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ABSTRACT
This application report describes the required steps to integrate usage of the QSPI flash on mmWave
devices.
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1 Initializing QSPIFlash Driver
The first step is to add code to include and initialize the QSPI and QSPIflash mmWave drivers. Both
drivers are required for reading or writing to the flash. The following is C code that initializes both QSPI
and QSPIFlash drivers. This tested code may be copied into the project.

#include <ti/drivers/qspiflash/qspiflash.h>

QSPI_Handle qspiHandle;
QSPIFlash_Handle qspiflashHandle;

/* This is for the IWR1443. For IWR1642, simply substitute the equivalent pinmux macros. */

int32_t init_qspiflash(void)
{

int32_t errCode;
QSPI_Params QSPIParams;

/* Setup the PINMUX to bring out the QSPI */
Pinmux_Set_OverrideCtrl(SOC_XWR14XX_PINR10_PADAP,

PINMUX_OUTEN_RETAIN_HW_CTRL, PINMUX_INPEN_RETAIN_HW_CTRL);
Pinmux_Set_FuncSel(SOC_XWR14XX_PINR10_PADAP,

SOC_XWR14XX_PINR10_PADAP_QSPI_CLK);
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Pinmux_Set_OverrideCtrl(SOC_XWR14XX_PINP8_PADAQ,
PINMUX_OUTEN_RETAIN_HW_CTRL, PINMUX_INPEN_RETAIN_HW_CTRL);

Pinmux_Set_FuncSel(SOC_XWR14XX_PINP8_PADAQ,
SOC_XWR14XX_PINP8_PADAQ_QSPI_CS);

Pinmux_Set_OverrideCtrl(SOC_XWR14XX_PINR11_PADAL,
PINMUX_OUTEN_RETAIN_HW_CTRL, PINMUX_INPEN_RETAIN_HW_CTRL);

Pinmux_Set_FuncSel(SOC_XWR14XX_PINR11_PADAL,
SOC_XWR14XX_PINR11_PADAL_QSPI_D0);

Pinmux_Set_OverrideCtrl(SOC_XWR14XX_PINP9_PADAM,
PINMUX_OUTEN_RETAIN_HW_CTRL, PINMUX_INPEN_RETAIN_HW_CTRL);

Pinmux_Set_FuncSel(SOC_XWR14XX_PINP9_PADAM,
SOC_XWR14XX_PINP9_PADAM_QSPI_D1);

Pinmux_Set_OverrideCtrl(SOC_XWR14XX_PINR12_PADAN,
PINMUX_OUTEN_RETAIN_HW_CTRL, PINMUX_INPEN_RETAIN_HW_CTRL);

Pinmux_Set_FuncSel(SOC_XWR14XX_PINR12_PADAN,
SOC_XWR14XX_PINR12_PADAN_QSPI_D2);

Pinmux_Set_OverrideCtrl(SOC_XWR14XX_PINP10_PADAO,
PINMUX_OUTEN_RETAIN_HW_CTRL, PINMUX_INPEN_RETAIN_HW_CTRL);

Pinmux_Set_FuncSel(SOC_XWR14XX_PINP10_PADAO,
SOC_XWR14XX_PINP10_PADAO_QSPI_D3);

/* Initialize the QSPI Driver */
QSPI_init();

/* Initialize the QSPI Flash */
QSPIFlash_init();

/* Open QSPI driver */
QSPI_Params_init(&QSPIParams);

/* Set the QSPI peripheral clock to 200MHz */
QSPIParams.qspiClk = 200 * 1000000U;

QSPIParams.clkMode = QSPI_CLOCK_MODE_0;

/* Running at 40MHz QSPI bit rate
* QSPI bit clock rate derives from QSPI peripheral clock(qspiClk)

and divide clock internally down to bit clock rate
BitClockRate = qspiClk/divisor(=5, setup by QSPI driver internally)

*/

QSPIParams.bitRate = 40 * 1000000U;

qspiHandle = QSPI_open(&QSPIParams, &errCode);

if (qspiHandle == NULL)
{

demo_printf("Error: Unable to open the QSPI Instance\n");
return(0);

}

qspiflashHandle = QSPIFlash_open(qspiHandle, &errCode);
if (qspiflashHandle == NULL )
{

demo_printf("Error: Unable to open the QSPIflash Instance\n");
return(0);

}

return(1);
}
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2 Obtaining Flash Address
Whether reading or writing, one must find a valid area or areas in flash to be used.

First, the mmWave SDK function returns the base address of the flash memory (per the current device):

uint32_t flashAddr;
flashAddr = QSPIFlash_getExtFlashAddr(qspiflashHandle);

As shown in the TRM, for IWR1443 and IWR1642 this is:

EXT_FLASH 0xC000_0000 0xC07F_FFFF 8MB MSS_QSPI (QSPI) flash
memory space

The next piece of information required is where the bootloader expects to find the flashed image. This is
important so one does not use the same flash sectors.

2.1 Finding Bootloader Image Flash Offset
For Code Composer Studio™ (CCS), the following code is provided in the .projectspec file used to create
the project:
<buildVariable name="LOAD_ADDRESS" value="0x200000"/>

For IWR1443 makefiles, the address is found in the main makefile: (eg. mmwave_sdk.mak for the demos)
LOAD_ADDRESS = 0x200000

For IWR1642 projects, the meta image is flashed to offset zero.

You will see this in the link step of a build:
C:/ti/mmwave_sdk_01_00_00_05/packages/scripts/ImageCreator/xwr14xx/out2rprc/out2rprc.exe
level_sense_demo.xer4f level_sense_demo.bin 0x200000

The “generate bin” portion of the build process will provide you with the size of the image to be flashed:
C:/ti/mmwave_sdk_01_00_00_05/packages/scripts/ImageCreator/xwr14xx/append_bin_crc/gen_bincrc32.pl
level_sense_demo.bin

>>>> Binary CRC32 = 5a9b9b17 <<<<
>>>> Total bytes in binary file 71988 <<<<

In most cases one must account for the position and size of the flashed code image, or one may overwrite
it. For safety, locations (offsets) 0x20_0000 to 0x28_0000 should be considered off limits for 14xx devices
and 0x0 to 0x10_0000 for 16xx. Note that these locations and sizes may change in the future with new
releases of the bootloader.
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3 Writing to Flash
Before writing, the required portion of flash to use must be erased without erasing anything else. There
are three APIs in the mmWave QSPIFlash driver that erase sections of flash memory. Table 1 shows the
corresponding memory sizes that are erased.

Table 1. mmWave QPSIFlash Erase APIs

NAME SIZE
QPSIFlash_sectorErase 4 KB
QPSIFlash_blockErase 64 KB
QPSIFlash_chipErase Entire flash

The following code is a simple example that writes to the flash. If the size to be written exceeds 4 KB,
QSPIFlash_sectorErase() must be called with adjoining 4 KB offsets, or QSPIFlash _blockErase() is used
instead for 64 KB or larger areas.
#define DEMO_FLASH_OFFSET 0x100000
#define DEMO_FLASH_LEN (sizeof(my_struct))

flashAddr = QSPIFlash_getExtFlashAddr(qspiflashHandle);

flashAddr = flashAddr + DEMO_FLASH_OFFSET;

/* Erase the 4KB sector to be written. */
QSPIFlash_sectorErase(qspiflashHandle, flashAddr);

QSPIFlash_singleWrite(qspiflashHandle, flashAddr, DEMO_FLASH_LEN,
(uint8_t *)my_data);

4 Reading From Flash
Reading from flash is easier than writing. After initializing the QSPIFlash driver, simply compute the
correct offset into flash and call the read API with the following code:

/* Read my structure from flash. */
flashAddr = QSPIFlash_getExtFlashAddr(qspiflashHandle);
flashAddr = flashAddr + DEMO_FLASH_OFFSET;

QSPIFlash_singleRead(qspiflashHandle, flashAddr, DEMO_FLASH_LEN,
(uint8_t *)my_data);
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5 Linking QSPI Flash Drivers
The last step is to build the executable by linking with the QPSI drivers. If using a CCS project, the QPSI
drivers can be added to the project’s linker properties as shown in Figure 1.

Figure 1. CCS Project Linker Properties

If using makefiles, do the same procedure there.

############################################################################
# Additional libraries which are required to build the executable:
############################################################################
STD_LIBS = $(R4F_COMMON_STD_LIB) \

-llibpinmux_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibdma_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibadcbuf_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibhwa_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibmailbox_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibedma_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibmmwave_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibmmwavelink_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibcrc_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibspi_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibqspi_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibqspiflash_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibuart_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT)
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