
Virtualization for
embedded industrial
systems

Ellen Kou
Product marketing manager
Texas Instruments

Virtualization for embedded industrial systems 2 September 2018

Introduction

“Virtualization” is a widely used term that encompasses a wide range of technologies

and can mean very different things in different contexts. A virtualized cloud system will

take on vastly different tasks than a virtualized enterprise system and does things that

are even further removed from what a virtualized embedded system would do.

Although methods and end applications for different types of virtualization differ, they

do have one thing in common: taking a bounded set of physical hardware and making

that set act like multiple virtual environments by creating partitions inside the hardware.

Virtualization can work at a server level, at a single platform level or at a network level.

It allows you to run multiple sessions for multiple people or tasks on the same server

simultaneously (as cloud computing applications do), or to separate a single desktop

into two virtual machines (such as when you use a laptop to run both Windows® and

Linux®). This separation of tasks and extension of resources can be valuable for many

different end uses, but different virtualization schemes will not all work equally within

the constraints of embedded industrial systems, which include limited memory or

limited power consumption caused by heat dissipation.

Embedded systems also have different priorities

than enterprise or data center server infrastructure

systems. Whereas enterprise systems may prioritize

meeting metrics such as average throughput or

transactions per second, embedded systems

prioritize real-time operation. For many embedded

systems, especially in industrial automation, meeting

a deadline is part of the correct operation of the

program; this determinism cannot be sacrificed to

achieve other goals.

Real-time operating systems (RTOSs) and bare-

metal-based periodic control loops are common

software architectures that have been in place in

industrial automation for years. Recent market

trends are forcing industrial manufacturers to look at

other solutions in order to incorporate more non-

real-time functionality around the real-time systems

and accomplish goals such as cloud connectivity

for uploading machine data to perform predictive

maintenance—a commonly discussed application

around Industry 4.0 or the Industrial Internet of

Things (IIoT). System designers need a solution

to run these new tasks without compromising

or interfering with their critical real-time tasks.

Virtualization seems to be one path forward, but

with the multiple types of virtualization solutions out

there, deciding which one to use requires in-depth

discussion and thought.

Types of virtualization and suitability
for embedded systems

Virtualization can take two paths: full virtualization or

static partitioning, also called core virtualization.

Full virtualization schemes simulate the hardware

environment so that the software partitions creating

virtual environments are not tied directly to the

Virtualization for embedded industrial systems 3 September 2018

hardware partitions. For example, you could use

one physical core as two virtual cores running two

different OSs.

Static partitioning schemes isolate programs or

tasks to certain portions of the existing hardware

in order to simulate separate systems. The

software partitions are bound to the hardware

partitions—so you would have at most one OS per

physical core, as shown in Figure 1 below, and

no support for over commitment of resources like

central processing units (CPUs) or random access

memory (RAM).

Both schemes enable the separation of isolated

tasks (such as sharing a system among multiple

users) or the separation of critical tasks from less-

critical tasks (such as separating a secure domain

from a general-purpose domain). Full virtualization

further enables you to suspend entire OSs to

persistent storage or even live migration from one

physical processor to another over a network

connection. Static partitioning trades off this

flexibility for some guarantees of determinism.

Since the different virtualization schemes relate

to hardware in different ways, each naturally has

advantages for certain applications. Full virtualization

is powerful; it can enable a single server to act

like hundreds of servers. It does have drawbacks,

however, since multiple software instances may

attempt to use the same finite set of hardware

resources simultaneously. Having the software

manage the virtualization scheme can resolve

conflicts, but there will be an impact on latency.

Another drawback can be the amount of

computing resources (such as memory) needed

to enable virtualized systems to run with useful

responsiveness. Thus, full virtualization is more

popular in cloud or enterprise systems that

prioritize administrative and maintenance scalability.

Resources such as memory are less constrained,

and because the equipment is typically in a climate-

controlled area, it’s easier to deal with physical

factors such as size and heat dissipation.

By contrast, the physical resources available on the

platform limit the number of virtualized environments

possible in a static partitioning scheme. Statically

partitioned systems have the same benefits of

separating mixed-criticality tasks, whether that

criticality is related to security, safety or real-time

operation. However, since the physical resources

couple more directly to the virtualized environments,

the timing of tasks is less affected. This makes

partitioned systems more suited for embedded

systems where computing resources are more

limited.

Implementing virtualization

Both full virtualization and static partitioning require

underlying software to create the virtualization scheme.

This software is called a hypervisor. It runs in a privileged

execution level and manages guest machines or

guest OSs. The hypervisor also manages the sharing

of actual physical resources by virtualized systems.

Figure 1: Comparison of the two main types of virtualization.

System SoC

CPU0 CPU1

I/O I/O

Memory Memory

System SoC

Host user space

Linux kernel
A

P
ro

c
e
s
s

A

P
ro

c
e
s
s

B

Full hypervisor Static partition

Host user space

Linux kernel

R
T
O

S

P
ro

c
e
s
s

A

P
ro

c
e
s
s

B

P
ro

c
e
s
s

C

CPU0 CPU1

I/O

Memory

R
T
O

S
R

e
a
l-

ti
m

e
a
p

p
lic

a
ti
o

n
A

R
e
a
l-

ti
m

e
a
p

p
lic

a
ti
o

n
B

Linux
kernel

B

P
ro

c
e
s
s

C

Host
user

space

Virtual
CPU

Virtual CPU
Virtual
CPU

R
e
a
l-

ti
m

e
a
p

p
lic

a
ti
o

n
A

R
e
a
l-

ti
m

e
a
p

p
lic

a
ti
o

n
B

Virtualization for embedded industrial systems 4 September 2018

Much like the different levels of virtualization, there

are also different types of hypervisors: type 1 and

type 2. A type 1 hypervisor is a dedicated layer of

software running on the hardware. It hosts OSs and

manages resource and memory allocation for the

virtual machines.

A type 2 hypervisor is also known as guest OS

virtualization. Here, the lowest layer of software

running is a host OS, providing drivers and

services for the hypervisor hosting virtualized guest

OSs, as shown in Figure 2. The guest OSs are

unaware that they are not running directly on the

system hardware.

A type 2 hypervisor acts as an abstraction layer.

Guest OSs become processes of the host OS

and depend on the host OS to access hardware

resources. The advantages of type 2 hypervisors

are that you don’t need to make changes to

the host or guest OSs, but the drawback is that

the layers of abstraction can decrease overall

system performance.

Another popular software solution for application

separation aside from hypervisors are containers.

Whereas hypervisors virtualize hardware to run

multiple OSs, containers virtualize OSs to run

multiple applications, as shown in Figure 3.

Containers are less resource-heavy and can be

more application-dense, but the disadvantage is

that all applications need to use the same OS.

While the separation of applications is useful in

embedded industrial equipment, real-time and non-

real-time tasks will be less able to coexist because

the system can’t run both an RTOS and a high-level

OS at the same time. Containers do not address

the static partitioning and determinism topics, but

you could use them in embedded systems for

management of other high-level software stacks

without real-time constraints in the Linux side of a

partitioned system.

Virtualization solutions

Common virtualization solutions include KVM,

Xen, Jailhouse and Docker. Many third-party OSs
Figure 2: Comparison of the two types of hypervisors, Type 1 and Type 2.

R
T
O

S
R

e
a

l-
ti

m
e

a
p

p
li
c

a
ti

o
n

A

R
e

a
l-

ti
m

e
a

p
p

li
c

a
ti

o
n

B

Host user space

Linux kernel
A

P
ro

c
e
s
s

A

P
ro

c
e
s
s

B

System SoC

CPU0

I/O

Memory

Type 2 hypervisor

Host OS

Type 1 hypervisor

Hypervisor
Hypervisor

System SoC

CPU0

I/O

Memory

Host user space

Linux kernel
A

P
ro

c
e
s
s

A

P
ro

c
e
s
s

B

R
T
O

S
R

e
a

l-
ti

m
e

a
p

p
li
c

a
ti

o
n

A

R
e

a
l-

ti
m

e
a

p
p

li
c

a
ti

o
n

B

Figure 3: Comparison of a container and a hypervisor running on an SoC.

Hypervisor

System SoC

CPU0

I/O

Memory

System SoC

CPU0

I/O

Memory

Linux kernel
A

Host user space

P
ro

c
e
s
s

A

P
ro

c
e
s
s

B

R
T
O

S
R

e
a

l-
ti

m
e

a
p

p
li
c

a
ti

o
n

A

R
e

a
l-

ti
m

e
a

p
p

li
c

a
ti

o
n

B

Container

Host user
space B

Host user
space A

P
ro

c
e
s
s

A

P
ro

c
e
s
s

B

Container engine
(such as Docker)

Container engine
(such as Docker)

P
ro

c
e
s
s

A

P
ro

c
e
s
s

B

Host user
space C

P
ro

c
e
s
s

A

Linux kernel

5 September 2018

offer virtualization solutions, such as Wind River®

VxWorks®’s virtualization profile, or Green Hills®

INTEGRITY®’s multivisor option. These examples

all fall within the classifications described above: full

virtualization vs. static partitioning hypervisors, type

1 or type 2 hypervisors, or container systems.

KVM is a Linux-based and open-source full

virtualization hypervisor. At a basic level, the Linux

kernel turns into a hypervisor. It is debatably a

type 1 or type 2 hypervisor, and Linux must be the

host OS (although any OS can be a guest OS).

Xen is another open-source virtualization solution,

but unlike KVM it supports both full virtualization

and static partitioning and does not require a Linux

host OS, as it is a true type 1 hypervisor. Since

Xen supports para-virtualization, it can run on

platforms without virtualization extensions, whereas

KVM cannot.

Jailhouse is an open-source type 1 hypervisor

specifically for partitioning. Unlike other bare-metal

hypervisors like Xen, a normal Linux system loads

and configures Jailhouse; its management interface

is based on the Linux infrastructure. One of the

benefits of this infrastructure is that it reuses all of

the Linux hardware configuration and setup instead

of rewriting it in the hypervisor. Guest OS types are

still unrestricted.

Green Hills Integrity and Wind River VxWorks are

two popular commercial RTOSs for industrial

applications; both offer virtualization solutions.

Wind River has a virtualization profile for VxWorks

that is currently a type 1 hypervisor where the host

OS must be VxWorks. The Green Hills Integrity

multivisor is a type 2 hypervisor supporting full

virtualization, based on INTEGRITY RTOS.

Docker is a commercial software solution

for containers and can work with both Linux

and Windows.

Virtualization for embedded industrial systems

Jailhouse: a hypervisor for
embedded industrial systems

While it is possible to run each of these virtualization

solutions on the Texas Instruments (TI) Sitara™

AM572x and AM65x multicore Arm® Cortex®-A

processors, TI currently only directly supports

Jailhouse, an open-source hypervisor started by

Jan Kiszka and Siemens, as part of the standard

software offered in its Processor-software

development kit (SDK)-Linux. We identified Jailhouse

as the right open-source virtualization solution for

industrial embedded systems for three reasons:

• It supports partitioning, which as I discussed

earlier is better suited to embedded resources

than full virtualization.

• It is more lightweight than other open-source

hypervisors like Xen.

• It is optimized for simplicity rather than

feature richness.

Once Jailhouse is activated, it runs bare-metal,

meaning that it takes full control over the hardware

and needs no external support. Unlike other

bare-metal hypervisors, however, it is loaded

and configured by a normal Linux system as I

mentioned earlier. This simplifies its use and makes

adoption quicker.

Jailhouse configures the CPUs and device

virtualization features of the hardware platform

such that none of these domains, called “cells,”

can interfere with each other in an unacceptable

way. It performs no scheduling and only virtualizes

resources in software that are essential for a

platform and cannot be partitioned in hardware.

Figure 4 on the following page shows the different

phases of operation for a system using Jailhouse

virtualization. Linux boots first. After Jailhouse is

enabled, resources are assigned to additional cells

in the partitioning phase. The guest OS or

http://www.ti.com/processors/sitara/arm-cortex-a15/am57x/overview.html?HQS=epd-pro-sit-sitarafac-whip-lp-am572x-wwe

Virtualization for embedded industrial systems 6 September 2018

bare-metal application running inside the cell

is called an “inmate.” Because it is lightweight,

constrained to hard-partitioned resources and

does not require high computing power or large

amounts of memory, Jailhouse-virtualized systems

can achieve real-time performance similar to

nonvirtualized systems. This makes Jailhouse

appropriate for embedded applications, especially

where two tasks or systems run side by side with

mixed levels of real-time goals.

Returning to the earlier Industry 4.0 example of

connecting to a server to upload data for predictive

maintenance, you can see that many non-real-time

tasks that come from Industry 4.0 or IIoT trends

are related to networking. Jailhouse by nature has

at least one Linux instance running, which is useful

for embedded industrial systems because Linux

has a large number of available networking stacks

and protocol solutions. For example, it’s possible

to include security patches for networking stacks

without touching the real-time application.

The need for virtualization in
industrial embedded systems

Predictive maintenance isn’t the only IIoT application

pushing manufacturers to find virtualization

solutions. Wired non-real-time networking or

cloud connectivity both enable a large number of

applications that apply to a diverse set of industrial

automation applications.

A related application that applies to multiple

industrial markets is remote monitoring or remote

updating. In many industries—manufacturing,

process automation, oil and gas—equipment

is often installed in hard-to-reach or hazardous

environments where sending a human to check or

update the equipment is dangerous and expensive.

A connected machine could instead have updates

pushed to it remotely from a server.

Another example of something that cloud services

in industrial automation enable is hardware-as-

a-service (HaaS). In the HaaS business model,

vendors provide machines to end customers as

part of a contract that also includes maintenance

and other services. Because industrial equipment is

often very expensive, this model could benefit both

industrial manufacturers (who have a predictable

revenue stream) and their customers (who can have

access to equipment with less upfront capital).

Another benefit to end customers may be more

dependable equipment in cases where the contract

may specify different terms if the equipment is

not functioning properly. However, this model

works best when the machine is connected so

that the owner, who is not co-located with the

machine, can monitor its status and provide

services such as maintenance before the machine

becomes inoperable.

An even more future-looking application for

connected machines is modeling an entire process

in the cloud, such as an assembly line or a chemical

reaction in pharmaceutical manufacturing, for in-

depth optimization analysis, as shown in Figure 5

on the following page. This type of modeling would

require connectivity deployed across almost the

entire plant. Connectivity can be built-in to the

larger equipment while it would be more cost-

effective to have gateways aggregate information

from smaller pieces of equipment. Connectivity in

Linux

System SoC

Jailhouse layer

Linux
RT

application

CPU0 CPU1

Jailhouse layer

Linux

Images

Configurations

System SoC

CPU0 CPU1 CPU0 CPU1

1. Boot phase 2. Partitioning phase 3. Operational phase

System SoC

Figure 4: Phases of operation for a system using Jailhouse virtualization.

Virtualization for embedded industrial systems 7 September 2018

industrial equipment will only be able to become

this widespread when it becomes cost-effective.

While it sounds somewhat far off, leading industrial

companies have been preparing to move in this

direction by developing cloud platforms such as

GE’s Predix™ or Siemens’ Mindsphere.

All of these examples require cost-effective

connectivity without compromising the machine’s

primary mission. Although web or server

connectivity applications could benefit from lower

latency, real-time operation is in the “nice-to-

have” category and cannot be prioritized over the

time-sensitive automation tasks that an RTOS

manages in most industrial automation equipment:

programmable logic controllers (PLCs), computer

numerical control (CNC) controllers, motor drives,

etc. You must take this compromise into account

when considering both parts of cost-effectiveness:

the hardware bill of materials (BOM) and the

software development effort. While the simplest

solution to prevent the two applications from

interfering with one another is to separate them

into two separate System on Chips (SoCs), this will

add cost.

The most cost-effective way to manage software

development is to leverage proven solutions that

exist on RTOSs for time-critical applications and on

Linux for networking applications. The compromise

between these two is to run both applications on a

multicore processor, with a partitioning hypervisor

allowing a different OS to run on each core,

thus enabling time-critical applications to meet

their deadlines.

Although cloud connectivity and networking are

often discussed, virtualization has uses beyond the

coexistence of a critical real-time application and

less-time-critical networking. Think about taking

a standard PLC, machine controller or protection

relay and adding a more sophisticated, larger

human machine interface (HMI) to enable easier

interaction with operators, as shown in Figure 6.

It would be simpler to enable this larger display

panel with standardized graphics frameworks

tuned for Linux than it would be to support it with

an RTOS, especially when considering that the

real customizers of the graphical user interface

(GUI) are generally the equipment manufacturer’s

end customers.

However, putting the whole system on Linux would

not be a good choice for the critical functions of

the equipment: the PLC logic, motion control or

protection algorithms. One solution might be to

separate the HMI and the control into two separate

processors on the board, but this has drawbacks in

terms of size, cost and overall power consumption.

A better solution is to run both tasks on a single

CPU while maintaining separation between the

Figure 6: CNC machine with large HMI

Figure 5: Model of an automation process viewed on a tablet.

tasks and the OSs optimized for those tasks

with a simple, lightweight hypervisor such as

Jailhouse. Download TI’s “Virtualization Jailhouse

Hypervisor on AM572x Reference Design” to

learn more.

The need for virtualization will be increasing as

applications that include cloud connectivity or

demand easier interactivity between human

operators and machines push manufacturers to

include more non-real-time functions in real-time

industrial equipment. Industrial manufacturers

seeking a software strategy for virtualization will

need to consider these questions when weighing

their options: can they implement the solution

quickly without investing a lot of time, R&D or

software licensing fees; can they implement the

solution on cost-effective hardware without requiring

extensive memory; and most critically, can the

solution prioritize real-time operation, which is the

true goal of the equipment.

SPRY317A© 2018 Texas Instruments Incorporated

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard
terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing
orders. TI assumes no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents.
The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Sitara is a trademark of Texas Instruments Incorporated. All other trademarks are the property of their respective owners.

http://www.ti.com/tool/TIDEP-0095?HQS=epd-pro-sit-sitarafac-whip-rd-jailhouse-wwe
http://www.ti.com/tool/TIDEP-0095?HQS=epd-pro-sit-sitarafac-whip-rd-jailhouse-wwe

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

