Technical Article Improve Class-D EMI to Downsize BOM Cost without Compromising Audio Performance

Josey Angili

Designers frequently choose Class-D audio amplifiers to drive the speakers in a variety of mid-power applications like TVs, *Bluetooth*® speakers and laptops. After all, when compared to conventional Class-AB, Class-D has lower heat dissipation and relatively high efficiency (for increased battery life). Class-D is also beneficial if compact board space is important.

The biggest challenge associated with Class-D is electromagnetic interference (EMI). External inductor-capacitor filtering is traditionally used to mitigate EMI, but it adds cost, area and complexity to end equipment.

TI has developed several closed-loop amplifiers including the TPA3110 (released in 2010), which made significant improvements to EMI by using advanced closed-loop power stages. TI has also just released the TPA3140 Class-D audio power amplifier, which includes several innovations that help provide true inductor-free performance even for speaker cables up to 1m in length. This inductor-free device is already in production in LCD TVs, where long speaker cables make meeting EMI requirements a challenge.

Edge-rate Control

One method used to reduce EMI radiation is to reduce the slew rate of the amplifier output transitions. Since the TPA3140 uses a proprietary high-performance feedback topology, a reduction in slew rate will not degrade total harmonic distortion (THD) or audio quality. The fast Fourier transform (FFT) image in Figure 1 shows a reduction in high-frequency content with slower edges.

Figure 1. EMI Plots without Edge Rate (Red) and with Edge Rate (Yellow)

Spread-spectrum Clocking

While edge-rate control is an effective means of attenuating EMI when it arises in frequency ranges greater than 30MHz, it does not address the fundamental carrier frequency of the Class-D amplifier's switching output and its related harmonics, which fall in the range below 30MHz.

1

The TPA3140 includes a proprietary algorithm that adds a small amount of frequency modulation to the amplifier's clock circuitry. This algorithm doesn't affect the amplified audio quality, but significantly reduces peak energy of the switching frequency.

EMI Results

Figure 2 represents EMI test results from a TV with a close to 1m speaker cable length. The red line is the quasi-peak limit, and the green line is the average limit.

Note: 3393.PB851 NO LINE IN AC AV SPK LINE NEW SPLINE 6000HM+1N

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1 *	0.3260	21.30	19.88	41.18	59.55	-18.37	peak		
2	0.9700	16.48	19.69	36.17	56.00	-19.83	peak		

Figure 2. EMI Plot: Blue Quasi-peak and Green Is Average Curve

Audio Performance:

- <0.05% THD+N at 1 W/4 Ω/1 kHz
- <65-µV A-wgt output noise

In conclusion, the TPA3140 Class-D audio power amplifier provides significant improvement in EMI that allows inductor-free operation providing major BOM cost savings without compromising audio quality.

Additional Resources

2

- Work with the TPA3140 evaluation module (EVM).
- Learn more about our other Class-D audio power amplifiers.
- Visit the TI E2E[™] Community Audio Amplifiers forum, where you can search for solutions, get help, share knowledge and solve problems with fellow engineers and TI experts.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated