

### TDK-EPC Corporation's Balanced Band Pass Filter and Chip Antenna for Texas Instruments CC2530 ZigBee Transceiver

### June 2011

### 1. Introduction

The CC2530 from Texas Instruments is a single chip solution for 2.4GHz IEEE 802.15.4/RF4CE / Zigbee. To function in an end user application this IC requires a Balanced Band Pass Filter (Bal-BPF) and TDK has developed a perfectly matched part to meet this requirement. The Part Number for this Bal-BPF is DEA202450BT- 210A1. This Bal-BPF contributes to the reduction in the number of components and the PCB area. Moreover, consistent RF characteristics can be achieved with this Bal-BPF in mass production. Project collateral discussed in this document can be downloaded from the following URL: http://www.ti.com/lit/zip/SWRA378.

### 2. <u>Reference Design</u>

Discrete solution for CC2530 is shown in Figures 1 and 3. TDK s Bal-BPF solution using LTCC technology is shown in Figures 2 and 4.



Figure 1. Photo of the discrete solution.

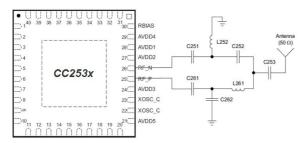



Figure 3. Discrete ref design for the CC253x

- 1 -



Figure 2. Photo of TDK filter solution

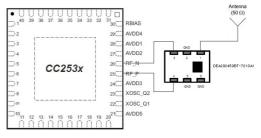



Figure 4. DEA202450BT- 210A1 for the CC253x



#### Easy to Place on PCB

The following layout is the evaluation board by Texas Instruments. (Figure 5) The main RF circuit can be achieved with just the IC and the TDK filter optimized to TI CC253x series. With this easy to implement solution the PCB design time is greatly reduced..

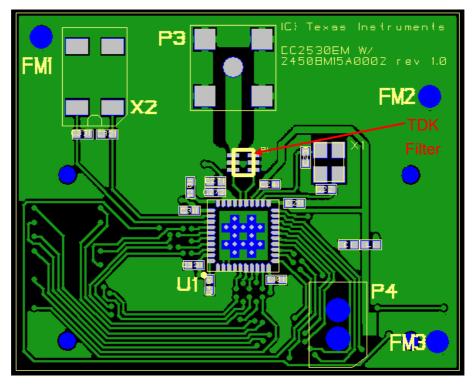
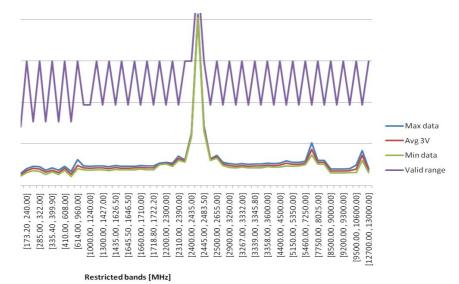


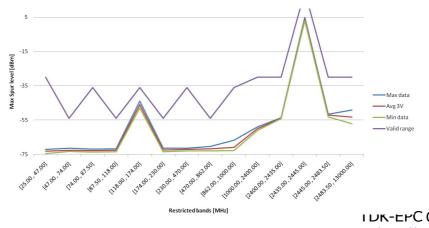

Figure 5. Texas Instruments CC2530 evaluation board with TDK DEA202450BT- 210A1

### 3. Measurement Result

Here we show a comparison of the results with a discrete LC solution and the TDK Bal-BPF (DEA202450BT- 210A1). All measurement data is supported by Texas Instruments . As you can see in the test result, spurious emission within FCC restricted band and harmonics level at 2f0 and 3f0 were decreased by using the TDK Bal-BPF (DEA202450BT- 210A1).


This TDK balanced filter helps to satisfy FCC/ETSI compliance.




#### Overview

|                                                               | CC2530<br>discrete reference<br>design | CC2530<br>w/DEA202450BT-<br>7210A1 |
|---------------------------------------------------------------|----------------------------------------|------------------------------------|
| PER =1% as specified by [1]                                   |                                        |                                    |
| [1] requires -85dB                                            | -97                                    | -97 dBm                            |
| Delivered to a single ended 50 load through a balun using max |                                        |                                    |
| recomended output setting (0xF5)                              |                                        |                                    |
| [1] requires minimum -3dBm                                    | 4.5                                    | 4.0 dBm                            |
|                                                               |                                        |                                    |
| 25MHz-1000MHz (outside restricted bands)                      | -60                                    | -70 dBm                            |
| 25MHz-2400MHz (within FCC restricted bands)                   | -60                                    | -71 dBm                            |
| 25MHz-1000MHz (within ETSI restricted bands)                  | -60                                    | -70 dBm                            |
| 1800-1900MHz (ETSI restricted band)                           | -57                                    | -67 dBm                            |
| 5150-5300MHz (ETSI restricted band)                           | -55                                    | -66 dBm                            |
| At 2xfc and 3xfc (FCC restricted band)                        | -42                                    | -63 dBm                            |
| At 2xfc and 3xfc (ETSI EN 300-440 and EN300-328)              | -31                                    | -53 dBm                            |
| At 2483.5MHz and above (FCC restricted bands) fc=2480MHz      | -42                                    | -68 dBm                            |

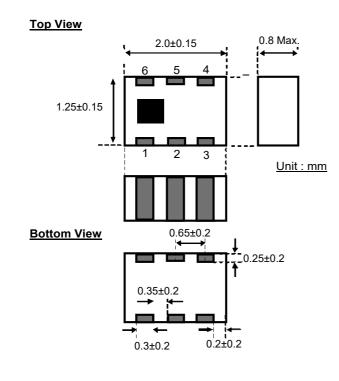
#### Spurious Emission (within FCC restricted bands)



#### Spurious Emission (ETSI EN 300-440)






### 4. Filter Specification

Multilayer Band Pass Filter (Balance output type)

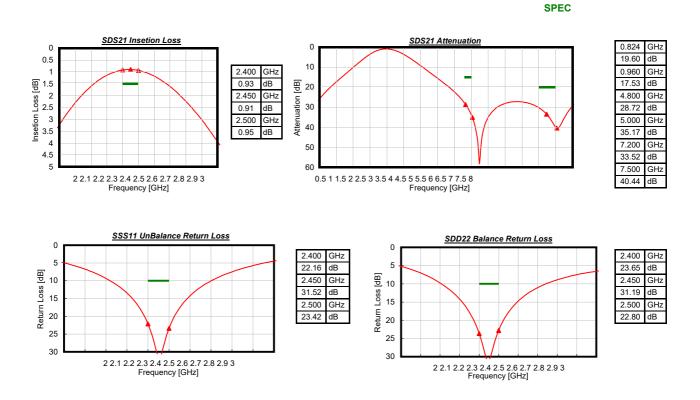
# P/N : **DEA202450BT-7210A1**

## For Zigbee

#### **MECHANICAL DIMENSIONS**



| PIN ASSIGNMENT  | PIN No. |
|-----------------|---------|
| Unbalanced port | 1       |
| Balanced port1  | 3       |
| Balanced port2  | 4       |
| GND             | 2,5,6   |


#### **ELECTRICAL CHARACTERISTICS**

| Parameter                                 | Frequency       | Specifications              | Unit |
|-------------------------------------------|-----------------|-----------------------------|------|
| Unbalanced Port Characteristics Impedance |                 | 50 (Nominal)                | ohm  |
| Balanced Port Characteristics Impedance   |                 | Matched to TI CC253x series | ohm  |
| Insertion Loss                            | 2400 – 2500 MHz | 1.5 Max.                    | dB   |
| Attenuation(Differential Mode)            | 4800 – 5000 MHz | 15 Min.                     | dB   |
|                                           | 7200 – 7500 MHz | 20 Min.                     | dB   |
| In/Out Return Loss                        | ·               | 10 Min.                     | dB   |
| Phase Difference at Balanced Port         |                 | 180+/-15                    | deg  |
| Amplitude Imbalance at Balanced Port      |                 | 0+/-2                       | dB   |

\_ \_ \_ \_



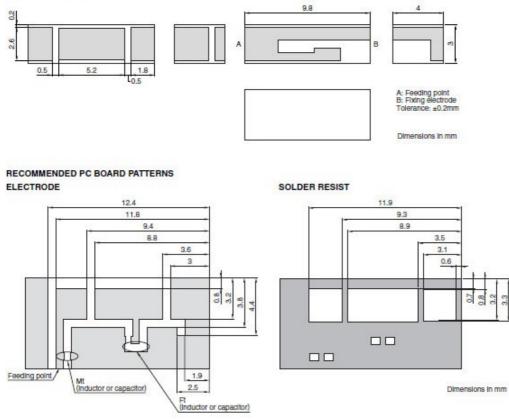
#### **FREQUENCY CHARACTERISTICS**



More detail specification can be downloaded from the following link: <u>http://www.tdk.co.jp/tefe02/e 21 multibpf balance dea0.pdf</u>

#### 5. Antenna

TDK has various ceramics antennas. One of them, ANTO 8030CGS2442MB1 ceramic chip antenna, is suitable for use with the CC2530 from Texas Instruments and will allow the end user to achieve stable characteristics. This ceramic chip antenna (ANTO 8030CGS2442MB1) and Balanced BPF (DEA202450BT- 210A1) will help the end user to get the best from the TI IC.




Conformity to RoHS Directive

### Ceramic Chip Antennas For 2.4GHz ISM band

#### ANT Series ANT098030CGS2442MB1

#### SHAPES AND DIMENSIONS



### **ELECTRICAL CHARACTERISTICS**

| Center frequency(Fo) |           | 2442MHz      |
|----------------------|-----------|--------------|
| Band width(BW)       |           | Fo ±42MHz    |
| VSWR(at BW)          |           | 3.7max.      |
| Polarization         |           | Linear       |
| Impedance            |           | 50Ω          |
| PCB size             |           | 80×37×1.0mm  |
| Temperature range    | Operating | -40 to +85°C |
|                      | Storage   | -40 to +85°C |

• This is typical antenna performance with the standard PCB.



#### FREQUENCY CHARACTERISTICS EFFICIENCY AND VSWR 11 0 10 -1 -2 9 -3 8 Efficiency(dB) -4 7 NSWR 4 -5 5 -6 -7 4 Matching circuit -8 3 Mt: 0.8pF, Ft: 4.7nH -9 2 ----- Efficiency ----- VSWR ----- VSWR Spec. 1 -10 2.45 2.5 2.35 2.3 2.4 2.55 2.6 Frequency(GHz)

More detail specification can be downloaded from the following link: <u>http://www.tdk.co.jp/tefe02/e821\_die\_ant03.pdf</u>

#### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated