User's Guide **TPS51117** 降压控制器评估模块用户指南

TEXAS INSTRUMENTS

内容	
1 引言	2
1.1 说明	2
1.2 特性	2
1.3 工作规格	2
1.4 原理图	
2 测试设置	4
21 测试设备	4
2.2 测试点	4
2.3 建议的测试设置	5
2.4 标准测试过程	6
3 性能数据和典型特性曲线	
4 使用 TPS51117RGY 的电路板布局布线 (QFN 14)	8
5物料清单	
6 修订历史记录	

商标

D-CAP[™] is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。

1 引言

1.1 说明

TPS51117 评估模块 (EVM) 旨在评估 TI TPS51117 具有 D-CAP[™] 模式的成本优化型同步降压控制器的性能和特征。该评估模块使用 6V 至 21V 输入并提供 1.05V/10A 的输出。

1.2 特性

- 多种封装设计支持多种 MOSFET 配置
- 丰富的测试点为用户提供了极大的便利。请参阅表 2-1。
- 虽然有两种 TPS51117 封装样式,但该 EVM 旨在演示 QFN14 封装。

1.3 工作规格

参数	测试条件	最小值	典型值	最大值	单位	
输入特性						
电压范围(V5IN)	V _{IN}	4.5		5.5	V	
电压范围(V _{BAT})	V _{IN}	6		21	V	
▲ 输出特性						
输出电压	EVM 的配置		1.05		V	
输出电压调节	线性调整率			0.1%		
	负载调整率			0.3%		
输出电压纹波	V5IN = 5V , V _{BAT} = 12V			35	mVpp	
输出电流				10	۵	
电流限制			15		— A	
系统特性						
开关频率			350	400	kHz	
峰值效率	V5IN = 5V , V _{BAT} = 12V , 1.05V/1A		89.4%			
满负载效率	V5IN = 5V , V _{BAT} = 12V , 1.05V/10A		82.3%			
工作温度			25		°C	

1.4 原理图

图 1-1. TPS51117RGY 评估模块(1.05V/10A)原理图

2 测试设置

2.1 测试设备

电压源:需要两个电源,一个能够在 5A 电流下提供 21VDC,连接点是 J1 和 J2;另一个能够在 1A 电流下提供 5V,连接点是 J3 和 J4。连接 TPS51117 EVM 电路板的最低建议线规是 AWG #16,导线总长度小于 4 英尺(2 英尺用于输入,2 英尺用于返回)。

负载:需要一个电子负载,其应该能够在 1V 下产生 10A 灌电流以测试指定的输出,最大灌电流为 16A 以测试电 流限制。连接 TPS51117 EVM 电路板 J5 和 J6 的最低建议线规是 AWG #16,导线总长度小于 4 英尺(2 英尺用 于输入,2 英尺用于返回)。

仪表:需要三个数字万用表。

示波器:需要一个带电压探头的最低 50MHz 的数字示波器。

2.2 测试点

测试点	名称	说明
TP1	DRVH	高侧栅极驱动器
TP2 (NP)	TON	导通时间/频率测量
TP3	PGOOD	电源正常状态指示
TP4	LL	高侧栅极驱动器回流/过流比较器阳极
TP5	DRVL	低侧栅极驱动器
TP6	TRIP	过流跳闸点设定输入
TP7 (NP)	FB	反馈输入
TP8	5V	5V 电源电压
TP9	V5DRV	FET 栅极驱动器的 5V 电源输入
TP10	EN_PSV	启用省电模式
TP11 (NP)	GND	接地
TP12	GND	接地
TP13	VBAT	V _{IN} 电源电压
TP14	GND	接地
TP15	GND	接地
TP16	VOUT	输出电压
T17	GND	接地
TP18	GND	接地
TP19 (NP)	GND	接地

表 2-1. 测试点功能

测试设置

2.3 建议的测试设置

图 2-1. 测试设置

图 2-1 显示了用于评估 TPS51117EVM 的建议测试设置。在 ESD 工作站工作时,请确保在为 EVM 加电之前已连接所有腕带或垫子使用户接地。

2.4 标准测试过程

2.4.1 线性/负载调整率

- 1. 确保将负载设置为恒定电流模式并设为 0A_{DC}。
- 2. 确保开关 SW 1 位于"OFF"位置。
- 3. 打开 VBAT 电源, 增至 12V,并使用 DMM1 测量电压。
- 4. 打开 5.0V 偏置电源, 增至 5V, 并使用 DMM2 测量电压。
- 5. 将 SW1 转入跳跃模式 (On)并验证 DMM3 上的输出电压。
- 6. 将负载从 0A_{DC} 改为 10A_{DC}。V_{OUT} 应保持在负载调整率范围内。
- 7. 将 SW1 转入 PWM 模式 (float) 并重复步骤 6。
- 8. 负载仍然处于 10A_{DC} 时,将 V_{BAT} 电源从 6V 改为 21V。V_{OUT} 应保持在线性调整率范围内。
- 9. 将 SW1 转至 OFF 位置。确认 Vout 为 0V。
- 10. 将负载降至 0A。
- 11. 将偏置电源和 VBAT 电源降至 0V。

2.4.2 输出纹波测量

- 1. 确保将负载设置为恒定电流模式并设为 0A_{DC}。
- 2. 确保开关 SW 1 位于"OFF"位置。
- 3. 打开 VBAT 电源, 增至 12V, 并使用 DMM1 测量电压。
- 4. 打开 5.0V 偏置电源, 增至 5V, 并使用 DMM2 测量电压。
- 5. 将负载设定为 10A_{DC}。
- 6. 将示波器探头连接到 TP16 并将 TP15 接地。
- 7. 按如下设置示波器:
 - a. 水平扫频:2µs/div
 - b. 触发模式:自动,下降沿
 - c. 通道应设置为交流耦合,带宽 20Mhz

测量应类似于图 3-5。

3 性能数据和典型特性曲线

图 3-1 至图 3-6 显示了 TPS51117EVM-001 的典型性能曲线。

ZHCUA43B - OCTOBER 2006 - REVISED FEBRUARY 2022 Submit Document Feedback

4 使用 TPS51117RGY 的电路板布局布线 (QFN 14)

图 4-1 至图 4-4 显示了 TPS51117EVM 印刷电路板的设计。该 EVM 采用 2 盎司铜电路板上四层设计。

图 4-1. 顶部铜层

图 4-2. 铜层 2 (内部 1)

图 4-3. 铜层 3 (内部 2)

图 4-4. 底部铜层

5 物料清单

TPS51117EVM 的物料清单

表 5-1. 物料清单					
REFDES	图形名称	值	器件型号	制造商	
EVM 配置 10A	1.05V BOM			-	
C5	C603	0.1 µ F	VJ0603Y104KXXAC	Vishay (威世)	
C12、C6	C603	1 µ F , 16V	C1608X7R1C105K	TDK	
C8	C603	47pF	VJ0603A470JXAAC	Vishay(威世)	
C2、C13	C603	1000pF	VJ0603Y102KXAAC	Vishay (威世)	
C4	C603	未安装	VJ0603Y102KXAAC	Vishay(威世)	
C7	C603	未安装	VJ0603Y103KXAAC	Vishay(威世)	
C9	C0805	1 µ F , 25V	C2012X7R1E105K	TDK	
C1 , C3	C1206	10 µ F , 25V	ECJ-3YB1E106K	Panasonic(松 下)	
C10、C11	CAP_POSCAP_D	470 μ F	2R5TPE470MC	Sanyo(三洋)	
J3	HEADER_8952	5V	1582-2	Keystone	
J2	HEADER_8952	PWRGND	1582-2	Keystone	
J4	HEADER_8952	PWRGND	1582-2	Keystone	
J6	HEADER_8952	PWRGND	1582-2	Keystone	
J1	HEADER_8952	VBAT	1582-2	Keystone	
J5	HEADER_8952	VOUT	1582-2	Keystone	
D1	SOD-123	未安装	MBR0530Tx	On Semi	
Q2	SO8	未安装	Si4944DY	Siliconix	
L1	IND_IHLP-5050	1.0 µ H	IHLP5050CEER1R0M01	Vishay(威世)	
Q1	SO8	IRF7821	IRF7821	红外	
Q3	SO8	IRF8113	IRF8113	红外	
R8	R603	0Ω	STD	Vishay(威世)	
R3	R603	2.21Ω	STD	Vishay(威世)	
R6	R603	7.68kΩ	STD	Vishay (威世)	
R5	R603	8.06kΩ	STD	Vishay(威世)	
R9	R603	10Ω	STD	Vishay(威世)	
R4	R603	301Ω	STD	Vishay(威世)	
R10	R603	10kΩ	STD	Vishay(威世)	
R11	R603	20kΩ	STD	Vishay(威世)	
R7	R603	20.5kΩ	STD	Vishay(威世)	
R1	R603	100kΩ	STD	Vishay(威世)	
R2	R603	200kΩ	CRCW06032003FKTA	Vishay (威世)	
S1	SW_1P3T	G13AP	G13AP	NKK	
U1	QFN14	TPS51117RGY	TPS51117RGY	ТІ	

6 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

C	Changes from Revision A (April 2009) to Revision B (February 2022)			
•	更新了整个文档中的表格、图和交叉参考的编号格式。	2		
•	更新了用户指南标题	2		

10 TPS51117 降压控制器评估模块用户指南

ZHCUA43B - OCTOBER 2006 - REVISED FEBRUARY 2022 Submit Document Feedback

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司