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Design considerations for a resistive  
feedback divider in a DC/DC converter

Introduction
The resistive divider is the most common network in any 
DC/DC converter’s feedback system. However, it is often 
misjudged as a circuit that simply sets the output voltage 
by scaling it down to a reference voltage. After computing 
the proper divider ratio, power-supply designers must make 
careful considerations when choosing the actual resistance 
values because they influence the overall performance of 
the converter. This article discusses the design consider-
ations for the resistive divider in a feedback system and 
how the divider affects a converter’s efficiency, output-
voltage accuracy, noise sensitivity, and stability.

Efficiency
Switching DC/DC converters have relatively high efficien-
cies because they provide power transfer to a load through 
low-loss components such as capacitors, inductors, and 
switches. High efficiencies allow for a longer battery life 
and, consequently, an extended operational time for porta-
ble devices.

For low-power DC/DC converters, a typical design for 
resistive feedback requires the total resistance of the 
divider resistors (R1 + R2) to be very large (up to 1 M�). 
This minimizes the current through the feedback divider. 

This current is in addition to the load, which means that 
for lower feedback-divider resistances, the battery must 
supply more current and more power for the same load. 
Hence, efficiency is lowered. This is undesirable, especially 
in portable applications where battery life is important.

Design example 1
Figure 1 confirms that efficiency drops at low loads with 
lower feedback resistances. In this example, the Texas 
Instruments (TI) TPS62060EVM was used with VIN = 5 V, 
VOUT = 1.8 V, and power-save mode enabled. At high-load 
currents, the power dissipated by the load was much 
larger than the power dissipated by the resistive-feedback 
network. This is why the efficiencies for different R1 and 
R2 values converge at higher-load currents. However, at 
low-load currents, the differences in efficiency for differ-
ent feedback resistances are more prominent. This is 
because the current through the divider dominated the 
current through the load. Therefore, to have higher effi-
ciencies at light loads, it is good design practice to use the 
large feedback resistances recommended in the datasheet. 
If efficiency at light loads is not important in a given design, 
then smaller resistances can be used with essentially no 
impact on efficiency.
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Figure 1. Efficiency of TPS62060 buck converter with 
different feedback-divider resistances
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Output-voltage accuracy
Using large feedback resistances to increase 
efficiency was just discussed. However, choos-
ing resistances that are too large affects the 
converter’s output-voltage accuracy because of 
leakage current going into the converter’s feed-
back pin. Figure 2 shows the current paths at 
the resistive feedback divider (R1 and R2). For 
a fixed feedback leakage current (IFB), current 
through R1 (IR1) decreases as the values of R1 
and R2 increase. Therefore, an increase in divider 
resistance means that a larger percentage of IR1 
leaks into the feedback pin, and the current 
through R2 (IR2) decreases, causing a lower 
feedback-pin voltage (VFB) than expected. Since 
VFB is compared to an internal reference voltage to set the 
output voltage, any inaccuracies in the feedback voltage 
create inaccuracies in the output voltage. Equation 1 can 
be derived from Kirchhoff’s Current Law, showing VFB as a 
function of R1 and R2:

 

OUT FB
FB

V I R1
V R2

R1 R2
 (1)

Note that IFB is not fixed in a real system and can vary 
from device to device and over the operating conditions. 
To generate a worst-case estimate of the output-voltage 
change that is due to the leakage current, the specified 
maximum value of IFB is used in the calculations.

Design example 2
Equation 1 and the TI TPS62130 step-down converter were 
used to graph the feedback-pin voltage and the cor re spond -
ing output voltage as functions of the feedback-divider 

resistance (Figure 3). The voltage graphs were based on 
the ideal resistances required to generate an output volt-
age of 3.3 V with a feedback-pin voltage of 0.8 V. The only 
error term considered was the maximum feedback leakage 
current of 100 nA specified in the datasheet.

Figure 3 shows that the feedback-pin voltage decreases 
as the feedback-divider resistance increases. Since the 
feedback-pin voltage is offset, the output of the converter 
is also offset. At low resistances, there is no offset from 
the feedback-pin voltage, and the output regulates at 3.3 V 
as designed.

When the recommended maximum value of 400 k� was 
used for resistor R2, resulting in a total divider resistance 
of 1650 k�, the leakage current caused only a minimal 
decrease in the output voltage. Keeping the output voltage 
within the datasheet’s specified accuracy is typically the 
reason for the datasheet to specify a maximum value for 
one of the resistors.
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Figure 2. Leakage current going into the feedback pin 
of a converter
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Noise sensitivity
The resistive divider is one source of noise for a converter. 
This noise, known as thermal noise, is equal to 4KBTR, 
where KB is Boltzmann’s constant, T is the temperature 
in Kelvin, and R is the resistance. Using large resistance 
values for the divider increases this noise.

Additionally, large resistances allow more noise to couple 
into the converter. This noise comes from a multitude of 
sources, including AM and FM radio waves, cellular phone 
signals, and switching converters or RF transmitters on 
the PCB. Noise can even come from the switching DC/DC 
converter itself, especially if proper PCB-layout practices 
are not followed. Since the resistive divider is tied to the 
feedback pin, the noise is amplified by the closed-loop gain 
of the converter and is seen at the output. To reduce the 
susceptibility to other noise sources, a designer might use 
lower feedback resistances, better board layout, or shield-
ing. Using lower feedback resistances does reduce the noise 
susceptibility, though at the cost of slightly lower efficiency.

Control loop, transient response, and  
converter stability
A stable converter ideally has at least 45° of phase margin 
when measured with a network analyzer. This much phase 
margin gives less or no ringing on the output voltage, which 
prevents damage to voltage-sensitive loads during an input- 
voltage transient or load transient.

Depending on the control topology, the datasheet may 
require or recommend a feedforward capacitor (CFF) to be 
used with the resistive feedback network. This setup is 
shown in Figure 4. Adding the feedforward capacitor to the 
resistive divider produces zero and pole frequencies that 
generate a phase boost capable of increasing the converter’s 
phase margin and crossover frequency for a higher band-
width and more stable system. Reference 2 describes this 
circuit in great detail. From the transfer function of the 
circuit in Figure 4, the zero frequency (fz) and the pole 
frequency (fp) are calculated with Equations 2 and 3, 
respectively:

 
z

FF

1
f

2 R1 C
 (2)

 

p

FF

1
f

R1 R2
2 C

R1 R2

 (3)

Clearly, the zero and pole frequencies are functions of 
the values used for the resistive divider and the feed-
forward capacitor. Therefore, increasing or decreasing the 
resistance values to optimize efficiency, voltage accuracy, 
or noise changes the frequency location of the phase boost 
and the overall loop of the system. To ensure stability, 
Equation 4 should be used to calculate a new CFF value 
based on the previous zero frequency or the zero fre-
quency recommended in the datasheet (whichever value 
is available):

FF
z

z

1
C (new)  or

2 R1(new) f (recommended)

1
2 R1(new) f (old)

 (4)

z
FF

1
f (old)

2 R1(old) C (old)

Design example 3
The effect of the resistive divider on converter stability is 
seen by using a buck converter. For example 3, the TI 
TPS62240 buck converter was used, with VIN = 3.6 V, VOUT 
= 1.8 V, LOUT = 2.2 μH, COUT = 10 μF, and ILoad = 300 mA.
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Figure 4. Resistive feedback network with 
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Figures 5 and 6 respectively show the closed-loop 
response and its corresponding transient response under 
three different resistive divider networks. A feedforward 
capacitor was used in each network to illustrate how chang-
ing the divider-network components changes the stability 
of the buck converter. When the values recommended in 

the datasheet for the divider-network components were 
used (R1 = 365 k�, R2 = 182 k�, and CFF = 22 pF), the 
converter was stable, with a phase margin of 59°. Its tran-
sient response verified this with a slight output-voltage 
drop and no oscillations.
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Figure 5. Buck converter’s closed-loop frequency response with 
different R1, R2, and CFF values
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When the feedback-divider resistances were proportion-
ally reduced to R1 = 3.65 k� and R2 = 1.82 k�, but the 
same feedforward capacitance (CFF = 22 pF) was used, the 
change in the zero and pole frequencies of the feedback 
network moved the phase boost away from the crossover 
frequency of the loop. The frequency response showed 
that the converter was less stable, with a phase margin of 
40°. The converter’s transient response verified this with a 
larger output-voltage drop and more ringing. To maintain 
the original frequency response and stability, the CFF value 
was recalculated for the new feedback-resistance values.

Using Equation 4 with the smaller resistance values 
yielded a new value for the feedforward capacitance of 
2200 pF. This generated results similar to those of the first 
condition. The converter was stable with a phase margin 
of 56°, which its transient response verified with a slight 
output-voltage drop and no oscillation.

For a converter that utilizes a feedforward capacitor in 
its control topology, changing the values of the resistive 
divider can easily make the converter less stable. However, 
the example just given shows that changing these values 
maintains the same frequency response and transient 
response as long as the feedforward capacitance is 
adjusted appropriately.

Special-case designs
The internal compensation of some converters requires a 
specific CFF value if a designer must use a feedforward 
capacitor to improve stability. For these cases, Equation 4 
should not be used. Rather, the designer should use the 
datasheet’s recommended design equations. For example, 
the TI TPS61070 has internal compensation across the 
high-side feedback resistor (R1). Its datasheet recom-
mends using the following design equation for adding a 
capacitor in parallel to R1:

 
FF

200 k
C 3 pF 1

R2
 (5)

Conclusion
The resistive feedback divider or network affects the effi-
ciency, output-voltage accuracy, noise sensitivity, and sta-
bility of a DC/DC converter. To achieve the performance 
shown in a particular datasheet, it is important to use the 
datasheet’s recommended values for feedback components. 
In other cases, system requirements may dictate departing 
from these recommendations to achieve some other design 
goal. By understanding the trade-offs between these differ-
ent parameters, designers can choose larger or smaller 
resistances to meet their application needs.
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