Test Report: PMP21966 Automotive 1.1-V, 60-A, 3-Phase Synchronous Buck Converter Reference Design

Description

This synchronous buck converter was designed for a high-current automotive Engine Control Unit (ECU). This design combines the TPS59632-Q1, 24-V, 3-phase step-down driverless controller and state-of-the-art automotive DrMOS. The compact size and high efficiency make the design an excellent choice for low-voltage, high-current rails in automotive applications.

Top of Board

Features

- Automotive input range, 8 V to 18 V
- 0.9 V to 1.1 V, 60-A high current rail
- Peak efficiency 89.6% at 1 MHz
- Compact size 1.2 in × 1.6 in
- Fast dynamic response
- Excellent current sharing

Applications

- Drive assist ECU
- Radar ECU

Bottom of Board

1

1 Test Prerequisites

Texas Instruments www.ti.com

1.1 Voltage and Current Requirements

Parameter	Specifications			
Input voltage, V _{IN}	8 V to 18 V			
Output Voltage, V _{OUT}	0.9 V to 1.1 V, 60 A			

1.2 Required Equipment

- Power Supply: 0 V to 30 V, 0 A to 15 A
- Load: 1.1 V, 60 A

2 Testing and Results

2.1 Current Sharing

Table 2-1. Three-Phase Current Sharing Data

	Phase I	Phase II	Phase III
30 A (Measured across IND)	7.7 mV	7.3 mV	7.3 mV
30 A (Measured across CS capacitor)	5.4 mV	5.1 mV	5.1 mV
60 A (Measured across IND)	15.6 mV	15.6 mV	15.3 mV
60 A (Measured across CS capacitor)	10.5 mV	10.2 mV	10.2 mV

Figure 2-1 shows the current-sharing graph.

Figure 2-1. Current Sharing

2.2 Efficiency Graphs

Figure 2-2 shows the PMP21966 efficiency graph at 1.1 V, 1 MHz.

Figure 2-2. PMP21966 Efficiency Graph at 1.1 V, 1 MHz

2.3 Efficiency Data

Efficiency data is shown in the following table.

Table 2-2. PMP21966 Test Conditions: 1.1 V_{OUT}, 1000 kHz

V _{IN} (V)	V _{OUT} (V)	V5V	I _{IN}	I _{OUT}	I5v	Efficiency	P _{LOSS}
7.995	1.100	4.947	0.797	4.988	0.118	78.9%	1.47
7.990	1.102	4.944	1.544	9.984	0.125	84.9%	1.96
7.985	1.103	4.944	2.281	14.980	0.125	87.7%	2.31
7.980	1.104	4.944	3.030	19.974	0.126	88.9%	2.75
7.976	1.106	4.944	3.792	24.971	0.126	89.5%	3.25
7.970	1.107	4.944	4.567	29.967	0.126	89.6%	3.84
7.965	1.109	4.944	5.355	34.961	0.127	89.6%	4.52
7.960	1.110	4.943	6.158	39.953	0.128	89.3%	5.30
7.955	1.112	4.943	6.975	44.944	0.128	89.0%	6.16
7.950	1.113	4.943	7.806	49.932	0.129	88.6%	7.12
7.945	1.115	4.943	8.651	54.914	0.130	88.2%	8.16
7.939	1.116	4.943	9.513	59.891	0.130	87.8%	9.31
13.514	1.100	4.959	0.495	4.988	0.084	77.2%	1.62
13.511	1.102	4.947	0.969	9.984	0.119	80.5%	2.67
13.508	1.103	4.946	1.407	14.980	0.122	84.3%	3.09
13.506	1.105	4.946	1.852	19.975	0.122	86.2%	3.55
13.503	1.106	4.946	2.304	24.972	0.122	87.1%	4.09
13.500	1.108	4.945	2.762	29.968	0.122	87.6%	4.69
13.497	1.109	4.945	3.227	34.961	0.123	87.8%	5.39
13.494	1.110	4.945	3.700	39.955	0.123	87.8%	6.17
13.491	1.112	4.945	4.180	44.945	0.124	87.6%	7.05
13.488	1.113	4.945	4.669	49.933	0.124	87.4%	8.01
13.485	1.115	4.944	5.166	54.913	0.125	87.1%	9.06
13.481	1.116	4.944	5.670	59.890	0.126	86.7%	10.21
18.001	1.100	4.970	0.375	4.989	0.054	78.2%	1.53
17.998	1.102	4.954	0.744	9.984	0.098	79.2%	2.88
17.996	1.103	4.950	1.094	14.981	0.111	81.7%	3.71
17.994	1.104	4.949	1.426	19.975	0.111	84.1%	4.16
17.992	1.106	4.949	1.766	24.972	0.112	85.5%	4.70
17.990	1.108	4.949	2.110	29.969	0.113	86.2%	5.33
17.988	1.109	4.949	2.460	34.961	0.113	86.5%	6.03
17.985	1.110	4.949	2.816	39.955	0.114	86.6%	6.84
17.983	1.112	4.948	3.178	44.946	0.115	86.6%	7.74
17.981	1.113	4.948	3.546	49.932	0.115	86.4%	8.74
17.979	1.115	4.948	3.920	54.914	0.116	86.2%	9.83
17.976	1.116	4.948	4.300	59.891	0.117	85.8%	11.03

2.4 Thermal Images

The thermal image is shown in the following figure.

Test conditions: 12 V_{IN}, 1 V, 45 A_{OUT}, 1000 kHz, room temperature, natural convection, T_{FET} = 81.3°C, T_{IND} = 59.2°C

Figure 2-3. Thermal Image

3 Waveforms

3.1 Start-up and Shutdown

Start-up behavior is shown in the following figures.

3.2 Ripple and Switching Node

The following images illustrate the ripple and switching node waveforms.

15 × 100 μ F, 4 V, 1210 + 30 × 22 μ F, 6.3 V, 0805 Figure 3-3. 12 V_{IN}, 1.1 V_{OUT}, 45-A Load, 5 mV (±0.25%)

15 × 100 µF, 4 V, 1210 + 30 × 22 µF, 6.3 V, 0805 Figure 3-4. 12 $V_{IN},$ 1.1 $V_{OUT},$ 45-A Load, 14 V_{MAX}

Figure 3-5. 12 V_{IN} , 1.1 V_{OUT} , 45-A Load, Three-Phase

3.3 Load Transients

Load transient response is shown in the following figures.

Figure 3-7. 12 V_{IN}, 1.1 V_{OUT}, 45-A to 15-A Load Step, +24 mV (–2.2%)

3.4 Overcurrent Protection, Short-Circuit Protection

Overload and short-circuit protection is shown in the following figures.

Figure 3-8. 12 V_{IN} , 1.1 V_{OUT} , Overload Applied, OCP = 75 A

Figure 3-9. 12 V_{IN} , 1.1 V_{OUT} , Short-Circuit Applied, SCP = 75 A

7

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated