# **U** TEXAS INSTRUMENTS

#### 摘要

TLVM13610 同步降压电源模块具有 3V 至 36V 的输入工作电压范围和高达 8A 的额定输出电流,可为各种应用提供灵活性、可扩展性和优化的解决方案尺寸。通过集成功率 MOSFET、降压电感器和 PWM 控制器,这些模块可实现具有高密度、低 EMI 和更简化设计的直流/直流解决方案。

| 表 1-1. TLVM13610 | 同步降压直流/直流电源模块系列 |
|------------------|-----------------|
|------------------|-----------------|

| 直流/直流模块   | 额定值 IOUT | 封装          | 尺寸             | 特性                     | 降低 EMI                    |
|-----------|----------|-------------|----------------|------------------------|---------------------------|
| TLVM13610 | 8A       | B3-QFN (22) | 6.5 × 7.5 (mm) | RT 调节的 F <sub>SW</sub> | 压摆率控制、集成输入、VCC 和启动<br>电容器 |

TLVM13610EVM 使用 TLVM13610 易于使用的同步降压模块 IC,其输出电压范围为 1V 至 9V,输出电流高达 8A。EVM 的默认输出电压设置为 5V,可通过跳线设置调节为 3.3V。

该解决方案支持可调节输入电压 UVLO,以满足应用特定的上电和断电要求,支持用于时序控制和输出电压监控的 PGOOD 指示器,并设置为 AUTO 模式,以便在轻负载应用中实现高效率。



| 内容            |                |  |  |  |  |
|---------------|----------------|--|--|--|--|
| 1 高密度 EVM 说明  | 4              |  |  |  |  |
| 1.1 典型应用      | 4              |  |  |  |  |
| 2 测试装置和过程     | 5              |  |  |  |  |
| 2.1 EVM 连接    | 5              |  |  |  |  |
| 2.2 EVM 设置    | 6              |  |  |  |  |
| 2.3 测试设备      | 7              |  |  |  |  |
| 2.4 建议的测试设置   | 7              |  |  |  |  |
| 2.5 测试步骤      | 7              |  |  |  |  |
| 3 测试数据和性能曲线   | <mark>8</mark> |  |  |  |  |
| 3.1 效率和负载调节性能 | <mark>8</mark> |  |  |  |  |
| 3.2 波形        | 9              |  |  |  |  |
| 3.3 波特图       | 10             |  |  |  |  |
| 3.4 EMI 性能    | 12             |  |  |  |  |
| 4 EVM 文档      | 13             |  |  |  |  |
| 4.1 原理图       | 13             |  |  |  |  |
| 4.2 物料清单      | 14             |  |  |  |  |
| 4.3 PCB 布局    | 16             |  |  |  |  |
| 4.4 多层叠       | 18             |  |  |  |  |
| 5 器件和文档支持     | 19             |  |  |  |  |
| 5.1 器件支持      | 19             |  |  |  |  |
| 5.2 文档支持      | 19             |  |  |  |  |

# 插图清单

| .0  |
|-----|
| . 8 |
| .8  |
| . 8 |
| .8  |
| .9  |
| .9  |
| .9  |
| .9  |
| .9  |
| .9  |
| 10  |
| 10  |
| 10  |
| 11  |
| 12  |
| 12  |
| 13  |
| 16  |
| 16  |
| 17  |
| 17  |
| 18  |
| 18  |
| 18  |
|     |

# 表格清单

| 表 1-1. TLVM13610 同步降压直流/直流电源模块系列 | 1  |
|----------------------------------|----|
| 表 2-1. EVM 电源接头                  | 5  |
| 表 2-2. EVM 信号接头                  | 5  |
| 表 4-1. 元件 BOM                    | 14 |



**商标** HotRod<sup>™</sup> is a trademark of Texas Instruments. WEBENCH<sup>®</sup> is a registered trademark of Texas Instruments. 所有商标均为其各自所有者的财产。



# 1 高密度 EVM 说明

TLVM13610EVM 具有 TLVM13610 同步降压电源模块,配置为在典型的 3V 至 36V 输入总线应用中运行。这种宽 V<sub>IN</sub> 范围的直流/直流解决方案提供了超大的额定电压和运行裕度,可承受电源轨电压瞬变。

可使用配置跳线将输出电压设置为 3.3V 或 5V,并且开关频率可分别设置为五个常用值(400kHz、700kHz、1MHz、1.4MHz 和 2.2MHz)中的一个。此外,EVM 的背面还有一个电阻占位符封装,允许在五个跳线设置之外 调整开关频率。

该 EVM 提供器件的完整 8A 输出电流额定值。选定的输入和输出电容器可在 EVM 上提供完整的输入电压范围和 所需的输出电压,可从多个元件供应商处获得。输入和输出电压检测端子和测试点接头有助于测量以下内容:

- 效率和功率耗散
- 线路和负载调节
- 负载瞬态响应
- 使能开/关
- 波特图 (交叉频率和相位裕度)

PCB 布局可更大限度地提高热性能并降低输出波纹和噪声。

### 1.1 典型应用

- 测试和测量以及航天和国防
- 工厂自动化和控制、电力输送
- 需要负输出电压的反相降压/升压 (IBB) 电路

## 2 测试装置和过程

### 2.1 EVM 连接

参考表 2-1 中描述的 EVM 接头,使用图 2-1 中推荐的测试装置评估 TLVM13610。在提供 ESD 保护的工作站上 工作时,请确保在为 EVM 加电之前已连接所有腕带、靴带或垫子,从而将用户接地。



图 2-1. EVM 测试设置



### 表 2-1. EVM 电源接头

| 标签     | 说明      |
|--------|---------|
| VIN+   | 正输入电源连接 |
| VIN-   | 负输入电源连接 |
| VOUT+  | 正输出电源连接 |
| VOUT - | 负输出电源连接 |

#### 表 2-2. EVM 信号接头

| 标签       | 说明                                                                                          |  |  |  |  |
|----------|---------------------------------------------------------------------------------------------|--|--|--|--|
| VIN S+   | 正极输入感应端子。连接万用表正极引线,以测量效率。                                                                   |  |  |  |  |
| VIN S -  | 负极输入感应端子。连接万用表负极引线,以测量效率。                                                                   |  |  |  |  |
| VOUT S+  | 正极输出感应端子。连接万用表正极引线,以测量效率以及线路和负载调节。                                                          |  |  |  |  |
| VOUT S - | 负极输出感应端子。连接万用表负极引线,以测量效率以及线路和负载调节。                                                          |  |  |  |  |
| GND      | 接地参考点                                                                                       |  |  |  |  |
| SW       | 开关节点监控器输出                                                                                   |  |  |  |  |
| EN       | 精密使能输入和输入电压 UVLO 保护。将 EN 连接到 GND,以禁用稳压器。使用逻辑信号控制 EN,以实现远程开和关功能。让 EN 开路,以使 UVLO 开启阈值设置为 6 V。 |  |  |  |  |



#### 表 2-2. EVM 信号接头 (continued)

| 标签      | 说明                                                                                                 |
|---------|----------------------------------------------------------------------------------------------------|
| PG      | 电源正常监视器输出。PG 是一个带有 100k Ω 上拉电阻到 VOUT 的开漏标志。                                                        |
| CHA、CHB | 波特图测量和信号注入。从 CHA 到 CHB 的 10 Ω 电阻有助于为波特图测量注入振荡器信号。移除跳线并在 CHA 和 CHB 之间施加扫频信号,同时测量每个端子的相应响应以进行环路增益测量。 |

### 2.2 EVM 设置

- 使用位于电源端子块附近的 VIN S+ 和 VIN S 测试点以及 VOUT S+ 和 VOUT S 测试点作为电压监测点, 通过连接电压表来分别测量输入和输出电压。*请勿将这些检测端子用作输入电源或输出负载连接点。*连接到这些检测端子的 PCB 迹线不能支持高电流。
- VOUT SELECT 接头 (J4) 允许选择 3.3V 或 5V。在为 EVM 供电之前,确保存在跳线并正确定位预期的输出电压。请务必在更改跳线设置之前移除输入电源。
- FSW SELECT 接头 (J5) 允许选择适合的开关频率:
  - 400kHz
  - 700kHz
  - 1 MHz
  - 1.4 MHz
  - 2.2 MHz

在向 EVM 供电之前,请确保已在合适的位置放置了跳线,以获得所需开关频率。请务必在更改跳线设置之前 移除输入电源。

### 2.3 测试设备

电压源:输入电压源 V<sub>IN</sub> 必须能够提供 6A 的 36V 可变直流电源。

#### 万用表:

- **电压表 1**:测量 VIN S+ 至 VIN S- 的输入电压。
- **电压表 2**: 测量 VOUT S+ 至 VOUT S- 的输出电压。
- 电流表 1:测量输入电流。将电流表设置为具有 1 秒的孔径时间。
- 电流表 2:测量输出电流。将电流表设置为具有 1 秒的孔径时间。

**电子负载:**使用设置为恒定电阻 (CR) 或恒定电流 (CC) 模式的电子负载,并且能够支持 0ADC 到 6ADC。对于空载输入电流测量,请断开电子负载,因为它会消耗少量剩余电流。

**示波器:**将示波器带宽设置为 20MHz 并采用交流耦合模式,使用示波器探头通常提供的短接地引线直接测量输出 电容器两端的输出电压纹波。将示波器探头尖端放在输出电容器的正极端子上,通过接地引线将探头的接地筒形 连接器固定到电容器的负极端子。TI不建议使用长引线接地,因为这会在接地回路很大时引起额外的噪声。若要 测量其他波形,请根据需要调整示波器。

安全性:在接触任何可能带电或通电的电路时,请务必小心。

### 2.4 建议的测试设置

### 2.4.1 输入接头

- 在连接直流输入源之前,将输入电源的电流限制设置为最大 0.1A。确保输入源最初设置为 0V 并连接到 VIN+和 VIN 连接点,如图 2-1 所示。
- 在 VIN S+ 和 VIN S- 连接点上连接电压表 1, 以测量输入电压。
- 连接电流表 1,以测量输入电流,并将其设置为具有至少 0.1 秒的孔径时间。

#### 2.4.2 输出接头

- 将电子负载连接到 VOUT+和 VOUT 连接,如图 2-1 所示。在施加输入电压之前,将负载设置为恒阻模式或 恒流模式,电流为 0A。
- 在 VOUT S+ 和 VOUT S- 检测点上连接电压表 2,以测量输出电压。
- 连接电流表 2, 以测量输出电流。

### 2.5 测试步骤

#### 2.5.1 线路与负载调节和效率

- 按照*测试设置和程序*中的描述设置 EVM。
- 将负载设置为恒阻或恒流模式并具有 0A 的灌电流。
- 将输入源电压从 0V 增加到 24V;使用电压表 1 测量输入电压。
- 将输入电源的电流限值增加到8A。
- 使用电压表 2 测量输出电压 V<sub>OUT</sub>,并将负载电流从 0A 更改为 8A 直流; V<sub>OUT</sub> 必须保持在负载调节规格之内。
- 将负载电流设置为 4A (50% 额定负载)并将输入源电压从 6 V 更改为 36 V; V<sub>OUT</sub> 必须保持在线路调节规格 之内。
- 将负载电流设置为8A(100%额定负载)并测量典型输入电压(12V、24V和36V)下的效率。
- 将负载降低至 0A。将输入源电压降低至 0V。

### CAUTION

在高输出电流下长时间运行会使元件温度升高到 55°C 以上。为避免烧伤风险,请在断开电源后不要触摸元件,直到充分冷却为止。

# 3 测试数据和性能曲线

实际性能数据可能会受到测量技术和环境变量的影响,因此这些曲线仅供参考,并可能与实际现场测量结果有所不同。除非另有指明,否则  $V_{IN}$  = 24V,  $V_{OUT}$  = 5V,  $I_{OUT}$  = 8 A 且  $F_{SW}$  = 1MHz。

### 3.1 效率和负载调节性能

本节提供 EVM 的效率和负载调节图。





#### 3.2 波形





测试数据和性能曲线



### 3.3 波特图

图 3-13 提供了 V<sub>IN</sub> = 24V、V<sub>OUT</sub> = 5V、F<sub>SW</sub> = 1MHz 且 I<sub>OUT</sub> = 8A 时的波特图。图 3-14 显示了 47μF、16V、 X6S 输出电容器的典型电容与电压关系曲线,以突出显示陶瓷元件的*有效* 电容值。请参阅*物料清单*中的元件详细 信息。



图 3-13. 具有四个 47µF、16V 输出电容器的波特图 (110µF 在 5VDC、25℃ 时有效 )









# 3.4 EMI 性能

有关通过 CISPR 11/32 B 类传导发射的输入 EMI 滤波器的详细信息,请参阅 原理图和物料清单。





# 4 EVM 文档

# 4.1 原理图

图 4-1 所示为 EVM 原理图。



图 4-1. EVM 原理图



### 4.2 物料清单

表 4-1. 元件 BOM

| 参考设计                                             | 数量 | 值              | 说明                                | 封装                      | 零件编号                 | 制造商                         |
|--------------------------------------------------|----|----------------|-----------------------------------|-------------------------|----------------------|-----------------------------|
| C1                                               | 1  | 100µF          | 电容,铝,100μF,50V,0.34 Ω             | 8x10 UUD1H101MNL1GS     |                      | Nichicon                    |
| C2、C3、C4、C5                                      | 4  | 10µF           | 电容,陶瓷,10µF,50V,X7R                | 1210                    | GRM32ER71H106KA12L   | MuRata                      |
| C6 , C7 , C8 , C9                                | 4  | 2.2µF          | 电容,陶瓷,2.2µF,50V,X7R               | 0805                    | CGA4J3X7R1H225K125AB | ТDК                         |
| C10、C11、C12、C13                                  | 4  | 47µF           | 电容,陶瓷,47µF,16V,X6S                | 1210                    | GRM32EC81C476ME15L   | MuRata                      |
| C14                                              | 1  | 0.1µF          | 电容,陶瓷,0.1µF,25V,X7R               | 0603                    | CGA3E2X7R1E104K080AA | ТDК                         |
| C15                                              | 1  | 1µF            | 电容,陶瓷,1µF,25V,X7R                 | 0603                    | C0603C105K3RACTU     | Kemet                       |
| C17                                              | 1  | 0.15µF         | 电容,陶瓷,0.15µF,50V,X7R              | 0603                    | CGA3E3X7R1H154K080AB | ТDК                         |
| C18                                              | 0  | 10pF           | 电容,陶瓷,10pF,50V,C0G/NP0            | 0402                    | CGA2B2C0G1H100D050BA | ТDК                         |
| H1、H2、H3、H4                                      | 4  |                | 六角螺柱,0.5"L #4-40,尼龙               | -                       | 1902C                | Keystone                    |
| H5、H6、H7、H8                                      | 4  |                | 螺钉,盘头,4-40、3/8",尼龙                | -                       | NY PMS 440 0038 PH   | B&F Fastener Supply         |
| J1、J2                                            | 2  |                | 端子块,2POS 5mm,TH                   | -                       | 1729018              | Phoenix Contact             |
| J3 , J6                                          | 2  |                | 接头,100mil,3 x 1,金,TH              | -                       | PBC03SAAN            | Sullins Connector Solutions |
| J4                                               | 1  |                | 接头,100mil,2 x 1,金,TH              | -                       | PBC02SAAN            | Sullins Connector Solutions |
| J5                                               | 1  |                | 接头,100mil,5×2,锡,TH                | -                       | PEC05DAAN            | Sullins Connector Solutions |
| L1                                               | 1  | 1.5µH          | 屏蔽功率电感器 1.5μH 10.2A 10.5m Ω (最大值) | -                       | XGL4030-152MEC       | Coilcraft                   |
| R1                                               | 1  | 0              | 电阻,0,5%,0.1W                      | 0603                    | CRCW06030000Z0EA     | Vishay-Dale                 |
| R2                                               | 1  | 0              | 电阻 , 0 , 0% , 0.2W                | 0402 CRCW04020000Z0EDHP |                      | Vishay-Dale                 |
| R3                                               | 1  | <b>187k</b> Ω  | 电阻,187k <sup>Ω</sup> ,1%,0.1W     | 0603 CRCW0603187        |                      | Vishay-Dale                 |
| R4                                               | 1  | <b>49.9k</b> Ω | 电阻,49.9kΩ,1%,0.1W                 | 0603 CRCW060349K9FKEA   |                      | Vishay-Dale                 |
| R5                                               | 1  | <b>10</b> Ω    | 电阻,10.0 Ω,1%,0.063W               | V 0402 CRCW040210R0FKED |                      | Vishay-Dale                 |
| R6                                               | 1  | 100k Ω         | 电阻,100k Ω,1%,0.1W                 | 0603 CRCW0603100KFKEA   |                      | Vishay-Dale                 |
| R7                                               | 1  | 100k Ω         | 电阻,100k Ω,1%,0.063W               | 0402                    | CRCW0402100KFKED     | Vishay-Dale                 |
| R8                                               | 1  | <b>43.2k</b> Ω | 电阻,43.2k Ω,1%,0.063W              | 0402                    | CRCW040243K2FKED     | Vishay-Dale                 |
| R9                                               | 1  | 59.0k Ω        | 电阻,59.0kΩ,1%,0.063W               | 0402                    | CRCW040259K0FKED     | Vishay-Dale                 |
| R10                                              | 1  | <b>40.2k</b> Ω | 电阻,40.2k♀,1%,0.063W               | 0402                    | CRCW040240K2FKED     | Vishay-Dale                 |
| R11                                              | 1  | <b>22.6k</b> Ω | 电阻,22.6k Ω,1%,0.063W              | 0402                    | CRCW040222K6FKED     | Vishay-Dale                 |
| R12                                              | 1  | 15.8k Ω        | 电阻,15.8k Ω,1%,0.063W              | 0402                    | CRCW040215K8FKED     | Vishay-Dale                 |
| R13                                              | 1  | 11.0k Ω        | 电阻,11.0kΩ,1%,0.063W               | 0402                    | CRCW040211K0FKED     | Vishay-Dale                 |
| R14                                              | 1  | <b>6.8k</b> Ω  | 电阻,6.8kΩ,5%,0.063W                | 0402                    | CRCW04026K80JNED     | Vishay-Dale                 |
| R15                                              | 0  | <b>4.99k</b> Ω | 电阻,4.99kΩ,1%,0.063W               | 0402                    | CRCW04024K99FKED     | Vishay-Dale                 |
| R17                                              | 0  | <b>4.99M</b> Ω | 电阻,4.99M Ω,1%,0.1W                | 0603                    | CRCW06034M99FKEA     | Vishay-Dale                 |
| SH-J1、SH-J2、SH-J3、<br>SH-J4、SH-J5、SH-J6          | 6  | 1 × 2          | 分流器,100mil,镀金,黑色                  | 分流器                     | SNT-100-BK-G         | Samtec                      |
| TP1 , TP2 , TP3 , TP4 ,<br>TP5 , TP6 , TP7 , TP8 | 8  |                | 测试点,微型,SMT                        | -                       | 5019                 | Keystone                    |



### 表 4-1. 元件 BOM (continued)

| 参考设计 | 数量 | 值 | 说明            | 封装       | 零件编号          | 制造商       |
|------|----|---|---------------|----------|---------------|-----------|
| U1   | 1  |   | TLVM13610RDFR | B3QFN-22 | TLVM13610RDFR | 德州仪器 (TI) |



# 4.3 PCB 布局

图 4-2 至图 4-7 显示了 PCB 布局图像,包括 3D 视图、铜层、装配图和层堆叠图。该 PCB 为 62 密耳标准厚度,所有层均为 2 盎司覆铜。



图 4-2. 3D 顶视图



图 4-3.3D 底视图





图 4-4. 顶部铜层



图 4-5. 第 2 层覆铜





图 4-6. 第 3 层覆铜



图 4-7. 底部铜层(顶视图)

### 4.4 多层叠

| _ |                |                  |             |        |           |     |
|---|----------------|------------------|-------------|--------|-----------|-----|
| # | Name           | Material         | Туре        | Weight | Thickness | Dk  |
|   | Top Overlay    |                  | Overlay     |        |           |     |
|   | Top Solder     | Solder Resist 🔤  | Solder Mask |        | 0.4mil    | 3.5 |
| 1 | Top Layer      |                  | Signal      | 2oz    | 2.8mil    |     |
|   | Dielectric1    | FR-4 High Tg 🛛 🔤 | Core        |        | 5mil      | 4.8 |
| 2 | Signal Layer 1 |                  | Signal      | 2oz    | 2.8mil    |     |
|   | Dielectric3    |                  | Dielectric  |        | 40mil     | 4.8 |
| з | Signal Layer 2 |                  | Signal      | 2oz    | 2.8mil    |     |
|   | Dielectric2    |                  | Dielectric  |        | 5mil      | 4.8 |
| 4 | Bottom Layer   |                  | Signal      | 2oz    | 2.8mil    |     |
|   | Bottom Solder  | Solder Resist 🔤  | Solder Mask |        | 0.4mil    | 3.5 |
|   | Bottom Overlay |                  | Overlay     |        |           |     |



### 5 器件和文档支持

### 5.1 器件支持

### 5.1.1 开发支持

相关开发支持请参阅以下资源:

- 有关 TI 的参考设计库,请访问 TI 参考设计库
- 有关 TI WEBENCH 设计环境,请访问 WEBENCH<sup>®</sup> 设计中心
- 要设计低 EMI 电源,请查看 TI 的全面 EMI 培训系列
- 要设计反相降压/升压 (IBB) 稳压器,请访问 直流/ 直流反相降压/升压模块
- TI 参考设计:
  - 适用于 Kintex 7 应用的多输出电源解决方案
  - Arria V 电源参考设计
  - Altera Cyclone V SoC 电源参考设计
  - 具有超低 BOM 数量的空间优化型直流/直流反相电源模块参考设计
  - 适用于小型低噪声系统的 3 至 11.5V<sub>IN</sub>、 5V<sub>OUT</sub>、1.5A 反相电源模块参考设计
- 技术文章:
  - 使用直流/直流降压转换器为医学成像应用供电
  - 如何构建可编程输出反相降压/升压稳压器
- 要查看本产品的相关器件,请参阅 LM61495 36V、10A 同步降压转换器

### 5.1.1.1 使用 WEBENCH® 工具创建定制设计方案

- 1. 首先键入输入电压 ( $V_{IN}$ )、输出电压 ( $V_{OUT}$ )和输出电流 ( $I_{OUT}$ )要求。
- 2. 使用优化器表盘优化该设计的关键参数,如效率、占用空间和成本。
- 3. 将生成的设计与德州仪器 (TI) 其他可行的解决方案进行比较。

WEBENCH Power Designer 提供了定制原理图,并罗列了实时价格和元件供货情况的物料清单。

在多数情况下,可执行以下操作:

- 运行电气仿真,观察重要波形以及电路性能。
- 运行热性能仿真,了解电路板热性能。
- 将定制原理图和布局方案以常用 CAD 格式导出。
- 打印设计方案的 PDF 报告并与同事共享。

有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。

### 5.2 文档支持

### 5.2.1 相关文档

请参阅如下相关文档:

- 德州仪器 (TI), 创新型直流/直流电源模块 选择指南
- 德州仪器 (TI),使用增强型 HotRod™ QFN 封装技术实现具有出色热性能的小型低噪电源模块 白皮书
- 德州仪器 (TI), 各种电源模块封装选项的优缺点 白皮书
- 德州仪器 (TI), 借助电源模块简化低 EMI 设计 白皮书
- 德州仪器 (TI), 适用于实验室仪表的电源模块 白皮书
- 德州仪器 (TI), 有关直流/直流稳压器 EMI 的工程师指南 电子书
- 德州仪器 (TI), *电源模块的焊接注意事项* 应用报告
- 德州仪器 (TI), 采用直流/直流电源模块的实用性热设计 应用报告
- 德州仪器 (TI), 使用新的热指标 应用报告
- 德州仪器 (TI), AN-2020 热设计: 学会洞察先机, 不做事后诸葛 应用报告
- 德州仪器 (TI), 采用 TPSM53602/3/4 实现负输出反相降压/升压应用应用报告

### 重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司