Test Data For PMP10595 01/19/2015

Overview

The PMP10595 reference design is a miniature 1.8V, 2A output power supply using SIMPLE SWITCHER® LMZ20502 nano module. The solution size is about 5x6mm, 30mm². The input range of the LMZ20502 is 2.7V to 5.5V. On the reference board the LMZ20502 is set in AUTO mode, and it will operate in PFM at light load to achieve higher efficiency.

Power Specification

Vin range: 2.7V - 5.5V

Output voltage: 1.8V

Output current: 2A max

Switching Frequency: 3 MHz in PWM mode

Reference Board

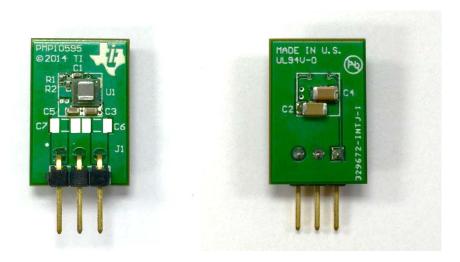


Figure 1 Board photos

The board size is 6.35x19 mm, and the component area is about 5x6 mm.

Efficiency

The efficiency measurement was taken at 3V, 4V and 5V inputs. The peak efficiency is 91%

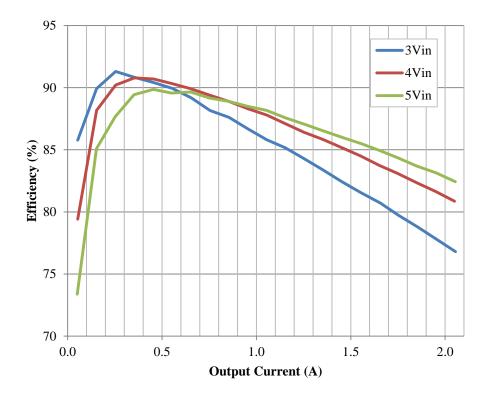


Figure 2 Power efficiency in AUTO mode

Thermal

The thermal image was taken at 23°C room temperature, no air flow. The board was operating at 5V input, 2A output. The thermal performance can be further improved by increasing the board size and using thicker copper layers.

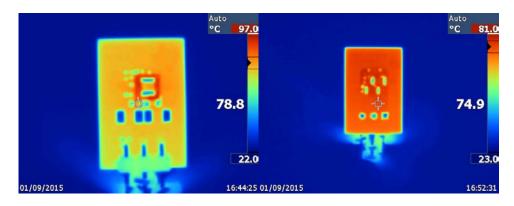


Figure 3 Board thermal images

Regulation

The overall variation on the 1.8V output is within 1%

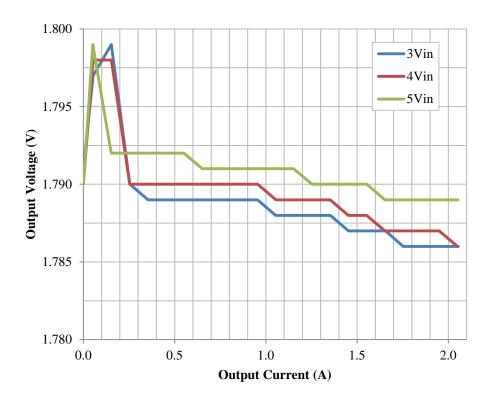


Figure 4 Regulation in AUTO mode

Start Up

Ch1 (yellow) is the input voltage, and Ch2 (green) is the output voltage.



Figure 5 Start up into no load at 5Vin

Switching Waveforms

Since the integrated inductor of the LMZ20502 power module can still be probed, the switching waveforms were measured under full load and no load conditions. The switching waveforms show its operation in the PWM and PFM. Ch1 (yellow) is the switch node voltage.

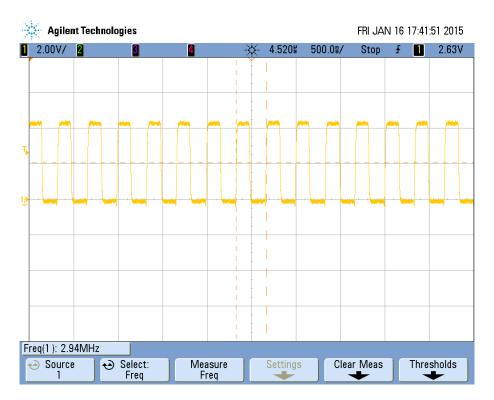


Figure 6 Switching waveform at full load, 5Vin, PWM

Figure 7 Switching waveform at no load, 5Vin, PFM

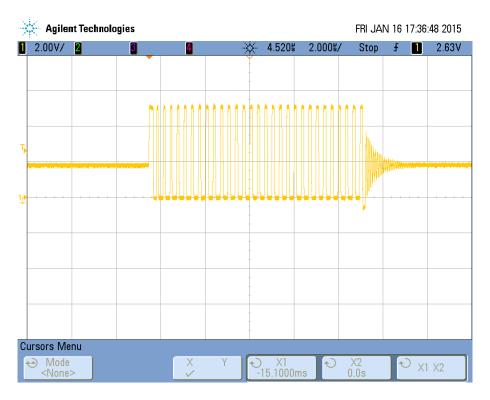


Figure 8 Zoom-in switching waveform at no load, 5Vin, PFM

Load Transients

The load transient response was tested by adding load step from 1A to 2A on the output at 5V input. Ch1 (yellow) is the output voltage in AC mode, and Ch4 (magenta) is the output current.

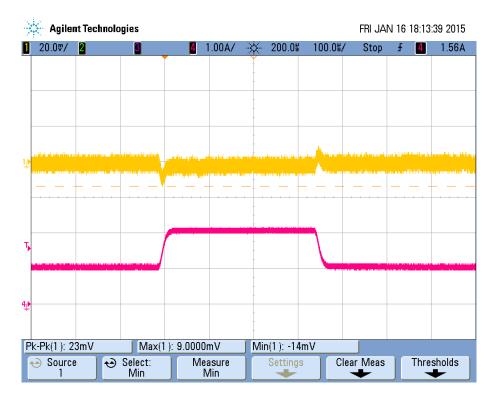


Figure 9 Output load transient at 5Vin

Output Voltage Ripples

The output ripples were measured directly at the output capacitors. Ch1 (yellow) is the output voltage ripple in AC mode.

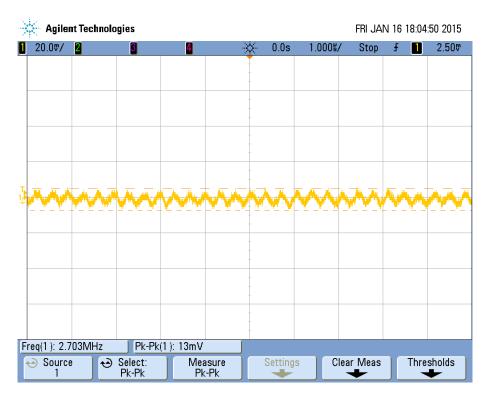


Figure 10 Output ripple at full load, 5Vin

Appendix: Efficiency and Regulation Test Data

Vin(V)	lin(A)	Vout(V)	lout(A)	Efficiency(%)
3.001	0.000	1.791	0.000	0.000
3.001	0.037	1.797	0.053	85.774
3.001	0.102	1.799	0.153	89.920
3.000	0.166	1.790	0.254	91.297
3.001	0.233	1.789	0.355	90.827
3.001	0.300	1.789	0.455	90.414
3.000	0.368	1.789	0.555	89.936
3.000	0.438	1.789	0.655	89.178
3.000	0.510	1.789	0.754	88.164
3.000	0.582	1.789	0.855	87.606
3.000	0.657	1.789	0.955	86.682
3.000	0.732	1.788	1.054	85.817
3.000	0.807	1.788	1.153	85.153
3.000	0.886	1.788	1.253	84.288
3.000	0.968	1.788	1.354	83.366
3.000	1.050	1.787	1.453	82.429
3.000	1.136	1.787	1.555	81.537
3.000	1.222	1.787	1.656	80.722
3.000	1.309	1.786	1.753	79.726
3.000	1.400	1.786	1.853	78.797
3.000	1.496	1.786	1.955	77.799
3.000	1.593	1.786	2.055	76.799

Vin(V)	Iin(A)	Vout(V)	Iout(A)	Efficiency(%)
4.000	0.000	1.790	0.000	0.000
4.000	0.030	1.798	0.053	79.412
4.000	0.078	1.798	0.153	88.171
4.000	0.126	1.790	0.254	90.210
4.000	0.174	1.790	0.353	90.786
4.000	0.225	1.790	0.456	90.693
4.000	0.274	1.790	0.553	90.317
4.000	0.325	1.790	0.653	89.913
4.000	0.378	1.790	0.755	89.382
4.000	0.431	1.790	0.856	88.877
4.000	0.484	1.790	0.955	88.298

4.000	0.538	1.789	1.056	87.787
4.000	0.592	1.789	1.153	87.108
4.000	0.648	1.789	1.252	86.413
4.000	0.705	1.789	1.353	85.834
4.000	0.762	1.788	1.452	85.176
4.000	0.821	1.788	1.552	84.500
4.000	0.882	1.787	1.653	83.728
4.000	0.941	1.787	1.750	83.083
4.000	1.003	1.787	1.849	82.357
4.000	1.067	1.787	1.950	81.646
4.000	1.132	1.786	2.050	80.859

Vin(V)	Iin(A)	Vout(V)	Iout(A)	Efficiency(%)
5.002	0.000	1.790	0.000	0.000
5.002	0.025	1.799	0.051	73.370
5.002	0.064	1.792	0.152	85.086
5.002	0.103	1.792	0.252	87.651
5.002	0.141	1.792	0.352	89.437
5.002	0.181	1.792	0.454	89.861
5.002	0.220	1.792	0.550	89.564
5.002	0.260	1.791	0.651	89.652
5.002	0.302	1.791	0.752	89.159
5.002	0.344	1.791	0.854	88.890
5.002	0.386	1.791	0.954	88.494
5.002	0.428	1.791	1.054	88.176
5.002	0.471	1.791	1.152	87.576
5.002	0.515	1.790	1.253	87.067
5.002	0.560	1.790	1.354	86.525
5.003	0.604	1.790	1.452	86.011
5.002	0.650	1.790	1.553	85.500
5.002	0.696	1.789	1.653	84.944
5.002	0.743	1.789	1.752	84.336
5.003	0.791	1.789	1.851	83.678
5.003	0.840	1.789	1.953	83.139
5.003	0.891	1.789	2.054	82.433

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated