TEXAS INSTRUMENTS

说明

TPS631012/3 是一款采用 8 引脚、0.9mm × 1.8mm DSBGA 封装、具有内部补偿功能的高效、单电感器降 压/升压转换器。可通过 I2C 以 25mV 的阶跃在 1.0V 至 5.5V 的范围内对输出电压进行编程。该 EVM 基于 TPS631012,其中 ENABLE 位的上电值为 0。 TPS631012 和 TPS631013 之间的唯一区别是 ENABLE 位。

特性

- 输出电流 1.5A (Vin > 2.7V 至 Vout = 3.3V)
- 效率超过 92%, Vin=3.6V 到 Vout=3.3V lout=1A
- 8µA 运行静态电流
- I2C 可配置
- 固定频率工作 (2.0MHz)
- 自动 PFM/强制 PWM 模式可选

TPS631012/3 EVM

1 评估模块概述

1.1 简介

本用户指南介绍了 TPS631012/3EVM 操作和使用情况。该 EVM 旨在帮助用户轻松评估和测试 TPS631012/3 降 压/升压转换器系列的运行和功能。该 EVM 的输出电压设置为 3.3V,可通过 I²C 接口在 1.0V 至 5.5V 之间对输出 电压进行编程。该 EVM 的输入电压范围为 1.6V 至 5.5V,当 Vin≥2.7V 时,输出电流可高达 1.5A。本文档包含 硬件设置说明以及 EVM 的原理图和 PCB 布局。除非特别说明,否则本文档内的缩写词 EVM、 TPS631012/3EVM 以及术语"评估模块"均指 TPS631012/3。

1.2 套件内容

表 1-1. 套件清单

标识符	数量	说明	材料类型	包装
PCB1	1	'TPS631012EVM;电路板;	EEE	塑料袋,ESD
BOX1	1	盒子,纸板	纸板	发送
FM1	2	泡沫,防静电	塑料	泡沫
LBL1	1	标签,小号和大号标准标签	纸/卡纸	纸
LIT1	1	文献, EVM 免责声明自述文件	纸/卡纸	纸
LIT2	1	文献, EVM 免责声明自述文件	纸/卡纸	纸

1.3 规格

表 1-2. 性能规格汇总

技术规格	规格	最小值	典型值	最大值	单位
输入电压		1.6		5.5	V
启动输入电压		1.65		5.5	V
输出电压		1.0		5.5	V
输出电流	VIN≥2.7V , VOUT=3.3V	0		1500	mA

1.4 器件信息

TPS631012 和 TPS631013 是采用微型 Wafer Chip Scale Package 的恒定频率峰值电流模式控制降压/升压转换器。TPS631012 和 TPS631013 具有 3A 的典型峰值电流限制和 1.6V 至 5.5V 的输入电压范围,可提供适用于系统前置稳压器和电压稳定器的电源。

2 硬件

2.1 背景

TPS631012/3EVM 使用 TPS631012/3 集成电路 (IC),输出电压设置为 3.3V。该 EVM 的工作输入电压范围为 1.6 V 至 5.5V。

2.2 设置

本节介绍了如何正确使用 TPS631012/3EVM。

2.3 输入和输出连接器、测试点和接头说明

2.3.1 J1、引脚1和引脚2 - VIN

来自 EVM 输入电源的正极输入电压连接。

2.3.2 J1、引脚 3 和引脚 4 - S+/S-

输入电压感测连接。测量此处的输入电压。

2.3.3 J1、引脚 5 和引脚 6 - GND

EVM 输入电源的输入电压 GND 回路连接,与 J2 GND 连接共用

2.3.4 J2、引脚1和引脚2 - VOUT

正输出电压连接

2.3.5 J2、引脚 3 和引脚 4 - S+/S-

输出电压感测连接。测量此处的输出电压。

2.3.6 J2、引脚 5 和引脚 6 - GND

输出电压 GND 回路连接,与 J1 GND 连接共用

2.3.7 测试点

2.3.7.1 J4、J5

连接到 TPS631012/3 的 L1 和 L2 开关节点引脚的测试点

2.3.7.2 TP1、TP2

连接到 TPS631012/3 的 SDA 和 SCL 引脚的测试点

2.3.8 接头信息

2.3.8.1 J6 - I2C

10 引脚接头,用于将 USB2ANY 适配器连接到 EVM

2.3.9 跳线信息

2.3.9.1 JP1 - *启用*

将跳线穿过引脚 EN 和 ON 可启用器件。将跳线穿过引脚 EN 和 OFF 可禁用器件。

2.4 设置

要运行 EVM,请将电源的正极引线连接到 J1 VIN 引脚,负极引线连接到 J1 GND 引脚。将负载的正极引线连接 到 J2 VOUT 引脚,负极引线连接到 J2 GND 引脚。将跳线穿过 J3 上的引脚 EN 和 ON 可启用器件。

2.5 更改

该 EVM 的印刷电路板 (PCB) 经过设计可适应 TPS631012/3。提供额外的位置,用于额外的输入和输出电容器以 及 I²C 上拉电阻。

硬件

TEXAS INSTRUMENTS www.ti.com.cn

2.5.1 IC U1 操作

此 EVM 需要相应的 I²C 接口 (例如 TI USB2ANY)来重新配置 TPS631012/3。可以使用板载跳线在两个 I²C 可 编程值之间选择输出电压。有关可用的输出电压值,请参阅节 3.4。

3 软件

3.1 软件设置

可从 ti.com (TPS631012) 获取图形用户界面 (GUI),通过 TI USB2ANY (*http://www.ti.com.cn/tool/cn/USB2ANY*) 轻松对器件进行编程。或者,用户可以使用任何 I²C 标准编程工具或 I²C 主机来配置该器件。请注意 I²C 引脚规格,例如时序参数和适当的上拉电阻器。

3.2 接口硬件设置

使用提供的 USB 电缆将 USB2ANY 适配器与 PC 连接在一起。使用提供的 10 引脚带状电缆将 EVM 连接器 J3 连接至 USB2ANY 适配器。带状电缆上的连接器编码可防止安装错误。

图 3-1 所示为快速适配器连接概览。

图 3-1. 快速连接概览

3.3 用户界面操作

启动时,GUI将自动连接到 EVM。如果未连接,请点击 GUI 窗口左下角的 Connect 按钮。下面几节简要概述了 三个主要 GUI 屏幕。

3.3.1 主屏幕

主屏幕简要概述了 TPS631012/3 器件。要开始评估该器件,请点击 Start 按钮,或点击 GUI 窗口左侧的 Settings 或 Register Map 图标。

图 3-2. GUI 主屏幕

3.3.2 设置屏幕

Settings 屏幕可用于控制 TPS631012/3 的输出电压和运行模式。

File	Tools Help		_ 🗗 ×
=	tenu		
ń	Fault Status ∳ Power Good		CONFIGURE INTERFACE ADDRESS
•			Operating Modes
1	Discharge Current	DSABLE -	Enable convertor Enable
	Minimum current limit during soft start	Law Held	Forced PVM ExatMo
	Ramp time for the soft start	0.256 ms 👻	
	Output Voltage Set		Hicop during protection ExatMo
	01 2.3	3.5 4.375 5.5 1 8 V	Festramp enable Enable
			Fact DVS enable Cauble
<i>B</i> c	 Hardware not Connected. Please plug your Target Dr 	vice into your computer's USB port, and click the Connect icon at left.	Proved by GG Compare's

图 3-3. GUI 设置屏幕

3.3.3 寄存器映射屏幕

"Register Map"屏幕展示了寄存器的所有参数。在此处,单一寄存器可被读取或写入器件(如果适用)。有关 TPS631012/3 寄存器的详细说明,请参阅节 3.4。

	lap						Auto Read	Off		V READ R	EGISTER	READ ALL REGISTERS	Immediate Write
Search Registers by na	ame or address (0x)									Search	Bitfields	Show Bits	
	Register Name		Address	Value	7	6	5	4	Bits 3	2	1	0	OTP_STATUS
Status OTP_STATUS		0	0x00	0x00	0	0	0	0	0	0	0	0	Status / OTP_STATUS / NIL[7:3]
Control													B NiL 5000
CONFIG_CUST			0x02	0x00	0	0	0	0	0	0	0	0	Status / OTP_STATUS / OTP_ID_PROGRAMMED[2]
Output													B OTP_ID_PROGRAMMED
BUBO_VO_A1			0x03	0x00	0	0	0	0	0	0	0	0	CALLS OTTO STATUS OTO ALL DAREN
POWER_SEQ_I			0x05	0x00	0	0	0	0	0	0	0	0	B OTP_ALL_ONE
													Status / OTP_STATUS / OTP_PROGRAMMED[0]
													B OTP_PROGRAMMED

图 3-4. GUI 寄存器映射屏幕

3.4 寄存器映射

表 3-1 列出了器件寄存器的存储器映射寄存器。表 3-1 中未列出的所有寄存器偏移地址都应视为保留的位置,并 且不得修改寄存器内容。

まっす。現代学会現

		衣 3-1. 奋件钉什奋	
地址	首字母缩写	寄存器名称	部分
0X02	CONTROL1	控制1寄存器	转到
0X03	VOUT	VOUT 寄存器	查找
0X05	CONTROL2	控制 2 寄存器	转到

3.4.1 寄存器 CONTROL1(目标地址:0x2A;寄存器地址:0x02;默认:0x08)

表 3-2 显示了 CONTROL1 寄存器。

返回节 3.4。

该寄存器配置器件。该寄存器是易失性的,因此如果 VIN 引脚上的电压低于 UVLO 阈值或向 EN 引脚施加低逻辑 电平,则寄存器会丢失内容。

位	字段	类型	复位	说明				
7:4	RESERVED	R	0Ь0000	未使用。 在写入操作期间会忽略这些位的数据。在读取操作期间会返回 0				
3	EN_FAST_DVS	R/W	060	将 DVS 设置为快速模式 0:禁用,1:ENABLE				
2	EN_SCP	R/W	0b0	启用短路断续保护 0:禁用,1:ENABLE				
1	NIL	R	0b0	未使用				
0	CONVERTER_EN	读/写	0b0_TPS631012	启用转换器(与 EN 引脚进行与运算)				

0b1 TPS631013

0:禁用,1:ENABLE

表 3-2. CONTROL1 寄存器字段说明

3.4.2 寄存器 VOUT(目标地址:0x2A;寄存器地址:0x03;默认:0x5C)

表 3-3 显示了 STATUS 寄存器。

返回节 3.4。

该寄存器包含器件状态。对该寄存器的读取操作会清除状态位。该寄存器是易失性的,因此如果 VIN 引脚上的电压低于 UVLO 阈值或向 EN 引脚施加低逻辑电平,则寄存器会丢失内容。

表 3-3. 寄	存器 VO	UT 字	段说明
----------	-------	------	-----

位	字段	类型	复位	说明
7:0	VOUT[7:0]	读/写	0X5C	这些位设定输出电压
				当 0x00<=VOUT[7:0]<=0xB4 时,输出电压 = 1.000 + (VOUT[7:0] ×
				0.025) V ;
				当 0xB5<=VOUT[7:0]<=0xFF 时,输出电压 = 5.5V

3.4.3 寄存器 CONTROL2(目标地址: 0x2A;寄存器地址: 0x05;默认值: 0x45)

表 3-4 显示了 CONTROL2 寄存器。

返回节 **3.4**。

该寄存器用于标识器件的芯片版本。

位	字段	类型	复位	说明
7	FPWM	读/写	0b0	强制 PWM 操作
				0:禁用,1:ENABLE
6	FAST_RAMP_EN	读/写	0b1	器件启动速度可快于 VOUT 斜坡
				0:禁用,1:ENABLE
5:4	EN_DISCH_VOUT[1:0]	读/写	0b00	启用 BUBO Vout 放电
				00 : DISABLE
				01:慢速 (34mA)
				10:中速 (67mA)
				11:快速 (100mA)
3	CL_RAMP_MIN	读/写	0b0	定义软启动斜坡期间的最小电流限值
				0:低电平 (500mA)
				1:高电平(2倍低电平)
2:0	TD_RAMP[2:0]	读/写	0b101	定义 Vo 软启动斜坡的斜坡时间
				000 : 0.256ms
				001 : 0.512ms
				010:1.024ms
				011:1.920ms
				100 : 3.584ms
				101 : 7.552ms
				110 : 9.600ms
				111 : 24.320ms

表 3-4. 寄存器 CONTROL2 字段说明

4 硬件设计文件

4.1 原理图

图 4-1. TPS631012/3EVM 原理图

4.2 电路板布局

本部分提供了 TPS631012/3EVM 电路板布局布线和图示。

图 4-2 和图 4-3 显示了 TPS631012/3EVM 的元件放置方式和 PCB 布局。

图 4-2. TPS631012/3EVM PCB - 顶层

图 4-3. TPS631012/3EVM PCB - 底层(顶视图)

4.3 物料清单

表 4-1. TPS631012/3EVM 物料清单

标识符	数量	值	说明	尺寸	器件型号	制造商
C1	1	150uF	电容,钽聚合物,150uF,10V,+/-20%, 0.005 Ω,7343-31 SMD	7343-31	T530D157M010ATE005	Kemet
C3、C4、C5	3	22µF	多层陶瓷电容器,22uF,10V,X5R ±20%,0603, 纸质 T/R	603	GRT188R61A226ME13D	Murata
L1	1	1uH	电感器,屏蔽,金属复合物,1µH,3.2A, 0.042 Ω,SMD	1008	DFE252012P-1R0M=P2	MuRata
R1	1	100k	电阻,100k Ω ,5%,0.1W,0603	603	CRCW0603100KJNEAC	Vishay-Dale
R2 , R3	2	10.0k	电阻,10.0k,1%,0.1W,0603	603	RC0603FR-0710KL	Yageo
U1	1	不适用	具有 I2C 接口的 1.5A 输出电流、高功率密度降压/升 压转换器	WCSP8	TPS631012	德州仪器 (TI)

5 其他信息

5.1 商标

所有商标均为其各自所有者的财产。

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司