Test Data

PMP10733

防 Texas Instruments

Table of Content

Circuit Description 3
Power Specification 3
Board Photo (with LM5160) 3
Thermal Image of the EVM at $12 \mathrm{VIN} \& \mathrm{I}_{\mathrm{PRI}}=\mathrm{I}_{\mathrm{SEC}}=0.15 \mathrm{~A}$ 4
Thermal Image of the EVM at $20 \mathrm{VIN} \& \mathrm{I}_{\mathrm{PRI}}=\mathrm{I}_{\mathrm{SEC}}=0.15 \mathrm{~A}$ 4
Efficiency Data. 5
Load Regulation Data 6
Line Regulation Data 8
Start Up 9
Load Transients 9
$V_{\text {SEC }}$ Load Step 9
$V_{\text {PRI }}$ Load Step 10
SW Node waveforms and Output Voltage Ripple Waveforms 11
Short Circuit Test 12
Secondary Side Short Circuit Test 12
Primary Side Short Circuit Test 13

INSTRUMENTS

Circuit Description

PMP10733 uses the LM5160 in a Fly-Buck-Boost topology with the primary set as to a negative voltage. Setting the primary side to a negative voltage reduces the turn's ratio of the transformer and yield better line and load regulation as a result. The primary and secondary voltages are set to negative 15 V and positive 15 V respectively. The maximum operating current on the primary and secondary rails are set to 150 mA . The switching frequency is set to 200 kHz .

Power Specification

VIN Min.	$5-\mathrm{-V}$
VIN Max.	$\mathbf{2 0 - V}$
V OUT,PRI	$\mathbf{- 1 5 - V}$
V OUT,SEC	$\mathbf{1 5 - V}$
$\mathbf{I}_{\text {OUT,PRI }}$	$\mathbf{0 - A - 0 . 1 5 - A}$
$\mathbf{I}_{\text {OUT,SEC }}$	$\mathbf{0 - A - 0 . 1 5 - A}$
Approximate Switching Frequency	$\approx \mathbf{2 0 0} \mathbf{~ K H z}$

Board Photo (with LM5160)

Thermal Image of the $E V M$ at $12 V I N \boldsymbol{I}_{\text {PRI }}=I_{\text {SEC }}=0.15 \mathrm{~A}$

Thermal Image of the EVM at $20 \mathrm{VIN} \boldsymbol{\&} \mathrm{I}_{\text {PRI }}=\mathrm{I}_{\mathrm{SEC}}=\mathbf{0 . 1 5} \mathrm{A}$

TEXAS
INSTRUMENTS

Efficiency Data

The efficiency is calculated here for both outputs.

Figure 3. Efficiency with $I_{\text {PRI }}=I_{\text {SEC }}=$ Load Current increased from 0A to 0.15A on each rail

Figure 4. Efficiency with $I_{\text {PRI }}$ set at 150 mA load and $I_{\text {SEC }}$ increasing from 0A to 150 mA

Figure 5. Efficiency with $I_{\text {SEC }}$ set at 150 mA load and $\mathrm{I}_{\text {PRI }}$ increasing from 0A to 150 mA

Load Regulation Data

Dotted line plots (---) show modulus $\mathbf{V}_{\text {PRI }}$ and the solid line plots show $\mathbf{V}_{\text {SEC }}$ (unless specified).

Figure 8. Load Regulation with $I_{\text {PRI }}=I_{\text {SEC }}=$ Load Current increased from 0A to 0.15A on each rail

	Load Regulation@ $l_{\text {sEC }}=0.15-\mathrm{A}$								
	13.5							$\longrightarrow \mathrm{VIN}=5-\mathrm{V}$ $-\mathrm{VIN}=5-\mathrm{V}$ $\longrightarrow \mathrm{VIN}=12-\mathrm{V}$ $-\mathrm{VIN}=12-\mathrm{V}$ $\longrightarrow \mathrm{VIN}=20-\mathrm{V}$ $-\mathrm{VIN}=20-\mathrm{V}$	
Figure 9. Load Regulation with $\mathrm{I}_{\text {SEC }}$ set at 150 mA load and $\mathrm{I}_{\text {PRI }}$ increasing from 0 A to 150 mA									
	Load Regulation@IPRI $=0.15-\mathrm{A}$								
Figure 10. Load Regulation with $\mathrm{I}_{\text {PRI }}$ Set at 150 mA load and $\mathrm{I}_{\text {SEC }}$ increasing from 0A to 150mA									

Line Regulation Data

Dotted line plots $(---)^{-}=$modulus $\mathbf{V}_{\text {PRI }}$ and the solid line plots $=\mathbf{V}_{\text {SEC }}(\mathbf{u n l e s s}$ specified $)$.

Start Up

Test condition: VIN $=12 \mathrm{~V}$, and both outputs were set to full load (150 mA on Primary and Secondary).
C1 (Yellow) - VIN
C3 (Blue) $-\mathrm{V}_{\text {SEC }}$
$\mathbf{C 4}$ (Green) - $\mathrm{V}_{\text {PRI }}$

Load Transients

$\mathbf{V}_{\text {SEC }}$ Load Step

Test condition: $\mathrm{VIN}=12 \mathrm{~V}$ with $\mathrm{I}_{\text {PRI }}$ set to 0 A .
CH1 (Yellow) - $\mathbf{I}_{\text {SEC }}=$ load step from 75 mA to 150 mA with slew rate set to $500 \mathrm{~mA} / \mathrm{us}$
$\mathbf{C H 3}$ (Blue) - $\mathbf{V}_{\text {SEC }}$ (AC coupled); $\Delta \mathrm{V}_{\text {SEC }}=150 \mathrm{mV}$ peak to peak
CH4 (Green) - $\mathrm{V}_{\text {PRI }}$ (AC coupled); $\Delta \mathrm{V}_{\text {PRI }}=25 \mathrm{mV}$ peak to peak

$\mathbf{V}_{\text {PRI }}$ Load Step

Test condition: VIN $=12 \mathrm{~V}$ with $\mathrm{I}_{\text {SEC }}$ set to 0 A
CH1 (Yellow) - $\mathbf{I}_{\text {PRI }}=75 \mathrm{~mA}$ to 150 mA with slew rate set to $500 \mathrm{~mA} / \mathrm{us}$
CH3 (Blue) - $\quad \mathbf{V}_{\text {SEC }}$ (AC coupled); $\Delta \mathrm{V}_{\text {SEC }}=88 \mathrm{mV}$ peak to peak
$\mathbf{C H 4}$ (Green) - $\mathbf{V}_{\text {PRI }}$ (AC coupled); $\Delta \mathrm{V}_{\text {PRI }}=50 \mathrm{mV}$ peak to peak

SW Node waveforms and Output Voltage Ripple Waveforms

Test condition: VIN $=20 \mathrm{~V}$, and both outputs were set to full load (150 mA on Primary and Secondary).

C1 (Yellow) - Switch node

$\mathbf{C 3}$ (Blue) - $\mathbf{V}_{\text {SEC }}$ (AC coupled): $\Delta \mathrm{V}_{\text {SEC }}=100 \mathrm{mV}$ peak to peak
$\mathbf{C 4}$ (Green)- $\mathbf{V}_{\text {PRI }}$ (AC coupled): $\Delta \mathrm{V}_{\text {PRI }}=100 \mathrm{mV}$ peak to peak

Short Circuit Test

Secondary Side Short Circuit Test

Test condition: VIN $=12 \mathrm{~V}$, and both outputs were set to no load (0 A on Primary and Secondary).
$\mathbf{C 1}$ (Yellow) - $\mathrm{I}_{\text {SEC }}$
C3 (Blue) - $\mathrm{V}_{\text {SEC }}$
$\mathbf{C 4}$ (Green) - $\mathbf{V}_{\text {PRI }}$

Test condition: VIN $=12 \mathrm{~V}$, with $\mathrm{I}_{\text {SEC }}$ set to 150 mA and the $\mathrm{I}_{\text {PRI }}$ set to 0A.

Primary Side Short Circuit Test

Test condition: VIN $=12 \mathrm{~V}$, and both outputs were set to no load (0 A on Primary and Secondary).
C1 (Yellow) - $\mathbf{I}_{\text {PRI }}$
C3 (Blue) - V ${ }_{\text {SEC }}$

$\mathbf{C 4}$ (Green) - $\mathbf{V}_{\text {PRI }}$

Test condition: VIN $=12 \mathrm{~V}$, with $\mathrm{I}_{\text {PRI }}$ set to 150 mA and the $\mathrm{I}_{\text {SEC }}$ set to 0 A .

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to TI's Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

