

Technical documentation

TLC6A598 ZHCSNT5C - JUNE 2021 - REVISED MARCH 2022

TLC6A598 电源逻辑 8 位移位寄存器

1 特性

- 具有高可靠性和稳健性,适合航空电子设备应用
- 宽工作环境温度范围:-55℃至+125℃
- 3V 至 5.5V 的宽 V_{CC} 范围
- 八个电源 DMOS 晶体管输出通道
 - 350 mA 持续电流
 - 1.1A 电流限制能力
 - 输出钳位电压, 50V
 - 低 R_{ds(on)},1 Ω (典型值)
 - 雪崩能量,90mJ(最大值)
- 保护
 - 过流保护
 - 开路和短路负载检测
 - 串行接口通信误差检测
 - 热关断保护
- 针对多级的增强型级联
- 所有寄存器通过单个输入清零
- 循环冗余校验 (CRC)
- 低功耗
- 24 引脚 SOIC DW 封装

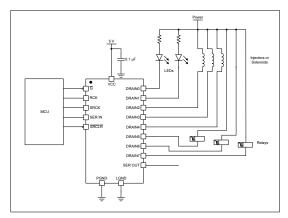
2 应用

- 飞行控制系统
- PLC 控制和功能指示器
- 继电器或螺线管驱动器
- 电器显示面板
- LED 指示和照明

3 说明

TLC6A598 器件是一款单片、高压、高电流功率 8 位 移位寄存器,专为负载功率要求相对较高的系统(例 如,LED)而设计。

该器件包含内置的输出钳位电压,用于提供电感瞬态保 护。电源驱动器应用包括继电器、螺线管和其他高电流 或高电压负载。每个开漏 DMOS 晶体管都具有独立的 斩波限流电路,以防止在短路情况下损坏。


此器件包含一个8位串入、并出移位寄存器,此寄存 器为一个 8 位 D 类存储寄存器提供数据。输出为低 侧、漏极开路 DMOS 晶体管,额定输出为 50V,连续 灌电流能力为 350mA。内置负载开路和负载短路诊断 机制提供增强的安全保护。器件提供循环冗余校验,以 验证移位寄存器中的寄存器值。在读回模式中,该器件 提供 6 位 CRC 提醒。MCU 可以读回 CRC 提醒并检 查该提醒是否正确,以确定 MCU 与该器件之间的通信 环路是否良好。

TLC6A598 的额定工作环境温度范围为 -55℃ 至 125°C。

器件信息(1)

器件型号	封装	封装尺寸(标称值)					
TLC6A598	SOIC (24)	15.70 mm x 7.50 mm					

(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品 附录。

典型应用原理图

Table of Contents

1	特性1	
	应用1	
3	说明1	
4	Revision History2	
5	Pin Configuration and Functions3	
6	Specifications4	
	6.1 Absolute Maximum Ratings4	
	6.2 ESD Ratings 4	
	6.3 Recommended Operating Conditions4	
	6.4 Thermal Information5	
	6.5 Electrical Characteristics5	
	6.6 Timing Requirements6	
	6.7 Timing Waveforms7	
	6.8 Typical Characteristics9	
7	Parameter Measurement Information10	
8	Detailed Description12	
	8.1 Overview	
	8.2 Functional Block Diagram13	
	8.3 Feature Description14	

8.4 Device Functional Modes	18
8.5 Register Maps	18
9 Application and Implementation	
9.1 Application Information	22
9.2 Typical Application 1	
9.3 Typical Application 2	
9.4 Typical Application 3	
10 Power Supply Recommendations	
11 Layout	
11.1 Layout Guidelines	
11.2 Layout Example	
12 Device and Documentation Support	
12.1 接收文档更新通知	
12.2 支持资源	
12.3 Trademarks	
12.4 Electrostatic Discharge Caution	28
12.5 术语表	
13 Mechanical, Packaging, and Orderable	
Information	

4 Revision History 注:以前版本的页码可能与当前版本的页码不同

Changes from Revision B (December 2021) to Revision C (March 2022)	Page
• Updated the ESD level in the ESD Ratings, Overview, and Application Information sections	4
Changes from Revision A (October 2021) to Revision B (December 2021)	Page
• 从数据表中删除了所有与汽车相关的信息	1
Changes from Revision * (June 2021) to Revision A (October 2021)	Page
• 将状态从"预告信息"更改为"量产数据"	1

5 Pin Configuration and Functions

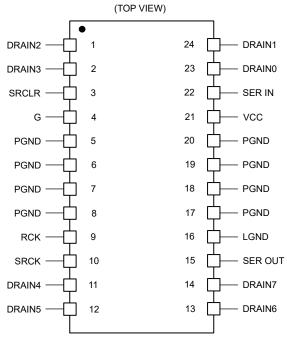


图 5-1. DW Package 24-Pin SOIC Top View

表 5-1. Pin Functions

P	PIN I/O DESCRIPTION		
NAME	NO.	1/0	DESCRIPTION
SRCLR	3	I	Shift register clear, active-low. The storage register transfers data to the output buffer when SRCLR is high. Driving SRCLR low clears all the registers in the device.
DRAIN0	23	0	Open-drain output
DRAIN1	24	0	Open-drain output
DRAIN2	1	0	Open-drain output
DRAIN3	2	0	Open-drain output
DRAIN4	11	0	Open-drain output
DRAIN5	12	0	Open-drain output
DRAIN6	13	0	Open-drain output
DRAIN7	14	0	Open-drain output
G	4	I	Output enable, active-low. Channel enable and disable input pin. Having G low enables all drain channels according to the output-latch register content. When high, all channels are off.
PGND	5, 6, 7, 8, 17, 18, 19, 20	_	Power ground, the ground reference pin for the device. This pin must connect to the ground plane on the PCB.
LGND	16	_	Signal ground, the ground reference pin for the device. This pin must connect to the ground plane on the PCB.
RCK	9	I	Register clock. The data in each shift register stage transfers to the storage register at the rising edge of RCK.
SER IN	22	I	Serial data input. Data on SER IN loads into the internal register on each rising edge of SRCK.
SER OUT	15	0	Serial data output of the 8-bit serial shift register. The purpose of this pin is to cascade several devices on the serial bus.
SRCK	10	I	Serial clock input. On each rising SRCK edge, data transfers from SER IN to the internal serial shift registers.
V _{CC}	21	I	Power supply pin for the device. TI recommends adding a 0.1- µ F ceramic capacitor close to the pin.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
VCC	Supply voltage	- 0.3	7	V
VI	logic input voltage, CLR, EN, G1, G2, RCK, SER IN, SRCK	- 0.3	7	V
V _{DS}	Power DMOS Drain-source voltage	- 0.3	65	V
I _{SD}	Continuous source-to-drain diode anode current		1	А
I _{SD}	Pulsed source-to-drain diode anode current		2	А
ID	Pulsed drain current, each output, all outputs on, T_A = 25°C		1.1	A
I _D	Continuous drain current, each output, all outputs on, $T_A = 25^{\circ}C$		350	mA
I _D	Peak drain current single output, $T_A = 25^{\circ}C$		1.1	А
E _{AS}	Single-pulse avalanche energy, $T_A = 25^{\circ}C$		90	mJ
I _{AS}	Avalanche current, $T_A = 25^{\circ}C$		500	mA
Operating junc	tion temperature, T _J	- 55	150	°C
Storage tempe	erature, T _{stg}	- 65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001 ⁽¹⁾	±7000	V
V _(ESD)		Charged device model (CDM), per ANSI/ESDA/ JEDEC JS-002 ⁽²⁾	±1500	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP155 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	3		5.5	V
I _(nom)	Nominal output current			350	mA
V _{IH}	High-level input voltage	2.4			V
V _{IL}	Low-level input voltage			0.7	V
ID	Pulsed drain output current, $T_A = 25^{\circ}C$, $V_{CC} = 5 V$	- 1.8		0.6	А
T _A	Operating ambient temperature	- 55		125	°C

6.4 Thermal Information

		TLC6A598	
	THERMAL METRIC ⁽¹⁾	DW (SOIC-24)	UNIT
		24 PINS	
R _{0 JA}	Junction-to-ambient thermal resistance	55.5	°C/W
R _{θ JC(top)}	Junction-to-case (top) thermal resistance	29.5	°C/W
R _{θJB}	Junction-to-board thermal resistance	30.3	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	7.3	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	30.0	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

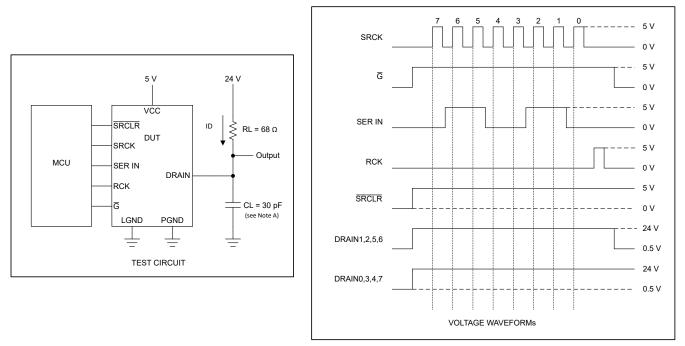
over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{(BR)DSX}	DRAIN0 to DRAIN7 Drain-to-source voltage	I _D = 1 mA	50		65	V
V _{SD}	Source-to-drain forward voltage	IF = 350 mA		0.9	1.1	V
M	High-level output voltage	I _{OH} = -20 μA	4.9	4.99		V
V _{OH}	SER OUT	$I_{OH} = -4 \text{ mA}$	4.5	4.69		V
V	Low-level output voltage	I _{OH} = 20 μA			0.02	V
V _{OL}	SER OUT	I _{OH} = 4 mA			0.4	v
I _{IH}	High-level input current	V ₁ = 5 V			1	μA
IIL	Low-level input current	V ₁ = 0 V	- 1			μA
I _{O(chop)}	Output current at which chopping starts	T _A = 25°C	0.6	0.8	1.1	А
		V _{CC} = 5 V, All outputs off, no clock signal		180	300	
I _{CC}	Logic supply current	V _{CC} = 5 V, All outputs on, no clock signal		300	500	μA
I _{CC(FRQ)}	Logic supply current at frequency	f _{SRCK} = 5 MHz, C _L = 30 pF, all outputs on		360	600	μA
I _(nom)	Nominal current	V _{DS(on)} = 0.5 V, T _C = 85°C		350		mA
I	Off-state drain current	V _{DS} = 40 V, T _A = 25°C			1	μA
I _{DSX}	On-state drain current	V _{DS} = 40 V, T _A = 125°C			1	μΑ
R _{ds(on)}	Static drain-source on-state resistance	V_{CC} = 5 V, I _D = 350 mA Single channel on, T _A = 25°C		1	1.5	Ω
R _{ds(on)}	Static drain-source on-state resistance	V_{CC} = 3.3 V, I _D =350 mA Single channel on, T _A = 25°C		1.1	1.6	Ω
R _{ds(on)}	Static drain-source on-state resistance	V_{CC} = 5 V, I _D = 150 mA Single channel on, T _A = 125°C		1.5	2.2	Ω
R _{ds(on)}	Static drain-source on-state resistance	V_{CC} = 3.3 V, I _D = 150 mA Single channel on, T _A = 125°C		1.6	2.3	Ω
I(O_S_th)	Load open and short detection threshold		8.5	15	25	mA
I(O_S_hys)	Load open and short detection threshold hysteresis			5.7		mA
T _{SHUTDOWN}	Thermal shutdown threshold		150	175	200	°C

6.5 Electrical Characteristics (continued)

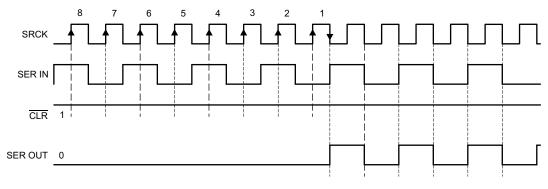
over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
T _{HYS}	Thermal shutdown hysteresis			18		°C


6.6 Timing Requirements

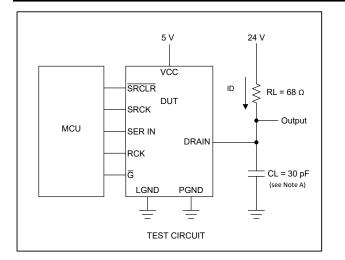
		MIN	NOM	MAX	UNIT
t _{PLH}	Propagation delay time from G to output, low-to-high level		30		ns
t _{PHL}	Propagation delay time from G to output, high-to-low level		22		ns
t _r	Rise time, drain output		25		ns
t _f	Fall time, drain output		35		ns
t _{pd}	Propagation delay time, SRCK falling edge to SEROUT change		10		ns
t _{or}	SEROUT rise time (10% to 90%)		3		ns
t _{of}	SEROUT fall time (90% to 10%)		2		ns
f _{SRCK}	Serial clock frequency			10	MHz
t _{SRCK_WH}	SRCK pulse duration, high	30			ns
t _{SRCK_WL}	SRCK pulse duration, low	30			ns
t _{su}	Setup time, SER IN high before SRCK rise	10			ns
t _h	Hold time, SER IN high after SRCK rise	10			ns
t _w	SER IN pulse duration	20			ns
ta	Reverse-recovery-current rise time		80		ns
t _{rr}	Reverse-recovery time		100		ns
t _d	Last SRCK rise to RCK rise	200			ns

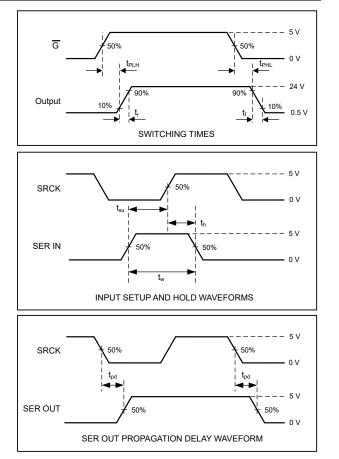
6.7 Timing Waveforms


 $\boxed{\mathbb{S}}$ 6-1 shows the resistive-load test circuit and voltage waveforms. One can see from $\boxed{\mathbb{S}}$ 6-1 that with $\overline{\mathbb{G}}$ held low and $\overline{\mathsf{SRCLR}}$ held high, the status of each drain changes on the rising edge of the register clock, indicating the transfer of data to the output buffers at that time.

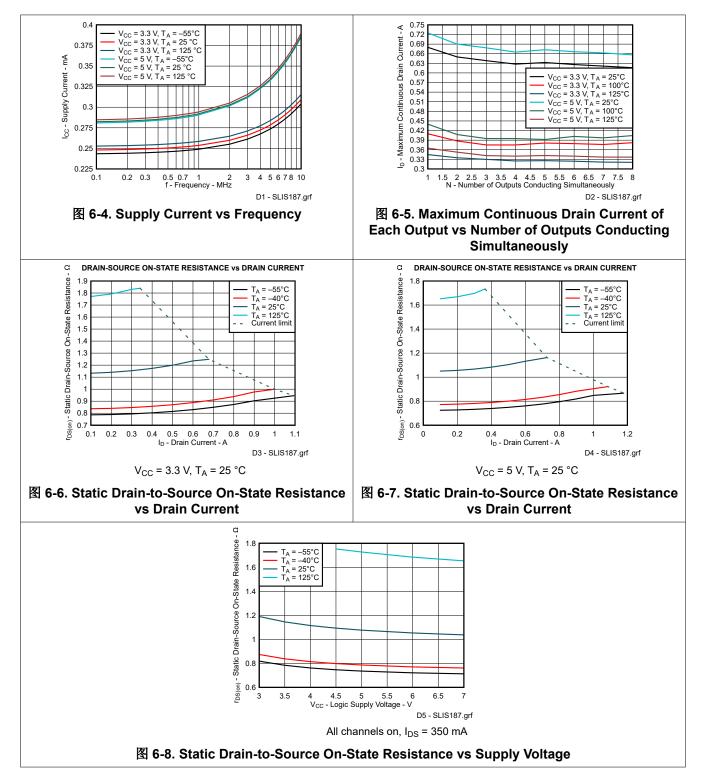
A. C_L includes probe and jig capacitance.

图 6-1. Resistive Load Operation


8 6-2 shows the SER IN to SER OUT waveform. The output signal appears on the falling edge of the shift register clock (SRCK) because there is a phase inverter at SER OUT (see the *Functional Block Diagram*). As a result, it takes seven and a half periods of SRCK for data to transfer from SER IN to SER OUT.

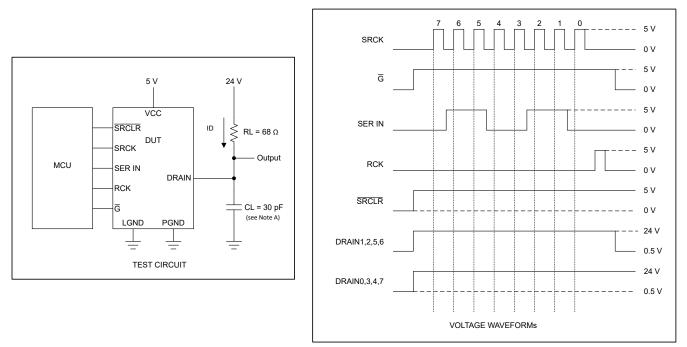


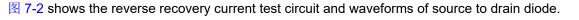
TLC6A598 ZHCSNT5C - JUNE 2021 - REVISED MARCH 2022

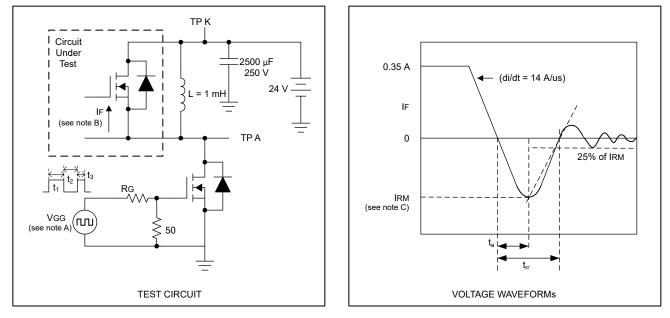


A. C_L includes probe and jig capacitance.

图 6-3. Switching Times and Voltage Waveforms

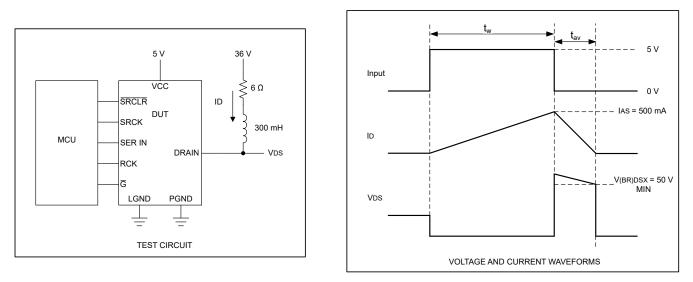

6.8 Typical Characteristics


7 Parameter Measurement Information


 $\boxed{8}$ 7-1 shows the resistive-load test circuit and voltage waveforms. One can see from $\boxed{8}$ 7-1 that with \overline{G} held low and \overline{SRCLR} held high, the status of each drain changes on the rising edge of the register clock, indicating the transfer of data to the output buffers at that time.

A. C_L includes probe and jig capacitance.

图 7-1. Resistive-Load Test Circuit and Voltage Waveforms


A. The V _{GG} amplitude and R _G are adjusted for di/dt = 14 A/ μ s. A V _{GG} double-pulse train is used to
set $I_F = 0.35$ A, where $t_1 = 10 \ \mu s$, $t_2 = 7 \ \mu s$, and $t_3 = 3 \ \mu s$.

么江

备注 B. The DRAIN terminal under test is connected to the TP K test point. All other terminals are connected together and connected to the TP A test point.

备注 C. I_{RM} = maximum recovery current.

图 7-3 shows the single pulse avalanche energy test circuit and waveforms.

图 7-3. Single Pulse Avalanche Energy Test Circuit and Waveforms

备注 A. The MCU has the following characteristics: $t_r \leqslant$ 10 ns, $t_f \leqslant$ 10 ns, Z_O = 50 $\,\Omega$.

备注

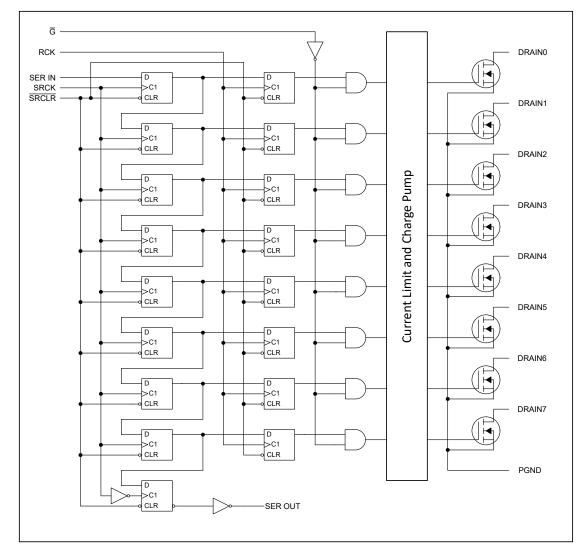
B. Input pulse duration, tw, is increased until peak current I_{AS} = 500 mA.

Energy test level is defined as $E_{AS} = (I_{AS} \times V_{(BR)DSX} \times t_{av}) / 2 = 90 \text{ mJ}.$

8 Detailed Description

8.1 Overview

The TLC6A598 device is a monolithic, high-voltage, high-current 8-bit shift register designed to drive relatively high load power such as LEDs. The device contains a built-in voltage clamp on the outputs for inductive transient protection, so it can also drive relays, solenoids, and other low-current or high-voltage loads.


This device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Data transfers through both the shift and storage registers on the rising edge of the shift register clock (SRCK) and the register clock (RCK) respectively. The storage register transfers data to the output buffer when shift register clear (CLR) is high. When CLR is low, all registers in the device are cleared. When output enable (G) is held high, all data in the output buffers is held low and all drain outputs are off. When G is held low, data from the storage register transfers to the output buffers. When data in the output buffers is low, the DMOS transistor outputs are off. When data is high, the DMOS transistor outputs have sink-current capability.

The serial output (SER OUT) is clocked out of the device on the falling edge of SRCK to provide additional hold time for cascaded applications. This action provides improved performance for applications where clock signals can be skewed, devices are not located near one another, or the system must tolerate electromagnetic interference.

Outputs are low-side, open-drain DMOS transistors with output ratings of 50-V and 350-mA continuous sinkcurrent capability. The current limit decreases as the junction temperature increases for additional device protection. The device also provides up to 7000 V of ESD protection when tested using the human body model and the 1500 V machine model.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Serial-In Interface

The TLC6A598 device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Data transfer through the shift and storage registers is on the rising edge of the shift register clock (SRCK) and the register clock (RCK), respectively. The storage register transfers data to the output buffer when shift-register clear (SRCLR) is high.

8.3.2 Clear Registers

A logic low on the SRCLR pin clears all registers in the device. TI suggests clearing the device during power up or initialization.

8.3.3 Output Channels

DRAIN0 - DRAIN7. These pins can survive up to 50-V LED supply voltage.

8.3.4 Register Clock

RCK is the storage-register clock. Data in the storage register appears at the output whenever the output enable (\overline{G}) input signal is high.

8.3.5 Cascade Through SER OUT

By connecting the SER OUT pin to the SER IN input of the next device on the serial bus in cascade, the data transfers to the next device on the falling edge of SRCK. This connection can improve the cascade application reliability, as it can avoid the issue that the second device receives SRCK and data input on the same rising edge of SRCK.

8.3.6 Output Control

Holding the output enable (pin \overline{G}) high holds all data in the output buffers low, and all drain outputs are off. Holding \overline{G} low makes data from the storage register transferred to the output buffers. When data in the output buffers is low, the DMOS transistor outputs are off. When data is high, the DMOS transistor outputs are capable of sinking current. This pin also can be used for global PWM dimming.

8.3.7 Clamping Structure

When switching off inductive loads, the potential at pin OUT rises to VDS(CL) potential, because the inductance intends to continue driving the current. The clamping voltage is necessary to prevent destruction of the device. See 🛛 8-1 for the clamping circuit principle. Nevertheless, the maximum allowed load inductance is limited.

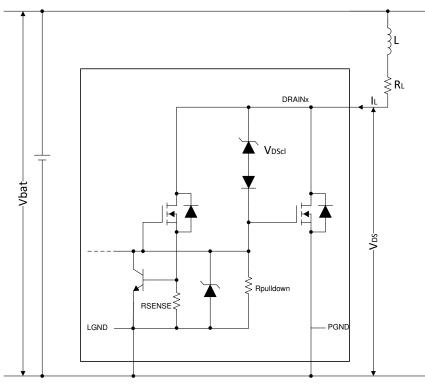


图 8-1. Output Clamp Implementation

During demagnetization of inductive loads, energy has to be dissipated in the TLC6A598. This energy can be calculated with 方程式 1:

$$E = V_{DS(CL)} \times \left[\frac{V_{bat} - V_{DS(CL)}}{R_L} \times ln \left(1 - \frac{R_L \times I_L}{V_{bat} - V_{DS(CL)}} \right) + I_L \right] \times \frac{L}{I_L}$$
(1)

The 方程式 2 simplifies under the assumption of R_L = 0:

$$E = \frac{1}{2} \times L \times {I_L}^2 \times \left(1 - \frac{V_{bat}}{V_{bat} - V_{DS(CL)}}\right)$$
(2)

The thermal design of the component limits the maximum energy, which is converted into heat.

8.3.8 Protection Functions

8.3.8.1 Overcurrent Protection

When any output is in on status (the corresponding Data Register bit is set to (1')), if the output current through the MOS is sensed to be larger than I_{OK} , it enters chopping mode as below.

 \mathbb{X} 8-2 illustrates the output current characteristics of the device energizing a load having initially low, increasing resistance, For example, an incandescent lamp. In region 1, chopping occurs and the peak current is limited to $I_{O(chop)}$. In region 2, output current is continuous. The same characteristics occur in reverse order when the device energizes a load having an initially high, decreasing resistance.

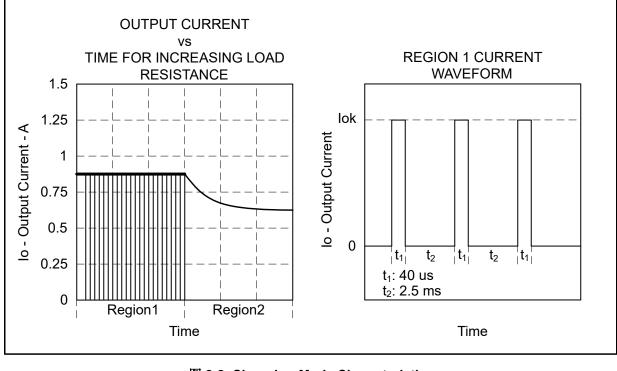


图 8-2. Chopping-Mode Characteristics

备注

Region 1 duty cycle is approximately 2%.

8.3.8.2 Output Detection

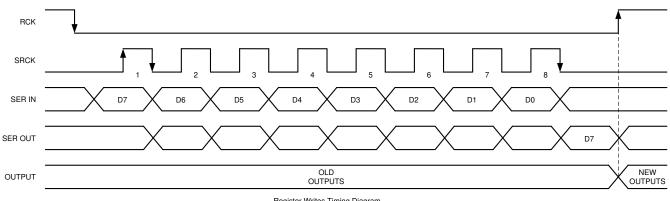
When any output is in on status (the corresponding Data Register bit is set to (1')), if the current goes through any output is sensed to be lower than $I_{OS_{th}}$ mA, then an open load condition or short to ground fault is reported to the fault register while the output does not close automatically.

For the inductive load, during the on status of any output, TI recommends to read the fault regs two times. Because the inductive load leads to error detection results and it needs ignore the first time readout results during the set up process of the output current, TI recommends to read the fault regs again after the current through the load is stable.

8.3.8.3 Serial Communication Error

The device provides a cyclic redundancy check to verify register values in the shift registers. In read back mode, the device provides 6 bits of the CRC remainder. The MCU can read back the CRC remainder and check if the remainder is correct to determine whether the communication loop between MCU and device is good. Shift-Register Communication-Fault Detection gives a detailed description of the CRC check.

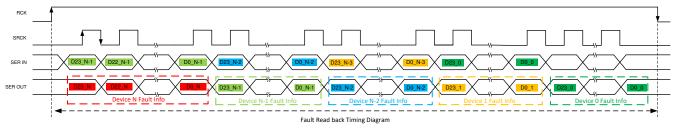
8.3.8.4 Thermal Shutdown


The device implements an internal thermal shutdown to protect itself if the junction temperature exceeds 175°C (typical). The thermal shutdown forces the device to have an open state when the junction temperature exceeds the thermal trip threshold. After the junction temperature decreases below 160°C (typical), the device begins to operate again.

8.3.9 Interface

8.3.9.1 Register Write

The TLC6A598 device has a 8-bit configuration register. Data transfers through the shift registers on the rising edge of SRCK and latches into the storage registers on the rising edge of RCK. The data bits control 8 opendrain outputs independently.



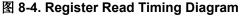

Register Writes Timing Diagram

图 8-3. Register Write Timing Diagram

8.3.9.2 Register Read

The fault information loads to shift registers on the rising edge of RCK and can be read out on SER OUT. 88-4 shows on the rising edge of the RCK signal, the MSB data "DRAIN7 OCP" appears on the SER OUT pin. On each falling edge of SRCK signal, there is 1 bit of data shifted out on the SER OUT pin. There is a total of 24 bits in the fault information registers. REgister Maps describes the details.

8.3.9.3 Shift-Register Communication-Fault Detection

The TLC6A598 device provides a cyclic redundancy check to verify register values in the shift registers. In read back mode, the TLC6A598 device provides 6 bits of the CRC remainder. The MCU can read back the CRC remainder and check if the remainder is correct. The CRC checksum provides a read back method to verify shift register values without altering them.

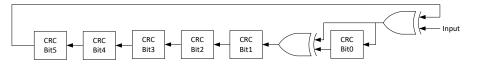


图 8-5. CRC Check Block Diagram

The TLC6A598 device also checks the configuration register for faulty commands. The TLC6A598 configuration register consists of 8 bits. To generate the CRC checksum, the device first shifts left 6 bits and appends 0s, then bit-wise exclusive-ORs the 14 data bits with the polynomial to get the checksum.

For example, if the configuration data is 0xFF and the polynomial is 0x43 (7' b1000011), the CRC checksum is 0x0D (6' b00 1101).

The MCU can read back the CRC checksum and append it to the LSB of 8 bits, and then the 14 bits of data becomes 0x3FCD. Performing the bit-wise exclusive-OR operation with the polynomial must lead to a residual of 0.

8.4 Device Functional Modes

8.4.1 Operation With V_{CC} < 3 V

This device works normally within the range 3 V \leq V_{CC} \leq 5.5 V. When the operating voltage is lower than 3 V, correct behavior of the device, including communication interface and current capability, is not assured.

8.4.2 Operation With 5.5 V \leq V_{CC} \leq 7 V

The device works normally in this voltage range, but reliability issues can occur if the device works for a long time in this voltage range.

8.5 Register Maps

	A O-1. Register Map								
			CONFIG	GURATION REG	GISTER				
Field name	DRAIN7	DRAIN6	DRAIN5	DRAIN4	DRAIN3	DRAIN2	DRAIN1	DRAIN0	
Default value	0h	0h	0h	0h	0h	0h	0h	0h	
Bit	7	6	5	4	3	2	1	0	
FAULT READBACK REGISTER									
Bit	23	22	21	20	19	18	17	16	
Field name	DRAIN7_OC P	DRAIN6_OC P	DRAIN5_OC P	DRAIN4_OC P	DRAIN3_OC P	DRAIN2_OC P	DRAIN1_OC P	DRAIN0_OC P	
Default value	0h	0h	0h	0h	0h	0h	0h	Oh	
Bit	15	14	13	12	11	10	9	8	
Field name	DRAIN7_Oor S	DRAIN6_Oor S	DRAIN5_Oor S	DRAIN4_Oor S	DRAIN3_Oor S	DRAIN2_Oor S	DRAIN1_Oor S	DRAIN0_Oor S	
Default value	0h	0h	0h	0h	0h	0h	0h	0h	
Bit	7	6	5	4	3	2	1	0	
Field name	TBD	TSD			CF	RC			
Default value	0h	0h			0	h			

表 8-1. Register Map

 $\frac{1}{8}$ 8-2 lists the memory-mapped registers for the interface.

表 8-2. Interface Register	rs	er	te	51	S	í	q	e	2	R	е	ac	rf	te	nt	h	2.	8-	表	
---------------------------	----	----	----	----	---	---	---	---	---	---	---	----	----	----	----	---	----	----	---	--

OFFSET	ACRONYM	REGISTER NAME	SECTION
0h	Config	Configuration Register	
1h	Fault_Readback	Fault Readback Register	

表 8-3. Interface Access Type Codes

	CODE	DESCRIPTION
Read type	R	Read-only
Read to clear	RC	Read to clear the fault
Write	W	Write-only
Reset or Default Value	-n	Value after reset or the default value

8.5.1 Configuration Register(Offset=0h)[reset=0h]

Configuration register is shown in $\frac{1}{8}$ 8-4and described in $\frac{1}{8}$ 8-5.

表 8-4.	Configuration	Register
--------	---------------	----------

7	6	5	4	3	2	1	0
DRAIN7	DRAIN6	DRAIN5	DRAIN4	DRAIN3	DRAIN2	DRAIN1	DRAIN0
W-0h							

表 8-5. Configuration Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	DRAIN7	W	0h	 Open-drain output bit for DRAIN7 HIGH=Output power switch enabled LOW=Output power switch disabled
6	DRAIN6	W	Oh	 Open-drain output bit for DRAIN6 HIGH=Output power switch enabled LOW=Output power switch disabled
5	DRAIN5	W	0h	 Open-drain output bit for DRAIN5 HIGH=Output power switch enabled LOW=Output power switch disabled
4	DRAIN4	W	Oh	 Open-drain output bit for DRAIN4 HIGH=Output power switch enabled LOW=Output power switch disabled
3	DRAIN3	W	Oh	 Open-drain output bit for DRAIN3 HIGH=Output power switch enabled LOW=Output power switch disabled
2	DRAIN2	W	Oh	 Open-drain output bit for DRAIN2 HIGH=Output power switch enabled LOW=Output power switch disabled
1	DRAIN1	W	Oh	 Open-drain output bit for DRAIN1 HIGH=Output power switch enabled LOW=Output power switch disabled
0	DRAIN0	W	Oh	 Open-drain output bit for DRAIN0 HIGH=Output power switch enabled LOW=Output power switch disabled

8.5.2 Fault Readback Register(Offset=1h)[reset=0h]

Fault readback is shown in $\frac{1}{8}$ 8-6 and described in $\frac{1}{8}$ 8-7.

表 8-6. Fault Readback Register

23	22	21	20	19	18	17	16
DRAIN7_OCP	DRAIN6_OCP	DRAIN5_OCP	DRAIN4_OCP	DRAIN3_OCP	DRAIN2_OCP	DRAIN1_OCP	DRAIN0_OCP
RC-0h							
15	14	13	12	11	10	9	8
DRAIN7_OorS	DRAIN6_OorS	DRAIN5_OorS	DRAIN4_OorS	DRAIN3_OorS	DRAIN2_OorS	DRAIN1_OorS	DRAIN0_OorS

Copyright © 2022 Texas Instruments Incorporated

表 8-6. Fault Readback Register (continued)										
23	22	21	20	19	18	17	16			
RC-0h	RC-0h	RC-0h	RC-0h	RC-0h	RC-0h	RC-0h	RC-0h			
7	6	5	4	3	2	1	0			
TBD	TSD			CF	RC					
RC-0h	RC-0h			RC	-0h					

表 8-7. Configuration Register Field Descriptions

Bit	Field	Туре	Reset	Description
23	DRAIN7_OCP	RC	0h	 Over current fault flag for DRAIN7, read to clear the fault HIGH=Over current fault detected LOW=Over current fault not detected
22	DRAIN6_OCP	RC	Oh	 Over current fault flag for DRAIN6, read to clear the fault HIGH=Over current fault detected LOW=Over current fault not detected
21	DRAIN5_OCP	RC	Oh	 Over current fault flag for DRAIN5, read to clear the fault HIGH=Over current fault detected LOW=Over current fault not detected
20	DRAIN4_OCP	RC	0h	 Over current fault flag for DRAIN4, read to clear the fault HIGH=Over current fault detected LOW=Over current fault not detected
19	DRAIN3_OCP	RC	Oh	 Over current fault flag for DRAIN3, read to clear the fault HIGH=Over current fault detected LOW=Over current fault not detected
18	DRAIN2_OCP	RC	Oh	 Over current fault flag for DRAIN2, read to clear the fault HIGH=Over current fault detected LOW=Over current fault not detected
17	DRAIN1_OCP	RC	Oh	 Over current fault flag for DRAIN1, read to clear the fault HIGH=Over current fault detected LOW=Over current fault not detected
16	DRAIN0_OCP	RC	Oh	 Over current fault flag for DRAIN0, read to clear the fault HIGH=Over current fault detected LOW=Over current fault not detected
15	DRAIN7_OorS	RC	0h	 Open or short to ground fault flag for DRAIN7, read to clear the fault HIGH=Open or short to ground fault detected LOW=Open or short to ground fault not detected
14	DRAIN6_OorS	RC	0h	 Open or short to ground fault flag for DRAIN6, read to clear the fault HIGH=Open or short to ground fault detected LOW=Open or short to ground fault not detected

	表 8-7. Co	onfiguration I	Register Fie	eld Descriptions (continued)
Bit	Field	Туре	Reset	Description
13	DRAIN5_OorS	RC	Oh	 Open or short to ground fault flag for DRAIN5, read to clear the fault HIGH=Open or short to ground fault detected LOW=Open or short to ground fault not detected
12	DRAIN4_OorS	RC	Oh	 Open or short to ground fault flag for DRAIN4, read to clear the fault HIGH=Open or short to ground fault detected LOW=Open or short to ground fault not detected
11	DRAIN3_OorS	RC	0h	 Open or short to ground fault flag for DRAIN3, read to clear the fault HIGH=Open or short to ground fault detected LOW=Open or short to ground fault not detected
10	DRAIN2_OorS	RC	Oh	 Open or short to ground fault flag for DRAIN2, read to clear the fault HIGH=Open or short to ground fault detected LOW=Open or short to ground fault not detected
9	DRAIN1_OorS	RC	Oh	 Open or short to ground fault flag for DRAIN1, read to clear the fault HIGH=Open or short to ground fault detected LOW=Open or short to ground fault not detected
8	DRAIN0_OorS	RC	Oh	 Open or short to ground fault flag for DRAIN0, read to clear the fault HIGH=Open or short to ground fault detected LOW=Open or short to ground fault not detected
7	TBD	RC	0h	TBD
6	TSD	RC	Oh	 Thermal-shutdown detection flag, read to clear the fault HIGH = Thermal shutdown detected LOW = Thermal shutdown not detected
5	CRC	R	0h	CRC checksum of configuration registers
4	1			
3	1			
2	1			
1]			
0				

≠ 0

9 Application and Implementation

备注

以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客 户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

9.1 Application Information

The TLC6A598 device is a serial-in, parallel-out, power and logic, 8-bit shift register with low-side open-drain DMOS output ratings of 50-V and 350-mA continuous sink-current capabilities when VCC = 5 V. The device is designed to drive resistive loads and is particularly well-suited as an interface between a microcontroller and LEDs or lamps. The device also provides up to 7000 V of ESD protection when tested using the human body model and 1500 V when using the machine model.

The serial output (SEROUT) clocks out of the device on the falling edge of SRCK to provide additional hold time for cascaded applications. Connect the device (SEROUT) pin to the next device (SERIN) for daisy chain. This connection provides improved performance for applications where clock signals can be skewed, devices are not located near one another, or the system must tolerate electromagnetic interference.

9.2 Typical Application 1

图 9-1 shows a typical application circuit with TLC6A598 to drive LEDs. The MCU generates all the input signals.

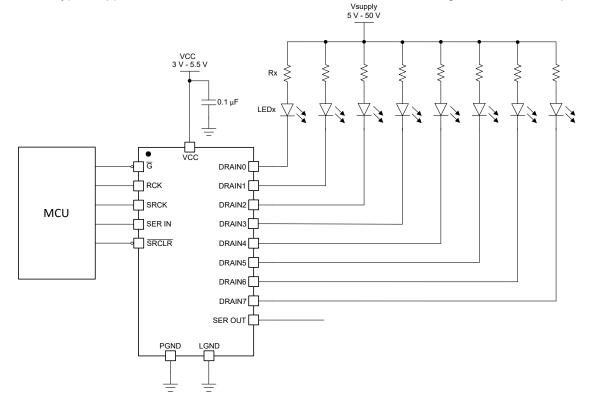


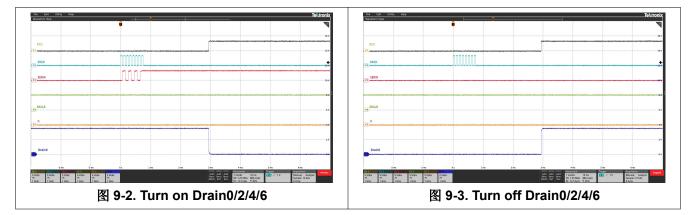
图 9-1. Typical Application With TLC6A598 to Drive LEDs

9.2.1 Design Requirements

DESIGN PARAMETER	DESCRIPTION	EXAMPLE VALUE							
V _{supply}	Supply voltage for the LED strings	5 V to 50 V							
V _{CC}	Supply voltage for the TLC6A598	3 V to 5.5 V							
V _{LED}	LED forward voltage	3.3 V (typical)							
I _{LED}	LED current	50 mA to 350 mA							

表 9-1. System Specifications

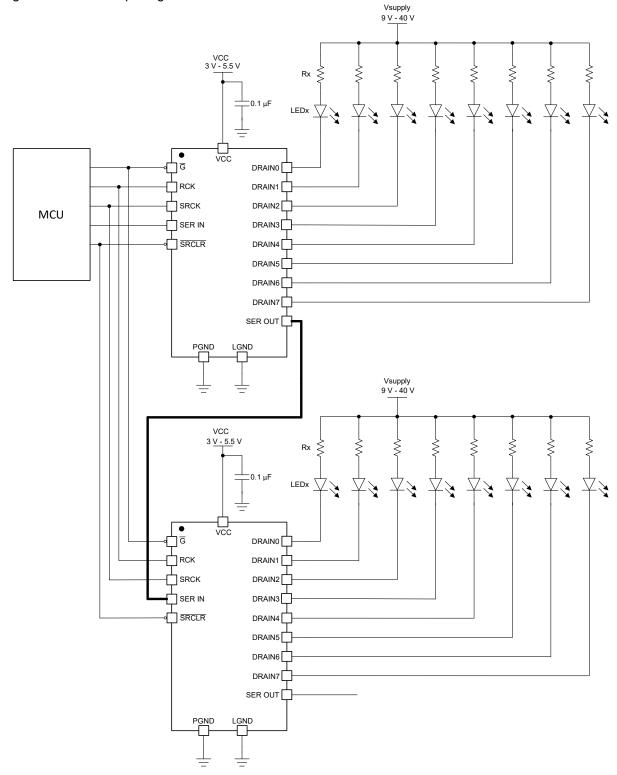
9.2.2 Detailed Design Procedure


To begin the design process, the designer must decide on a few parameters, as follows:

- V_{supply}: LED supply voltage
- V_{LEDx}: LED forward voltage
- I_{LED}: LED current
- R_{ON} : Resistance for each output channels when it is on, 1- Ω typical, $T_A = 25^{\circ}C$

With these parameters determined, the resistor in series with the LED can be calculated by using the 方程式 3:

$$R_X = \frac{\left(V_{supply} - V_{LED}\right)}{I_{LED}} - R_{ON} \tag{3}$$


9.2.3 Application Curves

9.3 Typical Application 2

图 9-4 shows a typical cascade application circuit with two TLC6A598 chips configured in cascade topology. The MCU generates all the input signals.

9.3.1 Design Requirements

DESIGN PARAMETER	DESCRIPTION	EXAMPLE VALUE								
V _{supply}	Supply voltage for the LED strings	5 V to 50 V								
V _{CC}	Supply voltage for the TLC6A598	3 V to 5.5 V								
V _{LED}	LED forward voltage	3.3 V (typical)								
I _{LED}	LED current	50 mA to 350 mA								

表 9-2. System Specifications

9.3.2 Detailed Design Procedure

To begin the design process, the designer must decide on a few parameters, as follows:

- V_{supply}: LED supply voltage
- V_{LEDx}: LED forward voltage
- I_{LED}: LED current
- R_{ON} : Resistance for each output channels when it is on, 1- Ω typical, $T_A = 25^{\circ}C$

With these parameters determined, the resistor in series with the LED can be calculated by using the 方程式 4:

$$R_X = \frac{\left(V_{supply} - V_{LED}\right)}{I_{LED}} - R_{ON} \tag{4}$$

9.4 Typical Application 3

图 9-5 shows a typical application circuit with TLC6A598 to drive Relays. The MCU generates all the input signals.

Please note that inductive loads, such as stepper motors or relays, can generate negative transients on the DRAINx pins of the device. Typically, this event occurs when the output channel FET turns ON, pulling the DRAINx node to ground. This event can cause the DRAINx node to go below the voltage rating listed in the Absolute Maximum Ratings table, which in effect causes excessive ground current leakage.

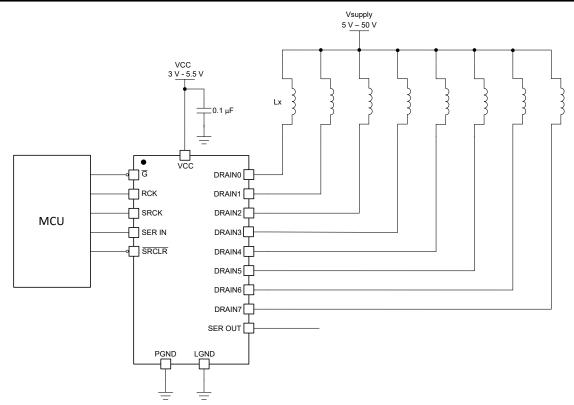


图 9-5. Typical Application With TLC6A598 to Drive Relays

9.4.1 Design Requirements

表 9-	3. Syst	tem Spe	cifications
~~ •	0.090		onioationo

DESIGN PARAMETER	DESCRIPTION	EXAMPLE VALUE							
V _{supply}	Supply voltage for the coil	5 V to 50 V							
V _{CC}	Supply voltage for the TLC6A598	3 V to 5.5 V							
I _{COIL}	Output current for the coil	30 mA to 350 mA							

9.4.2 Detailed Design Procedure

To begin the design process, the designer must decide on a few parameters, as follows:

- V_{supply}: LED supply voltage
- R_{COIL}: Coil resistance
- R_{ON} : Resistance for each output channels when it is on, 1- Ω typical, $T_A = 25^{\circ}C$

With these parameters determined, the coil current can be calculated by using the au \pm 5:

$$I_{COIL} = \frac{V_{supply}}{R_{COIL} + R_{ON}}$$
(5)

10 Power Supply Recommendations

The TLC6A598 device is designed to operate with an input voltage supply range from 3 V to 5.5 V. This input supply must be well regulated. TI recommends placing the ceramic bypass capacitors near the V_{CC} pin.

11 Layout

11.1 Layout Guidelines

There are no special layout requirements for the digital signal pins. The only requirement is placing the ceramic bypass capacitors near the corresponding pins.

Maximize the copper coverage on the PCB to increase the thermal conductivity of the board. The major heatflow path from the package to the ambient is through the copper on the PCB. Maximizing the copper coverage is extremely important when the design does not include heat sinks attached to the PCB on the other side of the package.

Add as many thermal vias as possible directly under the package ground pad to optimize the thermal conductivity of the board.

All thermal vias must be either plated shut or plugged and capped on both sides of the board to prevent solder voids. To ensure reliability and performance, the solder coverage must be at least 85%.

11.2 Layout Example

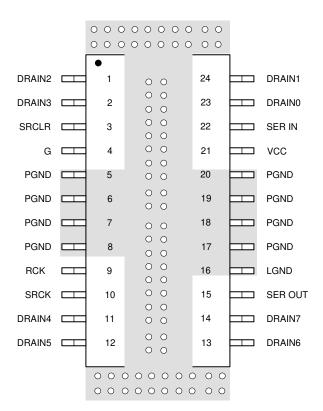


图 11-1. TLC6A598 Example Layout

12 Device and Documentation Support

12.1 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新*进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

12.2 支持资源

TI E2E[™] 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解 答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

12.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

12.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.5 术语表

TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the mostcurrent data available for the designated device. This data is subject to change without notice and without revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	e Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TLC6A598MDWR	ACTIVE	SOIC	DW	24	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	TLC6A598M	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

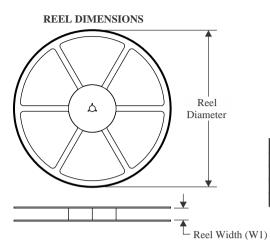
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

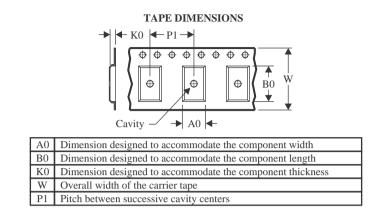
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

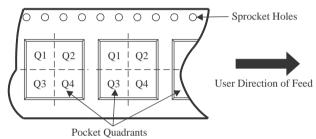
(⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



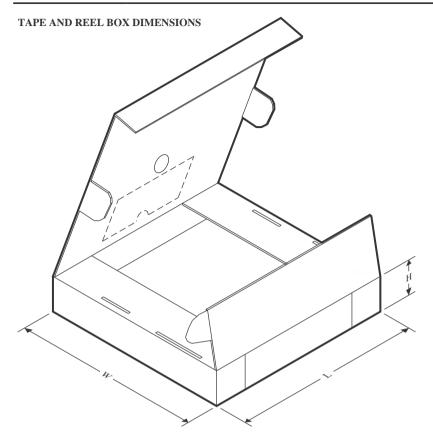
Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

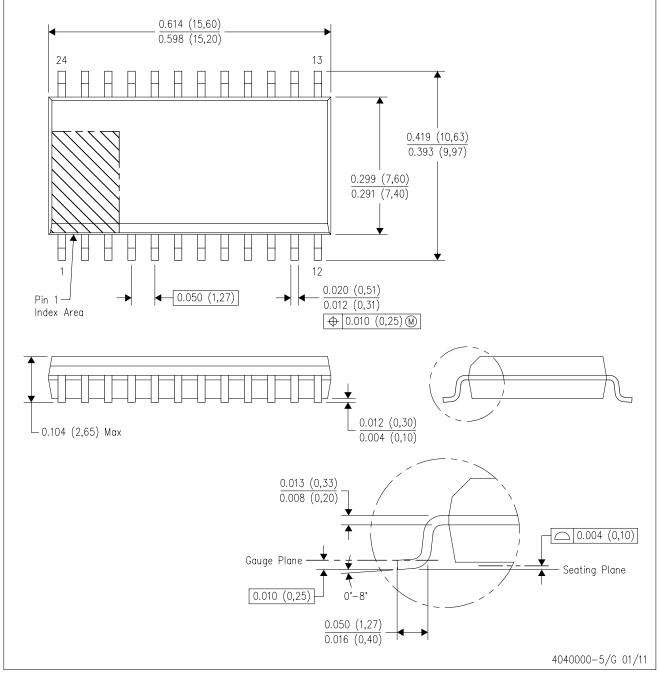
*All	d	imer	nsio	ns	are	nomi	inal	


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	· · /	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLC6A598MDWR	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

5-Dec-2023



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC6A598MDWR	SOIC	DW	24	2000	350.0	350.0	43.0

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AD.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司