

Migrating from TMS320C5515 to TMS320C5517

ABSTRACT

The TMS320C5515 and the TMS320C5505 will henceforth in this document be referred to as C5515/05. The TMS320C5517 will henceforth in this document be referred to as C5517.

This document provides the minimum changes required to migrate from the C5515/05 to the C5517. Enhancements or new features of the C5517 that do not affect migrating from the C5515/05 to the C5517 are also briefly mentioned in this document.

All efforts have been made to provide a comprehensive list of changes. An update will be provided if additional changes are identified.

More information on the C5517 DSP can be found in *TMS320C5517 Fixed-Point Digital Signal Processor* (literature number <u>SPRS727</u>).

Register descriptions for the C5517 are detailed in *TMS320C5517 Digital Signal Processor Technical Reference Manual* (literature number <u>SPRUH16</u>).

	Contents	
1	Overview	2
2	Operating Conditions	3
3	LDOs	4
4	Pin and Package Considerations	5
5	Clocking	14
6	I/Os	17
7	CLKOUT	
8	Timer	
9	Bootloader	
10	Memory Map	23
	List of Figures	
1	Pins With New Functions On C5517	6
2	System PLL Block Diagram	
2	System FLL Diock Diagram	14
	List of Tables	
1	Differences Between Devices	2
2	Operating Voltages and CPU speeds for C5517 and C5515/05	3
3	On-chip Regulator Operating Conditions	4
4	Pins With New Functions	7
5	Serial Port 0 Pin Multiplexing	9
6	Serial Port 1 Pin Multiplexing	9
7	Parallel Port Pin Multiplexing	11
8	PLL Reference Clock Source	14
9	I/O Pin List, Pull, and Register Description	
10	BootMode Peripheral Boot Source Configuration when CLK_SEL = 1	
10	boolimoue relipheral bool obulce configuration when CEN_SEL = 1	~~

1 Overview

The following table shows the major differences between the two devices. Peripherals that are not included in the table have no changes.

	C5517	C5515/05	Note
Max CPU Speed (PLL output)	75 MHz at 1.05 V 175 MHz at 1.3 V 200 MHz at 1.4 V	60 and 75 MHz at 1.05 V 100 and 120 MHz at 1.3 V 150 MHz at 1.4 V (only C5505)	See Section 3
I/O Voltage	1.8, 2.75, and 3.3 V (2.5 V is no longer supported)	1.8, 2.5, 2.75, and 3.3 V	See Section 3
On-chip Oscillator and USB_LDO	If CLK_SEL = 0 at reset: The on-chip USB oscillator will provide clock to PLL. The on-chip USB oscillator and USB_LDO will be enabled and can't be disabled. If CLK_SEL = 1 at reset: The CLKIN pin will be selected as the clock source to PLL. The on-chip USB oscillator and USB_LDO will be disabled but can be enabled by software.	The on-chip USB oscillator and USB_LDO are always disabled at reset but can be enabled by software. The on-chip RTC oscillator is always enabled at reset and can be disabled by software. If CLK_SEL = 0 at reset: The on-chip RTC oscillator will provide clock to PLL If CLK_SEL = 1 at reset: The CLKIN pin will be selected as the clock source to PLL.	See Section 6
PLL	New PLL module VDDA_PLL must be powered externally.	VDDA_PLL may be powered by ANA_LDOO	See Section 4
ANA_LDO	ANA_LDO can provides power only to VDDA_ANA, not to VDDA_PLL.	ANA_LDO can provide power to both VDDA_ANA and VDDA_PLL.	See Section 4
CLKOUT	No glitch when switching modes and source. Mode: Divider, Stopped at low state, and Hi-Z mode.	Glitch when switching modes or source. Mode: Bypass and Hi-Z mode (not divider).	See Section 7 Note: CLKOUT on both devices is only for debug purposes.
Bootloader	Supports unencrypted boot image from McSPI, UHPI, SD and SDHC, eMMC and MMC, and UART. Read GPIO[26:21] ports to determine peripherals and method to boot from and CPU clock speed. Latch GPIO[26:21] ports at 10th clock after reset.	Supports only encrypted boot-image from USB and MMC and SD Does not support UART boot. Bootloader checks each peripheral for boot signature in a predefined order.	See Section 9
Pins and Peripherals	All pins will be in Hi-Z state while RESET signal is held low. They will get back to their reset conditions at 10 CPU cycles after RESET. More I/O pins have internal pullup and pulldown options. No LCD controller. LCD is replaced with UHPI. 1 I2S module is replaced with McSPI. A total f 3 I2S modules are available. McBSP has been added. Total 40 pins have new function. System DMA supports I2S, McBSP, McSPI, MMC and SD, SAR, UART, and EMIF.	4 I2S modules LCD controller No McBSP No UHPI No McSPI System DMA supports I2S, MMC and SD, SAR, UART, and EMIF	See Section 5.5 for details on pin out changes See Section 7 for I/O pullup and pulldown changes
Timer Interrupt	Timer interrupt can routed to the NMI interrupt (the highest interrupt priority).	Timer interrupt stays at low interrupt priority.	See Section 8
Timer clock source	Timer clock source can be PLL output, PLL input, GPIO0, GPIO6, GPIO12, GPIO18, GPIO24, or the on-chip USB oscillator.	Only PLL output	See Section 8.3

Table 1. Differences Between Devices

	C5517	C5515/05	Note
FFT Co-processor	HWA FFT API Address	HWA FFT API Address	
	0x00fefefc _hwafft_br	0x00ff6cd6 _hwafft_br	
	0x00feff10 _hwafft_8pts	0x00ff6cea _hwafft_8pts	
	0x00feffff _hwafft_16pts	0x00ff6dd9 _hwafft_16pts	
	0x00ff0155 _hwafft_32pts	0x00ff6f2f _hwafft_32pts	
	0x00ff045e _hwafft_64pts	0x00ff7238 _hwafft_64pts	
	0x00ff05f3 _hwafft_128pts	0x00ff73cd _hwafft_128pts	
	0x00ff0804 _hwafft_256pts	0x00ff75de _hwafft_256pts	
	0x00ff0a02 _hwafft_512pts	0x00ff77dc _hwafft_512pts	
	0x00ff0c7c _hwafft_1024pts	0x00ff7a56 _hwafft_1024pts	

Table 1. Differences Between Devices (continued)

2 Operating Conditions

2.1 Operating Voltages and CPU Speeds

The C5517 supports a CPU speed of up to 200 MHz. See the details in Table 2.

Supply Pins	C5	517	C5515/05		
	1.05 V	75 MHz	1.05 V	60 and 75 MHz	
CV _{DD}	1.3 V	175 MHz	1.3 V	100 and 120 MHz	
-	1.4 V	200 MHz	1.4 V	150 MHz (C5505 only)	
DV _{DDIO} , DV _{DDEMIF} , DV _{DDRTC}	1.8, 2.75	, and 3.3 V	1.8, 2.5, 2	75, and 3.3 V	
All other power domains		No ch	nanges		

Table 2. Operating Voltages and CPU speeds for C5517 and C5515/05

LDOs

3 LDOs

Both the C5517 and the C5515/05 have three on-chip LDOs (ANA_LDO, DSP_LDO, and USB_LDO). No feature has been changed to LDOs but the usage is different.

3.1 USB_LDO

When CLK_SEL = 0 at reset, the USB_LDO is automatically enabled and cannot be turned off.

When CLK_SEL = 1 at reset, the USB_LDO is automatically disabled but can be enabled by writing 1 to bit 0 of the LDO Control Register (7004h).

For more details on the LDO Control Register (LDOCNTL), see the chapter System Control in *TMS320C5517 Digital Signal Processor Technical Reference Manual* (literature number <u>SPRUH16</u>).

3.2 ANA_LDO

On the C5517, the ANA_LDOO can provide power to the VDDA_ANA pin but cannot provide power to VDDA_PLL anymore. The new PLL in the C5517 consumes more power than that of the PLL in the C5515/05: typically ~5mA at 312 MHz. Due to the higher current, the ANA_LDOO cannot provide power to VDDA_PLL. VDDA_PLL must be powered externally.

3.3 LDO Specification

Table 3 describes the input, outputs, input voltage ranges, regulated output voltages, and power management portions of the C5517.

	Inj	out	Output						
	Input Pin	Input Voltage Range	Output Pin	Output Voltage	Max Output Current Output	Section Powered			
ANA LDO	LDOI	1.8 V ~ 3.6 V	ANA_LDOO	1.3V	4 mA	V _{DDA_ANA}			
DSP LDO	LDOI	1.8 V ~ 3.6 V	DSP LDOO	1.3 V (DSP_LDO_V =1)	250 mA	CVpp			
D3F LD0	LDOI	1.0 V ~ 3.0 V	D3F_LD00	1.3 V (DSP_LDO_V =0)	230 111A	CVDD			
USB LDO	LDOI	1.8 V ~ 3.6 V	USB_LDOO	1.3 V	25 mA	$\begin{array}{l} \text{USB}_\text{V}_{\text{DD1P3}} \\ \text{USB}_\text{V}_{\text{DDA1P3}} \end{array}$			

Table 3. On-chip Regulator Operating Conditions

4 Pin and Package Considerations

4.1 Package

The C5517 and the C5515/05 have the same package: 196 pin, 10x10 mm with 0.65-mm pitch, Green (Pb-free and environmentally friendly) nFBGA ZCH package. For more information, see *TMS320C5517 Fixed-Point Digital Signal Processor* (literature number <u>SPRS727</u>).

4.2 Pin Compatibility

The C5517 and the C5515/05 can be pin-to-pin compatible if the following conditions are satisfied:

- The new peripherals (McBSP, McSPI, and UHPI) in the serial port 0, serial port 1, and parallel port will always be disabled.
- The LCD module (in parallel port) and I2S1 module (in serial port 1) of the C5515/05 are not needed.
- VDDA_PLL (1.3V) is supplied by an external power source, not by the ANA_LDO.
- If CLK_SEL = 0 at reset, the on-chip USB oscillator must generate a 12-MHz clock.
- The RSV16 pin is tied directly to V_{ss}.

If all of the previous conditions are met, the C5517 and the C5515/05 are pin-to-pin compatible and the C5515/05 can be replaced with the C5517 without hardware modification. However, the C5517 has a new bootloader that latches the GPIO[26:21]/EM_A[20:15] pins at reset to determine boot mode. Those pins may need external pullups and pulldowns to set a proper boot mode configuration (see Section 10 for details).

4.3 Peripheral Changes

The LCD and one I2S for C5515/05 are replaced by the McBSP, UHPI and McSPI for C5517.

- No LCD controller. LCD is replaced with UHPI.
- One I2S module is replaced with McSPI. A total of three I2S modules are available.
- System DMA supports I2S, McBSP, McSPI, MMC and SD, SAR, UART, and EMIF.
- 40 pins have new functions.

The functions of these new peripherals are not the scope of this migration guide. For more information, see the *TMS320C5517 Digital Signal Processor Technical Reference Manual* (SPRUH16).

4.4 Pin Map

The serial port 0, serial port 1, parallel ports, and SDRAM control signals have new functions because the McBSP, McSPI, and UHPI ports share those pins with other peripherals. The SDRAM control signals are part of parallel port and are multiplexed with UHPI control signals controlled by the EBSR register [1C00h] in the C5517.

Pins with new functions on the C5517 are shown as shaded areas in Figure 1.

Pin and Package Considerations

Р	EM_DQM1/	DVDDEMIF	DVDDIO	SPI_CS0/	SPI_CS2/	SPI_RX/	GP[12]/	DV _{DDIO}	GP[15]/	GP[17]/	I2S2_FS / UHPI_HD[9]/	I2S2_DX / UHPI_HD[11]/	UART_CTS/ UHPI_HD[13]/	UART_TXD/ UHPI_HD[15]/
Ч	UHPI_HBE1	DVDDEMIF	DVDDIO	UHPI_HCNTL0	UHPI_HR_NW	UHPI_HD[0]	UHPI_HD[2]	DVDDIO	UHPI_HD[5]	UHPI_HD[7]	GP[19]/ SPI_CS0	GP[27]/ SPI_TX	GP[29]/ I2S3_FS	GP[31]/ I2S3_DX
N	GP[21] / EM_A[15]	EM_SDCKE/ UHPI_HHWIL	SPI_CLK/ UHPI_HINT	SPI_CS1/ UHPI_HCNTL1	SPI_CS3/ UHPI_HRDY	SPI_TX / UHPI_HD[1]	GP[13] / UHPI_HD[3]	GP[14] / UHPI_HD[4]	GP[16] / UHPI_HD[6]	I2S2_CLK/ UHPI_HD[8]/ GP[18]/ SPI_CLK	I2S2_RX/ UHPI_HD[10]/ GP[20]/ SPI_RX	UART_RTS/ UHPI_HD[12]/ GP[28]/ I2S3_CLK	UART_RXD/ UHPI_HD[14]/ GP[30]/ I2S3_RX	DV _{DDIO}
М	EM_A[14]	EM_D[5]	EM_SDCLK	EM_CS3	EMU1	тск	TDO	XF	TRST	MMC0_D1/ I2S0_RX/ GP[3]/ McBSP_DR	MMC0_CMD/ I2S0_FS/ GP[1]/ McBSP_FSX	MMC1_D1/ McSPI_SOMI/ GP[9]	MMC1_CLK/ McSPI_CLK/ GP[6]	MMC1_D0/ McSPI_SIMO/ GP[8]
L	EM_A[13]	EM_A[10]	EM_D[12]	EM_D[4]	CV _{DD}	EMU0	TDI	TMS	MMC0_D0/ 12S0_DX/ GP[2]/ McBSP_DX	MMC0_CLK/ I2S0_CLK/ GP[0]/ McBSP_CLKX	MMC0_D3/ GP[5]/ McBSP_ CLKR_CLKS	MMC0_D2/ GP[4]/ McBSP_FSR	MMC1_D3/ McSPI_CS2/ GP[11]	MMC1_CMD/ McSPI_CS0/ GP[7]
к	EM_A[12]/ (CLE)	EM_A[11]/ (ALE)	EM_D[14]	EM_D[13]	EM_D[6]	EM_WAIT3	DV _{DDIO}	V _{SS}	V _{SS}	CV _{DD}	V _{SS}	DV _{DDIO}	V _{SS}	MMC1_D2/ McSPI_CS1/ GP[10]
J	EM_A[8]	EM_A[9]	GP[26] / EM_A[20]	EM_D[15]	DVDDEMIF	CV _{DD}	V _{SS}	V _{SS}	V _{SS}	RSV1	RSV2	USB_VBUS	USB_VDD1P3	USB_DM
н	EM_WE	EM_A[7]	EM_D[7]	EM_WAIT5	DVDDEMIF	V _{SS}	DVDDEMIF	CV _{DD}	USB_ VSSA1P3	USB_ VDDA1P3	USB_ VSSA3P3	USB_ VDDA3P3	USB_VSS1P3	USB_DP
G	EM_WAIT4	GP[24] / EM_A[18]	EM_D[0]	GP[25] / EM_A[19]	DV _{DDEMIF}	V _{SS}	V _{SS}	USB_VDDPLL	USB_R1	USB_V _{SSREF}	USB_VSSPLL	USB_VDDOSC	USB_MXI	USB_MXO
F	EM_A[6]	GP[23] / EM_A[17]	EM_D[2]	EM_D[9]	DVDDEMIF	CV _{DD}	DV _{DDIO}	DV _{DDRTC}	V _{SS}	V _{SS}	USB_Vssosc	USB_LDOO	LDOI	LDOI
E	EM_A[2]	GP[22] / EM_A[16]	EM_D[8]	EM_OE	EM_D[1]	DV _{DDEMIF}	INT1	WAKEUP	V _{SS}	DSP_LDOO	V _{SS}	V _{SS}	V _{SS}	V _{SS}
D	EM_A[5]	EM_A[3]	EM_D[10]	EM_D[3]	EM_WAIT2	RESET	V _{SS}	RTC_ CLKOUT	VSSA_PLL	GPAIN0	V _{SS}	DSP_ LDO_EN	RSV16	RSV3
С	EM_A[4]	EM_A[1]	EM_CS4	EM_D[11]	EM_CS2	ĪNT0	CLK_SEL	CVDDRTC	V _{SSRTC}	VDDA_PLL	GPAIN3	RSV0	RSV5	RSV4
в	EM_BA[1]	EM_A[0]	EM_CS0/ UHPI_HDS1	EM_SDCAS/ UHPI_HCS	EM_DQM0/ UHPI_HBE0	EM_R/W	SCL	SDA	RTC_XI	VSSA_ANA	GPAIN2	LDOI	BG_CAP	Vssa_ana
A	EM_BA[0]	DV _{DDEMIF}	EM_CS5	EM_CS1/ UHPI_HDS2	DV _{DDEMIF}	EM_SDRAS/ UHPI_HAS	CLKOUT	CLKIN	RTC_XO	VDDA_ANA	GPAIN1	ANA_LDOO	V _{SS}	V _{SS}
I	1		3 Shadad pi	4 ins indicat	5 D DOW fun	6 ctions on	7	8	9	10	11	12	13	14

NOTE: Shaded pins indicate new functions on the C5517.

Figure 1. Pins With New Functions On C5517

4.5 Pins With New Functions

Table 4 provides the full list of the pins that are multiplexed with the new C5517 peripherals: McBSP, McSPI, and UHPI. Note that the SDRAM control signals (B3, B4, B5, A4, and A6) are multiplexed with UHPI control signals and can be programmed by the EBSR register [1C00h].

Note: The reset default is in **bold**.

Table 4. Pins With New Functions

Ball No.	C5517 Pin Name	C5515/05 Pin Name	Note
P1	EM_DQM1/UHPI_HBE1	EM_DQM1	Add: UHPI
P4	SPI_CS0/UHPI_HCNTL0	LCD_CS0_E0/SPI_CS0	Added: UHPI Removed: LCD
P5	SPI_CS2/UHPI_HR_NW	LCD_RW_WRB/SPI_CS2	Added: UHPI Removed: LCD
P6	SPI_RX/UHPI_HD[0]	LCD_D[0]/SPI_RX	Added: UHPI Removed: LCD
P7	GP[12]/UHPI_HD[2]	LCD_D[2]/GP[12]	Added: UHPI Removed: LCD
P9	GP[15]/UHPI_HD[5]	LCD_D[5]/GP[15]	Added: UHPI Removed: LCD
P10	GP[17]/UHPI_HD[7]	LCD_D[7]/GP[17]	Added: UHPI Removed: LCD
P11	I2S2_FS/UHPI_HD[9]/ GP[19]/SPI_CS0	LCD_D[9]/I2S2_FS/ GP[19]/SPI_CS0	Added: UHPI Removed: LCD
P12	I2S2_DX /UHPI_HD[11]/ GP[27]/SPI_TX	LCD_D[11]/I2S2_DX/ GP[27]/SPI_TX	Added: UHPI Removed: LCD
P13	UART_CTS/UHPI_HD[13]/ GP[29]/I2S3_FS	LCD_D[13]/UART_CTS/ GP[29]/I2S3_FS	Added: UHPI Removed: LCD
P14	UART_TXD/UHPI_HD[15]/ GP[31]/I2S3_DX	LCD_D[15]/UART_TXD/ GP[31]/l2S3_DX	Added: UHPI Removed: LCD
N2	EM_SDCKE/UHPI_HHWIL	EM_SDCKE	Added: UHPI
N3	SPI_CLK/UHPI_HINT	LCD_EN_RDB/SPI_CLK	Added: UHPI Removed: LCD
N4	SPI_CS1/UHPI_HCNTL1	LCD_CS1_EN1/SPI_CS1	Added: UHPI Removed: LCD
N5	SPI_CS3/UHPI_HRDY	LCD_RS/SPI_CS3	Added: UHPI Removed: LCD
N6	SPI_TX/UHPI_HD[1]	LCD_D[1]/SPI_TX	Added: UHPI Removed: LCD
N7	GP[13]/UHPI_HD[3]	LCD_D[3]/GP[13]	Added: UHPI Removed: LCD
N8	GP[14]/UHPI_HD[4]	LCD_D[4]/GP[14]	Added: UHPI Removed: LCD
N9	GP[16]/UHPI_HD[6]	LCD_D[6]/GP[16]	Added: UHPI Removed: LCD
N10	I2S2_CLK /UHPI_HD[8]/ GP[18]/SPI_CLK	LCD_D[8]/I2S2_CLK/ GP[18]/SPI_CLK	Added: UHPI Removed: LCD
N11	I2S2_RX /UHPI_HD[10]/ GP[20]/SPI_RX	LCD_D[10]/I2S2_RX/ GP[20]/SPI_RX	Added: UHPI Removed: LCD

	Table 4. Fills With New Functions (continued)									
Ball No.	C5517 Pin Name	C5515/05 Pin Name	Note							
N12	UART_RTS/UHPI_HD[12]/ GP[28]/I2S3 CLK	LCD_D[12]/UART_RTS/ GP[28]/I2S3 CLK	Added: UHPI Removed: LCD							
N13	UART_RXD/UHPI_HD[14]/ GP[30]/I2S3_RX	LCD_D[14]/UART_RXD/ GP[30]/I2S3_RX	Added: UHPI Removed: LCD							
M10	MMC0_D1/l2S0_RX/ GP[3]/McBSP_DR	MMC0_D1/I2S0_RX/GP[3]	Added: McBSP							
M11	MMC0_CMD/I2S0_FS/ GP[1]/McBSP_FSX	MMC0_CMD/I2S0_FS/GP[1]	Added: McBSP							
M12	M12 MMC1_D1/McSPI_SOMI/GP[9] MMC1_D1/I2S1_RX/GP[9]		Added: McSPI Removed: I2S							
M13	MMC1_CLK/McSPI_CLK/GP[6] MMC1_CLK/I2S1_CLK/GP[6]		Added: McSPI Removed: I2S							
M14	4 MMC1_D0 /McSPI_SIMO/GP[8] MMC1_D0/I2S1_DX/		Added: McSPI Removed: I2S							
L9	MMC0_D0/I2S0_DX/ GP[2]/McBSP_DX MMC0_D0/I2S0_DX/GP[2]		Added: McBSP							
L10	MMC0_CLK/I2S0_CLK/ GP[0]/McBSP_CLKX	MMC0_CLK/I2S0_CLK/GP[0]	Added: McBSP							
L11	MMC0_D3/GP[5]/ McBSP_CLKR_CLKS	MMC0_D3/GP[5]	Added: McBSP							
L12	MMC0_D2/GP[4]/ McBSP_FSR	MMC0_D2/GP[4]	Added: McBSP							
L13	MMC1_D3/McSPI_CS2/GP[11]	MMC1_D3/GP[11]	Added: McSPI							
L14	MMC1_CMD/McSPI_CS0/GP[7]	MMC1_CMD/I2S1_FS/GP[7]	Added: McSPI Removed: I2S							
K14	MMC1_D2/McSPI_CS1/GP[10]	MMC1_D2/GP[10]	Added: McSPI							
B3	EM_CS0/UHPI_HDS1	EM_CS0								
B4	EM_SDCAS/UHPI_HCS	EM_SDCAS								
B5	EM_DQM0/UHPI_HBE0	EM_DQM0	Added: UHPI							
A4	EM_CS1/UHPI_HDS2	EM_CS1								
A6	EM_SDRAS/UHPI_HAS	EM_SDRAS								

Table 4. Pins With New Functions (continued)

Migrating from TMS320C5515 to TMS320C5517

4.6 Serial Port 0 Pin Mapping

The Serial Port 0 in the C5517 consists of six signals that support four different modes. By selecting one of these modes in the External Bus Selection Register [1C00h], the appropriate six signals are mapped to shared pins on the device.

- **MMC and SD mode:** All six signals of the MultiMedia Card and Secure Digital port are routed to the six external signals of the Serial Port 0.
- **I2S mode:** All four signals of the I2S module and 2 GPIO signals are routed to the six external signals of the Serial Port 0.
- GPIO mode: Six GPIO signals are routed to the six external signals of the Serial Port 0.
- **McBSP mode:** All six signals of the Multichannel Buffered Serial Port are routed to the six external signals of the Serial Port 0.

The selection of the Serial Port 0 is set by the External Bus Selection Register.

Ball	SP0MODE00 (default)		SP0MODE01		SP0MODE10		SP0MODE11	
	C5517	C5515/05	C5517	C5515/05	C5517	C5515/05	C5517	C5515/05
L10	MMC0_CLK	MMC0_CLK	I2S0_CLK	I2S0_CLK	GPIO[0]	GPIO[0]	McBSP_CLKX	Reserved
M11	MMC0_CMD	MMC0_CMD	I2S0_FS	I2S0_FS	GPIO[1]	GPIO[1]	McBSP_FSX	Reserved
L9	MMC0_D0	MMC0_D0	I2S0_DX	I2S0_DX	GPIO[2]	GPIO[2]	McBSP_DX	Reserved
M10	MMC0_D1	MMC0_D1	I2S0_RX	I2S0_RX	GPIO[3]	GPIO[3]	McBSP_DR	Reserved
L12	MMC0_D2	MMC0_D2	GPIO[4]	GPIO[4]	GPIO[4]	GPIO[4]	McBSP_FSR	Reserved
L11	MMC0_D3	MMC0_D3	GPIO[5]	GPIO[5]	GPIO[5]	GPIO[5]	McBSP_CLKR or McBSP_CLKS (Bit 15 of EBSR register)	Reserved

Table 5. Serial Port 0 Pin Multiplexing

4.7 Serial Port 1 Pin Mapping

The Serial Port 1 in the C5517 consists of six signals that support four different modes. By selecting one of these modes in the External Bus Selection Register [1C00h], the appropriate six signals are mapped to shared pins on the device.

- **MMC and SD mode:** All six signals of the MultiMedia Card and Secure Digital port are routed to the six external signals of the Serial Port 1.
- **McSPI mode:** All four signals of the McSPI module are routed to the four external signals of the Serial Port 1.
- GPIO mode: Six GPIO signals are routed to the six external signals of the Serial Port 1.

The selection of the Serial Port1 mode is set by the External Bus Selection Register.

Ball	SP1MODE	00 (default)	SP1M	ODE01	SP1MODE10		
	C5517	C5515/05	C5517	C5515/05	C5517	C5515/05	
M13	MMC1_CLK	MMC1_CLK	McSPI_CLK	I2S1_CLK	GPIO[6]	GPIO[6]	
L14	MMC1_CMD	MMC1_CMD	McSPI_CS0	I2S1_FS	GPIO[7]	GPIO[7]	
M14	MMC1_D0	MMC1_D0	McSPI_SIMO	I2S1_DX	GPIO[8]	GPIO[8]	
M12	MMC1_D1	MMC1_D1	McSPI_SOMI	I2S1_RX	GPIO[9]	GPIO[9]	
K14	MMC1_D2	MMC1_D2	McSPI_CS1	GPIO[10]	GPIO[10]	GPIO[10]	
L13	MMC1_D3	MMC1_D3	McSPI_CS2	GPIO[11]	GPIO[11]	GPIO[11]	

Pin and Package Considerations

4.8 Parallel Port Pin Mapping

Because UHPI replaces LCD, the parallel port comprises 28 signals that support seven different modes:

- **16-bit multiplexed UHPI:** All 28 signals of the UHPI module are routed to the 28 external signals of the Parallel Port.
- **6-Bit GPIO, SPI, UART, I2S and SDRAM:** Six GPIO, seven signals (four chip selects) of the SPI module, four signals of the UART module, four signals of the I2S module, and seven SDRAM controls signals are routed to the 28 external signals of the parallel port.
- **8-Bit GPIO, and SDRAM:** Eight GPIO and seven SDRAM controls signals are routed to the 28 external signals of the parallel port.
- SPI, I2S and SDRAM: Four signals of the SPI module, four signals of the I2S module and seven SDRAM controls signals are routed to the 28 external signals of the parallel port.
- **UART, I2S and SDRAM:** Four signals of the UART module, four signals of the I2S module, and seven SDRAM controls signals are routed to the 28 external signals of the parallel port.
- **UART, SPI and SDRAM:** Four signals of the UART module, four signals of the SPI module, and seven SDRAM controls signals are routed to the 28 external signals of the parallel port.
- 6-Bit GPIO, SPI, 2 I2S, and SDRAM: Six GPIO, seven signals (four chip selects) of the SPI module, two sets of four signals of the I2S module, and seven SDRAM controls signals are routed to the 28 external signals of the parallel port.

The selection of the parallel port mode is set by the External Bus Selection Register.

Table 7. Parallel Port Pin Multiplexing

Ball		PPMODE PPMODE 000 001					MODE PPMODE 011 100			PPMODE 101		PPMODE 110		
	C5517	C5515/ 5505 ⁽¹⁾	C5517 ⁽¹⁾	C5515/ 5505	C5517	C5515/ 5505	C5517	C5515/ 5505	C5517	C5515/ 5505	C5517	C5515/ 5505	C5517	C5515/ 5505
N3	UHPI_ HINT	LCD_EN_ RDB	SPI_CLK	SPI_CLK	Reserved	LCD_EN_ RDB	Reserved	LCD_EN_ RDB	Reserved	LCD_EN_ RDB	Reserved	LCD_EN_ RDB	SPI_CLK	SPI_CLK
P6	UHPI_ HD[0]	LCD_D[0]	SPI_RX	SPI_RX	Reserved	LCD_D[0]	Reserved	LCD_D[0]	Reserved	LCD_D[0]	Reserved	LCD_D0	SPI_RX	SPI_RX
N6	UHPI_ HD[1]	LCD_D[1]	SPI_TX	SPI_TX	Reserved	LCD_D[1]	Reserved	LCD_D[1]	Reserved	LCD_D[1]	Reserved	LCD_D1	SPI_TX	SPI_TX
P7	UHPI_ HD[2]	LCD_D[2]	GPIO[12]	GPIO12	Reserved	LCD_D[2]	Reserved	LCD_D[2]	Reserved	LCD_D[2]	Reserved	LCD_D2	GPIO[12]	GPIO[12]
N7	UHPI_ HD[3]	LCD_D[3]	GPIO[13]	GPIO13	Reserved	LCD_D[3]	Reserved	LCD_D[3]	Reserved	LCD_D[3]	Reserved	LCD_D3	GPIO[13]	GPIO[13]
N8	UHPI_ HD[4]	LCD_D[4]	GPIO[14]	GPIO14	Reserved	LCD_D[4]	Reserved	LCD_D[4]	Reserved	LCD_D[4]	Reserved	LCD_D4	GPIO[14]	GPIO[14]
P9	UHPI_ HD[5]	LCD_D[5]	GPIO[15]	GPIO15	Reserved	LCD_D[5]	Reserved	LCD_D[5]	Reserved	LCD_D[5]	Reserved	LCD_D5	GPIO[15]	GPIO[15]
N9	UHPI_ HD[6]	LCD_D[6]	GPIO[16]	GPIO16	Reserved	LCD_D[6]	Reserved	LCD_D[6]	Reserved	LCD_D[6]	Reserved	LCD_D6	GPIO[16]	GPIO[16]
P10	UHPI_ HD[7]	LCD_D[7]	GPIO[17]	GPIO17	Reserved	LCD_D[7]	Reserved	LCD_D[7]	Reserved	LCD_D[7]	Reserved	LCD_D7	GPIO[17]	GPIO[17]
N10	UHPI_ HD[8]	LCD_D[8]	I2S2_CLK	I2S2_CLK	GPIO18	GPIO[18]	SPI_CLK	SPI_CLK	I2S2_CLK	I2S2_CLK	SPI_CLK	SPI_CLK	I2S2_CLK	I2S2_CLK
P11	UHPI_ HD[9]	LCD_D[9]	12S2_FS	I2S2_FS	GPIO19	GPIO[19]	SPI_CS0	SPI_CS0	I2S2_FS	I2S2_FS	SPI_CS0	SPI_CS0	I2S2_FS	I2S2_FS
N11	UHPI_ HD[10]	LCD_D[10]	I2S2_RX	I2S2_RX	GPIO20	GPIO[20]	SPI_RX	SPI_RX	I2S2_RX	I2S2_RX	SPI_RX	SPI_RX	I2S2_RX	I2S2_RX
P12	UHPI_ HD[11]	LCD_D[11]	12S2_DX	I2S2_DX	GPIO27	GPIO[27]	SPI_TX	SPI_TX	I2S2_DX	I2S2_DX	SPI_TX	SPI_TX	I2S2_DX	12S2_DX
N12	UHPI_ HD[12]	LCD_D[12]	UART_ RTS	UART_ RTS	GPIO28	GPIO[28]	I2S3_CLK	I2S3_CLK	UART_ RTS	UART_ RTS	UART_ RTS	UART_ RTS	I2S3_CLK	I2S3_CLK
P13	UHPI_ HD[13]	LCD_D[13]	UART_ CTS	UART_ CTS	GPIO29	GPIO[29]	I2S3_FS	I2S3_FS	UART_ CTS	UART_ CTS	UART_ CTS	UART_ CTS	I2S3_FS	12S3_FS
N13	UHPI_ HD[14]	LCD_D[14]	UART_ RXD	UART_ RXD	GPIO30	GPIO[30]	I2S3_RX	I2S3_RX	UART_ RXD	UART_ RXD	UART_ RXD	UART_ RXD	I2S3_RX	I2S3_RX
P14	UHPI_ HD[15]	LCD_D[15]	UART_ TXD	UART_ TXD	GPIO31	GPIO[31]	I2S3_DX	I2S3_DX	UART_ TXD	UART_ TXD	UART_ TXD	UART_ TXD	I2S3_DX	I2S3_DX
P4	UHPI_ HCNTL0	LCD_CS0	SPI_CS0	SPI_CS0	Reserved	LCD_CS0	Reserved	LCD_CS0	Reserved	LCD_CS0	Reserved	LCD_CS0	SPI_CS0	SPI_CS0

(1) Default

Pin and Package Considerations

www.ti.com

Ball	I PPMODE 000		-			PPMODE PPMODE 010 011			PPMODE 100		PPMODE 101		PPMODE 110	
	C5517	C5515/ 5505 ⁽¹⁾	C5517 ⁽¹⁾	C5515/ 5505	C5517	C5515/ 5505	C5517	C5515/ 5505	C5517	C5515/ 5505	C5517	C5515/ 5505	C5517	C5515/ 5505
N4	UHPI_ HCNTL1	LCD_CS1	SPI_CS1	SPI_CS1	Reserved	LCD_CS1	Reserved	LCD_CS1	Reserved	LCD_CS1	Reserved	LCD_CS1	SPI_CS1	SPI_CS1
P5	UHPI_ HR_NW	LCD_RW_ WRB	SPI_CS2	SPI_CS2	Reserved	LCD_RW_ WRB	Reserved	LCD_RW_ WRB	Reserved	LCD_RW_ WRB	Reserved	LCD_RW_ WRB	SPI_CS2	SPI_CS2
N5	UHPI_ HRDY	LCD_RS	SPI_CS3	SPI_CS3	Reserved	LCD_RS	Reserved	LCD_RS	Reserved	LCD_RS	Reserved	LCD_RS	SPI_CS3	SPI_CS3
B5	UHPI_ HBE0	EM_ DQM[0]	EM_ DQM[0]	EM_ DQM[0]	EM_ DQM[0]	EM_ DQM[0]	EM_ DQM[0]	EM_ DQM[0]	EM_ DQM[0]	EM_ DQM[0]	EM_ DQM[0]	EM_ DQM[0]	EM_ DQM[0]	EM_ DQM[0]
P1	UHPI_ HBE1	EM_ DQM[1]	EM_ DQM[1]	EM_ DQM[1]	EM_ DQM[1]	EM_ DQM[1]	EM_ DQM[1]	EM_ DQM[1]	EM_ DQM[1]	EM_ DQM[1]	EM_ DQM[1]	EM_ DQM[1]	EM_ DQM[1]	EM_ DQM[1]
A6	UHPI_ HAS	EM_SDRA	EM_SDRAS	EM_SDRA	EM_SDRA	EM_SDRA	EM_SDRA	EM_SDRA	EM_SDRA	EM_SDRA	EM_SDRA	EM_SDRA	EM_SDRA	EM_SDRA
B4	UHPI_ HCS	EM_SDCA	EM_SDCAS	EM_SDCA	EM_SDCA	EM_SDCA	EM_SDCA	EM_SDCA	EM_SDCA	EM_SDCA	EM_SDCA	EM_SDCA	EM_SDCA	EM_SDCA
B3	UHPI_ HDS1	EM_CS0	EM_CS0	EM_CS0	EM_CS0	EM_CS0	EM_CS0	EM_CS0	EM_CS0	EM_CS0	EM_CS0	EM_CS0	EM_CS0	EM_CS0
A4	UHPI_ HDS2	EM_CS1	EM_CS1	EM_CS1	EM_CS1	EM_CS1	EM_CS1	EM_CS1	EM_CS1	EM_CS1	EM_CS1	EM_CS1	EM_CS1	EM_CS1
N2	UHPI_ HHWIL	EM_ SDCKE	EM_ SDCKE	EM_ SDCKE	EM_ SDCKE	EM_ SDCKE	EM_ SDCKE	EM_ SDCKE	EM_ SDCKE	EM_ SDCKE	EM_ SDCKE	EM_ SDCKE	EM_ SDCKE	EM_ SDCKE

4.9 External Bus Selection Registers (EBSR)

The External Bus Selection Register (EBSR) determines the mapping of the UHPI, I2S1, I2S2, UART, SPI, McBSP, McSPI, and GPIO signals to 28 signals of the external parallel port pins. It also determines the mapping of the I2S, McBSP, McSPI, GPIO, or MMC and SD ports to serial port 0 pins and serial port 1 pins. The EBSR register is located at port address 1C00h. Once the bit fields of this register are changed, the routing of the signals takes place on the next CPU clock cycle.

For more details on the External Bus Selection Register (EBSR), see the chapter System Control in TMS320C5517 Digital Signal Processor Technical Reference Manual (literature number <u>SPRUH16</u>).

5 Clocking

Clock Source 5.1

On the C5515/05, the on-chip RTC oscillator and the CLKIN port were the two sources of the PLL input. On the C5517, the on-chip USB oscillator and the CLKIN port are the two sources of the PLL clock input. The on-chip RTC oscillator drives only the RTC module.

When CLK SEL = 0 at reset, the on-chip USB oscillator is automatically enabled and used as the source of PLL input clock. In this configuration, the USB oscillator cannot be turned off.

When CLK SEL = 1 at reset, the external LVCMOS compatible clock input fed into the CLKIN pin will be used as the source of PLL. The on-chip USB oscillator is automatically disabled but can be enabled by writing 0 to the bit 2 of USB System Control Register (1C32h). The USB Oscillator Disable bit reflects the status of the CLK SEL pin at reset.

For more details on the USB System Control Register (USBSCR), see the chapter System Control in TMS320C5517 Digital Signal Processor Technical Reference Manual (literature number SPRUH16).

CLK_SEL	PLL Clock Source	Frequency Supported
0	USB Oscillator	12 MHz
1	CLKIN Pin	0–30 MHz

Table 8. PLL Reference Clock Source

5.2 PLL Power (VDDA PLL)

On the C5515/05, the ANA_LDO can provide a regulated 1.3 V to both VDDA_PLL and VDDA_ANA. On the C5517, however, the VDDA PLL must be powered externally. The new PLL in the C5517 consumes more power than the PLL in the C5515/05, typically ~5mA at 312 MHz.

5.3 PLL Changes

The PLL in the C5517 is different than for the C5515/05. The new PLL has an internal input reference divider and a post-divider valid frequency range of 1.7-6.79 MHz.

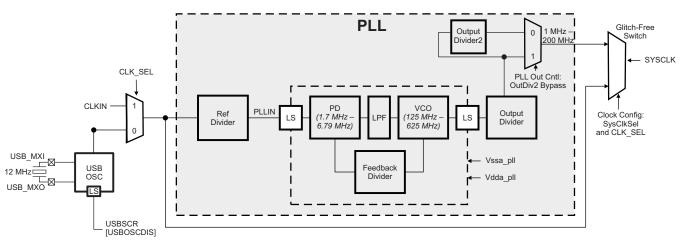


Figure 2. System PLL Block Diagram

The output frequency of the PLL is given by Equation 1:

SystemClock = InputClock ×
$$\left[\frac{\left(\frac{\mathsf{PLLM}}{256}+1\right)}{(\mathsf{RD}+1)\times(\mathsf{0D}+1)\times2(\mathsf{0D}2+1)}\right]$$

(1)

5.4 PLL Registers

To migrate from C5515/05 to C5517, the PLL registers configuration must be updated to get a suitable output frequency. The sequence of configuring PLL registers has not been changed.

The PLL registers include:

- PLL Multiplier Register (PMR)
- PLL Input Control Register (PICR)
- PLL Control Register (PCR)
- PLL Output Divider Register (PODCR)

For more details on the PLL registers, see the chapter *System Control* in *TMS320C5517 Digital Signal Processor Technical Reference Manual* (literature number <u>SPRUH16</u>).

5.5 Initializing PLL From PLL Power Down

If the PLL is powered down (PLLPWRDN (bit 13) is set to 1 in PLL Control Register (1C22h)), perform the following procedure to initialize the PLL:

- 1. The PLL should be held in reset and in bypass mode. If not:
 - (a) Set SYSCLKSEL (bit 0) to 0 in Clock Configuration Register 2 (1C1Fh) to switch the PLL to bypass mode.
 - (b) Wait 4 clock cycles to ensure that the PLL has switched to bypass mode.
 - (c) Set PLLRST (bit 14) to 1 in PLL Control Register.
- 2. Clear PLLPWRDN in PLL Control Register to power up the analog circuitry in the PLL.
- 3. Program the desired values for:
 - Multiplier value (bit 15) and reference divider (bits 5–0) in PLL Input Control Register (1C21h)
 - Output Divider (bits 2–0) and Output Divider2 (bits 15–11) in PLL Output Divider Control Register (1C23h)
- 4. Clear the PLL reset bit in PLL Control Register.
- 5. Wait for the minimum lock time.
- 6. Clear SYSCLKSEL in Clock Configuration Register 2 to remove the PLL from bypass mode.

5.6 Changing PLL Multiplier

If the PLL is not powered down (PLL PWRDN (bit 13) is set to 0 in PLL Control Register (1C22h)), perform the following procedure to change the PLL:

- 1. Set SYSCLKSEL (bit 0) to 0 in Clock Configuration Register 2 (1C1Fh) to switch the PLL to bypass mode.
- 2. Wait 4 clock cycles to ensure that the PLL has switched to bypass mode.
- 3. Set PLLRST (bit 14) to 1 in PLL Control Register.
- 4. Program the desired values for:
 - Multiplier value (bit 15) and reference divider (bits 5–0) in PLL Input Control Register (1C21h)
 - Output Divider (bits 2–0) and Output Divider2 (bits 15–11) in PLL Output Divider Control Register (1C23h)
- 5. Clear the PLL reset bit in PLL Control Register.
- 6. Wait for the minimum lock time.
- 7. Clear SYSCLKSEL in Clock Configuration Register 2 to remove the PLL from bypass mode.

5.7 USB Oscillator Stabilization

At power-up, crystal oscillator circuits will typically oscillate at a very high frequency before settling to the desired crystal frequency. The C5517 modified the ripple counter circuit that gates clocks to the device while the USB oscillator is stabilizing. When CLK_SEL is low at reset, the USB oscillator is selected as the clock source to the PLL chip and this stabilization circuit must delay clocks for at least 10 mS.

5.8 Peripheral Reset

All peripherals can be reset through software by the Peripheral Reset Control Register. The Peripheral Software Reset Counter Register controls the number of system clock cycles that will maintain the peripheral reset signal low once activated by the corresponding Peripheral Reset Control Register. On the C5517, some of these bits are changed by the addition of McBSP and McSPI.

For more details on the Peripheral Software Reset Counter Register (PSRCR) and Peripheral Reset Control Register (PRCR), see the chapter *System Control* in *TMS320C5517 Digital Signal Processor Technical Reference Manual* (literature number <u>SPRUH16</u>).

5.9 Clock Stop Request and Acknowledge

On the C5517, McBSP uses a clock request and acknowledge mechanism to stop the clocks. Thus, additional bits are added to the Peripheral Clock Stop Request and Acknowledge Register. The Peripheral Clock Stop Request and Acknowledge Register is used by the EMIF, USB, McBSP, McSPI, UHPI, and UART to create a handshake system to request permission to stop the clock. This handshake ensures that current bus transactions are completed before the clock is stopped.

To stop the clock to the EMIF or USB, set the corresponding clock stop request bit in the CLKSTOP register, then wait for the peripheral to set the corresponding clock stop acknowledge bit. Once this bit is set, you can idle the corresponding clock in the PCGCR1 and PCGCR2.

To stop the clock to the UHPI, McBSP, or UART, set the corresponding clock stop request bit in the CLKSTOP register, then wait for the peripheral to set the corresponding clock stop acknowledge bit. Once this bit is set, the corresponding clock is also idle at the same time. Setting the corresponding clock gating in the PCGCR1 and PCGCR2 is not required.

To enable the clock to the EMIF, UHPI, McBSP, McSPI, USB, or UART, first enable the clock to the peripheral through PCGCR1 or PCGCR2, then clear the corresponding clock stop request bit in the CLKSTOP register.

For more details on the CLKSTOP1 and CLKSTOP2 registers, see the chapter *System Control* in *TMS320C5517 Digital Signal Processor Technical Reference Manual* (literature number SPRUH16).

5.10 Peripheral Clock Gating Configuration Register

The replacement of the McSPI for I2S1 and the addition of McBSP require changes to the Peripheral Clock Gating Configuration Register.

The Peripheral Clock Gating Configuration Register dictates what portions of the device peripherals will be disabled. In contrast to the Idle Control Register, these bits take effect immediately and do not require an idle instruction.

For more details on the Peripheral Clock Gating Configuration Registers (PCGCR1/2), see the chapter *System Control* in *TMS320C5517 Digital Signal Processor Technical Reference Manual* (literature number <u>SPRUH16</u>).

6 I/Os

6.1 I/O Reset States

On the C5517, all digital I/O pins will be in a high-impedance state while the RESETN pin is held active (low). They will return to their reset conditions at 65535 CPU cycles if CLK_SEL = 1 and 131071 CPU cycles if CLK_SEL = 0 after the RESETN pin is deactivated (high).

For more details, see the section titled *Pin Behavior at Reset* in *TMS320C5517 Fixed-Point Digital Signal Processor* (literature number SPRS727).

When the bidirectional signals are configured as inputs or the outputs are in a high-impedance state, the input pads are in floating. To prevent floating inputs and to minimize I/O power, the C5517 offers individual configuration of the internal pullup and pulldown signal of the bidirectional I/Os.

6.2 Internal Pullup and Pulldown for I/O Pins

On the C5517, all bidirectional pins are capable of individual configuring internal pullups (IPU) or pulldowns (IPD) capability comparing to that of the C5515/05. Table 9 shows the C5517 I/O pins and the configuration system register connections. Note that the pulldown control is independent of the Serial Port or Parallel Port Routing. The pullup or pulldown is enabled at reset.

Table 9. I/O Pin List, Pull, and Register Description

Terminal Name In C5517	Ball	I/O Type in C5517	IPU and IPD C5517	IPU and IPD C5515/05	IPU and IPD Register In C5517
GP[26]/EM_A[20]	J3	I/O/Z, IPD, BH	Yes	Yes	0x1C18[5]
GP[25]/EM_A[19]	G4	I/O/Z, IPD, BH	Yes	Yes	0x1C18[4]
GP[24]/EM_A[18]	G2	I/O/Z, IPD, BH	Yes	Yes	0x1C18[3]
GP[23]/EM_A[17]	F2	I/O/Z, IPD, BH	Yes	Yes	0x1C18[2]
GP[22]/EM_A[16]	E2	I/O/Z, IPD, BH	Yes	Yes	0x1C18[1]
GP[21]/EM_A[15]	N1	I/O/Z, IPD, BH	Yes	Yes	0x1C18[0]
EM_A[14:0]	M1, L1, K1, K2, L2, J2, J1, H2, F1, D1, C1, D2, E1, C2, B2	I/O/Z, IPD, BH	Yes	No	0x1C4D[14:0]
EM_CS[5:4]	A3, C3	I/O/Z, IPD, BH	Yes	No	0x1C4F[1:0]
EM_CS[3:2]	M4, C5	I/O/Z, IPD, BH	Yes	No	0x1C4F[3:2]
EM_WE	H1	I/O/Z, IPD, BH	Yes	No	0x1C4F[4]
EM_OE	E4	I/O/Z, IPD, BH	Yes	No	0x1C4F[5]
EM_R/W	B6	I/O/Z, IPD, BH	Yes	No	0x1C4F[6]
EM_DQM1/UHPI_HBE1	P1	I/O/Z, IPD, BH	Yes	No	0x1C4F[8]
EM_DQM0/UHPI_HBE0	B5	I/O/Z, IPD, BH	Yes	No	0x1C4F[7]
EM_BA[1:0]	B1,A1	I/O/Z, IPD, BH	Yes	No	0x1C4F[10:9]
EM_WAIT[5:4]	H4,G1	I/O/Z, IPD, BH	Yes	No	0x1C4F[12:11]
EM_WAIT[3:2]	K6,D5	I/O/Z, IPD, BH	Yes	No	0x1C4F[13:12]
EM_SDCLK	M3	I/O/Z, IPD, BH	Yes	No	0x1C50[0]
EM_SDCKE/UHPI_HHWIL	N2	I/O/Z, IPD, BH	Yes	No	0x1C50[1]
EM_SDCAS/UHPI_HCS	B4	I/O/Z, IPD, BH	Yes	No	0x1C50[2]
EM_SDRAS/UHPI_HAS	A6	I/O/Z, IPD, BH	Yes	No	0x1C50[3]
EM_CS1/UHPI_HDS2	A4	I/O/Z, IPD, BH	Yes	No	0x1C50[5]
EM_CSO/UHPI_HDS1	B3	I/O/Z, IPD, BH	Yes	No	0x1C50[4]
EM_D[15:0]	J4, K3, K4, L3, C4, D3, F4, E3, H3, K5, M2, L4, D4, F3, E5, G3	I/O/Z, IPD, BH	Yes	No	0x1C4C[15:0]
INT[1:0]	E7,C6	I, IPU, BH	Yes	Yes	0x1C18[14:13]
RESET	D6	I, IPU, BH	Yes	Yes	0x1C18[12]
MMC0_D3/GP[5]/ McBSP_CLKR_CLKS	L11	I/O/Z, IPD, BH	Yes	Yes	0x1C17[5]

Terminal Name In C5517	Ball	I/O Type in C5517	IPU and IPD C5517	IPU and IPD C5515/05	IPU and IPD Register In C5517
MMC0_D2/GP[4]/ McBSP_FSR	L12	I/O/Z, IPD, BH	Yes	Yes	0x1C17[4]
MMC0_D1/I2S0_RX/ GP[3]/McBSP_DR	M10	I/O/Z, IPD, BH	Yes	Yes	0x1C17[3]
MMC0_D0/I2S0_DX/ GP[2]/McBSP_DX	L9	I/O/Z, IPD, BH	Yes	Yes	0x1C17[2]
MMC0_CMD/I2S0_FS/ GP[1]/McBSP_FSX	M11	I/O/Z, IPD, BH	Yes	Yes	0x1C17[1]
MMC0_CLK/I2S0_CLK/ GP[0]/McBSP_CLKX	L10	I/O/Z, IPD, BH	Yes	Yes	0x1C17[0]
MMC1_D3/McSPI_CS2/GP[1 1]	L13	I/O/Z, IPD, BH	Yes	Yes	0x1C17[13]
MMC1_D2/McSPI_CS1/GP[1 0]	K14	I/O/Z, IPD, BH	Yes	Yes	0x1C17[12]
MMC1_D1/McSPI_SOMI/GP[9]	M12	I/O/Z, IPD, BH	Yes	Yes	0x1C17[11]
MMC1_D0/McSPI_SIMO/GP[8]	M14	I/O/Z, IPD, BH	Yes	Yes	0x1C17[10]
MMC1_CMD/McSPI_CS0/GP [7]	L14	I/O/Z, IPD, BH	Yes	Yes	0x1C17[9]
MMC1_CLK/McSPI_CLK/GP[6]	M13	I/O/Z, IPD, BH	Yes	Yes	0x1C17[8]
SPI_CLK/UHPI_HINT	N3	I/O/Z, IPD, BH	Yes	No	0x1C50[12]
SPI_CS3/UHPI_HRDY	N5	I/O/Z, IPD, BH	Yes	No	0x1C50[11]
SPI_CS2/UHPI_HR_NW	P5	I/O/Z, IPD, BH	Yes	No	0x1C50[10]
SPI_CS1/UHPI_HCNTL1	N4	I/O/Z, IPD, BH	Yes	No	0x1C50[9]
SPI_CS0/UHPI_HCNTL0	P4	I/O/Z, IPD, BH	Yes	No	0x1C50[8]
UART_TXD/UHPI_HD[15]/ GP[31]/I2S3_DX	P14	I/O/Z, IPD, BH	Yes	Yes	0x1C19[15]
UART_RXD/UHPI_HD[14]/ GP[30]/I2S3_RX	N13	I/O/Z, IPD, BH	Yes	Yes	0x1C19[14]
UART_CTS/UHPI_HD[13]/ GP[29]/I2S3_FS	P13	I/O/Z, IPD, BH	Yes	Yes	0x1C19[13]
UART_RTS/UHPI_HD[12]/ GP[28]/I2S3_CLK	N12	I/O/Z, IPD, BH	Yes	Yes	0x1C19[12]
I2S2_DX /UHPI_HD[11]/ GP[27]/SPI_TX	P12	I/O/Z, IPD, BH	Yes	Yes	0x1C19[11]

Terminal Name In C5517	Ball	I/O Type in C5517	IPU and IPD C5517	IPU and IPD C5515/05	IPU and IPD Register In C5517
I2S2_RX /UHPI_HD[10]/ GP[20]/SPI_RX	N11	I/O/Z, IPD, BH	Yes	Yes	0x1C19[10]
I2S2_FS/UHPI_HD[9]/ GP[19]/SPI_CS0	P11	I/O/Z, IPD, BH	Yes	Yes	0x1C19[9]
I2S2_CLK/UHPI_HD[8]/ GP[18]/SPI_CLK	N10	I/O/Z, IPD, BH	Yes	Yes	0x1C19[8]
GP[17]/UHPI_HD[7]	P10	I/O/Z, IPD, BH	Yes	Yes	0x1C19[7]
GP[16]/UHPI_HD[6]	N9	I/O/Z, IPD, BH	Yes	Yes	0x1C19[6]
GP[15]/UHPI_HD[5]	P9	I/O/Z, IPD, BH	Yes	Yes	0x1C19[5]
GP[14]/UHPI_HD[4]	N8	I/O/Z, IPD, BH	Yes	Yes	0x1C19[4]
GP[13]/UHPI_HD[3]	N7	I/O/Z, IPD, BH	Yes	Yes	0x1C19[3]
GP[12]/UHPI_HD[2]	P7	I/O/Z, IPD, BH	Yes	Yes	0x1C19[2]
SPI_TX/UHPI_HD[1]	N6	I/O/Z, IPD, BH	Yes	No	0x1C19[1]
SPI_RX/UHPI_HD[0]	P6	I/O/Z, IPD, BH	Yes	No	0x1C19[0]
XF	M8	I/O/Z, IPU, BH	No	No	No change
CLKOUT	Α7	I/O/Z, IPD, BH	Yes	No	IPD is controlled by sysreg 0x1C24[15]. When the pin is tri-stated, the pulldown comes ON (and vice-versa).
CLKIN	A8	I, IPD, BH	Yes	No	0x1C18[15]
CLKSEL	C7	I, IPD, BH	No	No	No change
ТСК	M6	I, IPU, BH	Yes	Yes	0x1C18[8]
TDI	L7	I, IPU, BH	Yes	Yes	0x1C18[10]
TDO	M7	I/O/Z, IPU, BH	Yes	No	0x1C18[6]
TMS	L8	I, IPU, BH	Yes	Yes	0x1C18[9]
TRST	M9	I, IPD, BH	Yes	No	0x1C18[7]
EMU[1:0]	M5,L6	I/O/Z, IPU, BH	Yes	Yes	0x1C18[11]

Table 9. I/O Pin List, Pull, and Register Description (continued)

7 CLKOUT

NOTE: CLKOUT is only for debug purposes and is not a clock source to external devices.

7.1 Changing Clock Source State

On the C5517 the new implementation will:

- Allow clock gating in a low state (the CLKOUT clock will stop in the low state)
- Support glitchless clock switching when the user software implements the following protocol: first gated CLKOUT, then changes the CLKOUT source, and then un-gated the CLKOUT.
- A new divider in the CLKOUT path will allow dividing any of the existing clock sources by even divide ratios: 2, 4, 6, 8, 10, or bypass the divider.

For more details on the CLKOUT Configuration Register (CLKOUTCR), see the chapter *System Control* in *TMS320C5517 Digital Signal Processor Technical Reference Manual* (literature number <u>SPRUH16</u>).

8 Timer

8.1 Adding Timer Reset State

In order to remove the possibility of glitches in the timer counter clock source, the timers need to be held in reset while the clock source is changed. C5517 adds a timer reset bit in the Timer Control Register to reset the timer for each individual timer (Timer0, Timer1, and Timer2).

For more details on the Timer Control Registers (TnCR), see the chapter 32-Bit Timer/Watchdog Timer in TMS320C5517 Digital Signal Processor Technical Reference Manual (literature number <u>SPRUH16</u>).

8.2 Muxing of Timer Interrupts

C5517 allows the routing of the timer interrupts through the Timer Interrupt Selection Register.

For more details on the Timer Interrupt Selection Register (TISR), see the chapter *System Control* in *TMS320C5517 Digital Signal Processor Technical Reference Manual* (literature number <u>SPRUH16</u>).

8.3 Adding an External Clock to Timers

The C5517 allows adding an external input clock to the timers through the Timer Input Selection Register. The setting of this register overrides any other GPIO routing. This prevents the programmer from inadvertently clearing an interrupt by writing to other bits in this register.

For more details on the Timer Input Selection Register (T*n*INSR), see the chapter 32-Bit Timer/Watchdog Timer in TMS320C5517 Digital Signal Processor Technical Reference Manual (literature number <u>SPRUH16</u>).

CLKOUT

Texas Instruments

www.ti.com

Bootloader

9 Bootloader

The C5517 bootloader includes the following changes to support new features:

- Supports new PLL
 - Adds support for unencrypted boot image from:
 - McSPI
 - UHPI
 - SD and SDHC
 - eMMC and MMC
 - UART
- Supports 16-bit multiplexed UHPI boot mode
- EM_A[20:15]/GPIO[26:21] pins will be latched to determine boot mode

In order to determine which boot mode to invoke, C5517 latches the value of EM_A[20:15]/GPIO[26:21] into the BootMode[5:0] bits in the BootMode Register [1C34h] at reset. This register is a read-only register for the bootloader to determine boot mode options.

For more details, see the section titled *BootMode Implementation and Requirements* in TMS320C5517 *Fixed-Point Digital Signal Processor* (literature number <u>SPRS727</u>).

Boot Mode Description	BootMode[5:4]	BootMode[3:0]	System Clock when CLK_SEL = 1
			11.2896 MHz
NOR 16-bit data Boot	00	0000	12.0 or 12.288 MHz
NOR 16-bit data Boot	00	0000	16.8 MHz
			19.2 MHz
			11.2896 MHz
NAND 8-bit or 16-bit data Boot	00	0001	12.0 or 12.288 MHz
NAIND 8-bit of 16-bit data Boot	00	0001	16.8 MHz
			19.2 MHz
	00		11.2896 MHz
UART0 9600 baud Boot	01	0010	12.0 or 12.288 MHz
	10	0010	16.8 MHz
	11		19.2 MHz
	00		11.2896 MHz
UART0 57600 baud Boot	01	0011	12.0 or 12.288 MHz
	10	0011	16.8 MHz
	11		19.2 MHz
	00		11.2896 MHz
UART0 115200 baud Boot	01	0100	12.0 or 12.288 MHz
UARTO 115200 baud Boot	10	0100	16.8 MHz
	11		19.2 MHz
	00		11.2896 MHz
SPI 16-bit or 24-bit address	01	0101	12.0 or 12.288 MHz
Boot, < 1MHz	10	UIUI	16.8 MHz
	11		19.2 MHz
	00		11.2896 MHz
SPI 16-bit or 24-bit address	01	0110	12.0 or 12.288 MHz
Boot, < 10 MHz	10	0110	16.8 MHz
	11		19.2 MHz
Reserved	00	0111	N/A

Table 10. BootMode Peripheral Boot Source Configuration when CLK_SEL = 1

22 Migrating from TMS320C5515 to TMS320C5517

Boot Mode Description	BootMode[5:4]	BootMode[3:0]	System Clock when CLK_SEL = 1
	00		11.2896 MHz
I2C 16-bit or 24-bit address	01	1000	12.0 or 12.288 MHz
Boot, 400kHz	10	1000	16.8 MHz
	11		19.2 MHz
			11.2896 MHz
SD and SDHC eMMC and MMC Controller 0	00	1001	12.0 or 12.288 MHz
Boot	00	1001	16.8 MHz
			19.2 MHz
			11.2896 MHz
SD and SDHC eMMC and MMC Controller 1	00	1010	12.0 or 12.288 MHz
Boot	00	1010	16.8 MHz
			19.2 MHz
Reserved	00	1011	N/A
			11.2896 MHz
UHPI 16-bit multiplexed mode	00	1100	12.0 or 12.288 MHz
Boot	00	1100	16.8 MHz
			19.2 MHz
			11.2896 MHz
McSPI 24-bit address serial	00	1101	12.0 or 12.288 MHz
flash Boot, 10 MHz	00		16.8 MHz
			19.2 MHz
			11.2896 MHz
McSPI 24-bit address serial	00	1110	12.0 or 12.288 MHz
flash Boot, 40 MHz	UU		16.8 MHz
			19.2 MHz
			11.2896 MHz
USB Boot	00	1111	12.0 or 12.288 MHz
	UU		16.8 MHz
			19.2 MHz

Table 10. BootMode Peripheral Boot Source Configuration when CLK_SEL = 1 (continued)

10 Memory Map

The C5517 adds the capability to access the byte address range of FE0000h – FFFFFFh via the EMIF's external memory space on EM_CS5. On the C5515/05, the byte address range FE0000h – FFFFFFh was used for the on-chip ROM, regardless of MPNMC bit status.

When the MPNMC bit field of the ST3 status register is cleared (by default), the byte address range of FE0000h – FFFFFh is used for the on-chip ROM. When the MPNMC bit field of the ST3 status register is set through software, the on-chip ROM is disabled and not present in the memory map, and the byte address range of FE0000h – FFFFFh is directed to the EMIF's external memory space on EM_CS5.

Revision History

www.ti.com

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Date	Revision	Notes
April 2014	*	Initial Release

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated