

Bits	Field	Description
31-0	TXUNDERRUN	There should be no transmitted frames that experience underrun.

TEXAS INSTRUMENTS

www.ti.com

3.5.4.23 Transmit Carrier Sense Errors Register (TXCARRIERSENSEERRORS)

The Transmit Carrier Sense Errors Register is shown in Figure 3-115 and described in Table 3-129.

Figure 3-115. Transmit Carrier Sense Errors Register (TXCARRIERSENSEERRORS)

31		0
	TXCARRIERSENSEERRORS	
	R-0h	

Table 3-129.	Transmit Carrier Sense Errors Register (TXCARRIERSENSEERRORS) Field
	Descriptions

Bits	Field	Description
31-0	TXCARRIERSENSE ERRORS	The total number of frames on the port that experience carrier loss. Such a frame must match all of the following criteria:
		 The frame was a data or MAC control frame that was destined for a unicast, broadcast or multicast address
		The frame was of any length
		• The carrier sense condition was lost or never asserted when transmitting the frame (the frame is not retransmitted). This is a transmit only statistic. Carrier Sense is a don't care for received frames. Transmit frames with carrier sense errors are sent until completion and are not aborted.
		CRC errors and underrun have no effect on this statistic.

3.5.4.24 Transmit Octets Register (TXOCTETS)

0

The Transmit Octets Register is shown in Figure 3-116 and described in Table 3-130.

Figure 3-116. Transmit Octets Register (TXOCTETS)

31 TXOCTETS R-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Bits	Field	Description
31-0	TXOCTETS	The total number of bytes in all good frames transmitted on the port. A frame must match all of the following criteria to be considered a good frame:
		 The frame was a data or MAC control frame that was destined for any unicast, broadcast or multicast address The frame was any size
		The frame had no late or excessive collisions, no carrier loss, and no underrun

Table 3-130. Transmit Octets Register (TXOCTETS) Field Descriptions

~

24

3.5.4.25 Receive and Transmit 64 Octet Frames Register (64OCTETFRAMES)

The Receive and Transmit 64 Octet Frames Register is shown in Figure 3-117 and described in Table 3-131.

Figure 3-117. Receive and Transmit 64 Octet Frames Register (64OCTETFRAMES)

31	0
	64OCTETFRAMES
	R-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-131. Receive and Transmit 64 Octet Frames Register (64OCTETFRAMES) Field Descriptions

Bits	Field	Description
31-0	64OCTET FRAMES	The total number of 64-byte frames received and transmitted on the port. Such a frame must match all of the following criteria:
		 The frame was a data or MAC control frame that was destined for any unicast, broadcast or multicast address The frame did not experience late collisions, excessive collisions, or carrier sense error, and The frame was exactly 64 bytes long. (If the frame was being transmitted and experienced carrier loss that resulted in a frame of this size being transmitted, then the frame will be recorded in this statistic). CRC errors, code/align errors, and overruns do not affect the recording of frames in this statistic.

3.5.4.26 Receive and Transmit 65-127 Octet Frames Register (65T127OCTETFRAMES)

The Receive and Transmit 65-127 Octet Frames Register is shown in Figure 3-118 and described in Table 3-132.

Figure 3-118. Receive and Transmit 65-127 Octet Frames Register (65T127OCTETFRAMES)

31		0
	65T127OCTETFRAMES	
	R-0h	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-132. Receive and Transmit 65-127 Octet Frames Register (65T127OCTETFRAMES) Field Descriptions

Bits	Field	Description
31-0	65T127OCTET FRAMES	The total number of frames of size 65 to 127 bytes received and transmitted on the port. Such a frame must match all of the following criteria:
		 The frame was a data or MAC control frame that was destined for any unicast, broadcast or multicast address
		The frame was did not experience late collisions, excessive collisions, or carrier sense error
		The frame was 65 to 127 bytes long
		CRC errors, code/align errors, underruns, and overruns do not affect the recording of frames in this statistic.

3.5.4.27 Receive and Transmit 128-255 Octet Frames Register (128T255OCTETFRAMES)

The Receive and Transmit 128-255 Octet Frames Register is shown in Figure 3-119 and described in Table 3-133.

Figure 3-119. Receive and Transmit 128-255 Octet Frames Register (128T255OCTETFRAMES)

31		0
	128T255OCTETFRAMES	
	R-0h	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-133. Receive and Transmit 128-255 Octet Frames Register (128T255OCTETFRAMES) Field Descriptions

Bits	Field	Description
31-0	128T255OCTET FRAMES	The total number of frames of size 128 to 255 bytes received and transmitted on the port. Such a frame must match all of the following criteria:
		 The frame was a data or MAC control frame that was destined for any unicast, broadcast or multicast address
		• The frame did not experience late collisions, excessive collisions, or carrier sense error
		The frame was 128 to 255 bytes long
		CRC errors, code/align errors, underruns and overruns do not affect the recording of frames in this statistic.

3.5.4.28 Receive and Transmit 256-511 Octet Frames Register (256T511OCTETFRAMES)

The Receive and Transmit 256-511 Octet Frames Register is shown in Figure 3-120 and described in Table 3-134.

Figure 3-120. Receive and Transmit 256-511 Octet Frames Register (256T511OCTETFRAMES)

31		0
	256T511OCTETFRAMES	
	R-0h	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-134. Receive and Transmit 256-511 Octet Frames Register (256T511OCTETFRAMES) Field Descriptions

Bits	Field	Description
31-0	256T511OCTET FRAMES	The total number of frames of size 256 to 511 bytes received and transmitted on the port. Such a frame must match all of the following criteria:
		The frame was a data or MAC control frame that was destined for any unicast, broadcast or multicast address
		The frame did not experience late collisions, excessive collisions, or carrier sense error
		The frame was 256 to 511 bytes long
		CRC errors, code/align errors, underruns and overruns do not affect the recording of frames in this statistic.

3.5.4.29 Receive and Transmit 512-1023 Octet Frames Register (512T1023OCTETFRAMES)

The Receive and Transmit 512-1023 Octet Frames Register is shown in Figure 3-121 and described in Table 3-135.

Figure 3-121. Receive and Transmit 512-1023 Octet Frames Register (512T1023OCTETFRAMES)

31	0
	512T1023OCTETFRAMES
	R-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-135. Receive and Transmit 512-1023 Octet Frames Register (512T1023OCTETFRAMES) Field Descriptions

Bits	Field	Description
31-0	512T1023OCTET FRAMES	The total number of frames of size 512 to 1023 bytes received and transmitted on the port. Such a frame must match all of the following criteria:
		 The frame was a data or MAC control frame that was destined for any unicast, broadcast or multicast address
		• The frame did not experience late collisions, excessive collisions, or carrier sense error
		The frame was 512 to 1023 bytes long
		CRC errors, code/align errors and overruns do not affect the recording of frames in this statistic.

3.5.4.30 Receive and Transmit 1024 and Up Octet Frames Register (1024TUPOCTETFRAMES)

The Receive and Transmit 1024 And Up Octet Frames Register is shown in Figure 3-122 and described in Table 3-136.

Figure 3-122. Receive and Transmit 1024 and Up Octet Frames Register (1024TUPOCTETFRAMES)

31	0	
	1024TUPOCTETFRAMES]
	R-0h	-

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-136. Receive and Transmit 1024 and Up Octet Frames Register (1024TUPOCTETFRAMES) Field Descriptions

Bits	Field	Description		
31-0	1024TUPOCTET FRAMES	The total number of frames of size 1024 to RX_MAXLEN bytes for receive or 1024 up for transmit on the port. Such a frame must match all of the following criteria:		
		 The frame was a data or MAC control frame that was destined for any unicast, broadcast or multicast address 		
		The frame did not experience late collisions, excessive collisions, or carrier sense error		
		 The frame was 1024 to RX_MAXLEN bytes long on receive, or any size on transmit 		
		CRC errors, code/align errors, underruns and overruns do not affect the recording of frames in this statistic.		

0

3.5.4.31 Net Octets Register (NETOCTETS)

The Net Octets Register is shown in Figure 3-123 and described in Table 3-137.

Figure 3-123. Net Octets Register (NETOCTETS)

31

NETOCTETS R-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Bits	Field	Description			
31-0	NETOCTETS	The total number of bytes of frame data received and transmitted on the port. Each frame must match all of the following criteria to be counted:			
		The frame was a data or MAC control frame destined for any unicast, broadcast, or multicast address (address match does not matter)			
		The frame was of any length, including a length of less than 64 bytes or greater than RX_MAXLEN bytes			
		This statistic also counts:			
		Every byte transmitted before a carrier-loss was experienced			
		• Every byte transmitted before each collision was experienced (i.e. multiple retries are counted each time)			
		• Every byte received if the port is in half-duplex mode until a jam sequence was transmitted to initiate flow control. (The jam sequence was not counted to prevent double-counting).			
		Error conditions such as alignment errors, CRC errors, code errors, overruns, and underruns do not affect the recording of bytes by this statistic.			
		The objective of this statistic is to give a reasonable indication of Ethernet utilization.			

Table 3-137. Net Octets Register (NETOCTETS) Field Descriptions

3.5.4.32 Receive Start of Frame Overruns Register (RXSOFOVERRUNS)

The Receive Start of Frame Overruns Register is shown in Figure 3-124 and described in Table 3-138.

Figure 3-124. Receive Start of Frame Overruns Register (RXSOFOVERRUNS)

31	(0
	RXSOFOVERRUNS	
	R-0h	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-138. Receive Start of Frame Overrun Register (RXSOFOVERRUNS) Field Descriptions

Bits	Field Description			
31-0	RXSOFOVERRUNS	The total number of frames received on the port that had a start of frame (SOF) overrun or were dropped due to FIFO resource limitations. A frame must match all of the following criteria to be considered a SOF overrun frame:		
		The frame was a data or MAC control frame that matched a unicast, broadcast, or multicast address, or matched due to promiscuous mode		
		The frame was any length, including length less than 64 bytes or greater than RX_MAXLEN bytes		
		The packet was dropped due to FIFO resource limitations		

3.5.4.33 Receive Middle of Frame Overruns Register (RXMOFOVERRUNS)

The Receive Middle of Frame Overruns Register is shown in Figure 3-125 and described in Table 3-139.

Figure 3-125. Receive Middle of Frame Overruns Register (RXMOFOVERRUNS)

31 0
RXMOFOVERRUNS
R-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-139. Receive Middle of Frame Overrun Register (RXMOFOVERRUNS) Field Descriptions

Bits	Field	Description
31-0	RXMOFOVERRUNS	This statistic should always be 0.

3.5.4.34 Receive DMA Overruns Register (RXDMAOVERRUNS)

The Receive DMA Overruns Register is shown in Figure 3-126 and described in Table 3-140.

Figure 3-126. Receive DMA Overruns Register (RXDMAOVERRUNS)

31	-			-	0
		RXDMAOVERRU	NS		
		R-0h			

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-140. Receive DMA Overruns Register (RXDMAOVERRUNS) Field Descriptions

Bits	Field	Description
31-0	RXDMAOVERRUNS	This statistic should always be 0.

3.5.5 Time Synchronization (CPTS) Submodule

This section describes the registers available in the Time Synchronization (CPTS) submodule.

There is one CPTS submodule in the Ethernet switch module for time synchronization. The register offset addresses listed in this section in Table 3-141 are relative to the CPTS submodule. See Table 3-1 for the offset address of the CPTS submodule. A complete list of all of the registers in the GbE switch subsystem is provided in Table 3-3 (KeyStone I) and in Table 3-4 (KeyStone II).

There is one CPTS submodule in the Ethernet switch module for time synchronization. The register offset addresses listed in this section in are relative to the CPTS submodule. See for the offset address of the CPTS submodule. A complete list of all of the registers in the GbE switch subsystem is provided in .

Table 3-141 lists the registers in the CPTS submodule and the corresponding offset address for each register.

Offset Address ⁽¹⁾	Acronym	Register Name	Section
00	CPTS_IDVER	Identification and Version Register	Section 3.5.5.1
04	TS_CTL	Time Sync Control Register	Section 3.5.5.2
08	CPTS_RFTCLK_SEL	Reference Clock Select Register	Section 3.5.5.3
0C	TS_PUSH	Time Stamp Event Push Register	Section 3.5.5.4
10h-1Ch	Reserved	Reserved	Reserved
20h	INTSTAT_RAW	Interrupt Status Raw Register	Section 3.5.5.5
24h	INTSTAT_MASKED	Interrupt Status Masked Register	Section 3.5.5.6
28h	INT_ENABLE	Interrupt Enable Register	Section 3.5.5.7
2Ch	Reserved	Reserved	Reserved
30h	EVENT_POP	Event Interrupt Pop Register	Section 3.5.5.8
34h	EVENT_LOW	Lower 32-bits of the event value	Section 3.5.5.9
38h	EVENT_HIGH	Upper 32-bits of the event value	Section 3.5.5.11
3Ch-FCh	Reserved	Reserved	Reserved

Table 3-141. KeyStone I CPTS Registers

⁽¹⁾ The actual addresses of these registers are device specific. See your device-specific data manual to verify the register addresses.

Table 3-142. KeyStone II CPTS Registers

Offset Address ⁽¹⁾	Acronym	Register Name	Section
00	CPTS_IDVER	Identification and Version Register	Section 3.5.5.1
04	TS_CTL	Time Sync Control Register	Section 3.5.5.2
08	CPTS_RFTCLK_SEL	Reference Clock Select Register	Section 3.5.5.3
0C	TS_PUSH	Time Stamp Event Push Register	Section 3.5.5.4
10h-1Ch	Reserved	Reserved	Reserved
20h	INTSTAT_RAW	Interrupt Status Raw Register	Section 3.5.5.5
24h	INTSTAT_MASKED	Interrupt Status Masked Register	Section 3.5.5.6
28h	INT_ENABLE	Interrupt Enable Register	Section 3.5.5.7
2Ch	Reserved	Reserved	Reserved
30h	EVENT_POP	Event Interrupt Pop Register	Section 3.5.5.8
34h	EVENT_LOW	Lower 32-bits of the event value	Section 3.5.5.9
38h	EVENT_MID	Middle 32-bits of the event value	Section 3.5.5.10
3Ch	EVENT_HIGH	Upper 32-bits of the event value	Section 3.5.5.11
40h-FCh	Reserved	Reserved	Reserved

⁽¹⁾ The actual addresses of these registers are device specific. See your device-specific data manual to verify the register addresses.

3.5.5.1 CPTS Identification and Version Register (CPTS_IDVER)

The CPTS Identification And Version Register is shown in Figure 3-127 and described in Table 3-143.

Figure 3-127. CPTS Identification and Version Register (CPTS_IDVER)

31					16
	CPTS_IDENT				
	R-4E8Ah				
15		11 10	8 7		0
	CPTS_RTL_VER	CPTS_M/	AJOR_VER	CPTS_MINOR_VER	
	R-0h	R	-0h	R-2h	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-143. CPTS Identification and Version Register (CPTS_IDVER) Field Descriptions

Bits Field		Description
31-16	CPTS_IDENT	CPTS Identification Value
15-11	CPTS_RTL_VER	RTL Version Value
10-8	CPTS_MAJOR_VER	Major Version Value
7-0	CPTS_MINOR_VER	Minor Version Value

3.5.5.2 Time Sync Control Register (CPTS_CTL)

The Time Sync Control Register is shown in Figure 3-128 and described in Table 3-144.

Figure 3-128. Time Sync Control Register (TS_CTL)

31		1	0
	Reserved		CPTS_EN
	R-0h		R/W-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-144. Time Sync Control Register (TS_CTL) Field Descriptions

Bits	Field	Description
31-1	Reserved	Reserved
0	CPTS_EN	Time Sync Enable. When disabled (cleared to 0), the RCLK domain is held in reset.
		• 0 = Time Sync Disabled
		• 1 = Time Sync Enabled

3.5.5.3 RFTCLK Select Register (CPTS_RFTCLK_SEL)

The CPTS_RFTCLK_SEL Select Register is shown in Figure 3-129 and described in Table 3-145.

Figure 3-129. RFTCLK Select Register (CPTS_RFTCLK_SEL)

31	5 4 0
Reserved	CPTS_RFTCLK_SEL
R-0h	R/W-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-145. RFTCLK Select Register (CPTS_RFTCLK_SEL) Field Descriptions

Bits	Field	Description
31-5	Reserved	Reserved
4-0		Reference Clock Select. This signal is used to control an external multiplexer that selects one of up to 32 clocks for time sync reference (RFTCLK). This CPTS_RFTCLK_SEL value can be written only when the CPTS_EN bit is cleared to 0both the CPTS_EN and HR_EN bits are both cleared to 0 in the TS_CTL register. For more information on the clock sources for this module, please see the device specific data manual.

Texas Instruments

www.ti.com

3.5.5.4 Time Stamp Event Push Register (CPTS_TS_PUSH)

The Time Stamp Event Push Register is shown in Figure 3-130 and described in Table 3-146.

Figure 3-130. Time Stamp Event Push Register (CPTS_TS_PUSH)

31 1	0	
Reserved	TS_ PUSH	
R-0h	R/W-0h	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-146. Time Stamp Event Push Register (CPTS_TS_PUSH) Field Descriptions

Bits	Field	Description
31-1	Reserved	Reserved
0	TS_PUSH	Time Stamp Event Push. When a logic high is written to this bit a time stamp event is pushed onto the event FIFO. The time stamp value is the time of the write of this register, not the time of the event read. The time stamp value can then be read on interrupt via the event registers. Software should not push a second time stamp event onto the event FIFO until the first time stamp value has been read from the event FIFO (there should be only one time stamp event in the event FIFO at any given time). This bit is write only and always reads 0.

Ethernet Switch Module

3.5.5.5 Interrupt Status Raw Register (CPTS_INTSTAT_RAW)

The Interrupt Status Raw Register is shown in Figure 3-131 and described in Table 3-147.

Figure 3-131. Interrupt Status Raw Register (CPTS_INTSTAT_RAW)

31 1	0
Reserved	TS_PEND _RAW
R-0h	R/W-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-147. Interrupt Status Raw Register (CPTS_INTSTAT_RAW) Field Descriptions

Bits	Field	Description
31-1	Reserved	Reserved
0	TS_PEND_RAW	Time Sync Raw Pending Interrupt Register. A 1 in this bit indicates that there is one or more events in the event FIFO. This bit is writable when INT_TEST is set to 1 in the CPTS_CTL register.

Texas Instruments

www.ti.com

3.5.5.6 Interrupt Status Masked Register (CPTS_INTSTAT_MASKED)

The Interrupt Status Masked Register is shown in Figure 3-132 and described in Table 3-148.

Figure 3-132. Interrupt Status Masked Register (CPTS_INTSTAT_MASKED)

31	1	0
	Reserved	TS_ PEND
	R-0h	R-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-148. Interrupt Status Masked Register (CPTS_INTSTAT_MASKED) Field Descriptions

Bits	Field	Description
31-1	Reserved	Reserved.
0	TS_PEND	Time Sync Masked Pending Interrupt Register. Masked interrupt read (after enable).

3.5.5.7 Interrupt Enable Register (CPTS_INT_ENABLE)

The Interrupt Enable Register is shown in Figure 3-133 and described in Table 3-149.

Figure 3-133. Interrupt Enable Register (CPTS_INT_ENABLE)

31 1	0
Reserved	TS_PEND _EN
R-0h	R/W-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-149. Interrupt Enable Register (CPTS_INT_ENABLE) Field Descriptions

Bits	Field	Description	
31-1	Reserved	Reserved	
0	TS_PEND_EN	Time Sync Interrupt Enable Register. Enables time sync masked interrupts.	

Ethernet Switch Module

Ethernet Switch Module

3.5.5.8 Event Pop Register (CPTS_EVENT_POP)

The Event Pop Register is shown in Figure 3-134 and described in Table 3-150.

Figure 3-134. Event Pop Register (CPTS_EVENT_POP)

:	31 1	0	
	Reserved	EVENT _POP	Г
	R-0h	W-0h	

Legend: R = Read only; W = Write only; R/W = Read/Write; - *n* = value after reset

Table 3-150. Event Pop Register (CPTS_EVENT_POP) Field Descriptions

Bits	Field	Description
31-1	Reserved	Reserved
0	_	Event Pop. When a logic high is written to this bit an event is popped off the event FIFO. The event FIFO pop occurs as part of the interrupt process after the event has been read in the EVENT_LOW and EVENT_HIGHCPTS_EVENT0-CPTS_EVENT3 registers. Popping an event discards the event and causes the next event, if any, to be moved to the top of the FIFO ready to be read by software on interrupt.

3.5.5.9 Event Low Register (CPTS_EVENT_LOW)

The Event Low Register is shown in Figure 3-135 and described in Table 3-151.

Figure 3-135. Event Low Register (CPTS_EVENT_LOW)

31		0
	TIME_STAMP	
	R-x	

Legend: R = Read only; R/W = Read/Write; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 3-151. Event Low Register (CTPS_EVENT_LOW) Field Descriptions

Bits	Field	Description	
31-0	TIME_STAMP	Time Stamp. The timestamp is valid for transmit, receive, and time stamp push event types. The timestamp value is not valid for counter roll event types.	

Ethernet Switch Module

3.5.5.10 Event Middle Register (CPTS_EVENT_MID)

The Event Middle Register is shown in Figure 3-136 and described in Table 3-151.

Figure 3-136. Event MIddle Register (CPTS_EVENT_MID) 31 29 28 24 23 20 19 16 15 0 PORT_NUMBER Reserved EVENT_TYPE MESSAGE_TYPE SEQUENCE_ID N/A N/A N/A N/A N/A

Legend: N/A = Not applicable - there are no reset values for this register

Table 3-152. Event Middle Register (CPTS_EVENT_MID) Field Descriptions

Bits	Field	Description	
31-29	Reserved	Reserved	
28-24	PORT_NUMBER	Indicates the port number (encoded) of an Ethernet event of the encoded hardware timestamp number.	
23-20	EVENT_TYPE	Time sync event type	
		0000 = Time Stamp Push Event	
		0001 = Time Stamp Rollover Event	
		0010 = Time Stamp Half Rollover Event	
		0011 = Hardware Time Stamp Push Event	
		0100 = Ethernet Receive Event	
		0101 = Ethernet Transmit Event	
		• 0111 = 1111 = Reserved	
19-16	MESSAGE_TYPE	The message type value that was contained in an Ethernet transmit or receive time sync packet. This field is valid only for Ethernet transmit or receive events.	
15-0	SEQUENCE_ID	The 16-bit sequence ID is the value that was contained in an Ethernet transmit or receive time sync packet. This field is valid only for Ethernet transmit or receive events.	

3.5.5.11 Event High Register (CPTS_EVENT_HIGH)

The Event High Register is shown in Figure 3-137 and described in Table 3-153.

	Figure 3-137. Event High Register (CPTS_EVENT_HIGH)				
31	29	28 24	23 2	20 19	16
	Reserved	PORT_NUMBER	EVENT_TYPE	MESSAGE_TYPE	
	R-0h	R-x	R-x	R-x	
15					0
		SEQUI	ENCE_ID		

R-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 3-153. Event High Register (CPTS_EVENT_HIGH) Field Descriptions

Bits	Field	Description	
31-29	Reserved	eserved	
28-24	PORT_NUMBER	Port Number. Indicates the port number of an Ethernet event.	
23-20	EVENT_TYPE	Time Sync Event Type.	
		0000 = Time Stamp Push Event	
		0001 = Time Stamp Rollover Event	
		0010 = Time Stamp Half Rollover Event	
		• 0011 = Reserved	
		0100 = Ethernet Receive Event	
		0101 = Ethernet Transmit Event	
		• 0110 -1111 = Reserved	
19-16	MESSAGE_TYPE	Message type. The message type value that was contained in an Ethernet transmit or receive time sync packet. This field is valid only for Ethernet transmit or receive events.	
15-0	SEQUENCE_ID	Sequence ID. The 16-bit sequence ID is the value that was contained in an Ethernet transmit or receive time sync packet. This field is valid only for Ethernet transmit or receive events.	

3.5.6 Address Lookup Engine (ALE) submodule

This section describes the registers available in the Address Lookup Engine (ALE) submodule.

There is one ALE submodule in the Ethernet switch module for packet routing and forwarding. The register offset addresses listed in this section in Table 3-154 are relative to the ALE submodule. See Table 3-1 for the offset address of the ALE submodule. A complete list of all of the registers in the GbE switch subsystem is provided in Table 3-3 (KeyStone I) and in Table 3-4 (KeyStone II).

Table 3-154 lists the registers in the ALE submodule and the corresponding offset address for each register.

Offset Address ⁽¹⁾	Register Mnemonic	Register Name	Section
00h	ALE_IDVER	Address Lookup Engine ID/Version Register	Section 3.5.6.1
04h	Reserved	Reserved	Reserved
08h	ALE_CONTROL	Address Lookup Engine Control Register	Section 3.5.6.2
0Ch	Reserved	Reserved	Reserved
10h	ALE_PRESCALE	Address Lookup Engine Prescale Register	Section 3.5.6.3
14h	Reserved	Reserved	Reserved
18h	ALE_UNKNOWN_VLAN	Address Lookup Engine Unknown VLAN Register	Section 3.5.6.4
1Ch	Reserved	Reserved	Reserved
20h	ALE_TBLCTL	Address Lookup Engine Table Control	Section 3.5.6.5
24h-30h	Reserved	Reserved	Reserved
34h	ALE_TBLW2	Address Lookup Engine Table Word 2 Register	Section 3.5.6.6
38h	ALE_TBLW1	Address Lookup Engine Table Word 1 Register	Section 3.5.6.7
3Ch	ALE_TBLW0	Address Lookup Engine Table Word 0 Register	Section 3.5.6.8
40h	ALE_PORTCTL0	Address Lookup Engine Port 0 Control Register	Section 3.5.6.9
44h	ALE_PORTCTL1	Address Lookup Engine Port 1 Control Register	Section 3.5.6.10
48h	ALE_PORTCTL2	Address Lookup Engine Port 2 Control Register	Section 3.5.6.11
4Ch	ALE_PORTCTL3	Address Lookup Engine Port 3 Control Register	Section 3.5.6.12
50h	ALE_PORTCTL4	Address Lookup Engine Port 4 Control Register	Section 3.5.6.13
54h	ALE_PORTCTL5	Address Lookup Engine Port 5 Control Register	Section 3.5.6.14
58h-FFh	Reserved	Reserved	Reserved

Table	3-154.	ALE	Registers
-------	--------	-----	-----------

⁽¹⁾ The actual addresses of these registers are device specific. See your device-specific data manual to verify the register addresses.

3.5.6.1 ALE Identification and Version Register (ALE_IDVER)

The ALE Identification And Version Register is shown in Figure 3-138 and described in Table 3-155.

Figure 3-138. ALE Identification and Version Register (ALE_IDVER)

31			16
		ALE_IDENT	
		R-29h	
15		8 7	0
ALE_MAJOR_VER		ALE_MIN	IOR_VER
R-1h		R-	Зh

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-155. ALE Identification and Version Register (ALE_IDVER) Field Descriptions

Bits	Field	Description
31-16	ALE_IDENT	ALE Identification Value.
15-8	ALE_MAJ_VER	ALE Major Version Value.
7-0	ALE_MINOR_VER	ALE Minor Version Value.

3.5.6.2 ALE Control Register (ALE_CONTROL)

The ALE Control Register is shown in Figure 3-139 and described in Table 3-156.

		Figure 3-1	39. ALE CO	introl Register	ALE_CONTR	UL)		
31	30	29	28					8
ENABLE_ALE	CLEAR_TABLE	AGE_OUT _NOW			Reserved			
R/W-0h	R/W-0h	R/W-0h			R-0h			
7	6	5	4	3	2	1	0	
LEARN_NO _VID	EN_VID0 _MODE	EN_OUI_DENY	ALE_ BYPASS	RATE_LIMIT _TX	ALE_VLAN _AWARE	EN_AUTH _MODE	EN_RATE _LIMIT	
R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	

Figure 3-139. ALE Control Register (ALE_CONTROL)

Legend: R = Read only; R/W = Read/Write; - *n* = value after reset

Table 3-156. ALE Control Register (ALE_CONTROL) Field Descriptions

Bits	Field	Description
31	ENABLE_ALE	Enable ALE.
		• 0 = Drop all packets.
		• 1 = Enable ALE packet processing.
30	CLEAR_TABLE	Clear ALE address table. Setting this bit causes the ALE hardware to write all table bit values to 0. Software must perform a clear table operation as part of the ALE setup/configuration process. Setting this bit causes all ALE accesses to be held up for 64 clocks while the clear is performed. Access to all ALE registers will be blocked (wait states) until the 64 clocks have completed. This bit cannot be read as 1 because the read is blocked until the clear table is completed, at which time this bit is cleared to 0.
29	AGE_OUT_NOW	Age Out Address Table Now. Setting this bit causes the ALE hardware to remove (free up) any ageable table entry that does not have a set touch bit. This bit is cleared when the age out process has completed. This bit may be read. The age out process takes a minimum of 4096 clock cycles (no ale packet processing during ageout) and a maximum of 66550 clock cycles.
28 - 8	Reserved	Reserved
7	LEARN_NO_VID	Learn No VID.
		• 0 = VID is learned with the source address.
		• 1 = VID is not learned with the source address (source address is not tied to VID).
6	EN_VID0_MODE	Enable VLAN ID = 0 Mode.
		• 0 = Process the packet with VID = PORT_VLAN[11-0].
		• 1 = Process the packet with VID = 0.
5	EN_OUI_DENY	Enable OUI Deny Mode. When set this bit indicates that a packet with a non OUI table entry matching source address will be dropped to the host unless the destination address matches a multicast table entry with the SUPER bit set.
4	ALE_BYPASS	ALE Bypass.
		• 0 = ALE bypass is disabled.
		• 1 = ALE bypass is enabled. Note-packets originating from the GbE switch host port (port 0) will not bypass the ALE. To bypass the ALE for packets originating from port 0, use a directed packet.
3	RATE_LIMIT_TX	Rate Limit Transmit mode.
		• 0 = Broadcast and multicast rate limit counters are received port based.
		• 1 = Broadcast and multicast rate limit counters are transmit port based.
2	ALE_VLAN_AWARE	ALE VLAN Aware. Determines what is done if VLAN not found.
		• 0 = Flood if VLAN not found.
		• 1 = Drop packet if VLAN not found.
1	EN_AUTH_MODE	Enable MAC Authorization Mode. MAC authorization mode requires that all table entries be made by the host software. There are no learned addresses in authorization mode and the packet will be dropped if the source address is not found (and the destination address is not a multicast address with the SUPER table entry bit set).
		• 0 = The ALE is not in MAC authorization mode.
		• 1 = The ALE is in MAC authorization mode.

Bits	Field	Description
0	EN_RATE_LIMIT	Enable Broadcast and Multicast Rate Limit.
		• 0 = Broadcast/Multicast rates not limited.
		• 1 = Broadcast/Multicast packet reception limited to the port control register rate limit fields.

Table 3-156. ALE Control Register (ALE_CONTROL) Field Descriptions (continued)

3.5.6.3 ALE Prescale Register (ALE_PRESCALE)

The ALE Prescale Register is shown in Figure 3-140 and described in Table 3-157.

Figure 3-140. ALE Prescale Register (ALE_PRESCALE)

31 20	19 0
Reserved	ALE_PRESCALE
R-0h	R/W-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-157. ALE Prescale Register (ALE_PRESCALE) Field Descriptions

Bits	Field	Description
31 - 20	Reserved	Reserved
19 - 0	ALE_PRESCALE	ALE Prescale Register. The input clock is divided by this value for use in the multicast/broadcast rate limiters. The minimum operating value is 10h. The prescaler is off when the value is 0.

Ethernet Switch Module

3.5.6.4 ALE Unknown VLAN Register (UNKNOWN_VLAN)

The ALE unknown VLAN register is shown in Figure 3-141 and described in Table 3-158.

Figure 3-141. ALE Unknown VLAN Register (UNKNOWN_VLAN)

16
IASK
0
Г

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-158. ALE Unknown VLAN Register (UNKNOWN_VLAN) Field Descriptions

Bits	Field	Description
31 - 30	Reserved	Reserved
29 - 24	UNKNOWN_FORCE_UNTAGGED_EGRESS	Unknown VLAN Force Untagged Egress.
23 - 22	Reserved	Reserved
21 - 16	UNKNOWN_REG_MCAST_FLOOD_MASK	Unknown VLAN Registered Multicast Flood Mask.
15 - 14	Reserved	Reserved
13 - 8	UNKNOWN_MCAST_FLOOD_MASK	Unknown VLAN Multicast Flood Mask.
7 - 6	Reserved	Reserved
5 - 0	UNKNOWN_VLAN_MEMBER_LIST	Unknown VLAN Member List.

3.5.6.5 ALE Table Control Register (ALE_TBLCTL)

The ALE Table Control Register is shown in Figure 3-142 and described in Table 3-159.

Figure 3-142. ALE Table Control Register (ALE_TBLCTL)

31	30			16
WRITE _RDZ		Reserved		
R/W-0		R-0h		
15		10 9		0
	Reserved		ENTRY_POINTER	
-	R-0h		R/W-0h	

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-159. ALE Table Control Register (ALE_TBLCTL) Field Descriptions

Bits	Field	Description
31	WRITE_RDZ	Write Bit. Writing a 1 to this bit causes the three table word register values to be written to the ENTRY_POINTER location in the address table. Writing a 0 to this bit causes the three table word register values to be loaded from the ENTRY_POINTER location in the address table so that they may be subsequently read. A read of any ALE address location will be stalled until the read or write has completed. This bit is always read as 0.
30 - 10	Reserved	Reserved
9 - 0	ENTRY_POINTER	Table Entry Pointer. The ENTRY_POINTER contains the table entry value that will be read/written with accesses to the table word registers.

3.5.6.6 ALE Table Word 2 Register (ALE_TBLW2)

The ALE Table Word 2 Register is shown in Figure 3-143 and described in Table 3-160.

Figure 3-143. ALE Table Word 2 Register (ALE_TBLW2)

31 8	7 0
Reserved	ENTRY2
R-0h	R/W-x

Legend: R = Read only; R/W = Read/Write; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 3-160. ALE Table Word 2 Register (ALE_TBLW2) Field Descriptions

Bits	Field	Description
31 - 8	Reserved	Reserved
7 - 0	ENTRY2	Table entry bits 71-64

Ethernet Switch Module

Ethernet Switch Module

3.5.6.7 ALE Table Word 1 Register (ALE_TBLW1)

The ALE Table Word 1 Register is shown in Figure 3-144 and described in Table 3-161.

Figure 3-144. ALE Table Word 1 Register (ALE_TBLW1)

31	0
	ENTRY1
	R/W-x

Legend: R = Read only; R/W = Read/Write; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 3-161. ALE Table Word 1 Register (ALE_TBLW2) Field Descriptions

Bits	Field	Description
31 - 0	ENTRY1	Table entry bits 63-32

3.5.6.8 ALE Table Word 0 Register (ALE_TBLW0)

The ALE Table Word 0 Register is shown in Figure 3-145 and described in Table 3-162.

Figure 3-145. ALE Table Word 0 Register (ALE_TBLW0)

_31	0
ENTRY0	
R/W-x	

Legend: R = Read only; R/W = Read/Write; - n = value after reset; -x, value is indeterminate — see the device-specific data manual

Table 3-162. ALE Table Word 0 Register (ALE_TBLW0) Field Descriptions

Bits	Field	Description
31 - 0	ENTRY0	Table entry bits 31-0

Ethernet Switch Module

Copyright © 2010–2013, Texas Instruments Incorporated

Texas Instruments

www.ti.com

Ethernet Switch Module

3.5.6.9 ALE Port 0 Control Register (ALE_PORTCTL0)

The ALE Port 0 Control Register is shown in Figure 3-146 and described in Table 3-163.

			Figui	e 3-140. ALE	For o Control Register	ALE_FURICILU)		
31	24	23						16
	BCAST_LIMIT				MCAST0_LIMI	Т		
	R/W-0h				R/W-0h			
15			5	4	3	2	1	0
	Reserved			NO_LEARN	VID_INGRESS_CHECK	DROP_UNTAGGED	PORT_	STATE
	R-0h		R/W-0h	R/W-0h	R/W-0h	R/M	/-0h	

Figure 3-146. ALE Port 0 Control Register (ALE_PORTCTL0)

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-163. ALE Port 0 Control Register (ALE_PORTCTL0) Field Descriptions

Bits	Field	Description
31-24	BCAST_LIMIT	Broadcast Packet Rate Limit. Each prescale pulse loads this field into the port broadcast rate limit counter. The port counters are decremented with each packet received or transmitted depending on whether the mode is transmit or receive. If the counters decrement to 0, then further packets are rate limited until the next prescale pulse. Broadcast rate limiting is enabled by a non-zero value in this field.
23-16	MCAST0_LIMIT	Multicast Packet Rate Limit. Each prescale pulse loads this field into the port multicast rate limit counter. The port counters are decremented with each packet received or transmitted depending on whether the mode is transmit or receive. If the counters decrement to 0, then further packets are rate limited until the next prescale pulse. Multicast rate limiting is enabled by a non-zero value in this field.
15-5	Reserved	Reserved
4	NO_LEARN	No Learn Mode. When set the port is disabled from learning new source addresses; however, currently existing addresses will still update.
3	VID_INGRESS_CHECK	VLAN ID Ingress Check. If VLAN not found then drop the packet. Packets with an unknown (default) VLAN will be dropped.
2	DROP_UNTAGGED	Drop Untagged Packets. Drop non-VLAN tagged ingress packets.
1-0	PORT_STATE	Port State.
		• 0 = Disabled
		• 1 = Blocked
		• 2 = Learn
		• 3 = Forward

Ethernet Switch Module

3.5.6.10 ALE Port 1 Control Register (ALE_PORTCTL1)

The ALE Port 1 Control Register is shown in Figure 3-147 and described in Table 3-164.

		1.191		i on i oonnor register (
31	24	23					16
	BCAST_LIMIT			MCAST1_LIMI	Т		
	R/W-0h			R/W-0h			
15		5	5 4	3	2	1	0
	Reserved		NO_LEARN	VID_INGRESS_CHECK	DROP_UNTAGGED	PORT_S	ΓΑΤΕ
	R-0h		R/W-0h	R/W-0h	R/W-0h	R/W-0)h

Figure 3-147. ALE Port 1 Control Register (ALE_PORTCTL1)

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-164. ALE Port 1 Control Register (ALE_PORTCTL1) Field Descriptions

Bits	Field	Description				
31-24	BCAST_LIMIT	Broadcast Packet Rate Limit. Each prescale pulse loads this field into the port broadcast rate limit counter. The port counters are decremented with each packet received or transmitted depending on whether the mode is transmit or receive. If the counters decrement to 0, then further packets are rate limited until the next prescale pulse. Broadcast rate limiting is enabled by a non-zero value in this field.				
23-16	MCAST1_LIMIT	Multicast Packet Rate Limit. Each prescale pulse loads this field into the port multicast rate limit counter. The port counters are decremented with each packet received or transmitted depending on whether the mode is transmit or receive. If the counters decrement to 0, then further packets are rate limited until the next prescale pulse. Multicast rate limiting is enabled by a non-zero value in this field.				
15-5	Reserved	Reserved				
4	NO_LEARN	No Learn Mode. When set the port is disabled from learning or updating source addresses.				
3	VID_INGRESS_CHECK	VLAN ID Ingress Check. If VLAN not found then drop the packet. Packets with an unknown (default) VLAN will be dropped.				
2	DROP_UNTAGGED	Drop Untagged Packets. Drop non-VLAN tagged ingress packets.				
1-0	PORT_STATE	Port State.				
		• 0 = Disabled				
		• 1 = Blocked				
		• 2 = Learn				
		• 3 = Forward				

Texas Instruments

www.ti.com

Ethernet Switch Module

3.5.6.11 ALE Port 2 Control Register (ALE_PORTCTL2)

The ALE Port 2 Control Register is shown in Figure 3-148 and described in Table 3-165.

		гig	ule 3-140. ALE	For 2 Control Register	ALE_FURICILZ)	
31	24	23				16
	BCAST_LIMIT			MCAST2_LIMI	Т	
	R/W-0h			R/W-0h		
15		į	5 4	3	2	1 0
	Reserved		NO_LEARN	VID_INGRESS_CHECK	DROP_UNTAGGED	PORT_STATE
	R-0h		R/W-0h	R/W-0h	R/W-0h	R/W-0h

Figure 3-148. ALE Port 2 Control Register (ALE_PORTCTL2)

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-165. ALE Port 2 Control Register (ALE_PORTCTL2) Field Descriptions

Bits	Field	Description
31-24	BCAST_LIMIT	Broadcast Packet Rate Limit. Each prescale pulse loads this field into the port broadcast rate limit counter. The port counters are decremented with each packet received or transmitted depending on whether the mode is transmit or receive. If the counters decrement to 0, then further packets are rate limited until the next prescale pulse. Broadcast rate limiting is enabled by a non-zero value in this field.
23-16	MCAST2_LIMIT	Multicast Packet Rate Limit. Each prescale pulse loads this field into the port multicast rate limit counter. The port counters are decremented with each packet received or transmitted depending on whether the mode is transmit or receive. If the counters decrement to 0, then further packets are rate limited until the next prescale pulse. Multicast rate limiting is enabled by a non-zero value in this field.
15-5	Reserved	Reserved
4	NO_LEARN	No Learn Mode. When set the port is disabled from learning or updating source addresses.
3	VID_INGRESS_CHECK	VLAN ID Ingress Check. If VLAN not found then drop the packet. Packets with an unknown (default) VLAN will be dropped.
2	DROP_UNTAGGED	Drop Untagged Packets. Drop non-VLAN tagged ingress packets.
1-0	PORT_STATE	Port State.
		• 0 = Disabled
		• 1 = Blocked
		• 2 = Learn
		• 3 = Forward

3.5.6.12 ALE Port 3 Control Register (ALE_PORTCTL3)

The ALE Port 3Control Register is shown in Figure 3-149 and described in Table 3-166.

31	24	23					16
	BCAST_LIMIT			MCAST3_LIMI	Т		
	R/W-0h			R/W-0h			
15			5 4	3	2	1	0
	Reserved		NO_LEARN	VID_INGRESS_CHECK	DROP_UNTAGGED	PORT_ST	ATE
	R-0h		R/W-0h	R/W-0h	R/W-0h	R/W-0	h

Figure 3-149. ALE Port 3 Control Register (ALE_PORTCTL3)

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-166. ALE Port 3 Control Register (ALE_PORTCTL3) Field Descriptions

Bits	Field	Description
31-24	BCAST_LIMIT	Broadcast Packet Rate Limit. Each prescale pulse loads this field into the port broadcast rate limit counter. The port counters are decremented with each packet received or transmitted depending on whether the mode is transmit or receive. If the counters decrement to 0, then further packets are rate limited until the next prescale pulse. Broadcast rate limiting is enabled by a non-zero value in this field.
23-16	MCAST3_LIMIT	Multicast Packet Rate Limit. Each prescale pulse loads this field into the port multicast rate limit counter. The port counters are decremented with each packet received or transmitted depending on whether the mode is transmit or receive. If the counters decrement to 0, then further packets are rate limited until the next prescale pulse. Multicast rate limiting is enabled by a non-zero value in this field.
15-5	Reserved	Reserved
4	NO_LEARN	No Learn Mode. When set the port is disabled from learning or updating source addresses.
3	VID_INGRESS_CHECK	VLAN ID Ingress Check. If VLAN not found then drop the packet. Packets with an unknown (default) VLAN will be dropped.
2	DROP_UNTAGGED	Drop Untagged Packets. Drop non-VLAN tagged ingress packets.
1-0	PORT_STATE	Port State.
		• 0 = Disabled
		• 1 = Blocked
		• 2 = Learn
		• 3 = Forward

Ethernet Switch Module

Texas Instruments

www.ti.com

Ethernet Switch Module

3.5.6.13 ALE Port 4 Control Register (ALE_PORTCTL4)

The ALE Port 4 Control Register is shown in Figure 3-148 and described in Table 3-167.

			rigur	e 3-130. ALE	Port 4 Control Register (ALE_PORICIL4)		
31	24	23						16
	BCAST_LIMIT				MCAST4_LIMI	Т		
	R/W-0h			R/W-0h				
15			5	4	3	2	1	0
	Reserved		NO_LEARN	VID_INGRESS_CHECK	DROP_UNTAGGED	PORT	_STATE	
	R-0h		R/W-0h	R/W-0h	R/W-0h	R/	W-0h	

Figure 3-150. ALE Port 4 Control Register (ALE_PORTCTL4)

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-167. ALE Port Control Register 4 (ALE_PORTCTL4) Field Descriptions

Bits	Field	Description
31- 24	BCAST_LIMIT	Broadcast Packet Rate Limit. Each prescale pulse loads this field into the port broadcast rate limit counter. The port counters are decremented with each packet received or transmitted depending on whether the mode is transmit or receive. If the counters decrement to 0, then further packets are rate limited until the next prescale pulse. Broadcast rate limiting is enabled by a non-zero value in this field.
23- 16	MCAST4_LIMIT	Multicast Packet Rate Limit. Each prescale pulse loads this field into the port multicast rate limit counter. The port counters are decremented with each packet received or transmitted depending on whether the mode is transmit or receive. If the counters decrement to 0, then further packets are rate limited until the next prescale pulse. Multicast rate limiting is enabled by a non-zero value in this field.
15-5	Reserved	Reserved
4	NO_LEARN	No Learn Mode. When set the port is disabled from learning or updating source addresses.
3	VID_INGRESS_CHECK	VLAN ID Ingress Check. If VLAN not found then drop the packet. Packets with an unknown (default) VLAN will be dropped.
2	DROP_UNTAGGED	Drop Untagged Packets. Drop non-VLAN tagged ingress packets.
1-0	PORT_STATE	Port State.
		• 0 = Disabled
		• 1 = Blocked
		• 2 = Learn
		• 3 = Forward

3.5.6.14 ALE Port 5 Control Register (ALE_PORTCTL5)

The ALE Port 5 Control Register is shown in Figure 3-151 and described in Table 3-168.

31 21 20 16 BCAST_LIMIT MCAST0_LIMIT R/W-0h R/W-0h 15 5 4 3 0 2 1 VID_ DROP Reserved NO PORT LEARN INGRESS _UNTAG _STATE _CHECK GED R-0h R/W-0h R/W-0h R/W-0h R/W-0h

Figure 3-151. ALE Port 5 Control Register (ALE_PORTCTL5)

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 3-168. ALE Port Control Register 5 (ALE_PORTCTL5) Field Descriptions

Bits	Field	Description
31-21	BCAST_LIMIT	Broadcast Packet Rate Limit. Each prescale pulse loads this field into the port broadcast rate limit counter. The port counters are decremented with each packet received or transmitted depending on whether the mode is transmit or receive. If the counters decrement to 0, then further packets are rate limited until the next prescale pulse. Broadcast rate limiting is enabled by a non-zero value in this field.
20-16	MCAST_LIMIT	Multicast Packet Rate Limit. Each prescale pulse loads this field into the port multicast rate limit counter. The port counters are decremented with each packet received or transmitted depending on whether the mode is transmit or receive. If the counters decrement to 0, then further packets are rate limited until the next prescale pulse. Multicast rate limiting is enabled by a non-zero value in this field.
15-5	Reserved	Reserved
4	NO_LEARN	No Learn Mode. When set the port is disabled from learning source addresses.
3	VID_INGRESS_CHECK	VLAN ID Ingress Check. If VLAN ID is found in a VLAN table entry and the receive port is not a VLAN member then drop the packet.
2	DROP_UNTAGGED	Drop Untagged Packets. Drop non-VLAN tagged ingress packets.
1-0	PORT_STATE	Port State.
		• 0 = Disabled
		• 1 = Blocked
		• 2 = Learn
		• 3 = Forward

3.6 Serializer/Deserializer (SerDes) SGMII Boot Configuration Registers

This section describes the registers located in the SerDes boot configuration module that are related to the SGMII module.

These registers are used to configure various settings required for use of the SerDes with the SGMII modules. The SerDes SGMII registers are located in the boot configuration module, which is external to the Ethernet switch subsystem. The SGMII SerDes addressing information is not provided in this manual, because the boot configuration memory map is device specific. For more information about the boot configuration registers, including addressing information, see the device specific data sheet.

A complete list of all of the registers in the GbE switch subsystem is provided in Table 3-3 (KeyStone I) and in Table 3-4 (KeyStone II).

Table 3-169 lists the registers in the SerDes SGMII boot configuration module (only applicable to Keystone I device).

Offset Address ⁽¹⁾	Register Mnemonic	Register Name	Section
See device specific data sheet	SGMII_SERDES_STS	SGMII Status Register	Section 3.6.1
See device specific data sheet	SGMII_SERDES_CFGPLL	SGMII PLL Configuration Register	Section 3.6.2
See device specific data sheet	SGMII_SERDES_CFGRX0	SGMII Receive Configuration Register 0	Section 3.6.3
See device specific data sheet	SGMII_SERDES_CFGTX0	SGMII Transmit Configuration Register 0	Section 3.6.4
See device specific data sheet	SGMII_SERDES_CFGRX1	SGMII Receive Configuration Register 1	Section 3.6.3
See device specific data sheet	SGMII_SERDES_CFGTX1	SGMII Transmit Configuration Register 1	Section 3.6.4

Table 3-169. SerDes SGMII Boot Configuration Registers

⁽¹⁾ The addresses of these registers are device specific. See your device-specific data manual to verify the register addresses.

3.6.1 SGMII SerDes Status Register (SGMII_SERDES_STS)

The SGMII SerDes Status Register shows the status of the SGMII SerDes interface. Status is shown for the SGMII SerDes PLL, the transmit interfaces, and the receive interfaces. The SGMII SerDes status register is shown in Figure 3-152 and described in Table 3-170.

Figure 3-152. SGMII SerDes Status Register (SGMII_SERDES_STS)

31									13	12	
Reserved											TIP1
R-0h									R-01	h	
11	10	9	8	7	6	5	4	3	2	1	0
TX_TEST FAIL1	OCIP1	LOSDT CT1	SYNC 1	RX_TEST FAIL1	RDTC TIP0	TX_TEST FAIL0	OCIP0	LOSDT CT0	SYNC 0	RX_TES TFAIL0	LOCK
R-0h	R-0h	R-0h	R-0h	R-0h	R-0h	R-0h	R-0h	R0h	R-0h	R-0h	R-0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-170. SGMII SerDes Status Register (SGMII_SERDES_STS) Field Descriptions

Bits	Field	Description
31-13	Reserved	Reserved
12	RDTCTIP1	Receiver detection in progress.
		• 0 = Common mode returns to normal (or when receiver detection is disabled)
		• 1 = Receiver detection starts for channel 1.
11	TX_TESTFAIL1	Test failure. Driven high when an error is encountered on transmit channel 1.
10	OCIP1	Offset compensation in progress. Driven high asynchronously during offset compensation for SerDes receive channel 1.
9	LOSDTCT1	Loss of Signal detect. Driven high asynchronously when a loss of signal (electrical idle) condition is detected for Serdes receive channel 1.
8	SYNC1	Symbol alignment. When comma detection is enabled, this output is high when an aligned comma is received, in the same cycle that the comma pattern is output on receive channel 1. Alternatively, when an alignment jog is requested, it is high to indicate that the request has been completed.
7	RX_TESTFAIL1	Test failure. Driven high when an error is encountered on SerDes receive channel 1.
6	RDTCTIP0	Receiver detection in progress.
		• 0 = Common mode returns to normal (or when receiver detection is disabled)
		• 1 = Receiver detection starts for channel 0
5	TX_TESTFAIL0	Test failure. Driven high when an error is encountered on transmit channel 0.
4	OCIP0	Offset compensation in progress. Driven high asynchronously during offset compensation for SerDes receive channel 0.
3	LOSDTCT0	Loss of Signal detect. Driven high asynchronously when a loss of signal (electrical idle) condition is detected for Serdes receive channel 0.
2	SYNC0	Symbol alignment. When comma detection is enabled, this output is high when an aligned comma is received, in the same cycle that the comma pattern is output on receive channel 0. Alternatively, when an alignment jog is requested, it is high to indicate that the request has been completed.
1	RX_TESTFAIL0	Test failure. Driven high when an error is encountered on SerDes receive channel 0.
0	LOCK	SerDes PLL lock.
		• 0 = SGMII SerDes PLL has not locked
		• 1= SGMII SerDes PLL has locked

3.6.2 SGMII PLL Configuration Register (SGMII_SERDES_CFGPLL)

The SGMII PLL Configuration Register controls the SGMII PLL configuration for the SerDes. The SGMII PLL configuration register is shown in Figure 3-153 and described in Table 3-171.

Figure 3-153. SGMII PLL Configuration Register (SGMII_SERDES_CGFPLL)

31											16
						Re	served				
							R-0h				
15	14	13	12	11	10	9	8	7		1	0
STD	CLK	BYP	LO _BW	op Idth	SLEEP PLL	VRANGE	ENDIV CLK		MPY		ENPLL
R/W- 1h	R/W	/-0h	R/W	/-0h	R/W-0h	R/W-1h	R/W-0h		R/W-28h		R/W- 1h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-171. SGMII PLL Configuration Register (SGMII_SERDES_CGFPLL)Field Descriptions

Bits	Field	Description
31-16	Reserved	Reserved
15	STD	Standard selection. Always write 0 to this register field.
14-13	CLKBYP	Clock bypass. Facilitates bypassing of the PLL.
		 00 = No bypass. Macro operates normally from the PLL.
		• 01 = Reserved
		 10 = Functional bypass.
		 11 = Refclk Observe. The PLL is bypassed by refclkp/n. This diagnostic capability is designed to facilitate observation of the reference clock from macros containing transmitters.
12-11	LOOP_BWIDTH	Loop bandwidth. Always program this field to 00b.
10	SLEEPPLL	Sleep PLL. Puts the PLL into the sleep state when high.
		• 0 = PLL in normal state
		 1 = PLL in sleep state
9	VRANGE	Voltage Controlled Oscillator Range. If the oscillator is running at the lower end of the frequency range, then this bit should be set according to the equation below. For the list of acceptable LINERATE values, see Table 3-172. For the list of RATESCALE values, see Table 3-172.
		• 0 = LINERATE × RATESCALE > 2.17GHz
		 1 = LINERATE × RATESCALE < 2.17GHz
8	ENDIVCLK	Enable DIVCLK output. Enables output of a divide by-5 of PLL clock.
7-1	MPY	PLL multiply. Select PLL Multiply factors between 4 and 25. See Table 3-173 for configuring the available multiply modes.
0	ENPLL	Enable PLL. Enables the PLL.

The relationship between the reference clock, the LINERATE, the RATESCALE, and the MPY factor are defined by the following equation:

refclk = LINERATE * RATESCALE/MPY

The relationship between the operating RATE of the SGMII and the RATESCALE is shown in Table 3-172.

Operating Rate	Ratescale
Full	0.5
Half	1
Quarter	2
Thirty-second	16

Table 3-172. Ratescale Values

The SGMII SerDes PLL multiplier values are shown in Table 3-173.

Serializer/Deserializer (SerDes) SGMII Boot Configuration Registers

Table 3-173. SGMII SerDes PLL Multiply Modes

Value	Effect
0010000	4x
0010100	5x
0011000	6x
0100000	8x
0100001	8.25x
0101000	10x
0110000	12x
0110010	12.5x
0111100	15x
1000000	16x
1000010	16.5x
1010000	20x
1011000	22x
1100100	25x

3.6.3 SGMII Receive Configuration Register n (SGMI_SERDES_CFGRX n)

The SGMII SerDes Receive Configuration Register controls the receive parameters for SerDes lane 0. The SGMII SerDes receive configuration register is shown in Figure 3-154 and described in Table 3-174.

Figure 3-154. SGMII Receive Configuration Register n (SGMII_SERDES_CFGRXn)

														,	
31						25	24	23	22	21			18	17	16
Reserved						LOOP	BACK	ENOC			EQ		CDF	R[2-1]	
R-0h					R/V	V-0h	R/W-0h		R	/W-0h		R/V	V-0h		
15	14		12	11	10	9		7	6	5	4	3		1	0
CDR [0]		LOS		ALI	GN		TERM		IN VPAIR	RA	λΤΕ		BUSWIDTH	ł	ENRX
R/W- 0h		R/W-0h	·	R/W	/-1h		R/W-6h		R/W-0h	R/V	V-0h		R/W-0h		R/W- 0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-174. SGMII RX Configuration Register n (SGMII_SERDES_CGFRX n) Field Descriptions

Bits	Field	Description
31-25	Reserved	Reserved
24-23	LOOPBACK	Loopback enable. • 00 = Disabled • 01 = Reserved • 10 = Reserved • 11= Enabled
22	ENOC	 Enable offset compensation. Enables samplers offset compensation. Detects and corrects for offsets in the switching threshold when RXn and RXp differential sense amplifiers are not perfectly matched. 0 = Disabled 1 = Enabled
21-18	EQ	 Equalizer. Enables and configures the adaptive equalizer to compensate for loss in the transmission media. Recommended settings: Set to 1000b when operating at full rate (RATE = 00b) Set to 1010b when operating at half rate (RATE = 01b) Set to 1100b when operating at quarter rate (RATE = 10b) Set to 0000b when operating at thirty-second rate (RATE = 11b) For the full list of selectable values, see Table 3-175.
17-15	CDR	 Clock/data recovery. Configures the clock recovery algorithm. 000 = First order, threshold of 1. Phase offset tracking up to ±488ppm. Suitable for use in asynchronous systems with low frequency offset. 001 = First order, threshold of 17. Phase offset tracking up to ±325ppm. Suitable for use in synchronous systems. Offers superior rejection of random jitter, but is less responsive to systematic variation such as sinusoidal jitter. 010-111 = Reserved
14-12	LOS	Loss of signal detection. Each receive channel supports loss of signal (also known as electrical idle) detection. Then enabled, the differential signal amplitude of the RXp and RXn bits are monitored. When enabled, If the signal amplitude is below threshold levels, then the LOSDTCT bit for the corresponding RX channel will be set to 1 in the SGMII_SERDES_STS register. If the values are above threshold levels, then the LOSDTCT bit will be set to 0. • 000 = Disabled. • 100 = Enabled. All other values are reserved.
11-10	ALIGN	 Symbol alignment. Enables internal or external symbol alignment. 00 = Alignment disabled. No symbol alignment will be performed while this setting is selected, or when switching to this selection from another. 01 = Comma alignment enabled. Symbol alignment will be performed whenever a misaligned comma symbol is received. 10-11= Reserved
9-7	TERM	Input termination. Always write 100b to this register field. All other values are reserved.

Table 3-174. SGMII RX Configuration Register n (SGMII_SERDES_CGFRX n) Field Descriptions (continued)

Bits	Field	Description
6	INVPAIR	Invert polarity. Inverts polarity of RXp and RXn.
		• 0 = Normal polarity
		 1= Inverted polarity
5-4	RATE	Operating rate. The operating rate values provided by this register can be used to reduce the line rate for applications that require a lower speed.
		• 00 = Full. This increases the PLL output clock by a factor 2x (multiply by 2).
		• 01 = Half. This maintains the same the PLL output clock rate.
		• 10 = Quarter. This reduces the PLL output clock rate by a factor of 2x (divide by 2).
		• 11 = Thirty-second. This reduces the PLL output clock rate by a factor of16x (divide by 16).
3-1	BUSWIDTH	Bus width. Always write 000b to this field, to indicate a 10-bit-wide parallel bus for use with 8b/10b encoding. All other values are reserved.
0	ENRX	Receive Channel Enable.
		• 0 = Disabled
		• 1 = Enabled

Table 3-175. Receiver Equalizer Configuration (EQ)

EQ Bits	Low-Frequency Gain	Zero-Frequency (at e ₂₈ (min))			
0000	Maximum	-			
0001	Adaptive				
0010	Reserved				
0011	Reserved				
0100	Reserved				
0101	Reserved				
0110	Reserved				
0111	Reserved				
1000	Adaptive 365 MHz				
1001	Adaptive	275 MHz			
1010	Adaptive	195 MHz			
1011	Adaptive	140 MHz			
1100	Adaptive 105 MHz				
1101	Adaptive 75 MHz				
1110	Adaptive 55 MHz				
1111	Adaptive 50 MHz				

3.6.4 SGMII Transmit Configuration Register n (SGMI_SERDES_CFGTX n)

The SGMII SerDes Transmit Configuration Register controls the transmit parameters for SerDes lane 0. The SGMII SerDes transmit configuration register is shown in Figure 3-155 and described in Table 3-176.

Figure 3-155. SGMII Transmit Configuration Register n (SGMII_SERDES_CFGTXn)

31						22	21	20	19	18	17	16
	Reserved			LOOPBACK		RDTCT	E	ENIDL	MSYN C			
	R-0h			R/W-0h		R/W-0h		R/W- 0h	R/W- 0h			
15		12 11		8	7	6	5	4	3		1	0
	DEMPHASIS		SWING		СМ	INV PAIR	RATE		BUSW	IDTH		ENTX
	R/W-0h		R/W-1h		R/W- 0h	R/W-0h	R/W-0h	·	R/W-	-0h		R/W- 0h

Legend: R = Read only; R/W = Read/Write; - n = value after reset

Table 3-176. SGMII TX Configuration Register *n* (SGMII_SERDES_CGFTX *n*) Field Descriptions

Bits	Field	Description
31-22	Reserved	Reserved
21-20	LOOPBACK	Loopback enable.
		• 00 = Disabled
		• 01 = Reserved
		 10 = Loopback enabled, TX driver disabled. The loopback path covers all the stages of the transmitter except the TX output itself. A differential current is passed to the receiver. The magnitude of this current is dependent on SWING. The transmit driver itself is disabled.
		• 11= Loopback enabled, TX driver enabled. Same as above, but the transmit driver operates normally.
19-18	RDTCT	Receiver detect. Always write 00b to this register field. All other values are reserved.
17	ENIDL	Electrical idle. Always write 0 to this register field. All other values are reserved.
16	MYSNC	Synchronization master. Enables the channel as the master lane for synchronization purposes. Always write 1 to this register field. All other values are reserved.
15-12	DEMPHASIS	De-emphasis. Used for signal shaping. The de-emphasis field provides a means to compensate for high frequency attenuation in the attached media. It causes the output amplitude to be smaller for bits that are not preceded by a transition than for bits that are. Selects one of 16 output de-emphasis settings from 0 to 71.42%. The correct value for this field is board and application specific, and must be determined experimentally. It is recommended to use 0000 as a starting value. See Table 3-177 for selectable values.
11-8	SWING	Output swing. Selects one of 16 output amplitude settings between 110 and 1310mVdfpp. Reducing the output amplitude decreases the current drawn in direct proportion to the reduction in swing, thereby saving power. See Table 3-178 for selectable values. It is recommended to start by setting this field to 1111. Whenever the SWING is reduced to a level below the maximum value, the link should be re-validated.
7	СМ	Common mode adjustment. Always write 1 to this register field.
6	INVPAIR	Invert polarity. Inverts polarity of TXp and TXn.
		• 0 = Normal polarity
		1= Inverted polarity
5-4	RATE	Operating rate. The operating rate values provided by this register can be used to reduce the line rate for applications that require a lower speed.
		• 00 = Full. This increases the PLL output clock by a factor 2x (multiply by 2).
		• 01 = Half. This maintains the same the PLL output clock rate.
		• 10 = Quarter. This reduces the PLL output clock rate by a factor of 2x (divide by 2).
		• 11 = Thirty-second. This reduces the PLL output clock rate by a factor of16x (divide by 16).
3-1	BUSWIDTH	Bus width. Always write 000b to this register field, to indicate a 10-bit-wide parallel bus to the clock. All other values are reserved.
0	ENTX	Transmit channel enable.
		• 0 = Disabled
		• 1 = Enabled

Value	Amplitude Reduction (%)	Amplitude Reduction (dB)			
0000	0	0			
0001	4.76	-0.42			
0010	9.52	-0.87			
0011	14.28	-1.34			
0100	19.04	-1.83			
0101	23.8	-2.36			
0110	28.56	-2.36			
0111	33.32	-2.92			
1000	38.08	-4.16			
1001	42.85	-4.86			
1010	47.61	-5.61			
1011	52.38	-6.44			
1100	57.14	-7.35			
1101	61.9	-8.38			
1110	66.66	-9.54			
1111	71.42	-10.87			

Table 3-177. Differential Output De-emphasis

Table 3-178. Differential Output Swing

Value	DC-coupled Amplitude (mV _{dfpp})	AC-coupled Amplitude (mV _{dfpp})
0000	110	120
0001	190	200
0010	270	280
0011	350	360
0100	430	440
0101	510	530
0110	590	610
0111	670	690
1000	750	770
1001	840	850
1010	930	920
1011	1000	1010
1100	1080	1090
1101	1160	1170
1110	1250	1230
1111	1310	1330

Page

Revision History

Revision History

Changes from August 1, 2014 to May 1, 2015

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/stdterms.htm), evaluation

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated