
1SWRA583–January 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Adding Flash Read and Write to an Existing mmWave Project

Application Report
SWRA583–January 2017

Adding Flash Read and Write to an Existing mmWave
Project

DaveWoodall

ABSTRACT
This application report describes the required steps to integrate usage of the QSPI flash on mmWave
devices.

Contents
1 Initializing QSPIFlash Driver.. 1
2 Obtaining Flash Address.. 3
3 Writing to Flash .. 4
4 Reading From Flash... 4
5 Linking QSPI Flash Drivers... 5

List of Figures

1 CCS Project Linker Properties ... 5

List of Tables

1 mmWave QPSIFlash Erase APIs.. 4

Trademarks
Code Composer Studio is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

1 Initializing QSPIFlash Driver
The first step is to add code to include and initialize the QSPI and QSPIflash mmWave drivers. Both
drivers are required for reading or writing to the flash. The following is C code that initializes both QSPI
and QSPIFlash drivers. This tested code may be copied into the project.

#include <ti/drivers/qspiflash/qspiflash.h>

QSPI_Handle qspiHandle;
QSPIFlash_Handle qspiflashHandle;

/* This is for the IWR1443. For IWR1642, simply substitute the equivalent pinmux macros. */

int32_t init_qspiflash(void)
{

int32_t errCode;
QSPI_Params QSPIParams;

/* Setup the PINMUX to bring out the QSPI */
Pinmux_Set_OverrideCtrl(SOC_XWR14XX_PINR10_PADAP,

PINMUX_OUTEN_RETAIN_HW_CTRL, PINMUX_INPEN_RETAIN_HW_CTRL);
Pinmux_Set_FuncSel(SOC_XWR14XX_PINR10_PADAP,

SOC_XWR14XX_PINR10_PADAP_QSPI_CLK);

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA583

Initializing QSPIFlash Driver www.ti.com

2 SWRA583–January 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Adding Flash Read and Write to an Existing mmWave Project

Pinmux_Set_OverrideCtrl(SOC_XWR14XX_PINP8_PADAQ,
PINMUX_OUTEN_RETAIN_HW_CTRL, PINMUX_INPEN_RETAIN_HW_CTRL);

Pinmux_Set_FuncSel(SOC_XWR14XX_PINP8_PADAQ,
SOC_XWR14XX_PINP8_PADAQ_QSPI_CS);

Pinmux_Set_OverrideCtrl(SOC_XWR14XX_PINR11_PADAL,
PINMUX_OUTEN_RETAIN_HW_CTRL, PINMUX_INPEN_RETAIN_HW_CTRL);

Pinmux_Set_FuncSel(SOC_XWR14XX_PINR11_PADAL,
SOC_XWR14XX_PINR11_PADAL_QSPI_D0);

Pinmux_Set_OverrideCtrl(SOC_XWR14XX_PINP9_PADAM,
PINMUX_OUTEN_RETAIN_HW_CTRL, PINMUX_INPEN_RETAIN_HW_CTRL);

Pinmux_Set_FuncSel(SOC_XWR14XX_PINP9_PADAM,
SOC_XWR14XX_PINP9_PADAM_QSPI_D1);

Pinmux_Set_OverrideCtrl(SOC_XWR14XX_PINR12_PADAN,
PINMUX_OUTEN_RETAIN_HW_CTRL, PINMUX_INPEN_RETAIN_HW_CTRL);

Pinmux_Set_FuncSel(SOC_XWR14XX_PINR12_PADAN,
SOC_XWR14XX_PINR12_PADAN_QSPI_D2);

Pinmux_Set_OverrideCtrl(SOC_XWR14XX_PINP10_PADAO,
PINMUX_OUTEN_RETAIN_HW_CTRL, PINMUX_INPEN_RETAIN_HW_CTRL);

Pinmux_Set_FuncSel(SOC_XWR14XX_PINP10_PADAO,
SOC_XWR14XX_PINP10_PADAO_QSPI_D3);

/* Initialize the QSPI Driver */
QSPI_init();

/* Initialize the QSPI Flash */
QSPIFlash_init();

/* Open QSPI driver */
QSPI_Params_init(&QSPIParams);

/* Set the QSPI peripheral clock to 200MHz */
QSPIParams.qspiClk = 200 * 1000000U;

QSPIParams.clkMode = QSPI_CLOCK_MODE_0;

/* Running at 40MHz QSPI bit rate
* QSPI bit clock rate derives from QSPI peripheral clock(qspiClk)

and divide clock internally down to bit clock rate
BitClockRate = qspiClk/divisor(=5, setup by QSPI driver internally)

*/

QSPIParams.bitRate = 40 * 1000000U;

qspiHandle = QSPI_open(&QSPIParams, &errCode);

if (qspiHandle == NULL)
{

demo_printf("Error: Unable to open the QSPI Instance\n");
return(0);

}

qspiflashHandle = QSPIFlash_open(qspiHandle, &errCode);
if (qspiflashHandle == NULL)
{

demo_printf("Error: Unable to open the QSPIflash Instance\n");
return(0);

}

return(1);
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA583

www.ti.com Obtaining Flash Address

3SWRA583–January 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Adding Flash Read and Write to an Existing mmWave Project

2 Obtaining Flash Address
Whether reading or writing, one must find a valid area or areas in flash to be used.

First, the mmWave SDK function returns the base address of the flash memory (per the current device):

uint32_t flashAddr;
flashAddr = QSPIFlash_getExtFlashAddr(qspiflashHandle);

As shown in the TRM, for IWR1443 and IWR1642 this is:

EXT_FLASH 0xC000_0000 0xC07F_FFFF 8MB MSS_QSPI (QSPI) flash
memory space

The next piece of information required is where the bootloader expects to find the flashed image. This is
important so one does not use the same flash sectors.

2.1 Finding Bootloader Image Flash Offset
For Code Composer Studio™ (CCS), the following code is provided in the .projectspec file used to create
the project:
<buildVariable name="LOAD_ADDRESS" value="0x200000"/>

For IWR1443 makefiles, the address is found in the main makefile: (eg. mmwave_sdk.mak for the demos)
LOAD_ADDRESS = 0x200000

For IWR1642 projects, the meta image is flashed to offset zero.

You will see this in the link step of a build:
C:/ti/mmwave_sdk_01_00_00_05/packages/scripts/ImageCreator/xwr14xx/out2rprc/out2rprc.exe
level_sense_demo.xer4f level_sense_demo.bin 0x200000

The “generate bin” portion of the build process will provide you with the size of the image to be flashed:
C:/ti/mmwave_sdk_01_00_00_05/packages/scripts/ImageCreator/xwr14xx/append_bin_crc/gen_bincrc32.pl
level_sense_demo.bin

>>>> Binary CRC32 = 5a9b9b17 <<<<
>>>> Total bytes in binary file 71988 <<<<

In most cases one must account for the position and size of the flashed code image, or one may overwrite
it. For safety, locations (offsets) 0x20_0000 to 0x28_0000 should be considered off limits for 14xx devices
and 0x0 to 0x10_0000 for 16xx. Note that these locations and sizes may change in the future with new
releases of the bootloader.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA583

Writing to Flash www.ti.com

4 SWRA583–January 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Adding Flash Read and Write to an Existing mmWave Project

3 Writing to Flash
Before writing, the required portion of flash to use must be erased without erasing anything else. There
are three APIs in the mmWave QSPIFlash driver that erase sections of flash memory. Table 1 shows the
corresponding memory sizes that are erased.

Table 1. mmWave QPSIFlash Erase APIs

NAME SIZE
QPSIFlash_sectorErase 4 KB
QPSIFlash_blockErase 64 KB
QPSIFlash_chipErase Entire flash

The following code is a simple example that writes to the flash. If the size to be written exceeds 4 KB,
QSPIFlash_sectorErase() must be called with adjoining 4 KB offsets, or QSPIFlash _blockErase() is used
instead for 64 KB or larger areas.
#define DEMO_FLASH_OFFSET 0x100000
#define DEMO_FLASH_LEN (sizeof(my_struct))

flashAddr = QSPIFlash_getExtFlashAddr(qspiflashHandle);

flashAddr = flashAddr + DEMO_FLASH_OFFSET;

/* Erase the 4KB sector to be written. */
QSPIFlash_sectorErase(qspiflashHandle, flashAddr);

QSPIFlash_singleWrite(qspiflashHandle, flashAddr, DEMO_FLASH_LEN,
(uint8_t *)my_data);

4 Reading From Flash
Reading from flash is easier than writing. After initializing the QSPIFlash driver, simply compute the
correct offset into flash and call the read API with the following code:

/* Read my structure from flash. */
flashAddr = QSPIFlash_getExtFlashAddr(qspiflashHandle);
flashAddr = flashAddr + DEMO_FLASH_OFFSET;

QSPIFlash_singleRead(qspiflashHandle, flashAddr, DEMO_FLASH_LEN,
(uint8_t *)my_data);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA583

www.ti.com Linking QSPI Flash Drivers

5SWRA583–January 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Adding Flash Read and Write to an Existing mmWave Project

5 Linking QSPI Flash Drivers
The last step is to build the executable by linking with the QPSI drivers. If using a CCS project, the QPSI
drivers can be added to the project’s linker properties as shown in Figure 1.

Figure 1. CCS Project Linker Properties

If using makefiles, do the same procedure there.

##
Additional libraries which are required to build the executable:
##
STD_LIBS = $(R4F_COMMON_STD_LIB) \

-llibpinmux_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibdma_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibadcbuf_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibhwa_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibmailbox_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibedma_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibmmwave_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibmmwavelink_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibcrc_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibspi_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibqspi_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibqspiflash_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT) \
-llibuart_$(MMWAVE_SDK_DEVICE_TYPE).$(R4F_LIB_EXT)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA583

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	Adding Flash Read and Write to an Existing mmWave Project
	1 Initializing QSPIFlash Driver
	2 Obtaining Flash Address
	2.1 Finding Bootloader Image Flash Offset

	3 Writing to Flash
	4 Reading From Flash
	5 Linking QSPI Flash Drivers

	Important Notice

