EVM User's Guide: LP5861TEVM LP5861T 评估模块

W TEXAS INSTRUMENTS

说明

LP5861T 评估模块展示了 LP5861T LED 矩阵驱动器 的所有功能。LP586x GUI 图形用户界面用于将 USB2ANY 连接到 EVM。此 EVM 通过 USB2ANY 接 口适配器提供 SPI 和 I2C 输入。

开始使用

- 1. 在 ti.com 上订购 EVM (LP5861TEVM)
- 2. 申请 LP5861T 数据表
- 3. 从 ti.com 下载 LP586xGUI
- 4. 申请 EVM 设计文件

特性

- LP5861T 具有 8 位模拟调光以及 8 位或 16 位 PWM 调光功能的 18 通道大电流 LED 驱动器
- 来自 USB2ANY 接口适配器的 SPI、I2C、Vsync、 IFS、EN 信号输入
- LP586x GUI 用于控制 EVM

应用

- 大型和智能家用电器
- 用于视频监控和 IP 摄像机的 IR 模块
- 光学模块中的激光二极管
- 智能扬声器

1 评估模块概述

1.1 引言

本用户指南介绍了 LP5861T 评估模块 (EVM) 的特性、设置和使用情况。LP5861TEVM 可帮助用户评估德州仪器 (TI) LP5861T LED 线性驱动器的特性,该驱动器集成了 18 个恒定电流阱。此用户指南包含硬件设置说明、图形用户界面 (GUI) 说明、印刷电路板 (PCB) 布局图、原理图和物料清单。

LP5861TEVM 用于评估 LED 线性驱动器 LP5861T 的特性、运行和使用情况。LP5861T 器件是一款高性能小尺 寸器件,集成了 18 个恒定电流阱,可驱动多达 18 个 LED 点或 6 个 RGB LED。每个 LED 点均可采用 8 位模拟 调光和 8 位/16 位可配置 PWM 调光方法,这些方法可实现平滑且无可闻噪声的调光控制。

本文档涵盖以下主题:

- 如何设置 LP5861TEVM 硬件
- 如何使用 LP586x GUI 点亮 LED
- 适用于 LP5861TEVM 的设计资源

通过移除出厂安装的器件 (U1) 并替换 LP5861 对应器件,可以转换 LP5861TEVM 来测试同一器件系列中的 LP5861。测试 LP5861 器件时,从 GUI 开始页面的菜单中选择相应的标签即可开始评估。

1.2 套件内容

LP5861TEVM 套件包含以下材料,如图 1-1 所示。

- LP5861T 评估模块
- 带带状电缆和 USB 电缆的 USB2ANY 接口适配器

图 1-1. LP5861TEVM 套件

通过此套件可轻松验证 LP5861T 的全部功能、RGB LED 的性能以及一些简单的动画效果。

1.3 规格

评估模块提供了多个输入。输入为 I2C、SPI、Vsync、EN、IFS 信号输入和 VCC、VLED 的电源。当总电流大于 400mA 时,需要外部电源。

1.4 器件信息

LP5861TEVM 展示了 LP5861T 具有 8 位模拟以及 8 位或 16 位 PWM 调光功能的 18 通道高电流 LED 驱动器的 硬件和软件功能。此模块可与 LP586x GUI 应用程序配合使用,进行评估和系统开发。

2 硬件

以下章节介绍了如何正确设置 LP5861TEVM。开始评估 LP5861T 时,需要使用以下列表中的各项内容:

- 计算机
- LP5861TEVM
- USB2ANY 接口适配器

2.1 硬件设置

在默认跳线设置中,该板可以直接由 USB 电源评估,不需要外部电源。设置连接如图 2-1 中所示。设置过程如下 文所示:

- 1. 使用 30 引脚带状电缆将 USB2ANY 与 LP5861TEVM 连接在一起。
- 2. 将 USB 电缆插入计算机上的 USB 端口。

图 2-2 显示了默认跳线设置。

图 2-2. 默认跳线设置

如果最大电流设置为高于 20mA,则建议在评估期间使用外部 VLED 电源,因为 USB 只能提供约 400mA 的电流。设置过程如下文所示:

- 1. 使用 30 引脚带状电缆将 USB2ANY 与 LP5861TEVM 连接在一起。
- 2. 将 5V 外部电源连接到 VLED_EXT 端子 (请参见图 2-3)并将开关跳线 (J1) 连接到另一侧。
- 3. 将 USB 电缆插入计算机上的 USB 端口。

图 2-3. 主要外部连接器

3 软件

以下各节介绍了如何正确设置 GUI。开始评估 LP5861T 时,需要使用以下列表中的各项内容:

• LP586x GUI 软件

3.1 软件设置

可通过 LP586x GUI 下载链接 下载 LP586x GUI 安装包 (SNVC245),所有 LP586x 系列器件均可由 LP586x GUI 进行评估。按照安装向导成功安装 LP586x GUI,请参见图 2-4。

🧃 Setup		1. 		×
	Setup - LP586x			
🐺 Texas Instruments	Welcome to the LP586x Setup Wizard.			
	< Back	Next >	Car	ncel

图 3-1. GUI 安装

3.2 图形用户界面 (GUI) 指南

LP586x GUI 是一款用于控制和评估 LP586x 系列所有功能的便捷工具。打开 LP586x.exe 文件,将 USB 电缆插 入计算机的 USB 端口。GUI 自动连接到 LP5861TEVM。图 3-1 展示了状态栏,在 GUI 底部显示了连接状态。连 接成功后,状态栏中会显示 *Hardware Connected*,并且 USB2ANY 中的指示灯停止闪烁。点击"Connection" 按钮可将 LP5861TEVM 与 GUI 连接或断开连接。

图 3-2. 状态栏

如果 USB2ANY 已用于评估其他 EVM 并由其他固件版本 (如 2.8.2.0)进行了更新,则必须将正确的固件版本更 新到 USB2ANY 中。插入 USB 电缆时,按照 GUI 中显示的说明可以成功更新固件,请参阅图 3-2。

Update Firmware	Update Firmware
The device is using firmware version 2.8.2.0. Recommended firmware version is 3.0.4.0.	The device is using firmware version 2.8.2.0. Recommended firmware version is 3.0.4.0.
Step 1: UPDATE Firmware	• Step 1: UPDATE Firmware
• Step 2: After firmware update succeeds, please click Finish	Step 2: After firmware update succeeds, please click Finish
SKIP UPDATE	Update succeeded FINISH

图 3-3. 固件更新

如果之前尚未使用 USB2ANY 评估任何 EVM,则 GUI 会检测到未知版本的固件。当显示更新固件通知时,1) 拔下 USB 电缆 (不要点击 UPDATE 按钮);2) 按下 USB2ANY 内的 BSL 按钮,然后插入 USB 电缆;3) 点击 UPDATE 按钮,请参见图 3-3。

Update Firmware	Update Firmware
The device is using firmware version unknown. Recommended firmware version is 3.0.4.1.	The device is using firmware version unknown. Recommended firmware version is 3.0.4.1.
• Step 1: While pressing the BSL button, connect the device. HELP me locate the BSL button.	• Step 1: While pressing the BSL button, connect the device. HELP me locate the BSL button.
Step 2: UPDATE Firmware	Step 2: UPDATE Firmware
• Step 3: After firmware update succeeds, please click Finish	Step 3: After firmware update succeeds, please click Finish
SKIP UPDATE	Updating firmware SKIP UPDATE

图 3-4. 固件更新

3.2.1 开始页面

从*开始页面*中选择了 LP586x 系列中的不同器件型号。由于开始页面中只有 LP5861 选项,考虑到 LP5861 和 LP5861T 具有相同的寄存器配置,因此要开始评估,应选择 LP5861 选项卡,然后点击 *EXPLORE* 按钮开始评估,请参见图 3-3。

LP5861 和 LP5861T 之间的不同之处在于,在相同 MC 配置下,LP5861T 的输出电流大于 LP5861,因此请在选择最大电流时选择相关值。请参阅 器件配置 了解更多详情。

图 3-5. 开始页面

3.2.2 主页页面

图 3-4 显示了在 *Home* 页中选择的接口协议。点击 *Configure & Connect* 按钮,将 USB2ANY 与 LP5861TEVM 连接。默认采用 I2C 协议和 0x10 芯片地址。0x11、0x12 和 0x13 等其他地址以及 SPI 协议也可用。

点击 LED CONTROL 块下方的 START 按钮,为每个单独的 LED 设置电流和 PWM。其他可配置功能也可以通过此页面中的图形按钮进行设置。预定义的动画是通过 PATTERN 页面执行的,而每个寄存器都在 REGISTER MAP 页面中进行配置。

LP5861 Device Connected Hardware S	etup		High Resolution Flexi Dimming 16 btts>20KHz PWM dimm 8 bits dimming per channel Programmable group control	ble	X LED CONTROL Control channels color and brightness START -
Select Interface Protoc	ol SPI Ox <u>10</u>		ase of Design Full Addressable SRAM for M Various Protections and Diagr Free of Matrix issues	finimum Data Volume costics	PATTERN Run the predefined set of LED patterns
DISCONT * After configuring click to work with the har	IECT & EDIT "Configure & Connect" dware seamlessly	NOT AVAIL	ABLE NOT AVAILABLE	NOT AVAILABLE	REGISTER MAP

图 3-6. 主页页面

3.2.3 LED 控制页面

在 LED 控制页面中为每个 RGB LED 像素设置颜色和亮度。要使用默认配置点亮一个 LED,请按照以下过程操作,并参见图 3-5。

- 1. 点击 Enable 按钮以在软件中启用 LP5861。
- 2. 选择您要控制的 LED。
- 3. 为此 LED 设置一种颜色。
- 4. 点击 Set Brightness 按钮将 PWM 值上传到器件中。
- 5. 点击 VSync 按钮以激活此 LED (默认为模式 3,因此需要 SYNC 信号)。

	LE	DC	ON	rRC	DL			LP5	861		0	Ch	ip E	nabl	ed	Int	terf	face	: 12	2C :	Slav	e Ac	ldres:	: 0x1	0				© RESE		AULTS:	∲ OF	'EN 🥝	\$ SHORT	C
	1*	6	RG	В	LED)					√Syn	c			Clear	Sho	ort L	.ED		CI	ear o	pen L	ED		CU Applies to all	ISTO the se	M elected LEDs	A	GLOBAL oplies to all the LE	Ds	Applies	(brightnes	SROUP s to the r	> respective grou	ps
1																									LEDs	s OFF									
																									LED Dot	t Co	rrection								
																									R#		Hex 00		Decimal 0		0.	lout 00 mA			
			CS17	0316	CS15	CS14	CS13	CS12		0311	CS10	63		8	8			88	8		8	5	8		G# B#		00		0		0)	Am 00			
	SWO			0-5			00	4		•	D0-3			0	0-2			DO 0	н			004			LED Bri	abtr	ess Settin	,					Set B	rightness	
																														·	Hex Va R# G# B#	lue MSB CC 00 00		B 00 00 00	

图 3-7. LED 控制页面和测试程序

器件配置

要提高不同应用下的性能,请首先配置一些关键设置。选择 DEVICE CONFIGURATION 按钮显示详细设置幻灯 片,如图 3-6 所示。此处设置了最大电流 (MC)。

备注

如果 LP5861T 待测试,则全局最大电流设置与 GUI 器件配置页面上显示的值不同。请从表 3-1 中选择 相应值。

	—————————————————————————————————————										
Maximum_Current (Dev_config3 寄存 器中的 3-1 位)	0h	1h	2h	3h(默认 值)	4h	5h	6h	7h			
MC_LP5861	3mA	5mA	10mA	15mA	20mA	30mA	40mA	50mA			
MC LP5861T	7.5mA	12.5mA	25mA	37.5mA	50mA	75mA	100mA	125mA			

表 3-1. LP5861 与 LP5861T 之间的比较

如果设置了最大高电流,则建议使用外部 VLED 电源。Data Refresh Mode 设置决定了是否需要 SYNC 信号来同步每个 LED 点的 PWM 变化。Max Scan Lines 控件用于选择有多少扫描线处于活动状态。有关其他设置的功能的更多信息,请参阅 LP5861T 具有 8 位模拟以及 8 位或 16 位 PWM 调光功能的 18 通道高电流 LED 驱动器。

备注

对于 LP5861T/LP5861,只有一条扫描线可用。

此处配置了评估重影消除和低亮度补偿功能。

图 3-8. 器件配置

自定义 LED 设置

在设置 RGB LED 的颜色和亮度之前,必须先选择一个或多个 LED (按住 Shift 键可选择多个 LED)。在 CUSTOM 标签中,在右侧颜色选择器中设置颜色,请参见图 3-7。亮度用于调整一个 RGB LED 中所有 3 个点的 PWM。对于一些要求很高的应用,点电流可以调节每个 RGB LED 的白平衡。

备注 如果 LP5861T 待测,则每个通道的实际输出电流 (IOUT) 可通过以下公式计算: IOUT = (MC_LP5861T/MC_LP5861) x lout

有关 MC_LP5861T 和 MC_LP5861 值,请参阅表 3-1 的详细信息。

图 3-9. 自定义设置

软件

全局和组设置

图 3-8 所示为 GLOBAL 选项卡,其中设置了 RGB 组的颜色电流以及所有 LED 点的全局 PWM。图 3-9 所示为 GROUP 选项卡,其中每个 LED 点可任意配置为三个组,而同一个组的 PWM 可以同步更改。

图 3-10. 全局设置

Group 1	Group 2	Group 3				
Add Remove all D0-4 × D0-5 ×	Add Remove all	Add Remove all				
STEP 2: SET BRIGHTNESS	Set Brightness for the Groupe	d LEDs				
Group 1 Brightness						

图 3-11. 组设置

故障检测

LP5861T 会持续检测每个 LED 点的状态。一旦检测到开路或短路故障,也会在 GUI 上监控故障状态。点击异常 LED 附近的警告栏将显示故障详细信息,如图 3-10 所示。点击 GUI 右上角的故障摘要会显示所有故障状态的摘 要(请参见图 3-11)。Clear Short LED 和 Clear Open LED 按钮用于在故障消失后清除相关的故障标志。

为了获得精确的检测结果,由于 LED 产生的寄生电容,每个 LED 点的电流必须设置在 0.5mA 以上,并且 PWM 必须设置在 25% 以上。电流过小会导致 LSD 结果异常。

图 3-12. 单项故障报警

图 3-13. 总故障汇总

3.2.4 图形页面

可在图形页面中执行六种预定义图形,请参见图 3-12。选择一个图形,然后点击 *Play* 按钮以显示动画。在右侧设置速度和颜色。在评估这些图形之前,如果已在 LED 控制页面中设置了一些值,则首先重置 LP5861TEVM 板。

586x File Options Tools	Help	_
PATTERNS LP5860 (U) C	hip Enabled Interface : I2C Slave Address : 0x10	RESET FAULTS: HOPEN F SHORT
PATTERNS	Breathing Effect-Single Color	Pattern Configuration Breathing Effect-Single Color
Breathing Effect-Single Color	• • • • • •	Speed
Breathing Effect- Multi Color	• • • • • •	opeca
Rainbow Effect-Corner to Corner		75
Helix Effect		1% 25 50 75 100%
Snake Game Light Effect	• • • • • •	
Timer Display	• • • • • •	Colour
		Hex Value
		► ► F F F F F F F F F F
		Powered By GUI Comp.

图 3-14. 图形页面

软件

3.2.5 寄存器映射页面

图 3-13 展示了所有寄存器在寄存器映射页面中的显示方式,其中提供了寄存器地址、值和说明。修改每个寄存器 值的方法是,直接将十六进制值写入 Value 列,或双击 Bits 列中的相应位以翻转该值。如果从右上角的下拉菜单 中选择了 Immediate Write,则修改后的值将立即生效。选择 Deferred Write 后,修改后的值不会生效,直到用户 点击 WRITE REGISTER 按钮。

启用 Auto Read 后,将自动读取所有寄存器的值,还可以设置每个读取周期的间隔。当 Auto Read 关闭时,点击 Read Register,从所选寄存器中读取值,然后点击 Read All Registers 以手动读取所有寄存器。

LP58	6x File Options Tools	Help										_ 🗆 ×
	Register Map		Auto Read Every	5 sec	``		READ R	GISTER	RE	AD ÁLLI	IEGISTERS	wate REOSTER WATE ALL REOSTERS Immediate Write 🗸
	Q Search Registers by name or address (0x)						Search	Bitfield	is 💽	/ Sho	w Bits	
•	Register Name	Address	Value	7	6	5	8 4	its 3	2	1	0	FIELD VIEW Chip_en
:X:	- Device Configuration											Davice Configuration / Chip. on / DESEDVEDI7:11
	Chip_en	0x00	0x00			-	-	1	141	-	0	
2.0	Dev_initial	0x01	0x5E		1	0	1	1	1	1	0	
	Dev_config1	0x02	0x00					0	0	0	0	Device Configuration / Chip_en / Chip_EN[0]
0	Dev_config2	0x03	0x00	0	0	0	0	0	0	0	0	Chip_EN
0	Dev_config3	0x04	0x47	0	1	0	0	0	1	1	1	Disabled; LP586x 🗸
	Global Configuration											
	Master_bri	0x05	0xFF	1	1	1	1	1	1	1	1	
	Group0_bri	0x06	0xFF	1	1	1	1	1	1	1	1	
	Group1_bri	0x07	0xFF	1	1	1	1	1	1	1	1	
	Group2_bri	0x08	0xFF	1	1	1	1	1	1	1	1	
	R_current_set	0x09	0x40		1	0	0	0	0	0	0	
	G_current_set	0x0A	0x40		1	0	0	0	0	0	0	
	B_current_set	0x0B	0x40		1	0	0	0	0	0	0	
	▼ LED Group Configuration											
	Dot_grp_sel0	0x0C	0x00	0	0	0	0	0	0	0	0	
	Dot_grp_sel1	0x0D	0x00	0	0	0	0	0	0	0	0	
	Dot_grp_sel2	0x0E	0x00	0	0	0	0	0	0	0	0	
	Dot_grp_sel3	0x0F	0x00	0	0	0	0	0	0	0	0	
	Dot_grp_sel4	0x10	0x00					0	0	0	0	
	Dot_grp_sel5	0x11	0x00	0	0	0	0	0	0	0	0	
BI CT	LICP2ANV/OneDemo device Llordware	Connected	0.00			-						Powered By GUI Composer **
	S S S S S S S S S S S S S S S S S S S	connected.										TEXAS INSTRUMENTS

图 3-15. 寄存器映射页面

4 硬件设计文件

本节包含 LP5861T EVM 电路板设计的原理图、PCB 布局和物料清单。

4.1 原理图

图 4-5 显示了 LP5861TEVM 原理图。

4.2 PCB 布局

图 4-1、图 4-2、图 4-3 和图 4-4 演示了 LP5861TEVM 布局图像。

图 4-2. LP5861TEVM 顶层

图 4-4. LP5861TEVM 底层

图 4-3. LP5861TEVM 信号层 1

图 4-5. LP5861TEVM 信号层 2

4.3 物料清单

表 4-1 显示了物料清单 (BOM)。若要下载 BOM,请参阅 LP5861TEVM 工具页面上的设计文件。

名称	数量	说明	制造商	器件型号		
C1, C2	2	电容,陶瓷,22uF,35V,±20%,X5R, 0805	ток	C2012X5R1V226M125AC		
C3、C5、C6	3	电容,陶瓷,1µF,25V,±10%,X7R, 0603	AVX	06033C105KAT2A		
C4	1	电容,陶瓷,0.1 μ F,16V,±5%,X7R, 0603	AVX	0603YC104JAT2A		
D1至D6 6		LED , RGB , SMD	OSRAM	LRTBGVTG- U5V5-1+A5B5-29+S9T9-4 9-20-R33-B		
GND	3	测试点,多用途,黑色,TH	Keystone	5011		
H0、H1、H2、H3	4	机械螺钉,圆头,#4-40 x 1/4,尼龙,十 字槽盘头	B&F 紧固件供应商	NY PMS 440 0025 PH		
H4、H5、H6、H7	4	六角螺柱,0.5"L #4-40,尼龙	Keystone	1902C		
J1、J2、J3、J4、J5、J6、J7	7	接头,100mil,3x1,金,TH	Samtec	TSW-103-07-G-S		
J8、J9	2	接头,100mil,3x2,金,TH	Samtec	TSW-103-07-G-D		
J12、J15	2	接头,100mil,9x2,镀金,TH	Samtec	TSW-109-07-G-D		
J13、J16	2	接头,100mil,9x1,金,TH	Samtec	TSW-109-07-G-S		
J14	1	接头,100mil,2x1,镀金,TH	Samtec	TSW-102-07-G-S		
J17	1	'接头,100mil,4x1,金,TH	Samtec	TSW-104-07-G-S		
R1、R2、R4	3	'电阻,4.7k,5%,0.1W,AEC-Q200 0 级,0603	威世达勒 (Vishay- Dale)	CRCW06034K70JNEA		
RT0 至 RT17	18	电阻,0,5%,0.1W,0603	Yageo	RC0603JR-070RL		
SH-J1 至 SH-J26	26	分流器,100mil,镀金,黑色	Samtec	SNT-100-BK-G		
U1	1	LED 驱动器	德州仪器 (TI)	LP5861TRSMR		
U3、U4、U5、U6	4	单通道 2:1 模拟开关,DCK0006A (SOT- SC70-6)	德州仪器 (TI)	SN74LVC1G3157DCKR		
USB2ANY	1	接头(有罩),2.54mm,15x2,金(带锡 尾线),R/A,TH	Samtec	'TST-115-04-L-D-RA		
VCAP	1	测试点,通用,红色,TH	Keystone	5010		
VSYNC	1	测试点,通用,黄色,TH	Keystone	5014		

表 4-1. 物料清单 (BOM)

5 其他信息

商标

所有商标均为其各自所有者的财产。

6 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

Cł	hanges from Revision * (June 2023) to Revision A (October 2023)	Page
•	添加了 LP5861 与 LP5861T 之间的比较 表	8

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司