

内容

商标

ARM[®] and Cortex[®] are registered trademarks of Arm Limited. Windows[®] is a registered trademark of Microsoft. 所有商标均为其各自所有者的财产。 参考文

TEXAS INSTRUMENTS

TEXAS INSTRUMENTS www.ti.com.cn

1入门

1.1 引言

AWR2544LOPEVM 是一款适用于 AWR254x 毫米波传感器件的易用型评估板,可直接连接到 DCA1000EVM。该 EVM 套件包含开始为片上 ARM[®] Cortex[®]-R5F 控制器和硬件加速器 (HWA 1.5) 开发软件所需的一切。还配有用 于编程和调试的板载仿真,以及用于快速集成简单用户界面的板载按钮和 LED。

1.2 关键特性

- Golden Devices 3D 波导天线
- 通过用于板载 64 位 QSPI 闪存编程的串行端口,进行基于 XDS110 的 JTAG 仿真
- UART 转 USB 调试端口,用于通过 FT4232H 实现终端访问
- 用于外部 JTAG/仿真器接口且支持 TRACE 和 CSI2 的 60 引脚高密度 (HD) 连接器
- 用于调试、SPI、I2C 和 LVDS 的 60 引脚高密度 (HD) 连接器
- RJ45 连接器,通过网络将采集的数据流式传输到主机 PC
- MATEnet 以太网接口,通过网络将采集的数据流式传输到汽车主机
- 用于基本用户界面的一个按钮和 LED
- 为电路板供电的 12V 电源插孔

1.3 包含的内容

1.3.1 套件内容

- AWR2544LOPEVM
- 3D 波导天线
- Micro USB 电缆
- 以太网电缆
- 安装支架、螺钉、垫片和螺母,用于垂直放置 PCB

备注

不包含带 2.1mm 桶形插孔(中心为正极)的 12V、>2.5A 电源砖。TI 建议使用符合适用地区安全标准 (如 UL、CSA、VDE、CCC 和 PSE 等)的外部电源。电源线的长度应小于 3 米。

以下电源经测试可与 AWR2544LOPEVM 配合使用: SDI65-12-U-P5。

1.3.2 毫米波开箱即用 (OOB) 演示

TI 提供示例演示代码,以便轻松开始使用 AWR2544LOP 评估模块 (EVM) 并体验 AWR2544LOP 雷达传感器的功能。有关开始使用这些演示的详细信息,请参阅 www.ti.com.cn/tool/cn/mmwave-sdk。

. . .

 λ /7

2 硬件

CAUTION HOT SURFACE CONTACT MAY CAUSE BURN DO NOT TOUCH

备注

在运行期间,用户和 EVM 之间必须保持 20 厘米的最短间隔距离。

图 2-1. AWR2544LOPEVM 前视图

图 2-2. AWR2544LOPEVM 后视图

2.2 PCB 处理建议

此 EVM 包含可能因静电放电而受损的元件。不使用时,请务必将 EVM 置于随附的 ESD 袋中进行运输和贮存。 使用防静电腕带处理。在防静电工作台上操作。有关正确搬运的更多信息,请参阅 SSYA010A。

2.3 电源连接

AWR2544LOPEVM 由 12V 电源插孔 (>2.5A 的电流能力) 供电。通电后, AR_NRST、VBAT_INT 和 5V0 LED 会亮起,表明电路板已通电。

图 2-4.12V 电源连接器

备注 向 EVM 提供 12V 电源后, TI 建议按一次 NRST 开关 (SW1),以提供可靠的启动状态。

2.4 连接器

2.4.1 MIPI 60 引脚连接器 (J19)

该连接器提供标准 MIPI 60 引脚接口(如图 5 所示),用于通过 XDS560pro 等仿真器实现 JTAG 和跟踪功能。 有关仿真和跟踪头的更多信息,请参阅仿真和跟踪头技术参考手册。

要使用此接口,需要将 AWR2544LOPEVM 中的 JTAG 线路多路复用至 MIPI 60 引脚连接器。更多详细信息,请参阅节 2.8.1。

硬件

图 2-5. 60 引脚 MIPI 连接器

表 2-1 提供了 MIPI 60 引脚连接器的引脚分配详细信息。

引脚编号	说明	引脚编号	说明
1	MIPI_VREF_DEBUG	2	MIPI_TMS
3	MIPI_TCK	4	MIPI_TDO
5	MIPI_TDI	6	MIPI_NRST
7	MIPI_RTCK	8	MIPI_TRSTPD
9	MIPI_JTAG_NRST	10	NC
11	NC	12	MIPI_VREF_DEBUG
13	TRACE_CLK	14	NC
15	MIPI_DBG_DETECT	16	GND
17	TRACE_CTL	18	NC
19	TRACE_DATA0	20	NC
21	TRACE_DATA1	22	NC
23	TRACE_DATA2	24	NC
25	TRACE_DATA3	26	NC
27	TRACE_DATA4	28	NC
29	TRACE_DATA5	30	NC
31	TRACE_DATA6	32	NC
33	TRACE_DATA7	34	NC
35	NC	36	NC

表 2-1. J19 引脚分配

表 2-1. J19 引脚分配 (续)			
引脚编号	说明	引脚编号	说明
37	NC	38	NC
39	NC	40	NC
41	NC	42	GND
43	NC	44	NC
45	NC	46	NC
47	NC	48	GND
49	NC	50	NC
51	NC	52	NC
53	NC	54	GND
55	NC	56	NC
57	GND	58	NC
59	NC	60	GND

2.4.1.1 MIPI TRACE ECO 列表

默认情况下,TRACE 信号不会输出到 MIPI 连接器。要在 MIPI 连接器上启用 TRACE 接口,应进行以下更改。

- 1. 移除 R165 并组装 R216
- 2. 移除 R218 并组装 R220
- 3. 组装 R227
- 4. 组装 R231
- 5. 移除 R233 并组装 R235
- 6. 组装 R217
- 7. 移除 R21 并组装 R221
- 8. 移除 R25 并组装 R228
- 9. 组装 R232
- 10. 组装 R236

2.4.2 调试连接器 60 引脚 (J7)

该连接器支持出于数据采集目的将 LVDS 信号连接到 DCA1000EVM。

此外,该连接器还具有 SPI、I2C、JTAG、GPADC、WRMRST、NRROUT、EPWM 和其他来自 AWR2544LOPEVM 的控制信号,用于调试目的。

SPI 多路复用到调试连接器。有关更多详细信息,请参阅节 2.8.1。

调试连接器支持直接连接到 TMDS273GPEVM 以进行 CSI2 数据处理。有关更多详细信息,请参阅 CSI2 FE 连接器 ECO 列表。

图 2-6.60 引脚调试连接器

硬件

表 2-2 提供了调试 60 引脚连接器的引脚分配详细信息。

引期编号	→ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	引脚编号	治問
1	NC	2	
3	NC	4	
5	GND	6	
7	DBG SPL CS0	8	GND
9		10	
11		12	
13	3 3V PULL UP	14	XREF_CLK1
15		16	
17		18	
10		20	
21		20	
21		22	
23	NC	24	
25	NC	26	CSI2_TX2_CLK_LVDS_FRCLK_
			P
27	GPADC5	28	CSI2_TX2_CLK_LVDS_FRCLK_
			N
29	GPADC6	30	GND
31	NC	32	CSI2_TX3_P
33	MCU_CLKOUT	34	CSI2_TX3_N
35	NC	36	GND
37	MSS_SPIB_CS1	38	CSI2_TX2_CLK_LVDS_FRCLK_ P
39	SOP1_MSS_SPIB_CS2	40	CSI2_TX2_CLK_LVDS_FRCLK_ N
41	MSS_GPIO_0	42	GND
43	MSS_GPIO_1	44	CSI2_TX4_LVDS_CLK_P
45	AR_WRMRST	46	CSI2_TX4_LVDS_CLK_N
47	NC	48	GND
49	AR_NERROUT	50	CSI2_TX1_LVDS_TX1_P
51	MSS_I2CA_SCL	52	CSI2_TX1_LVDS_TX1_N
53	MSS_I2CA_SDA	54	
55	MSS_EPWMB0	56	CSI2_TX0_LVDS_TX0_P
57	MSS_EPWMA1	58	CSI2_TX0_LVDS_TX0_N
59	MSS_GPIO_3	60	GND

2.4.2.1 CSI2 FE 连接器 ECO 列表

该连接器还支持直接连接到 TMDS273GPEVM 高密度 FE 连接器 (J1 和 J11) 以流式传输 CSI2 原始数据。为了 与 FE 连接器正确连接,应进行以下更改。

- 1. 组装 R51
- 2. 组装 R135
- 3. 移除 R351 并组装 R138
- 4. 移除 R361 并组装 R160
- 5. 组装 R164
- 6. 组装 R167

2.4.3 以太网端口 (J4 和 J9)

AWR2544LOPEVM 支持两个 RGMII 以太网端口,从而与网络连接。J4 连接器可通过 DP83TC812R-Q1 PHY 经由 MATEnet 端口(9-2304372-9 连接器)进行访问。J9 端口可通过 DP83867ERGZR PHY 经由 RJ45 端口进行访问。默认情况下,RGMII 接口仅连接到 J9 端口。要访问 RGMII 接口,必须通过 J4 连接器组装多个电阻。有关更多详细信息,请参阅节 2.4.3.1,并参阅原理图、BOM 和装配以及数据库和布局部分。

该 RGMII 接口主要用作 100Mbps ECU 接口,也可用作仪表接口。

该 RGMII 端口支持以下特性:

- 全双工 10Mbps/100Mbps 线速,通过 RGMII 连接到以太网 PHY,并行接口
- MDIO 第 22 条和第 45 条规范 PHY 管理接口
- IEEE 1588 同步以太网支持

以太网端口通过以太网 PHY 连接到 AWR2544,并用于通过网络将采集的数据流式传输到主机 PC。

图 2-7 显示了以太网 RJ45 Mag-Jack 连接器,而表 2-3 提供了连接器引脚详细信息。

表 2-3. J9 引脚分配			
引脚编号	说明	引脚编号	说明
1	GND	2	测试点
3	ETH_D4P	4	ETH_D4N
5	ETH_D3P	6	ETH_D3N
7	ETH_D2P	8	ETH_D2N
9	ETH_D1P	10	ETH_D1N
11	LED_ACTn	12	GND
13	GND	14	LED_LINKn
15	ETH_GND	16	ETH_GND

图 2-7. RJ45 连接器

图 2-8 显示了以太网 MATEnet 连接器,而表 2-4 提供了连接器引脚详细信息。

硬件

表 2-4. J4 引脚分配			
引脚编号	说明	引脚编号	说明
1	TRD_P	2	TRD_M
S1	GND	S2	GND
S3	GND	S4	GND
S5	GND	S6	GND

图 2-8. MATEnet 连接器

2.4.3.1 用于启用 DP83TG720S-Q1 PHY 的 ECO

默认情况下,该电路板设计为与带有 RJ45 连接器的 DP83867E PHY 配合使用。要使用 MATEnet 连接器启用 DP83TG720S-Q1 PHY,必须进行以下硬件更改。如需获取在 PCB 上查找这些元件的相关帮助,请参阅提供的原 理图、BOM 和装配文件。

- 1. 移除 R98 并组装 R74
- 2. 移除 R101 并组装 R230
- 3. 移除 R103 并组装 R96
- 4. 移除 R105 并组装 R100
- 5. 移除 R121 并组装 R178
- 6. 移除 R122 并组装 R225
- 7. 移除 R195 并组装 R245
- 8. 移除 R290 并组装 R234
- 9. 移除 R325 并组装 R237
- 10. 移除 R336 并组装 R238
- 11. 移除 R338 并组装 R239
- 12. 移除 R339 并组装 R240
- 13. 移除 R413 并组装 R247
- 14. 移除 R369 并组装 R249
- 15. 组装 D18 和 D19 ESD 二极管
- 16. 组装 C55
- 17. 可以根据用例要求按需组装/移除自举配置引脚

备注

德州仪器 (TI) 尚未测试 AWR2544LOPEVM 上的汽车以太网 PHY (U4) 和端口 (J4) 是否符合任何地 区标准,如无线电设备指令 2014/53/EU。如果用户希望组装使用该端口所需的元件,则应自行进 行任何必要的测试,以确保该端口在使用前符合所有适用的地区标准。为启用 J4 端口而进行的任 何修改都将使 AWR2544LOPEVM 的现有 RED 2014/53/EU 认证无效。

English Document: SPRUJB0 Copyright © 2024 Texas Instruments Incorporated

2.4.4 USB 连接器(J8、J10)

AWR2544LOPEVM 具有两个标准 Micro USB 连接器。

Micro USB 连接器 J10 可通过 FTDI 芯片访问 AWR2544 UART、SPI、I2C、RS232 和 SOP 接口。

衣 2-5. J10 分牌分配			
引脚编号	说明	引脚编号	说明
1	FTDI_VBUS	2	FTDI_USBD_N
3	FTDI_USBD_P	4	FTDI_USBID
5	GND	6	GND
7	GND	8	GND
9	GND	10	GND
11	GND		

ᇉᅀᆿᆘᄡᇚᄼᆍᆿ

图 2-9. FTDI USB 端口

Micro USB 连接器 J8 可通过 XDS110 仿真器访问 AWR2544 的 JTAG、MSS_UARTA 和 MSS_UARTB 接口。 这是用于将二进制文件刷写到板载串行闪存和进行开箱即用 (OOB) 演示的 UART 接口。

备注 OOB 演示只需将 J8 连接到 PC。J10 不用于 OOB 演示。

硬件

ADVANCE INFORMATION

表 2-6. J8 引脚分配			
引脚编号	说明	引脚编号	说明
1	XDSET_VBUS	2	XDSET_D_N
3	XDSET_D_P	4	XDSET_ID
5	GND	6	GND
7	NC	8	NC
9	GND	10	GND
11	GND		

图 2-10. XDS USB 端口

2.4.5 OSC_CLK_OUT 连接器 (J2)

连接器 J2 可用于测量来自 AWR2544 器件的振荡器时钟输出信号。

图 2-11. OSC_CLK_OUT 端口

2.4.6 OSC_CLK_OUT_ETH 连接器 (J14)

连接器 J14 可用于测量来自 AWR2544 器件的振荡器时钟以太网输出信号。要启用该连接,必须组装 R95。

图 2-12. OSC_CLK_OUT_ETH 连接器

2.4.7 电压轨纹波测量连接器 (J1、J3、J5) (DNP)

J1 用于测量 1V0_FILTERED (适用于 AWR2544 的 1.0V 模拟射频电源)电压轨上的纹波。

J3 用于测量 1V2_FILTERED (适用于 AWR2544 的 1.2V 数字电源)电压轨上的纹波。

J5 用于测量 1V8_FILTERED (适用于 AWR2544 的 1.8V 模拟电源)电压轨上的纹波。

默认情况下,电路板上未组装这些连接器。要使用适当的器件组装这些连接器,请参阅原理图、BOM 和装配文件。

2.5 天线

AWR2544LOPEVM 包括由 Golden Devices 生产的 3D 波导天线,用于四个接收器和四个发送器,可利用距离和 角度信息跟踪多个物体。这种天线设计可以同时估算方位角和仰角,从而在三维平面中实现物体检测(请参阅图 2-13)。注意:RX1 和 RX4 存在 180 度的相位差,应在后处理中进行补偿。

图 2-13. AWR2544LOPEVM 天线设计

图 2-13 中所示的天线设计会产生图 2-14 中所示的虚拟天线阵列。两个相邻电芯之间的距离为 \/2。

图 2-14. 虚拟天线阵列

76GHz 至 81GHz 频段的天线峰值增益为 15dBi。水平面(H面)和仰角平面(E面)的天线辐射图分别如图 2-15 和图 2-16 中所示。

可以根据下面提供的辐射方向图来确定天线设计的波束宽度。例如,与视轴相比,增益下降了 3dB,据此可算出 水平 3dB 波束宽度约为 ±35 度(请参阅图 2-15),仰角 3dB 波束宽度约为 ±3 度(请参阅图 2-16)。同样,水 平 6dB 波束宽度约为 ±42 度(请参阅图 2-15),仰角 6dB 波束宽度约为 ±5 度(请参阅图 2-16)。

硬件

图 2-15. 方位角辐射方向图 (77GHz 至 80GHz)

图 2-16. 仰角辐射方向图(77GHz 至 80GHz)

2.6 PMIC

AWR2544 由 LP87725-Q1 PMIC 供电。这是一款符合功能安全标准的 PMIC,支持 ASIL-B/SIL-2 应用。有关更 多详细信息,请访问 LP87725-Q1 产品页面 (https://www.ti.com.cn/product/cn/LP87725-Q1)。

2.7 板载传感器

AWR2544LOPEVM 提供对板载温度传感器 (TMP112AIDRLR) 和四个板载电流传感器 (INA228AIDGST) 的访问。 这些传感器可由雷达通过 I2C 进行控制。有关这些传感器的 I2C 地址的详细信息,请参阅节 2.10.3。

电流传感器旨在测量提供给 AWR2544 器件各种电源轨的电流。有关可使用电流传感器测量的电源节点的详细信息,请参阅表 2-7。

参考位号	电源节点	PCB 网络名称	I2C 地址
U9	AWR 1.2V 电源	1V2	0x40
U11	AWR 1.8V 电源	1V8	0x41
U12	AWR 3.3V 电源	3V3	0x44
U22	AWR 1.0V 电源	1V0	0x42

表	2-7.	电流传感器电源详细信息	
---	------	-------------	--

2.8 PC 连接

通过两个 Micro USB 连接器 J8 和 J10 提供 PC 连接。

2.8.1 XDS110 接口

通过 J8 可访问板载 XDS110 (TM4C1294NCPDT) 仿真器。此连接提供以下 PC 接口:

- JTAG,用于 CCS 连接
- MSS 记录器 UART (可用于在 PC 上获取 MSS 代码日志)

当 J8 USB 连接到 PC 时,器件管理器应识别 "Ports (COM & LPT)"下的两个 XDS110 COM 端口。

Ports (COM & LPT)

XDS110 Class Application/User UART (COM4)

R XDS110 Class Auxiliary Data Port (COM3)

图 2-17. XDS110 COM 端口

将在"Texas Instruments Debug Probes"下检测到 XDS110 调试探针和数据端口。

Texas Instruments Debug Probes
XDS110 Class Data Port
XDS110 Class Debug Probe

图 2-18. TI 调试探针

如果 PC 无法识别上述 COM 端口,请安装最新的 EMUpack。

2.8.2 FTDI 接口

J10 提供对板载 FTDI 端口的访问。这将提供以下 PC 接口:

- FTDI 端口 A -> MSS_SPIA 接口
- FTDI 端口 B -> MSS_I2C 接口; 主机 INTR 信号。
- FTDI 端口 C -> BSS_UART 端口; DSS_UART 端口(默认不组装); NRESET 和 WARMRST 控制信号。
- FTDI 端口 D -> MSS_RS232 端口; SOP0、SOP1 和 SOP2 控制信号

当 USB 首次连接到 PC 时,Windows[®] 可能无法识别该器件。器件管理器中用黄色感叹号表示这种情况,如图 2-19 所示。

图 2-19. 未安装 FTDI 驱动程序

要安装器件,请下载毫米波 SDK 软件包中提供的最新 FTDI 驱动程序。右键点击这些器件,然后通过指向 FTDI 驱动程序的安装位置 (C:\ti\mmwave_sdk_<version_number>\tools\ftdi) 来更新驱动程序。必须对所有四个 COM 端口都执行此操作。安装完所有四个 COM 端口后,器件管理器将能够识别这些器件,并指示 COM 端口 号,如图 2-20 所示。

图 2-20. 已安装 FTDI 驱动程序

2.9 将 AWR2544LOPEVM 连接到 DCA1000EVM

AWR2544LOPEVM 可以连接至 DCA1000EVM 平台,以实现 LVDS 数据流。图 2-21 显示了连接到 DCA1000EVM 的 AWR2544LOPEVM。

图 2-21. AWR2544LOPEVM 和 DCA1000EVM

- 将 AWR2544LOPEVM 与 DCA1000EVM 配合使用时,必须使用以下设置。
- 1. 将 AWR2544LOPEVM 设置为 SOP2 模式。

图 2-22. SOP2 模式

2. 将 AWR2544LOPEVM 开关 S2 设置为 FTDI_SPI 模式

图 2-23. FTDI_SPI 模式

3. 按照以下配置设置 DCA1000EVM 开关。

图 2-24. DCA1000 开关设置

- 4. 必须将 12V 电源连接到 AWR2544LOPEVM 上的 J12
- 5. 必须将 5V 电源连接到 DCA1000EVM 上的 J2
- 6. 必须将 Micro USB 电缆连接到 AWR2544LOPEVM (J10) 上的 FTDI 端口
- 7. 必须将 Samtec 带状电缆连接到 AWR2544LOPEVM 上的 J7 和 DCA1000EVM 上的 J3
- 8. 必须将 RJ45 电缆连接到 DCA1000EVM 上的 J6

2.10 跳线、开关和 LED

2.10.1 开关

AWR2544LOPEVM 包含两个开关,用于将各种接口多路复用到 EVM 上的不同连接器。

参考位号	使用	说明	图像
S1	JTAG	当设置为"MIPI"位置时,JTAG 接口连接到 MIPI 60 引脚连接器 (J19)。 当设置为"XDS"位置时,JTAG 接口连接到 XDS110 USB 接口 (J8)	S1
S2	SPI	当设置为"DBG_SPI"位置时,MSS_SPIB 接 口连接到调试连接器 (J7)。 当设置为"FTDI_SPI"时,MSS_SPIB 接口连 接到 FTDI USB 端口 (J10)	S2 DBQ_SPI FTDI_SPI SPI_MUX

表 2-8. 多路复用器开关

2.10.2 通电检测 (SOP) 跳线 (J17、J18、J20)

可以根据 SOP [2:0] 线的状态,将 AWR2544LOPEVM 设置为在不同的模式下运行。只有在 AWR2544 器件启动 过程中,才会对这些线路进行检测。表 2-9 说明了器件的状态。

闭合跳线表示进入 AWR2544 器件的 SOP 信号的状态"1",断开跳线表示状态"0"。

备注 也可通过板载 FTDI 控制 SOP[2:0] 引脚。在这种情况下, FTDI 设置将覆盖跳线设置。

表 2-9. SOP[0:2] 模式			
参考位号	使用	说明	
J17 (SOP 2)、J18 (SOP 1)、J20 (SOP 0)	SOP[2:0]	101 (SOP 模式 5) = 刷写模式	
		001 (SOP 模式 4) = 功能模式	
		000(SOP 模式 3)= 保留	
		011 (SOP 模式 2) = 开发模式	
		010(SOP 模式 1)= 保留	

图 2-25. SOP 跳线

此外, SOP[4:3] 信号根据表 2-10 中提供的以下配置定义 XTAL 时钟输入。

表 2-10. SOP[4:3] 模式

衣 2-10: SOF[4:5] 侠氏		
参考位号	使用	说明
R303、R312 已组装。	SOP[4:3]	00 = 40 MHz
R301、R309 未组装		
R301、R312 已组装。		01 = 45.1584 MHz
R303、R319 未组装		
R303、R309 已组装。		10 = 49.152 MHz
R301、R312 未组装		
R301、R309 已组装。		11 = 50MHz (默认状态)
R303、R312 未组装		

2.10.3 I2C 连接

该电路板具有用于测量板载温度的温度传感器,用于测量 1.2V、1.8V、3.3V、1V0_RF1 和 1V0_RF2 AWR2544 电源轨电流的电流传感器,以及用于存储电路板 ID 的 EEPROM。它们通过 I2C 总线连接到 AWR2544LOPEVM。

表 2-11 显示了 AWR2544LOPEVM 电路板中可用 I2C 器件的列表及其地址。

传感器类型	参考编号	器件型号	目标地址
温度传感器	U24	TMP112AIDRLR	0x49
适用于 3.3V 电源轨的电流传感器	U12	INA228AIDGST	0x44
适用于 1.8V 电源轨的电流传感器	U11	INA228AIDGST	0x41
适用于 1.2V 数字电压轨的电流传 感器	U9	INA228AIDGST	0x40
适用于 1.0V RF1 电源轨的电流传 感器	U22	INA228AIDGST	0x42
适用于 1.0V RF2 电源轨的电流传 感器	U30	INA228AIDGST	0x43
EEPROM	U28	CAV24C02WE-GT3	0x50

表 2-11. I2C 器件地址

2.10.4 按钮

表 2-12. 按钮开关

参考位号	使用	说明	图像
SW1	RESET	该开关用于复位 AWR2544、PMIC、 XDS110 和 FTDI 器件。	D13
			TP
			SHI SHI
			NRST

硬件

ADVANCE INFORMATION

表 2-12. 按钮开关(续)			
参考位号	使用	说明	图像
SW2	GPIO_28	按下该按钮后,GPIO_28 应拉至高电 平。	

2.10.5 LED

表 2-13. 板载 LED

参考	颜色	使用	说明	图像
D12	绿色	12V 电源指示	此 LED 表示存在 12V 电源输入	DI 2 VBAT
D13	黄色	NRST	此 LED 用于指示 NRST 引脚的 状态。如果此 LED 亮起,表明 器件未复位。	DI 3
DS2	红色	NERROUT	如果 AWR2544 器件存在任何硬 件错误,此 LED 将亮起	NERR OUT
D9	黄色	WRMRST	开漏失效防护热复位信号	

表 2-13. 板载 LED (续)				
参考	颜色	使用	说明	图像
D6	绿色	GPIO_2	GPIO_2 为逻辑 1 时,此 LED 将亮起	D6 Normality Nor
D1	黄色	FTDI_SUSPEND_N	当 FTDI 处于挂起状态时亮起	D1 BININASP

3 设计文件和软件工具

3.1 设计文件

要查看原理图、装配图和 BOM,请参阅 AWR2544LOPEVM 原理图、装配和 BOM 文件。

要查看设计数据库和布局详细信息,请参阅 AWR2544LOPEVM 设计数据库文件。

3.2 软件、开发工具和示例代码

为了能够在片上 ARM[®] Cortex[®]-R5F 控制器和硬件加速器 (HWA 1.5) 上快速开发终端应用, TI 提供了软件开发套件 (SDK), 其中包含演示代码、软件驱动程序和用于调试的仿真包等。这些可以在 mmwave-sdk 上找到。

4 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

日期	修订版本	说明
2023 年 11 月	*	初始发行版

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司