1 Introduction

1.1 EVM Features

For detailed features and operation, refer to Table 1 for a list of devices and their data sheets.

Table 1. Device Data Sheets

Device	Document
bq24296/7	SLUSBP6

The bq24296 and bq24297 evaluation module (EVM) is a complete charger module for evaluating an I²C-controlled single NVDC-1 charge using the bq24296 and bq24297 devices.

This EVM doesn't include the USB-to-GPIO interface board. To evaluate the EVM, a USB-to-GPIO interface board must be ordered separately.

1.2 I/O Descriptions

Table 2 lists the jumper connections available on this EVM.

Jack	Description
J1–PMID	PMID pin connection/Power bank output
J1–VBUS	Input: positive terminal
J1–GND	Input: negative terminal (ground terminal)
J2-SYS	Connected to system
J2-BAT+	Connected to battery pack
J2-GND	Ground
J3	USB-to-GPIO connector (USB Interface Adapter Connector - HPA172)
J4–INT	INT pin connection
J4– OTG	OTG pin connection
J4-CE	CE pin connection
J4-GND	Ground
J5-TS2	External TS2 pin connection
J5-GND	Ground
J6-TS1	External TS1 pin connection
J6-GND	Ground
J7	Mini_USB Connector

Table 2. EVM Connections

Table 3 lists the controls and key parameter settings for this EVM.

Jack	Description	Factory Setting
JP1	For bq24296/7 input current setting: PSEL LOW: Adaptor input PSEL HIGH: USB input	bq24297: Not installed bq24296: Short PSEL to LOW
JP2	D-/PG pin selection	bq24297: Short D-/PG to D- bq24296: Short D-/PG to PG
JP3	STAT, PG, /CE, INT, OTG pin internal pull-up source (VSYS) jumper	Installed
JP4	USB current limit selection pin during buck mode and PSEL is high (JP1- High)/Enable pin during boost mode. In buck mode: OTG = High, IIN limit = 500 mA; OTG = Low, IIN limit = 100 mA. The boost mode is activated when the REG01[5:4] = 10 and OTG pin is HIGH.	Not installed
JP5	CE pin setting: pull low to enable the charge	Not Installed (GUI also can pull /CE low)
JP6	For bq24297 input current limit setting:	bq24297: installed bq24296: Not installed
JP7	TS1 resistor divider pull-up source (REGN) connection	Installed
JP8	internal 10k to ground to TS1	Installed
JP9	internal 10k to ground to TS2	Installed
JP10	TS2 pin setting:	bq24296/7: Short TS2 and TS2-I

Table 3. Jumper Connections

Table 4 lists the recommended operating conditions for this EVM.

Table 4. Recommended Operating Conditions

Symbol	Description	MIN	TYP	MAX	Unit
Supply voltage, V _{IN} bq24296/7	Input voltage from AC adapter	3.9	5	6	VDC
Battery voltage, V _{BAT}	Voltage applied at V _{BAT} terminal	0	3.7	4.25	V
Supply current, I _{AC}	Maximum input current from AC adapter input	0		3	A
Output current, I _{OUT}	Output current	0		4	А
Operating junction temperature range, T_J		0		125	°C

Test Summary

2 Test Summary

Section 2.1 – Section 2.3 explains the equipment, the equipment setup, and the test procedures.

2.1 Equipment

2.1.1 Power Supplies

Power supply #1 (PS#1): a power supply capable of supplying 5 V at 1 A is required. While this part can handle larger voltage and current, it is not necessary for this procedure.

2.1.2 Load #1 (4-Quadrant Supply, Constant Voltage < 4.5 V)

A 0–20 V/0–5 A, > 30-W system, DC electronic load and setting as constant voltage load mode.

Or:

Kepco load: BOP 20–5M, DC 0 to ±20 V, 0 to ±5 A (or higher)

Or:

Real single-cell battery

2.1.3 Load#2 – Use with Boost Mode

PMID to GND load, 10 Ω, 5 W or greater

2.1.4 Meters

Six Fluke 75 multimeters, (equivalent or better)

Or:

Four equivalent voltage meters and two equivalent current meters.

The current meters must be capable of measuring 5 A+ current.

2.1.5 Computer

A computer with at least one USB port and a USB cable. The bq2429xEVM evaluation software must be properly installed.

2.1.6 USB-to-GPIO Communication Kit (HPA172-USB Interface Adapter)

2.1.7 Software

Unzip the bq2429xEVM_GUI.zip and double-click on the *SETUP.EXE* file. Follow the installation steps. The software supports the Windows™ XP and Windows 7 operating systems.

2.2 Equipment Setup

- 1. Set PS#1 for 5-V DC, 1-A current limit and then turn off the supply.
- 2. Connect the output of PS#1 in series with a current meter (multimeter) to J1 (V_{BUS} and GND).
- 3. Connect a voltage meter across J1 (V_{BUS}) and J1 (GND).
- 4. Turn on the Load, set to constant voltage mode and output to 2.5 V. Turn off (disable) Load. Connect Load in series with a current meter (multimeter), ground side, to J2 (BAT+ and GND) as shown in Figure 2.
- 5. Connect a voltage meter across J2 (BAT+ and GND).
- 6. Connect the HPA172 USB interface adapter to the computer with a USB mini-cable and to J3 with the 10-pin ribbon cable. The connections are shown in Figure 1.

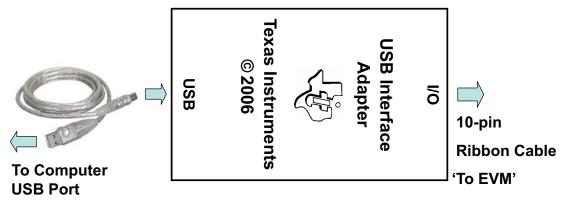


Figure 1. Connections of the HPA172 Kit

7. Install shunts as shown in Table 3.

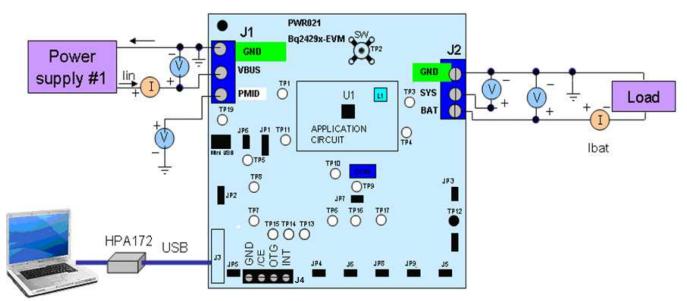


Figure 2. Original Test Setup for PWR021 (bq2429xEVM)

Test Summary

8. Turn on the computer. Launch the bq2429x evaluation software. The main window of the bq2429x software is shown in Figure 3.

Texas Instruments - BQ2429x EVM - GUI v0.0.0.3				
File Help				
Read Write Auto Rea	ed: OFF 🔹	Write On Change: ON	- I2C Address 6	B •
Input Voltage Limit	3.88 V 👻	0	Enable OTG	
Input Current Limit	100 m A 👻	0	Enable Charg Enable HIZ	e
Minimum System Voltage Limit	3.00 V 👻		Reset Registe	
USB OTG	1A 👻	Ý · · · · · · ·	Reduce ICHG Enable Termin	
	512 mA 👻	, 	Enable Safety	
ICHG	5121IIA •		Start D+/D-d	etection tended safety timer
Pre-Charge Current Limit	128 mA 👻	0	Turn Off Q4	tended safety timer
Termination current Limit	128 mA 👻	0	INT on CHRO	G_FAULT
Charge Voltage Limit	3.504 V 👻	й	INT on BAT_	FAULT
			STATUS	
BATLOWV	2.8 V 👻		CHRG	
Battery Recharge Threshold	100 mV 👻	Q	Input DPM	
Fast Charge Timer	5 hrs 🔹	0	PGOOD	
I2C Watchdog Timer Limit	Disabled -	<u> </u>	THERM	
BOOST V	4.551 V 👻	й і і і і	VSYS	
		Y	FAULT	
Vbcold1	76% of REGN 👻	· · ·	WATCHDOG	
Boost Hot Monitor	33% of Regn 👻	0	OTG	
Thermal Regulation Threashold	60 °C 👻		CHRG	
		· · · ·	BAT	
CE Low V PSEL Lo	w 🔽 OTGI	.ow 🔽	NTC	
			PART	
WDG Timer Reset OFF	▼ periodic re	sets	Device	
			Rev	

Figure 3. Main Window of the bq2429x Evaluation Software

2.3 Procedure

2.3.1 Current Settings

- Make Sure EQUIPMENT SETUP steps are followed. ILIM Setting: Set the potentiometer to its lowest value for max input current by connecting an ohmmeter between point TP9 and ground. Turn the screw on the potentiometer counterclockwise until the resistance drops to its lowest point (this should be in the range of 125 Ω to 175 Ω, the value of R7)
- 2. Launch the Bq2429x EVM GUI software, if not already done
- 3. Turn on PS#1 Measure \rightarrow V (J2(SYS), J2(GND)) = 4.10 ±300 mV

6

2.3.2 Charge Voltage and Current Regulation of V_{IN} and Device ID Verification

Follow the steps and verify the outputs and IC for the EVM.

2.3.2.1 Software setup (all of Section 2.3.2.1 is done in the GUI):

1. Device address: bq24296/7

I2C Address	6B	+
-------------	----	---

- 2. Click the **Read** button
- 3. Select Disabled for I²C Watchdog Timer Limit
- 4. Set Input Voltage Limit to 4.2 V
- 5. Set Input Current Limit to 500 mA
- 6. Set Charge Voltage Limit to 4.208 V
- 7. Set Fast Charge Current, ICHG to 512 mA
- 8. Set Pre-Charge Current to 256 mA
- 9. Deselect *Enable Termination* (see the following image)

	Charge Battery 🖌 Configuration					
	Enable HIZ					
	Reset Registers					
(Enable Termination					
	 Enable Safety Timer 					
	Start D+/D- detection					
	 Enable 2X extended safety timer 					
	Tum Off Q4					
	✓ INT on CHRG_FAULT					
	✓ INT on BAT_FAULT					
	Reset OFF 🖌 WatchDog Timer					

- Click the **Read** button twice
 Observe → Everything normal at *FAULT* box
 Observe → D1 (STAT) is on
 Observe → D2 (/PG) is on for the bq24296EVM
- 2.3.2.2 Enable Load#1 from Section 2.2 step 4. Measure the voltage across J2 at two different points:

$$\label{eq:Measure} \begin{split} \text{Measure} & \rightarrow \text{V}(\text{J2}(\text{SYS}),\,\text{J2}(\text{GND})) = 3.65 \text{ V} \pm 300 \text{ mV} \\ \text{Measure} & \rightarrow \text{V}(\text{J2}(\text{BAT}),\,\text{J2}(\text{GND})) = 2.5 \text{ V} \pm 200 \text{ mV} \end{split}$$

Test Summary

2.3.2.3 Increase the Constant Voltage Load to 3.7 V_{DC}

 $\begin{array}{l} \text{Measure} \rightarrow \mathsf{V}(\mathsf{J2}(\mathsf{SYS}),\,\mathsf{J2}(\mathsf{GND})) = 3.75 \;\mathsf{V} \; \pm 200 \;\mathsf{mV}\\\\ \text{Measure} \rightarrow \mathsf{IBAT} = 500 \;\mathsf{mA} \; \pm 200 \;\mathsf{mA}\\\\ \text{Measure} \rightarrow \mathsf{V}(\mathsf{J2}(\mathsf{BAT}),\,\mathsf{J2}(\mathsf{GND})) = 3.7 \;\mathsf{V} \; \pm 200 \;\mathsf{mV}\\ \end{array}$

2.3.2.4 In the software, set Fast Charge Current, ICHG to 1.012 A

Measure \rightarrow lin = 500 mA ±200 mA

2.3.2.5 Verify Scope Measurements (See Figure 4 – 500 ns/div)

C1 (AC coupled 20 mV/div): Vac_PMID (TP20 to GND) – Ripple excluding high frequency spikes < 10 mV C2 (5 V/div): Vdc_SW (TP2) - Frequency between 1.25 MHz and 1.5 MHz, duty cycle between 73% and 81%

C3 (AC coupled 20 mV/div): Vac_VSYS (TP3 to GND) - excluding high frequency spikes < 15 mV

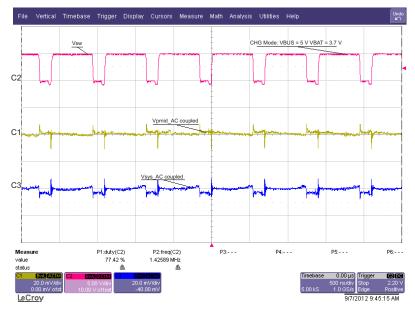


Figure 4. CHG Mode Ripple and Duty Cycle: V_{BUS} = 5 V, V_{BAT} = 3.7 V

2.3.2.6 Switch to Boost Mode

- 1. Turn off and disconnect PS#1
- If the constant voltage load connected from BAT+ to GND is not a four-quadrant supply (sources current) remove the load and use the power source disconnected in step one, set to 3.7 V and 2 A current limit and connect between BAT+ and GND
- 3. Apply 10 Ω (5 W or greater) across J5 (PMID(+) to GND(-)
- 4. Uncheck the OTG Low box in the GUI
- 5. Select OTG in the Configuration drop-down window
- 6. Verify V_{PMID} to GND on J5 is between 4.9 V and 5.3 V
- Verify scope measurement (See Figure 6) C1 (AC coupled 20 mV/div): Vac_PMID (TP20 to GND) – Ripple excluding high frequency spikes C2 (5 V/div): Vdc_SW (TP2) - Frequency between 1.2 MHz and 1.7 MHz, Duty cycle between 67% and 74%

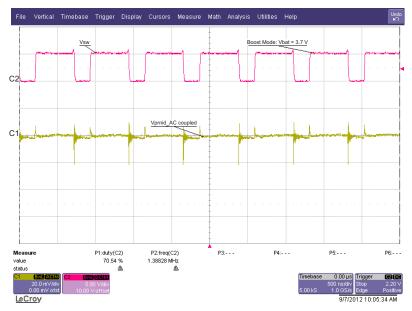


Figure 5. Boost Mode Ripple and Duty Cycle; V_{BAT} = 3.7 V

2.3.2.7 Verify Device ID JEITA shown in software matches Table 5

Table 5. Device ID JEITA Settings

Assembly Number	EVM Part Number	Device ID	JEITA
PWR021-009	bq24296EVM-021	bq24296	Disabled
PWR021-010	bq24297EVM-021	bq24297	Disabled

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated