EVM User's Guide: LMX1906EVM-CVAL LMX1906-SP 评估模块

TEXAS INSTRUMENTS

说明

LMX1906-SP 评估模块 (EVM) 旨在评估 LMX1906-SP 的性能,后者是一款四输出、超低附加抖动射频 (RF) 缓冲器、分频器和倍增器。该器件可以缓冲器高达 18GHz 的 RF 频率,将 RF 输出倍增至 6.4GHz,并将输出分频至 6.4GHz。该板包含 LMX1906-SP 器件和 集成 USB2ANY 编程器。

特性

- 300MHz 至 18GHz 输出频率
- 4个具有相应 SYSREF 输出的高频时钟
 - 由 2、3、4、5、6、7 和 8 共享分频
 - ×2、×3 和 ×4 共享可编程倍频器

- 3.3V 电源电压(带板载 2.5V LDO)或 2.5V 电源 电压(绕过 LDO)
- -55℃ 至 +125℃ 工作温度 (绕过板载 MCU)
- 可选引脚模式控制,无需寄存器编程

应用

- 通用:
 - 数据转换器时钟
 - 时钟分配/倍频/分频
 - 航空航天与国防:
 - 雷达
 - 电子战
 - 导引头前端
 - 相控阵天线/波束形成

1 评估模块概述

1.1 引言

LMX1906-SP EVM 是一款超低附加抖动 RF 缓冲器、分频器和倍频器,具有集成的 SYSREF 生成功能。可以对 FPGA 或其他逻辑 IC 使用单独的辅助时钟分频器。每个 RF 输出(和逻辑时钟)都与具有皮秒精度延迟调谐功能 的互补 SYSREF 输出配对,并且可以作为发生器(具有跨多个器件的同步功能)或中继器运行。

当使用板载 LDO 时, EVM 可以在 3.3V 电源电压下运行。可以绕过 LDO,在这种情况下,电源电压为 2.5V。

EVM 包含 LMX1906-SP、两个 LDO、一个微控制器和一个 IO 扩展器。LMX1906-SP 和 LDO 可支持 -55℃ 至 +125℃ 运行。对于高温评估,请使用 USB2ANY 软件狗来控制 EVM。

1.2 套件内容

每个评估套件包含:

- 一个具有集成 USB2ANY 控制器的 LMX1906-SP EVM 板 (DC238)
- 一条 USB 电缆

1.3 规格

参数	值	工作条件		
电源电压 (VCCIN SMA)	3.1V 至 3.5V	板载稳压器	输出为 2.5V	
电源电流	1.3A(最大值)	多种配置		
	300MHz 至 18GHz	缓冲模式		
	150MHz 至 6.4GHz	分频器模式		
CI //INI 給) 垢索	3.2 至 6.4GHz		CLK_MULT = ×1	
CLKIN	1.6 至 3.2GHz	玉 汁 四 杏 子	CLK_MULT = ×2	
	1.066 至 2.133GHz	米広硲倶八	CLK_MULT = ×3	
	800MHz 至 1.6GHz		CLK_MULT = ×4	

表 1-1. LMX1906-SP EVM 规格

1.4 器件信息

该器件具有高频功能和极低的抖动特性,可在不降低信噪比的情况下,很好地解决时钟精度、高频数据转换器的问题。4 个高频时钟输出中的每一个输出以及具有更大分频器范围的附加 LOGICLK 输出都与 SYSREF 输出时钟 信号配对。JESD 接口的 SYSREF 信号可以在内部生成,也可以作为输入传入,并重新计时为器件时钟。对于数据转换器时钟应用,务必使时钟的抖动小于数据转换器的孔径抖动。在需要对 4 个以上数据转换器进行时钟控制 的应用中,可以使用多个器件开发各种级联架构,以分配所需的所有高频时钟和 SYSREF 信号。凭借其低抖动和 低本底噪声,该器件可与超低噪声基准时钟源相结合,是时钟控制型数据转换器的典型设计,尤其是以高于 3GHz 的频率采样时。

2 硬件

- 2.1 设置
- 2.1.1 评估设置要求

缓冲器模式的评估至少需要:

- 支持至少 3.1V、2A 的直流电源
- 高质量的信号源,例如 SMA100B
- 频谱分析仪或信号分析仪
- 带 USB 端口的 PC,运行 Windows 7 或较新版本的 Windows
- 德州仪器 (TI) 时钟和合成器 TICS Pro 软件

全面评估需要以下额外硬件:

- 高速 4 通道示波器,能够为 SYSREF 延迟调优解决 5ps 的步长
- 2 通道任意函数发生器或其他脉冲源,能够输出互补 LVDS 脉冲和直流电平(1.25V±0.2V、差分、进入 100 Ω 直流负载),用于触发 SYSREF、同步分频器和确定 SYSREF 窗口值
- 相位噪声分析系统,能够以高达 18GHz 的频率进行测量

2.1.2 连接图

图 2-1. EVM 连接图

表 2-1. SPI 测试点

测试点	M	
TP1	SDO	
TP4	CSB	
TP5	SCK	
TP6	SDI	
TP9	CE	

表 2-2. IO 扩展器的 I2C 测试点

测试点	网
TP10	SDA
TP11	SCL

表 2-3. 电源电压测试点

测试点	网
TP7	VCC01_23
TP12	VCC_CLK_LOGIC
TP14	VCC_PinM
TP16	VCC_BIAS

表	2-4.	VCC	电源跳线
---	------	-----	------

标头	网	短接位置	配置		
11/1	CE	1-2(EVM 默认设置)	通过 10k Ω 电阻器拉至高电平 CE 会导致启用 LMX1909-SP		
514		2-3	来自 USB2ANY 的外部 CE 信号位于 TICSpro"pin"选项卡中		
128	VCC_BYPASS 或第一个	2-3(EVM 默认设置)	使用板载 LDOS		
520	LDO	1-2	由 J23 (VCCIN) SMA 连接器直接供电		
J29 VCC_IN 或 VCC_BYPASS	2-3(EVM 默认设置)	使用板载 LDOS			
	1-2	由 J23 (VCCIN) SMA 连接器直接供电			
J40 VCC_IN 或参		2-3(EVM 默认设置)	使用板载 LDOS		
		1-2	由 J23 (VCCIN) SMA 连接器直接供电		

表 2-5. 引脚控制跳线(可配置 IO 扩展器)

跳线	短接位置	配置
SYSREFEN(用作整个 SYSREF 子系统的 CE 引脚)	J38-J39 (拉至高电平)	当 SYSREFEN 设置为高电平时,会启用整个 SYSREF 子系统并相应 设置寄存器默认值。SPI 仍可用于禁用。
	J37-J38(拉至低电平)	当 SYSREFEN 设置为低电平时,会停用整个 SYSREF 子系统,并且 SPI 无法重新启用。
LOGICEN(用作 LOGICH 的 CE	J38-J39 (拉至高电平)	当 LOGICEN 设置为高电平时,会启用整个 SYSREF 子系统并相应设置寄存器默认值。SPI 仍可用于禁用。
引脚)	J37-J38(拉至低电平)	当 LOGICEN 设置为低电平时,会停用所有 FPGA/LOGIC 电路和 SYSREF 子系统,并且 SPI 无法重新启用。

桥头 短接位置 配置 PWRSEL[2:0] 000 可通过 SPI 配置输出功率 001 - 最低输出功率 可期模式 (也可通过 IO 扩展器控制) 1 1 1 日期模式 (也可通过 IO 扩展器控制) 111 - 最高输出功率 111 - 最高输出功率 引期模式 (也可通过 IO 扩展器控制) 111 - 最高输出功率 引期模式 (也可通过 IO 扩展器控制) 111 - 最高输出功率 111 - 最高输出功率 CLKx_EN 拉至低电平 (GND) J31-J32 禁用相应的 CLKOUTx 拉至高电平 (VCC) J32-J33 启用相应的 CLKOUTx CAL 低电平到高电平的转换 校准倍增器或复位分频器	表 2-6. 引脚状态接头(可配置 IO 扩展器)			
PWRSEL[2:0] 000 可通过 SPI 配置输出功率 001 - 最低输出功率 引脚模式(也可通过 IO 扩展器控制) 1 111 - 最高输出功率 引脚模式(也可通过 IO 扩展器控制) CLKx_EN 拉至低电平 (GND) J31-J32 禁用相应的 CLKOUTx 位至高电平 (VCC) J32-J33 启用相应的 CLKOUTx CAL 低电平到高电平的转换 校准倍增器或复位分频器	标头	短接位置	配置	
PWRSEL[2:0] 001 - 最低输出功率 引脚模式(也可通过 IO 扩展器控制) 1 111 - 最高输出功率 引脚模式(也可通过 IO 扩展器控制) 111 - 最高输出功率 111 - 最高输出功率 111 - 最高输出功率 CLKx_EN 拉至低电平 (GND) J31-J32 禁用相应的 CLKOUTx 拉至高电平 (VCC) J32-J33 启用相应的 CLKOUTx CAL 低电平到高电平的转换 校准倍增器或复位分频器 低阻抗 通过 SPI 可控制校准和复位		000	可通过 SPI 配置输出功率	
Image: Homole [2.0] Image: Imag	PWRSEI [2:0]	001 - 最低输出功率		
111 - 最高输出功率 L立至低电平 (GND) J31-J32 禁用相应的 CLKOUTx 拉至高电平 (VCC) J32-J33 启用相应的 CLKOUTx CAL 低电平到高电平的转换 校准倍增器或复位分频器 低阻抗 通过 SPI 可控制校准和复位		:	引脚模式 (也可通过 IO 扩展器控制)	
CLKx_EN 拉至低电平 (GND) J31-J32 禁用相应的 CLKOUTx 拉至高电平 (VCC) J32-J33 启用相应的 CLKOUTx CAL 低电平到高电平的转换 校准倍增器或复位分频器 低阻抗 通过 SPI 可控制校准和复位		111 - 最高输出功率		
拉至高电平 (VCC) J32-J33 启用相应的 CLKOUTx CAL 低电平到高电平的转换 校准倍增器或复位分频器 低阻抗 通过 SPI 可控制校准和复位	CLKx_EN	拉至低电平 (GND) J31-J32	禁用相应的 CLKOUTx	
CAL 低电平到高电平的转换 校准倍增器或复位分频器 低阻抗 通过 SPI 可控制校准和复位		拉至高电平 (VCC) J32-J33	启用相应的 CLKOUTx	
低阻抗 通过 SPI 可控制校准和复位	CAL	低电平到高电平的转换	校准倍增器或复位分频器	
		低阻抗	通过 SPI 可控制校准和复位	

thu イレーナートウナッ

警告

如果用户希望使用 IO 扩展器,请确保任何接头引脚上都没有短路。否则会损坏 IO 扩展器或 MCU。

板载 TCA9535 IO 扩展器允许用户更改引脚状态,而无需在接头引脚上进行物理短路。这使用户也可以通过 GUI 切换引脚模式。如果用户希望在没有 MCU 控制(物理引脚搭接)的情况下评估 LMX1906-SP,则应确保任何引 脚状态接头上都没有跳线。

如果需要使用 LDO,则需要提供 USB 电源。VCCIN 可以连接 3.3V 电源,但如果 USB 电缆断开,则该板将断 电。

使用	配置
带 USB 和 DUT LDO	 将 J28、J29 和 J40 跳线短接至 LDO 对 VCCIN 施加 3.3V 电压 应用 USB 连接
不带 USB 和 DUT LDO	 将 J28、J29 和 J40 跳线短接至 LDO 对 VCCIN 施加 3.3V 电压 对 VBIAS (TP16) 施加 5V 电压 - 为避免损坏 PC USB 端口,请勿对 VBIAS 应用外部电源,除非 USB 已断开连接或 r44 已被移除。
绕过 USB 和 DUT LDO	 短接 J28、J29 和 J40 跳线以绕过 对 VIN 施加 2.5V 电压 应用 USB 连接
不绕过 USB 和 DUT LDO	 将 J28、J29 和 J40 跳线短接至 LDO 对 VIN 施加 2.5V 电压

表 2-7. 使用模式

备注

使用 DUT LDO 时的 SPI 读取: 3.3V 电源会导致 SPI 回读无法正常工作。确保 U7 的输入电压大于 0.7 * VCCIN, 且 U7 的输出电压大于 2.31V。

2.1.2.1 如何实现完全 SPI 控制

完全 SPI 控制的短接位置 (不使用 IO 扩展器)。

标头	短接位置	配置
PWRSEL[2:0]	000	可通过 SPI 配置输出功率。
CLKx_EN	拉至高电平 (VCC)	启用相应的 CLKOUTx, SPI 仍可禁用每个输出。
MUXSEL[1:0]	000	通过 SPI 控制 MUXSEL。
DIVSEL[2:0]	000	通过 SPI 控制 DIVSEL。
SYSREF_EN	拉至高电平 (VCC)	启用通过 SPI 控制的整个 SYSREF 系统。
LOGICEN	拉至高电平 (VCC)	启用可通过 SPI 控制的整个 LOGICLK 系统。

2.1.3 电源要求

向 J23 接头施加 3.3V 的电压。可接受的电源电压范围为 3.1V 至 3.5V,并且电路板在运行期间可汲取最高 1.3A 的电流,因此电缆的电阻很重要。板载 LDO 具有约 40mA 的接地电流,可将 3.3V 电源转换为 2.5V 电源。此外,启用或禁用各种系统功能可能会使电路板电流改变 50% 或更多。

2.1.4 引脚模式搭接

运行模式	跳线位置	倍频器/分频器短接位置	倍频器/分频器值短接位置
	将 MUXSEI [1:0] 短接至 VCC	将 DIVSEL[0] 和 DIVSEL[2] 短接 至 GND,并将 DIVSEL[1] 短接至 VCC	x2 倍频器值
	(J35-J36)	将 DIVSEL[2] 短接至 GND	x3 倍频器值
	-	将 DIVSEL[1:0] 短接至 GND,并 将 DIVSEL[2] 短接至 VCC	x4 倍频器值
		将 DIVSEL[2:1] 短接至 GND	2 分频
		将 DIVSEL[0] 和 DIVSEL[2] 短接 至 GND	3 分频
		将 DIVSEL[2] 短接至 GND	4 分频
↓ 分频器模式	将 MUXSEL[0] 短接全 GND	将 DIVSEL[1:0] 短接至 GND 5 分频	5 分频
		将 DIVSEL[1] 短接至 GND	6 分频
		将 DIVSEL[0] 短接至 GND	7 分频
		DIVSEL [2:0] 悬空	8 分频
缓冲模式	将 MUXSEL[1] 短接至 GND	不适用	

备注

- 1. 在倍频器模式下,必须在 CAL 标头上完成低电平到高电平的转换。这可通过将 CAL 接头引脚 (J38) 短接至 VCC 来实现。
- 2. 在引脚模式下只能使用 2/3/4 分频器值。分频值 5、6、7 和 8 仅在 SPI 模式下有效。

2.1.5 参考时钟

将 CLKINP SMA 连接器连接到高质量信号源,例如 SMA100B 信号发生器。两个 CLKIN 输入均通过 50 Ω 内部端 接至 AC-GND(即,GND 连接由内部电容器形成),因此不需要或不建议使用外部端接。输入可以采用差分驱 动,将 CLKINP 和 CLKINN SMA 连接器连接到平衡-非平衡变压器或差分时钟源。

默认 EVM 配置文件将器件配置为缓冲器模式。Logiclk 默认开启,预定义输出分频器值为 128。如果需要,可以 根据每个功能元件的工作范围修改输入频率。本 EVM 设置指南和相关图假设 CLKIN 处的输入为 800MHz,用于 缓冲器模式。

要评估 SYSREF 中继器模式,请将 SYSREF 输入 SMA 连接到差分输出源,例如任意函数发生器。SYSREF 输入的 EVM 连接是直流耦合的,并提供内部 100 Ω 端接和多个偏置选项。在 POR 时,EVM 自动向 SYSREFREQ 引脚施加弱的 1.3V 共模偏置。但是,默认 EVM 配置文件将 SYSREF 输入配置为直流耦合输入。在直流耦合模式下,SYSREFREQ 引脚上的共模偏置必须介于 1V 和 2V 之间。输入共模要求可以通过标准 LVDS 输出缓冲器 来满足。

为了评估 SYNC 模式和 SYSREF 窗口,拥有一个能够始终满足输入时钟单个周期的建立和保持要求的 SYSREFREQ 输入源至关重要。这在较高频率下可能变得非常具有挑战性,其中建立和保持要求可能 < 50ps。另 一种具有皮秒精度定时脉冲的器件(例如 LMX2820 或 LMX2594)可用作 CLKIN 和 SYSREF 的基准输入,以评 估这些功能。

2.1.5.1 输出接头

LMX1906-SP EVM 上的所有 CLKOUT 连接都是交流耦合的,并且可以直接连接到具有 0VDC 要求的 RF 仪器; 不需要额外的直流块。未使用的 CLKOUT SMA 连接器必须使用 50 Ω 负载端接,如果有频率范围出色的平衡-非 平衡变压器,也可以使用差分连接。

推荐的示波器连接包括来自同一通道的一个 CLKOUT 和一个 SYSREF 输出以及一个 LOGICLK 和一个 LOGISYS 输出。

其他未使用的 CLKOUT SMA 连接器必须使用 50 Ω 单端或 100 Ω 差分负载端接,或者必须在软件中禁用,以尽量减少未端接输出对性能的影响。

2.1.5.2 接头信息

LMX1906-SP EVM 可在引脚模式或 SPI 模式下运行。引脚模式无需微控制器即可对 LMX1906-SP 器件进行基本 配置。SPI 模式可对 LMX1906-SP 器件进行完全自定义。运行模式通过板载接头 J31 至 J39 设置,也可通过 IO 扩展器控制。有关更多信息,请参见节 2.1.5.7。其他引脚用于选择电源和设置 CE 引脚。

2.1.5.3 默认配置

LMX1906-SP EVM 器件默认为缓冲器模式,所有输出均启用,输出功率最大。在这种模式下,假设没有使用跳线,也没有使用 IO 扩展器,SPI 都将被禁用。在此模式下,LOGICLOCK 也将启用,分频值固定为 128。

2.1.5.4 如何生成 SYSREF

要生成连续的 SYSREF 信号,请执行以下步骤:

- 1. 设置 SRREQ_MODE (R14[2:1]) = SYSREFREQ (0x1)
- 2. 设置 SYSREF_MODE (R17[1:0]) = 发生器连续模式 (0x1)

图 2-2. 如何启用连续 SYSREF 和设置 SYSREFREQ

3. 设置 SYSREFREQ_FORCE (R72[2:1]) = 高电平

图 2-3. SYSREFREQ_FORCE

2.1.5.5 倍频器模式示例

若要使用 SPI 将 LMX1906-SP 设置为倍频器模式,请执行以下步骤:

设置 CLK_MUX (R25[2:0] = 倍频器 (0x3)。

图 2-4. 选择倍频器模式

针对各自的 CLKIN 频率,将 CLK_MULT (R25[5:3]) 设置为相应的倍频器值。

图 2-5. 选择倍频器值

9

按 GUI 中的 Calibrate Multiplier 按钮。

图 2-6. 校准倍频器

2.1.5.6 分频器模式示例

要通过 SPI 将 LMX1906-SP 设置为分频器模式,请执行以下操作:

设置 CLK_MUX (R25[2:0]) = 分频器 (0x2)。

请参阅节 2.1.5.5 中的上图。

针对各自的 CLKIN 频率,将 CLK_DIV (R25[5:3]) 设置为相应的分频器值。

图 2-7. 分频器值

现在可以查看 CLKIN 频率除以 CLKOUTx 上各自的分频器值。

2.1.5.7 混合模式: SPI 和引脚模式

确保任何引脚模式接头上的 GND 或 VCC 均未短路。一旦用户确认没有引脚短路,并且消除了毁坏 IO 扩展器或 MCU 的威胁,就可以使用表 2-7 所述的四种情况中的任何一种提供电源。加电后的电流消耗必须约为 0.9V。

接下来,用户必须配置 IO 扩展器。可通过按下 GUI 中浅绿色 PIN MODES 部分下的 Configure Driver 按钮来完成此操作。

图 2-8. TCA9535 的配置

IO 扩展器配置成功后, TCA9535 一次性配置完成。如果 USB2ANY 断开连接,请重新运行。

IN USB COMMUNICATIONS SELECT DEVICE UDI	ions Tools Default Configurations H	elp				
- INV1005 CD		oth				_
User Controls Raw Registers Main Page Calculations Burst Mode		1:Buffer v + 4 v PLIER X 3 v Unty Relet	PWR: VCM: Delay:	$\begin{array}{c c} \mathbf{a}: & 6 & \mathbf{a} \\ \hline \mathbf{v} & - \mathbf{d} \mathbf{B} \mathbf{m} \\ \hline 4 & \mathbf{a} \\ \mathbf{a} \\ \hline \mathbf{v} & - \mathbf{V} \mathbf{p} \\ 3 & \mathbf{a} \\ \hline \mathbf{v} & - \mathbf{v} \\ 0 & \mathbf{a} \\ \hline \mathbf{v} & - \mathbf{p} \mathbf{s} \end{array}$	CLKOUTO 800.0 MHz CLKOUTO_EN SYSREFOUTO 1.0 MHz SYSREFOUTO_EN	
	PIN MODES Configure Driver SYSREF.EN CLK0_EN CLK2_EN CLK2_EN CLK3_EN ZK3_EN Z	K_EN Unicked (VTUNE low) ~ + 64 - <td>PWR: VCM: Delay:</td> <td>a: 6 ★ - dBm 4 ★ - Vpp 3 ★ - V 0 ★ - ps</td> <td>CLKOUT1 800.0 MHz CLKOUT1_EN SYSREFOUT1 1.0 MHz SYSREFOUT1_EN</td> <td></td>	PWR: VCM: Delay:	a: 6 ★ - dBm 4 ★ - Vpp 3 ★ - V 0 ★ - ps	CLKOUT1 800.0 MHz CLKOUT1_EN SYSREFOUT1 1.0 MHz SYSREFOUT1_EN	
	SDO SPI Mode v SPI Mode v <td>S_EN POWERDOWN RESET Reset Gullar, anne = [-,-] ps formal streamer = p5 Delays</td> <td>CH2_EN PWR: VCM: Delay:</td> <td>$a: \begin{array}{c} 6 & \bullet \\ \bullet \\ \hline \bullet \\ 3 & \bullet \\ \bullet \\ \hline \hline \bullet \\ \hline \hline \bullet \\ \hline \hline \bullet \\ \hline \bullet \\ \hline \hline \hline \hline$</td> <td>CLKOUT2 800.0 MHz CLKOUT2_EN SYSREFOUT2 1.0 MHz SYSREFOUT2_EN</td> <td>\bigcirc</td>	S_EN POWERDOWN RESET Reset Gullar, anne = [-,-] ps formal streamer = p5 Delays	CH2_EN PWR: VCM: Delay:	$a: \begin{array}{c} 6 & \bullet \\ \bullet \\ \hline \bullet \\ 3 & \bullet \\ \bullet \\ \hline \hline \bullet \\ \hline \hline \bullet \\ \hline \hline \bullet \\ \hline \bullet \\ \hline \hline \hline \hline$	CLKOUT2 800.0 MHz CLKOUT2_EN SYSREFOUT2 1.0 MHz SYSREFOUT2_EN	\bigcirc
Seneral Context	sister 127 0 1CLK syster 127 0 1CLK	400 MHz to 800 CLKPOS_CAPTURE_EN 0	PWR: VCM: Delay:	$\begin{array}{c} \mathbf{a}: 6 \underline{\bullet} - \mathbf{d} \mathbf{B} \mathbf{m} \\ \hline 4 \underline{\bullet} - \mathbf{V} \mathbf{p} \mathbf{p} \\ 3 \underline{\bullet} - \mathbf{V} \\ 0 \underline{\bullet} - \mathbf{p} \mathbf{s} \end{array}$	CLKOUT3 800.0 MHz CLKOUT3_EN SYSREFOUT3 1.0 MHz SYSREFOUT3_EN	
	Estimate 630 mA SYM Current 630 mA SYM SYSREFREQ_FORCE SYSREFREQ DC + 1 SYSREFREQ 10 MHz SYSREFREQ	STIC Cetty STIC Cetty Division Cetty Divis	LOGIC_EN PRE-DIV DIVII + 1: - + 8 Use Divider Delay: 0 + - ps	FMT: LVDS VCM: 0 VCM: 1.2 V FMT: LVDS FMT: LVDS VCM: 1.2 V VCM: 1.2 V	LOGICLKOUT 1.0 MHz COGICLKOUT_EN LOGISYSREFOUT 1.0 MHz COGISYSREFOUT_E	
	_		1			_
3efore update: P0x = 8b00000000, P1x = 8b00000	000	Connection Mode:	USB2ANY			
$\alpha \pi \sigma r \ln \eta \sigma t \sigma$. $P(ty = x h) (t h) h h h h h h h h h h h h h h h h h h$						
ECA0525 and time configuration complete. Re run	if USP2ANV is disconnected	Bretesel: SBI				

图 2-9. TCA9535 配置成功

用户现在可以通过 IO 扩展器更改引脚模式接头的状态,方法是直接将引脚拉至低电平或高电平,而无需物理短路。

CLKx_EN 和器件模式选项。

图 2-10. 引脚模式选项

为所有 CLKOUTx 选择 RF 输出功率。

图 2-11. pinPWRSEL

在分频器模式中选择相应的分频器值或者在倍频器模式中选择相应的倍频器值。

图 2-12. pinDIVSEL

3 软件

3.1 软件安装

从 www.ti.com.cn/tool/cn/ticspro-sw 下载并安装 TICS Pro 软件。

3.2 软件说明

德州仪器 (TI) 时钟和合成器 (TICS) Pro 软件用于通过板载 USB2ANY 接口对此评估模块 (EVM) 进行编程。

3.3 USB2ANY 接口

板载 USB2ANY 接口提供了 TICS Pro 软件和 LMX1906-SP 器件之间的桥梁。当板载 USB2ANY 控制器首次连接 到 PC 时,或者如果控制器的固件版本与 TICS Pro 使用的版本不匹配,则需要对控制器进行固件更新。

- 1. 使用 USB 电缆将 PC 连接到 EVM。USB 接口提供启用板载 USB2ANY 控制器所需的电源。
- 2. Windows 设置 USB 器件后,在 PC 中运行 TICS Pro。
- 3. 下一个屏幕如下图所示。

USB2ANY Firmware Requirement	×
The connected USB2ANY requires a firmware update to version 2.9.1.1. Serial Number: 8C4D5C5108002900 Current version is: 2.7.0.0 The update takes only a few seconds and does not require an Internet	
Connection.	

图 3-1. 固件更新

4. 点击 OK, 屏幕如下图所示。点击 Update Firmware。

ľ	USB2ANY Firmware Loader		×
	The USB2ANY is ready for download. Click the Update Firmware button to start the update process.	Update Firmware	

图 3-2. 固件加载程序

5. 然后出现以下屏幕。

图 3-3. 固件升级完成

6. 点击 Close 按钮关闭窗口。

7.	弹出 TICS Pro 默认器件。检查	至以确保 G	iUI 底部的	Connectior	n Mode 亮起线	录灯。
		Connection Mode: Protocol: S Serial #: 8	USB2ANY SPI 3C4D5C510B002900	🦊 Texas I	Instruments	
8.	转到菜单栏,点击 USB comm	nunications	图 3-4 . s,然后选择	. 连接模式 译 Interface	o	
			Fi Interface Write All Reg Read Focus	le USB Communication gisters Ctrl+L ed Register Ctrl+R		
9.	点击 <i>Identify</i> 按钮,USB2AN	′接口的 LI	图 3-5. ED 灯闪烁	USB 通信 。		
	Comu Interf ● U ■ T ● F ● C	nunication Setup ace Sele SB2ANY BC Hera FDI emoMode	ect USB2ANY C4D5C510B002900 USB Connected	 ✓ Identify 	- C	· ×

图 3-6. 识别 USB2ANY 控制器

10. 现在, USB2ANY 就可以使用了。点击 Close 按钮关闭窗口。

4 实现结果

4.1 缓冲器、分频器和倍频器模式

从顶部菜单中,点击 Default Configuration → 800MHz Buffer Mode。这会自动加载缓冲器模式系统配置。

889 1	IICS Pro - LMX1204				
File	USB communications	Select Device	Options	Tools	Default configuration
⊿ LI	MX1204 User Controls			800MH2	z Buffer Mode

图 4-1. 加载默认配置

如果没有在所有输出引脚上应用端接,则应使用 CHx_EN 字段(完全关断未使用的通道)或 CLKOUTx_EN、 SYSOUTx_EN 和 LOGICLK_EN/LOGISYS_EN 字段(仅关断输出缓冲器)手动禁用未使用的输出。关断未使用 的通道可大大降低电流消耗,特别是对逻辑时钟而言,可减少杂散干扰。

加载系统配置后,如果需要进行任何更改,信号分析仪会显示 800MHz 信号,单端信号约为 +6dBm,差分信号约为 +9dBm。

蓝色迹线是来自 SMA100B 的基准时钟,黄色迹线是 800MHz 缓冲器输出。

09:43:58 AM 10/31/2023

图 4-2. 800MHz 缓冲器模式信号分析仪图

要激活倍频器或分频器,请更改 CLK_MUX 字段以指定分频器或倍频器模式,并更改 CLK_DIV 和 CLK_MULT 字 段以指定频率缩放因子。为了确保器件干净地进入每个模式,首先必须在 GUI 中准备所需的配置。然后,在 User Controls 页面中,必须通过切换 RESET 字段来复位器件,最后必须使用 USB Communications → Write All Registers 菜单选项重新加载寄存器,或按加速键 Ctrl + L。

黄色迹线是 400MHz 分频输出。

10:23:00 AM 10/31/2023

图 4-3. 800MHz 2 分频模式信号分析仪图

黄色迹线是 3200MHz 输出。

MultiView 🎫 Spectrum × × Signal Frequency 3.200000003 GHz RBW 0.5 % SGL Signal Level XCORR Factor 10 Meas Time ~0.6 s Level Setting High 4.60 dBm Att 0 dB Meas Phase Nois ●1Clrw PN Smth 1% Spur 6dB ●2View PN Smth 1% Spur 6dB 1 Noise Spectrum M1[1]-132.91 dBc/Hz 655.202 kHz D1[1] -0.15 dB 344.798 kHz Spot Noise²[11] -111.26 dBc/Hz 1.000 kHz 10.000 kHz -124.20 dBc/Hz 100.000 kHz -130.89 dBc/Hz 1.000 MHz -133.06 dBc/Hz SN 1.0 kHz Frequency Offset 1.0 MHz 2 Integrated Measurements Stop Offset Range Trace Start Offset Weighting Int Noise ΡM FM / AM Jitter 20.22 m°/352.97 µrad 1.66 m°/29.02 µrad 20.000 MHz 20.000 MHz -72.06 dBc -93.76 dBc 12.727 Hz .7.555 fs 1.443 fs 12.000 kHz EXT REF Ready

02:59:44 PM 10/31/2023

图 4-4. 800MHz 4 倍频模式信号分析仪图

4.2 SYSREF 生成

SYSREF 生成电路包括 SYSREF 预分频器和后分频器、脉冲量可编程的脉冲发生器和中继器模式旁路。SYSREF 发生器模式将 SYSREF 信号重新定时到输出时钟,验证 SYSREF 输出是否接近具有默认延迟设置的时钟输出的下降沿。中继器模式时序仅由器件的传播延迟决定。

要激活 SYSREF 生成电路,必须满足以下条件:

- SRREQ_MODE 字段必须设置为 SYSREFREQ 模式。
- SYSREF_MODE 字段必须设置为适当的条件:连续、脉冲发生器或中继器。
- 在发生器模式(连续或脉冲发生器)下,必须验证 F_{INTERPOLATOR} % F_{SYSREF} = 0。
- 必须针对生成器或中继器模式正确配置 SYSREF_DLY_BYP 字段(每当设置 SYSREF_MODE 时,GUI 自动 设置条件通常会验证这一点)。
- SRREQ_VCM 字段必须设置为直流耦合模式才能实现连续或脉冲发生器输出。在中继器模式输出中, SYSREF 输入可以是交流或直流耦合,并且必须相应地设置 SRREQ VCM。
- 对于连续模式,必须在 SYSREFREQ 引脚上连续看到高电平信号。对于脉冲发生器模式,必须在 SYSREFREQ 引脚上看到低电平到高电平的转换才能触发脉冲发生器。对于中继器模式,输出遵循输入状态。

图 4-5. 具有 10MHz SYSREF 的 800MHz 缓冲器模式

4.3 SYSREF 延迟发生器

在发生器模式下,SYSREF可按皮秒级步长延迟,以更接近地满足高频时钟输出的建立和保持要求。延迟分频器 SYSREF_DLY_DIV 生成内插器频率 f_{INTERPOLATOR},通常在 400MHz 至 800MHz 范围内。该内插器频率进一步细 分为 512 个延迟代码,在大部分 CLKIN 频率范围内允许大约 2.5ps 至 5ps 的延迟步长。

每个通道都有可输入的延迟代码。延迟代码算法记录在数据表中。为了简化延迟计算,GUI提供了估计的相对延迟:输入相对延迟,GUI会计算正确的步长值以尽可能实现所请求的延迟。或者,基于寄存器的延迟字段可以通过步进或编程来实现相同的结果。

图 4-6. SYSREF 5 代码步长延迟

5 硬件设计文件 5.1 原理图

22 LMX1906-SP 评估模块

图 5-2. 电源

图 5-3. LMX1906-SP

图 5-4. 时钟输入、时钟输出接口

图 5-5. IO 接口

图 5-6. USB2ANY 接口

5.2 PCB 布局

图 5-8. 第 2 层 (RF GND)

图 5-10. 第 4 层(电源)

图 5-12. 底层

5.2.1 PCB 层堆叠

顶层是 1oz 铜层。

图 5-13. PCB 层堆叠

5.3 物料清单

表 5-1. 物料清单 (BOM)

位号	说明	器件型号	封装	制造商
C1、C2、C7、C16、 C17、C18、C19、C20、 C21、C22、C23、C24、 C27、C29、C31、C32、 C33、C34、C65、C66、 C71、C72	电容,陶瓷,0.1μF,10V,+/-10%,X5R,0201	530Z104KT10T	0201	AT Ceramics
C3、C8、C10、C12、 C14、C25、C26	电容,陶瓷,0.1µF,16V,+/-10%,X7R,0402	530L104KT16T	0402	AT Ceramics
C4	电容,陶瓷,10 μ F,6.3V,+/-20%,X5R,0402	GRM155R60J106ME15D	0402	MuRata
C5	电容,陶瓷,0.01µF,6.3V,+100/-0%,C0G/NP0,0201	550Z103PTT	0201	AT Ceramics
C9、C11、C13、C15、 C28、C30、C35、C41、 C43	电容,陶瓷,1 µ F,16V,+/-10%,X7R,0603	885012206052	0603	Wurth Elektronik
C36、C42、C46、C47、 C48、C54、C91、C95	电容,陶瓷,0.1 µ F,16V,+/-10%,X7R,0603	885012206046	0603	Wurth Elektronik
C37	电容,陶瓷,2.2µF,16V,+/-20%,X5R,0603	885012106018	0603	Wurth Elektronik
C38	电容,陶瓷,3300pF,50V,+/-10%,X7R,0603	885012206086	0603	Wurth Elektronik
C39、C40	电容,陶瓷,30pF,50V,+/-5%,C0G/NP0,0603	06035A300JAT2A	0603	AVX
C44	电容,陶瓷,2200pF,16V,+/-10%,X7R,0603	885012206036	0603	Wurth Elektronik
C45、C50	电容,陶瓷,220pF,50V,+/-5%,C0G/NP0,0603	06035A221JAT2A	0603	AVX
C49	电容,陶瓷,0.47 µ F,16V,+/-10%,X7R,0603	C0603C474K4RACTU	0603	Kemet
C53、C90、C94	电容,陶瓷,10μF,10V,+/-10%,X5R,0603	GRM188R61A106KAALD	0603	MuRata
C59、C60、C86、C87	电容,钽,100μF,20V,10%	TBME107K020LBLC9945	7.3mm × 4.3mm × 4.1mm	KYOCERA AVX
C61、C88	电容,陶瓷,10µF,6.3V,+/-20%,X7R,0603	CL10B106MQ8NRNC	0603	Samsung Electro-Mechanics
C62、C89	电容,陶瓷,4700pF,25V,+/-5%,C0G/NP0,0805	08053A472JAT2A	0805	AVX
C63、C92	电容,陶瓷,4.7uF,50V,+/-10%,X7R,AEC-Q200 1 级	CGA8M3X7R1H475K200KB		TDK
C64、C93	电容,陶瓷,4.7 μ F,10V,+/-10%,X5R,0603	C0603C475K8PACTU	0603	Kemet
C73	电容,陶瓷,0.1uF,16V,+/-10%,X7R,0402	0402YC104KAT2A	0402	AVX
C74	电容,陶瓷,0.1uF,25V,+/-5%,X7R,0603	C0603C104J3RACTU	0603	Kemet
D1、D2	LED,绿色,SMD	LTST-C190GKT	0603	Lite-On
J1	USB 2.0 , Micro-USB Type B	10118194-0001LF	SMT	FCI

表 5-1. 物料清单 (BOM) (续)

	· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , , ,		
位号	说明	器件型号	封装	制造商
J2、J3、J4、J5、J6、J7、 J8、J9、J10、J11、J12、 J13、J16、J18、J20、 J22、J24、J26	连接器,末端发射 SMA,50Ω,	142-0761-881	末端发射 SMA	Cinch Connectivity
J14、J28、J29、J40	接头,100mil,3x1,镀金,	TSW-103-07-G-S	ТН	Samtec
J15、J17、J19、J21、 J23、J25、J30	连接器,SMA,插孔,直式	CON-SMA-EDGE-S	边缘安装	RF Solutions Ltd.
J31、J32、J33、J34、 J35、J36、J37、J38、J39	接头,100mil,5x1	800-10-005-10-001000	TH	Mill-Max
L1、L2、L3、L4	铁氧体磁珠,120 Ω @ 100MHz,3A,0603	BLM18SG121TN1D	0603	MuRata
L5、L6、L7、L10	铁氧体磁珠,120 Ω @ 100MHz,2A,0603	742792625	0603	Wurth Elektronik
Q1	MOSFET,N 沟道,50V,0.22A	BSS138	SOT-23	Fairchild
R1	电阻,100,1%,0.1W,0603	CRCW0603100RFKEA	0603	Vishay-Dale
R2、R55、R69、R70、 R72、R96、R109	电阻,10.0k,1%,0.1W,0603	ERJ-3EKF1002V	0603	Panasonic
R3、R6、R8、R9、R36、 R71、R74、R81、R82、 R83、R84、R85、R86、 R87、R88、R89、R107、 R108、R111	电阻,0,5%,0.063W,0402	RC0402JR-070RL	0402	Yageo America
R12、R13、R14、R16、 R21、R22、R27、R28、 R30、R32	电阻,33,5%,0.1W,AEC-Q200 0 级,0603	CRCW060333R0JNEA	0603	Vishay-Dale
R15	电阻,1.0M,5%,0.1W,AEC-Q200 0 级,0603	CRCW06031M00JNEA	0603	Vishay-Dale
R17	电阻,330,5%,0.1W,AEC-Q200 0 级,0603	CRCW0603330RJNEA	0603	Vishay-Dale
R18	电阻,10k,5%,0.1W,AEC-Q200 0 级,0603	CRCW060310K0JNEA	0603	Vishay-Dale
R19	电阻,33k,5%,0.1W,AEC-Q200 0 级,0603	CRCW060333K0JNEA	0603	Vishay-Dale
R23	电阻,1.5k,5%,0.1W,AEC-Q200 0 级,0603	CRCW06031K50JNEA	0603	Vishay-Dale
R24、R44、R51、R52、 R90、R91	电阻,0,5%,0.1W,AEC-Q200 0 级,0603	CRCW06030000Z0EA	0603	Vishay-Dale
R25	电阻,1.2M,5%,0.1W,AEC-Q200 0 级,0603	CRCW06031M20JNEA	0603	Vishay-Dale
R26	电阻,10.0k,1%,0.063W,AEC-Q200 0 级,0402	RMCF0402FT10K0	0402	Stackpole Electronics Inc
R53、R94	电阻,5.05k,0.5%,0.1W,0603	RT0603DRE075K05L	0603	Yageo America
R54、R95	电阻,51.0,1%,0.1W,0603	RC0603FR-0751RL	0603	Yageo
R56、R97	电阻,63.4k,0.1%,0.1W,0603	RT0603BRD0763K4L	0603	Yageo America
R57、R98	电阻,24.9k Ω,0.1%,0.1W,0603	RT0603BRD0724K9L	0603	Yageo America

R59、R100

R60、R101

SH-J1、SH-J2、SH-J3、

TP1、TP4、TP5、TP6、 TP9、TP10、TP11

TP3、TP8、TP13、TP15

TP2、TP7、TP12、 TP14、TP16

4 通道 ESD 二极管

1.5A 耐辐射 LDO

低功耗 I/O 扩展器

超低噪声,150mA LDO

单路施密特触发缓冲器

晶体,24.000MHz,20pF

位号 R58、R99

R73

S1

U1

U2

U3

U4

U7

U8

Y1

U6、U11

SH-J4

			www.ti.com.c	
说明	器件型号	封装	制造商	
电阻,10.0,1%,0.5W,AEC-Q200 0 级,0805	ERJ-P6WF10R0V	0805	Panasonic	
电阻,12.0k,0.1%,0.1W,0603	RT0603BRD0712KL	0603	Yageo America	
电阻,10.0k,0.1%,0.1W,0603	RT0603BRD0710KL	0603	Yageo America	
电阻,10.0k,1%,0.25W,1206	RC1206FR-0710KL	1206	Yageo America	
开关,触控式,单刀单掷	FSM4JSMA	6mm x 6mm	TE Connectivity	
分流器, 2.54mm ,金,黑色	60900213421	2.54mm	Wurth Elektronik	
测试点,微型,白色	5002	ТН	Keystone	
测试点,微型,红色	5000	TH	Keystone	
测试点,微型,黑色	5001	ТН	Keystone	
高频 JESD 缓冲器/倍频器/分频器	LMX1906PAP/EM	TQFP64	德州仪器 (TI)	
	MSP430F5529IPN	PN0080A	德州仪器 (TI)	

DRY0006A

NGF0006A

DBV0005A

RTW0024B

11.4mm × 4.3mm × 3.8mm

SOP28

德州仪器 (TI)

德州仪器 (TI)

德州仪器 (TI)

德州仪器 (TI)

德州仪器 (TI)

ECS Inc.

TPD4S009DRYR

LP5900SDX-3.3/NOPB

TPS7H1111PWPTSEP

SN74LVC1G17DBVR

ECS-240-20-5PX-TR

TCA9535RTWR

Texas Instruments

6 其他信息

6.1 疑难解答指南

6.1.1 一般指导

- 在验证 EVM 正常工作之前,请勿修改 EVM 或更改默认设置。
- 寄存器回读要求编程 MUXOUT_EN = 1 和 MUXOUT_SEL = 1。GUI 还提示配置此寄存器,然后再尝试任何回读操作。
- LMX1906-SP EVM 的 POR 电流在绕过 LDO 时约为 17mA,在启用 LDO 时为 975mA。
 - **备注** 默认模式为缓冲器模式,启用所有输出和 LOGICLK。
- EVM 的关断电流在绕过 LDO 时约为 10mA,在启用 LDO 时约为 58mA。

6.1.2 如果在 CLKOUT 上看不到输出

POR 之后,当 CLKIN 通电并启用时,如果 EVM 是默认设置并处于缓冲器模式且所有输出均启用,CLKOUT 会振荡。无需进行 EVM 编程,仅需从 CLKOUT 获取输出即可。

- 确认 EVM 连接到 3.3V,并且在应用 CLKIN 之前消耗约 980mA。
- 确认基准输入已连接至 CLKIN,并且基准源已通电并启用。
- 确认基准频率至少为 300MHz, 输入功率至少为 0dBm。
- 确认启用 CLKIN 会将 EVM 电流增加至大约 1.1A。

6.1.3 如果器件功能未激活

LMX1906-SP EVM 的 POR 默认设置禁用 SYSREF 和其他功能。默认情况下只有缓冲器模式和 LOGICLK 处于激活状态。必须更新寄存器设置才能观察禁用的功能。

- 确认将 USB 线缆连接至 EVM。
- 确认连接模式是 SPI,并且 USB2ANY 接口在底部栏中显示为绿色。
- 如果连接了多个 USB2ANY 板,请使用 Identify 按钮从 USB Communications → Interface 弹出窗口确认是否 连接了正确的 USB2ANY。
- 确保已加载所有寄存器 (Ctrl+L),并确保器件电流的变化与器件中启用的功能块数量成正比。
- 如果怀疑器件存在通信问题,请尝试在 User Controls 页面中切换 POWERDOWN 位,并观察 EVM 电流。请 注意,POR 之后对 R0 的第一次写入将被忽略。如果设置 POWERDOWN 后 EVM 电流没有降至约 58mA,则 可能是通信问题导致编程受阻,或 IC 已损坏。

6.1.4 如果倍频器频率不准确

倍频器需要对多个寄存器进行编程,并且每当频率发生变化或首次选择倍频器时,都必须通过 R0 写入来触发校准。

- 确认器件的频率输入和输出范围是否合适。GUI 通过在输入或输出框中突出显示范围违规来指示频率是否超出 范围。
- 确保已加载所有寄存器 (Ctrl+L)。这也会校准倍频器。
- 在再次加载所有寄存器 (Ctrl+L) 之前,尝试在 User Controls 页面上切换 RESET 位。
- 请参阅数据表,确保相应的输入频率使用有效的倍频器值。

6.1.5 如果分频器频率不准确

主时钟输出分频器的设计预期寄存器设置仅在 POR 之后加载一次。在某些情况下,如果 POR 后值发生更改,主时钟输出分频器并不总是在分频值之间清晰地转换。要更改分频器值,请在 User Controls 页面上切换 RESET 位并再次加载所有寄存器 (Ctrl+L)。

- 请参阅数据表,确保相应的输入频率使用有效的分频器比值。
- CAL 接头上的低电平到高电平转换会复位引脚模式下的分频器。
 - 这也可以通过在混合模式下使用 IO 扩展器来实现。

6.1.6 如果未观察到 SYSREF

要实现 SYSREF 输出,必须进行多项正确的设置。

- 确保进行以下设置:
 - 将 SYSREF_MODE 设置为 "Continuous" (用于调试)。
 - SRREQ_MODE 字段设置为 SYSREFREQ 模式。
 - SRREQ_VCM 设置为直流耦合, SYSREFREQ_P 上约为 1.1V, SYSREFREQ_N 上约为 1.5V。
 - SYSREF_DLY_BYP 字段设置为使用延迟。
 - SYSREF_EN=1。
- 确保 SYSREF_DLY_DIV、SYSREF_DIV_PRE 和 SYSREF_DLY_ADJ 的频率配置正确。GUI 会突出显示任 何频率违规。
- 确保 F_{INTERPOLATOR} % F_{SYSREF} = 0。GUI 会在发生违规时突出显示 SYSREF 分频器。
- 确保输出通道 (CHx_EN/LOGIC_EN) 和 SYSREF 缓冲器 (SYSOUTx_EN / LOGISYS_EN) 已启用。
- 确认未在 User Controls 页面上启用窗口模式 (SYSWND_EN=0)。
- 确认 R15[9]=1。这是由 GUI 自动设置的,因此这种潜在的根本原因很少见。
- 确认 SYSREFREQ_N 和 SYSREFREQ_P 的 1.1V 和 1.5V 电源实际上在引脚上产生了所需的电压。如果电源 用于这些电压,则电源无法吸收电流的情况并不常见。1.1V 源无法通过内部 100 Ω 阻抗从 1.5V 电源吸收电 流。如果可能,建议使用任意函数发生器。

6.2 商标

所有商标均为其各自所有者的财产。

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司