

Application Report
SPRAAQ6 – September 2007

Mastering the Art of Memory Map Configuration
for DaVinci-Based Systems

Vincent Wan, Niclas Anderberg, Davor Magdic, and Jing Cui 1 Software Development Organization

ABSTRACT

This document describes how to configure Codec Engine-based audio/video applications
on the DM6446 (DaVinci) for use in a system that has less than the 256 MB of DDR2
memory that the evaluation board provides. Specifically, we present steps for shrinking
memory requirements down to 64 MB, but the principles apply to any amount of DDR2.
Project collateral discussed in this application report can be downloaded from the
following URL: http://www.ti.com/lit/zip/SPRAAQ6.

Contents

1 Introduction ... 2
1.1 Why Do Codec Engine Applications Consume 256 MB of Memory Out of the Box? 3
1.2 Physical Sharing of DDR2 Memory between the ARM and the DSP 3
1.3 Linux Partition .. 3
1.4 CMEM: Contiguous Memory Allocator. .. 4
1.5 The DDRALGHEAP and DDR Sections .. 4
1.6 The DSPLINKMEM Section ... 4
1.7 The RESET_VECTOR Segment ... 4

2 Designing the Memory Map .. 5
2.1 The Procedure ... 5
2.2 It’s (Mostly) All About Video ... 6
2.3 Determining the Size of DDRALGHEAP .. 8

2.3.1 Measuring DDRALGHEAP Size via Engine_getUsedMem() API 8
2.3.2 Measuring DDRALGHEAP Size via Server_getMemStat() API 8
2.3.3 Measuring DDRALGHEAP Size via External ALGUTIL Utility 9

2.4 Determining the Size of the DDR Section. ... 9
2.5 Sizing and Partitioning CMEM Memory ... 10

2.5.1 Calculating CMEM Size and Partitions .. 10
2.5.2 Measuring CMEM Size and Partitions ... 11

2.6 Optional: Using CMEM to Dynamically Size DDRALGHEAP 12
2.7 Optional: Reducing the DSPLINKMEM Segment Size from 1 MB to 512 KB 12
2.8 Arranging the Segments in Correct Order and Alignment ... 12

3 Memory-map Adaptation Instructions ... 14
3.1 Determining the Version of Codec Engine. .. 15
3.2 Rebuilding DSPLink 1.30 ... 15
3.3 Rebuilding the DSP Server .. 17
3.4 Optional: Splitting the DDR Section to Reduce Trampoline Occurrences 19
3.5 Rebuilding the ARM-side Application—If You Use DSPLink 1.40 21

1 In addition to the main authors, we also want to acknowledge others who may contribute to the DaVinci wiki
page at http://wiki.davincidsp.com/index.php?title=Changing_the_DVEVM_memory_map.

1

http://www.ti.com/lit/zip/SPRAAQ6
http://wiki.davincidsp.com/index.php?title=Changing_the_DVEVM_memory_map

SPRAAK7

2 Mastering the Art of Memory Map Configuration for DaVinci-Based Systems

3.6 Copying Other Necessary Files to Target File System .. 21
3.7 Modifying the loadmodules.sh Script ... 22
3.8 Changing the Boot Srgument in your Linux Bootloader ... 23
3.9 Rebooting and Running the Application .. 23

4 Troubleshooting .. 23
4.1 Checking How Much CMEM Memory is Available or Used ... 23
4.2 Memory Map Mismatch ... 24
4.3 Heap Sizes Too Small ... 24

5 A Real World Example .. 25
5.1 Allocating CMEM Memory Space .. 26
5.2 Allocating DDRALGHEAP Memory Space .. 27
5.3 Allocating DDR Memory Space ... 27
5.4 Allocating Linux OS Memory Space .. 27

6 Conclusion ... 28
7 References ... 28

1 Introduction
Developers who build audio/video applications on TI's DaVinci platforms have a rich software
stack available for use with the DVEVM evaluation board. At the core of the DVSDK (Digital
Video Software Development Kit), as this stack is called, is Codec Engine (CE), an application
programming layer that allows ARM-side applications to execute video and other algorithms on
the DSP for faster processing. The DVSDK stack also includes the MontaVista Linux OS, ARM-
side Codec-Engine-using demo applications that encode and decode video and sound, and
DSP-side executables running the actual video encoding and decoding algorithms. While the
supplied software is a strong starting point for creating custom applications, one challenge
DaVinci developers face is how to adapt all these components so they fit in a production system.

The DVEVM board has 256 megabytes of DDR2 memory. The DVSDK software stack is by
default configured to use all of that memory. Since video algorithms are memory-hungry, this
configuration supports most complex video processing scenarios, and it does not require you to
deal with the nontrivial issue of changing the memory map. The total DVEVM memory is
partitioned by default at 120 MB for Linux, 8 MB for video and other input/output buffers to be
exchanged between the ARM and the DSP, and 128 MB for DSP algorithms. Of the last amount,
6 MB is set aside for code and data, and full 122 MB for the video algorithms’ intermediate
processing buffers organized in a heap. This setting allows several instances of video, image,
and other encoders and decoders for various video formats to run at the same time.

After giving some background on the elements we are working with, this document discusses
how to determine the minimum memory required and how to partition that memory. The
remainder of this document consists of hands-on instructions on how to configure and rebuild the
various components to fit the chosen memory map. We demonstrate the principles and execute
actual steps on the Codec Engine video_copy example, whose sources every DVSDK user can
access. Finally, we showcase the techniques on the example of a real-world, production system
application.

SPRAAK7

Mastering the Art of Memory Map Configuration for DaVinci-Based Systems 3

1.1 Why Do Codec Engine Applications Consume 256 MB of Memory Out of the Box?

The DaVinci EVM board comes with 256 MB of external memory installed (the maximum amount
currently addressable by the part). All the out-of-the-box software (DSP codecs and ARM-side
applications) are spread out over all of that space for developer’s comfort. This way you don’t
have to worry about running out of space when allocating buffers or creating memory-hungry
instances of video-processing algorithms.

However, since some production platforms based on the DM6446 processor will likely have less
than 256 MB of external memory available, developers must be able to shrink the memory used
by applications to whatever the target platform provides.

1.2 Physical Sharing of DDR2 Memory between the ARM and the DSP

This 256 MB of physical DDR2 memory is shared between the ARM and the DSP—that is, both
processors can access all of the DDR2. The ARM views this memory as virtual addresses
through an MMU (Memory Management Unit), while the DSP uses the physical addresses
directly. Virtual addresses are used by Linux to provide memory protection between processes,
making sure a process only accesses memory to which it has access. If a Linux user process
accesses an address to which it does not have access, a segmentation fault (segfault) occurs
and the process is killed by the OS.

Since the DSP has no MMU, it can not be restricted to certain memory addresses, which means
that a “rogue pointer” in DSP-side code can write not just all over the DSP DDR memory, but
also over the ARM (Linux) side code and data. These issues can be very difficult to find.

Physical memory addresses for DDR2 are the same for the ARM and the DSP on the DM6446
and range from 0x80000000 to 0x90000000.

1.3 Linux Partition

Linux is different from an RTOS like DSP/BIOS in that it manages all resources in the system for
the application. The application requests access to a resource and Linux grants it depending on
UNIX permissions and availability. This means that all the memory you give to Linux is "owned"
by Linux and is out of your direct control. The DDR Linux memory partition is segmented into
pages (4 KB in size on ARM Linux), and this is the minimum unit of memory you can allocate.
This means that when you call malloc() to reserve some memory for your application, Linux
gives this memory to you as a sequence of 4 KB pages. Not only do you not have any control
over where in physical memory this memory is allocated, you don't even know if they are
physically contiguous (the MMU makes the memory look virtually contiguous to the process).

This is normally a great feature, but it becomes a problem when you want to share a buffer
between the ARM and the DSP. This because the DSP needs physically contiguous memory to
work with. This is the reason the CMEM kernel module was created—to provide physically
contiguous buffers to be shared between the ARM and the DSP. This is also useful for buffers
that are to be accessed using the DMA or the DM6446 H/W resizer.

The Linux partition is also used for various internal I/O buffers and application caching features,
so the bigger this partition, the better.

SPRAAK7

4 Mastering the Art of Memory Map Configuration for DaVinci-Based Systems

1.4 CMEM: Contiguous Memory Allocator

CMEM was created to support sharing buffers between ARM Linux processes (application
control) and the DSP (algorithm acceleration). CMEM takes a physical memory region you
specify at module insertion time and carves it into pools of contiguous buffers according to your
specifications. The buffers are not cached on the ARM side (but the Codec Engine handles the
DSP side caching of these buffers).

How to use CMEM is described in sections that follow. Note that once you have inserted the
cmemk.ko kernel module you can always execute "cat /proc/cmem" to get status on the buffers
and pools managed by CMEM.

1.5 The DDRALGHEAP and DDR Sections

The DDRALGHEAP section contains the heap from which the active codecs allocate all their
dynamic memory. This section can be quite large, especially if video codecs are used.

A new feature as of Codec Engine 1.20 is that you can now pass in a physically contiguous
(CMEM-allocated) memory block to Codec Engine to be used as the DDRALGHEAP. See the
Server_redefineHeap() API call. There are also new API calls for querying heap usage during
run time: see Server_getNumMemSegs() and Server_getMemStat().

The DDR section contains DSP-side code and static data for all the codecs plus the system (that
is, DSP/BIOS and Codec Engine). This section is called "DDR2" for CE 1.20 and later.

1.6 The DSPLINKMEM Section

The DSPLINKMEM section is used by the DSPLink IPC (Inter Processor Communication)
software from TI. Codec Engine uses this software module for communicating between the ARM
and the DSP, as well as for loading the DSP with code and controlling it.

1.7 The RESET_VECTOR Segment

The RESET_VECTOR section contains the DSP reset vector, which is the vector table that the
DSP side ISTP register points to when the DSP is pulled out of reset by DSPLink. The reset
vector code moves the vector table elsewhere by changing the ISTP, but this is where it is
located at boot. This section needs to start at an even 1 MB and needs to be 128 bytes in size.

http://wiki.davincidsp.com/index.php?title=DDRALGHEAP

SPRAAK7

Mastering the Art of Memory Map Configuration for DaVinci-Based Systems 5

total memory = DSP Server memory + CMEM memory + Linux Memory

Linux Memory = total memory (e.g. 64 MB) - DSP memory - CMEM memory

2 Designing the Memory Map
This section describes how to design your memory map to optimize the memory usage for your
system. When this phase is completed, we will have a piece of paper that lays out the most
compact memory map we can have, with names, origins, and sizes for each segment of the map
needed by all the players in the system. That piece of paper we then use as the input for the
next phase (described in Section 3), where we edit various text files to apply that information into
the system's build.

Our motivation here is to make the memory needed by the Codec Engine, and its ARM-side
support software like CMEM and DSPLink, as small as possible. This we want because any
portion of the memory set aside for Codec Engine that is not used remains unused forever;
whereas any amount of memory given to Linux will always be put to good use. Linux uses all the
memory it can get for caching its disk and network data, so increasing the memory for Linux
improves the overall performance of the system.

To put it in an equation,

from which follows that

Since total memory is fixed and is determined by the hardware design of a board, we strive to
give the DSP and CMEM only as much as necessary so that Linux gets as much as possible.

2.1 The Procedure

In essence, the procedure for determining the memory map is this: we make the system work
with a luxurious memory map (for example, the original 256 MB). Then, for each segment we
calculate or measure its actual requirements, reduce the segment size, and rerun the
application. Once we have minimized the size of each segment, we compact the map and fit
everything into the block of memory for the final system—128 MB, 64 MB, 32 MB, etc. Here’s a
step-by-step overview:
1. Start with the original 256 MB memory map.
2. Include all the codecs needed in your DSP server (via the .cfg file), and rebuild the DSP

server.
3. Determine the size of DDRALGHEAP using one of the following methods:

– Calculate.
– Run the ARM-side CE application and measure the worst case.

4. Determine the size of the DDR segment.
5. Determine the size of CMEM using one of the following methods:

– Calculate.
– Run the ARM-side CE application and measure the worst case.

6. Move RESET_VECTOR in the same MB as DSPLINKMEM or DDR.

SPRAAK7

6 Mastering the Art of Memory Map Configuration for DaVinci-Based Systems

7. Order the segments correctly and place them at proper start addresses.
8. Compute the Linux memory size = device total DDR2 memory – DDR size –

DDRALGHEAP size – DSPLINKMEM (1 MB).

The following figure is an example of a before and after scenario when this procedure is applied:

Figure 1. Before and After Memory Maps

In the "after" picture we have the actual minimum sizes for each segment. Knowing that, we can
fit everything in a device with less system memory, 128 MB in the above example.

The folllowing section look at how to calculate or measure these sizes, but first we need to set
some expectations.

2.2 It’s (Mostly) All About Video

Recall that the DSP server has four segments:
• Two smaller system segments called "DSPLINKMEM" and "RESETCTRL", with total size of

about 1 MB (that can be shrunk to 512 KB if really necessary, as we mention in a later section).

• One medium-size segment, "DDR" (or "DDR2"), sized at typically 1-3 MB, that contains the
code and static data for all the codecs plus the system.

• One large segment called "DDRALGHEAP", sized at anywhere from 2 MB to 200 MB, that
holds all the dynamic memory allocated by each active codec instance running on the DSP.

SPRAAK7

Mastering the Art of Memory Map Configuration for DaVinci-Based Systems 7

The sizes of the first two segments are independent of the run-time characteristics of the system.
The size of the DDR segment depends on the codecs included in the system, and this is fixed
given the functionality you wish to support—include only the codecs you need and none of the
codecs you don't. This requires a fixed amount of code and static data space. But the size of the
DDRALGHEAP segment depends heavily on which instances of those codecs the ARM side
creates and when.

When the system is first started, there are no codec instances and the total heap allocated in
DDRALGHEAP is 0. When the ARM side creates a DSP codec, for example via
VIDENC_create(), this instance allocates dynamic memory according to its spec sheets. The
amount of memory usually depends on the codec creation parameters. For video processing in
full resolution this may require several MBs of DDRALGHEAP for a single instance.

When an instance is deleted (for example, with VIDENC_delete()), all of its dynamic memory is
reclaimed.

Video codecs (encoders and decoders) need by far the most dynamic memory, often several
MBs, followed by imaging codecs, then audio codecs, followed by speech codecs, which
typically need very little. Therefore, the way video codecs are used by the ARM side determines
how big the DDRALGHEAP segment must be.

The CMEM segment's size is also very dependent on which codecs run in the system and when.
The purpose of the CMEM segment is to exchange input and output codec data between the
ARM and the DSP codec instances. Video buffers allocated via CMEM are much larger than
speech buffers.

The bottom line is that the total required memory depends on how we use the codecs, and if we
don't use all available codecs at the same time—which some classes of applications do and
some don't—the total memory required will be less than the simple sum of the parts.

Here is an example to illustrate this: assume the system is a DaVinci-based digital video camera
with a "video record" and a "video play" button. We could design the system to create, from the
ARM side, a video encoder instance and video decoder instance on the DSP, at boot time, and
have them run side-by-side. Both codec instances hold their dynamic data in DDRALGHEAP.
When a user presses the "record" button, the ARM side passes raw images via CMEM to the
video encoder. When the user presses the "playback" button, the ARM side passes the
compressed frames and receives uncompressed images. The total of combined DDRALGHEAP
and CMEM memory required for these two may be, say, 3 MB for decoder + 2 MB for encoder =
5 MB.

Alternatively, we can design the system to wait until the user presses the "record" button and
then create a video encoder instance on the DSP, and delete the instance when the user
presses the stop button. Similarly we create an encoder instance when the user presses the
"playback" button, and delete it when he exits the playback mode.

Because we know that the user cannot record and playback at the same time, we know that the
encoder instance and the decoder instance cannot exist at the same time. Therefore the total
memory needs become MAX(3 MB, 2 MB) = 3 MB instead of 5 MB. Since creating a codec
instance is a very fast operation, this method does not affect the system in terms of speed and
power consumption.

SPRAAK7

8 Mastering the Art of Memory Map Configuration for DaVinci-Based Systems

hServer = Engine_getServer(hEngine);
Server_getNumMemSegs(hServer, &numSegs);

for (i=0; i<numSegs; i++) {

Server_getMemStat(hServer, i, &memStat);

if (strcmp(memStat.name, "DDRALGHEAP") == 0) {
printf("DDRALGHEAP usage is %d out of %d available\n",

memStat.size, memStat.used);
}

}

2.3 Determining the Size of DDRALGHEAP

The total DDRALGHEAP size depends on which codecs (of which type, from which vendor) are
used, how many instances of those codecs exist at the same time, and possibly with which
parameters the codecs were created—for example, D1 vs. CIF video resolution changes the
memory requirements.

In theory we can calculate the amount of memory needed by looking at the codec data sheets;
those should list how much memory a codec instance requires based on the mode of operation.

In practice, it is better to actually measure the usage at peak time and only look at the specs to
confirm that the expected numbers roughly match the measured results. This because the data
sheets show the worst-case size requirements. Depending on your codec configuration, your
requirements may or may not be less.

2.3.1 Measuring DDRALGHEAP Size via Engine_getUsedMem() API

This procedure applies to all versions of Codec Engine. The simplest way to measure memory
usage is this:

1. In the ARM application, call Engine_getUsedMem() immediately after the first call to
Engine_open().

2. Call Engine_getUsedMem(engineHandle) again after creating the codecs with the heaviest
memory requirements.

3. The delta between the two numbers is roughly the required size of DDRALGHEAP. The
reported size is actually slightly larger than required as it includes the growth of DDR, but the
latter grows only by a few KB per instance. For example, if the delta is 6.4 MB, the real
DDRALGHEAP may be 6.395 MB.

2.3.2 Measuring DDRALGHEAP Size via Server_getMemStat() API

This procedure applies Codec Engine v1.20 and later.

The Server_getMemStat() API in CE 1.20 and later allows us to query each segment
specifically, so we can do that for DDRALGHEAP.

Assuming the Codec Engine handle is in variable "hEngine", make the call below at peak load
time (when worst-case codecs are created and active) to find out how big DDRALGHEAP need
be:

SPRAAK7

Mastering the Art of Memory Map Configuration for DaVinci-Based Systems 9

TRACEUTIL_DSP0TRACEMASK="ti.sdo.apps.algutil.ALGUTIL=4"; ./myapp

@0x000898fd:[T:0x8fc45144] ti.sdo.apps.algutil.ALGUTIL - EXTERNAL scratch total: best
case:(0x0), worst case:(0x0)
@0x000899a6:[T:0x8fc45144] ti.sdo.apps.algutil.ALGUTIL - External persist total: best
case:(0x29d5c), worst case:(0x29d94)

2.3.3 Measuring DDRALGHEAP Size via External ALGUTIL Utility

This procedure applies to all versions of Codec Engine. A collection of tools, called “servertools”
is available at
https://www-a.ti.com/downloads/sds_support/applications_packages/servertools/index.htm. This
collection contains, among others, a utility to instrument the DSP server and determine the exact
memory needs of each algorithm for specific types of memory it needs. Follow these steps:

1. Download the tools and locate algUtil, which is a DSP-side utility module that prints out the
memory allocated for algorithms on the heap as it is instantiated.

2. Insert the module into the codec server using
xdc.useModule('ti.sdo.apps.algutil.ALGUTIL') in myServer.cfg.

3. Call ALGUTIL_init() in the DSP codec server main() function.

4. Enable tracing in your CE application, and enable algUtil tracing when invoking the application
as follows. For more details on CE trace, see the CE documentation.

5. Invoke the application with one algorithm instance created at a time until data has been
collected for all algorithms. The output has two lines of special interest similar to the following:

6. Add up the heap usage of your "worst case codec combination" to determine your total heap
requirement.

2.4 Determining the Size of the DDR Section

The DDR segment holds codec and system code as well as static data. (It is called "DDR2" in
CE 1.20 and later, but it is the same segment.) We find its minimum required size simply by
looking at the linker map. The procedure is as follows:

1. Add all the codecs you intend to use to your DSP server's .cfg file, and no others.
2. Build your DSP server.
3. Look at the generated .map file for the codec server, and see how much is used for DDR. In the

following example, it is 0x90168 bytes. The .map file is under the directory package/cfg.

name origin length used unused attr
---------------------- -------- --------- -------- -------- ----

ARM_RAM 10008000 00004000 00000000 00004000 RWIX
CACHE_L2 11800000 00010000 00000000 00010000 RWIX
CACHE_L1P 11e08000 00008000 00000000 00008000 RWIX
L1DSRAM 11f04000 00010000 00010000 00000000 RWIX
CACHE_L1D 11f14000 00004000 00000000 00004000 RWIX
DDRALGHEAP 88000000 07a00000 07a00000 00000000 RWIX
DDR 8fa00000 00400000 00090168 0036fe98 RWIX
DSPLINKMEM 8fe00000 00100000 00000000 00100000 RWIX

4. Add a little to the "used" value to allow code and data to grow some during development.

https://www-a.ti.com/downloads/sds_support/applications_packages/servertools/index.htm

SPRAAK7

10 Mastering the Art of Memory Map Configuration for DaVinci-Based Systems

[.....812K.....][.....812K. ...][4K][4K][4K][4K]

insmod cmemk.ko phys_start=0x88000000 phys_end=0x88200000 pools=2x831488,4x4096

2.5 Sizing and Partitioning CMEM Memory

The module we call CMEM, as we have seen, enables us to allocate large chunks of physically
contiguous memory from Linux-ARM and place data buffers in them for the DSP to process.
There are two aspects to configuring CMEM:

• Knowing the total amount of memory we need for buffer exchange between ARM and DSP.
This is the CMEM size.

• Knowing the exact size and count of each type of exchange buffers the application needs.
This gives us the CMEM partitioning into pools of buffers.

Again, we can calculate or measure required CMEM sizes, and it is always best to do both --
using the calculations to verify the measurements.

2.5.1 Calculating CMEM Size and Partitions

As an example, assume we run one video encoder at D1 resolution and two audio encoders. To
exchange buffers with these codecs, the video encoder needs one input D1-sized buffer for the
raw image and one output buffer for the encoded frame. For each audio codec, we need one
input buffer for raw audio data and one output buffer for compressed audio.

The size of the raw D1 image buffer we calculate knowing the format of the image; let us
assume it's 812 KB. The size of the output video encoder buffer depends on the compression
format, but typically it is recommended to be the same as the input buffer, that is 812 KB in this
case. As for the audio, assume we similarly use a 4 KB input and 4 KB output buffer for each
codec.

Our total CMEM need is then: (812 KB x 2) + (4 KB x 2) + (4 KB x 2) = 828 KB.

Our CMEM pool needs the following: one pool with 2 buffers of 812 KB, and one pool with 4
buffers of 4 KB:

CMEM pool partitioning is important; if done improperly, it prevents us from getting the buffers
we need, even if there is enough total space. (This is the disadvantage of pools; the advantage
is that it prevents fragmentation where it could happen, that is, if the application were allocating
and releasing many buffers of different sizes constantly.)

In this example, we have one video encoder and two audio encoder instances, all running at the
same time. Let us take a look at how the exchange occurs:

1. Before the application starts, the system integrator loads the CMEM module. Assuming the
CMEM area starts at 0x88000000, and is sized as above, the command to load the module is:

(We set aside a full 2 MB for CMEM, and split it into 2 x 812 KB and 4 x 4 KB buffer pools.)
2. The ARM application allocates its two 812 KB buffers and four 4 KB CMEM buffers via

Memory_contigAlloc();

SPRAAK7

Mastering the Art of Memory Map Configuration for DaVinci-Based Systems 11

insmod cmemk.ko phys_start=0x88000000 phys_end=0x88340000 pools=4x831488,4x4096

insmod cmemk.ko phys_start=0x88000000 phys_end=0x8A000000
pools=2x4100000,10x1100000,50x130000,100x17000

system(“/bin/cat /proc/cmem”);

3. The ARM application stores a raw image block in one 812 KB buffer and raw audio blocks in
two 4 KB buffers. It passes the 812 KB video buffers in a call to VIDENC_process() and the 4
KB audio buffers in calls to AUDENC_process(). It reads the compressed video and audio
frames from their buffers.

4. When the application closes, it frees up all of its CMEM buffers via Memory_contigFree().

Imagine now that in addition to all of the above, the application also uses a video decoder, but
never at the same time as the video encoder. (Recall the video camera example that supports
record and playback modes but only one at a time.) Assuming the video decoder also processes
D1-sized images—getting compressed frames and producing raw images—we'd need two 812
KB buffers for the video decoder as well. But since we never have both the encoder and the
decoder processing their input data at the same time, we can use the same 812 KB input and
output CMEM buffers. Therefore the total CMEM needs remain the same, and even the
partitioning looks the same.

Note that it is not even necessary that the ARM application destroys one video codec on the
DSP before it switches to another: the two instances can be active on the DSP at the same time,
but if we never call VIDENC_process(input 812KB buf, output 812KB buf) while we are
waiting for VIDDEC_process(input 812KB buf, output 812KB buf), we are safe. We create
and destroy codec instances on the DSP as needed only in order to save on memory needs on
the DSP for DDRALGHEAP.

Now for a counter example. An application may need both record and playback running at the
same time. In that case, the total CMEM needs are 2 x 812 KB (video encode) + 2 x 812 KB
(video decode) + 2 x 4 KB (audio encode) + 2 x 4 KB (audio decode) which is 3264 KB. The
command line to load the CMEM module would then be:

(We set aside 3.25 MB, slightly larger than the 3.2 MB we need.)

2.5.2 Measuring CMEM Size and Partitions

In rare cases, your application’s use of input and output buffers is so complex that it is easier to
measure your application’s needs in terms of CMEM memory by running the application itself.

1. Start with CMEM module loaded and partitioned to allow for plenty of memory and plenty of
buffers: one or two really big ones, a few large ones, a number of medium ones, and many
small ones. For example:

This example creates two 4 MB+ buffers, ten 1 MB+ buffers, fifty 128 KB+ buffers, a hundred 16
KB+ buffers, for a total of 27 MB+, rounded to 32 MB.

2. At your application’s peak memory usage time, or several times through its life cycle, put the
following in your C code and record the output:

SPRAAK7

12 Mastering the Art of Memory Map Configuration for DaVinci-Based Systems

Accessing /proc/cmem as shown in the previous step causes CMEM to produce detailed
information regarding exactly how many buffers it uses and of what sizes. This gives you the
precise statistics for accurate sizing and partitioning.

Of course, it is always good to relax the accurate numbers, whether they are measured or
calculated. Application code may change and a new or larger buffer may be needed at certain
moments, but updating the "insmod cmemk.ko" line may be neglected. We use engineering
intuition to decide how much headroom we want to leave in terms of numbers and sizes of the
CMEM buffers the application needs. (It is also worth noting that alignment and Linux page
boundary requirements may require the total area to be larger than the sum of the parts.)

2.6 Optional: Using CMEM to Dynamically Size DDRALGHEAP

In CE 1.20 and above, the new APIs Server_redefineHeap() and Server_restoreHeap() let
you change the DSP-side heaps at run time. The following requirements must be met:

• The memory passed to Server_redefineHeap() needs to be contiguous (CMEM
allocated).

• The heap needs to be created in the DSP server’s DSP/BIOS configuration file, but can be
0 bytes initially.

These APIs let you “reuse” the memory used for DDRALGHEAP when the system is doing less
stressful DSP tasks, for example, ARM-side PDF file reading.

To use this feature, you need to allocate an extra buffer of the size of DDRALGHEAP in the
CMEM segment, on top of the requirements you have determined from Sections 2.5.1 and 2.5.2.

2.7 Optional: Reducing the DSPLINKMEM Segment Size from 1 MB to 512 KB

The DSPLINKMEM segment on the DSP is the system segment needed by DSPLink. By default,
approximately 512 KB of the 1 MB segment is used for shared buffers and control structures.
The defaults in the CE examples are larger to anticipate potential extra memory required by CE
in future releases. For simplicity, it is OK to avoid modifying the defaults for DSPLink system
components, but if you need to save an extra 512 KB, you can do so by reducing the size of this
segment, without worrying about details of DSPLink itself.

2.8 Arranging the Segments in Correct Order and Alignment

If we have followed the outlined procedure, we now have, on paper, the minimal measured
and/or calculated size for each segment: CMEM, DDRALGHEAP, DDR, and possibly
DSPLINKMEM if we decided to cut it in half. Segment RESETCTRL has a fixed size of 128
bytes.

At this point, we now need to decide what the start address of each segment will be. Follow
these steps:

1. Know (or decide) how much total system memory you have: 64 MB or 128 MB, etc.

2. Place the RESETCTRL segment at the highest-addressed 1 MB in the map. That is, this
segment must be 1 MB aligned and we choose it to be the very last MB in the memory map.

SPRAAK7

Mastering the Art of Memory Map Configuration for DaVinci-Based Systems 13

3. Place the DSPLINKMEM segment immediately after RESETCTRL, so it gets 1 MB – 128 B
(which is still fine). Now the last MB is occupied by RESETCTRL + DSPLINKMEM.

4. Place DDR before RESETCTRL. Try to make DDR’s size at least a multiple of 4 KB if you can't
make it more even. That is, don't use a size like 2,432,131 bytes for the DDR size. Instead, use
2.5 MB. For example, 0x280000 bytes, not 0x251C83 bytes. If possible, leave a larger amount
of memory for DDR than required in case you modify the code in the future, resulting in a code
size increase. This will give you the convenience of not having to shift everything in your
memory map just to accommodate small code size changes.

5. Place DDRALGHEAP before DDR. Again, use round hex numbers for origin and size and leave
a safety margin if you can. Such round numbers help you avoid alignment surprises and make
the map easier for humans to understand and maintain.

6. Place CMEM before DDRALGHEAP. Again, use round hex numbers if you can.
7. Linux gets the rest of the memory.

It is advisable to make RESETCTRL + DSPLINKMEM occupy the last 1 MB of memory,
especially if you use DSPLink 1.30. Then you will only have to rebuild DSPLink once (which is a
tedious procedure and you don't want to repeat it more than absolutely necessary).

Also, it is convenient to have CMEM and DDRALGHEAP adjacent to each other, so you can
resize one at the expense of the other without touching other segments. Both CMEM and
DDRALGHEAP are normally unused when there are no active codecs, even though the DSP
may be up and running and ready to create a codec when instructed.

If you are using the new feature in CE 1.20 to dynamically pass a CMEM buffer to the DSP to
serve as its DDRALGHEAP, simply combine DDRALGHEAP into the CMEM segment.

As the final result of this phase, your drawing on a piece of paper may look something like this:

Figure 2. Example Memory Map Plan After Calculations

SPRAAK7

14 Mastering the Art of Memory Map Configuration for DaVinci-Based Systems

3 Memory-map Adaptation Instructions
This section provides a procedure to follow in order to set up the memory map you have
designed. As an example, we have modified the video_copy example in Codec Engine to match
the following memory map:

Figure 3. Modified video_copy Memory Map

For those of you who are familiar with the video_copy example, there is obviously a lot more
memory here allocated to each segment than necessary for the application to run. However, the
goal of this example is to simply show the files in which changes need to be made, so that you
can better follow the steps we outline below.

The modified video_copy code example available with this application note comes in two flavors:

• DSPLink 1.30 and CE 1.02 based

• DSPLink 1.40 and CE 1.20 based

See the readme.txt file that accompanies the code for details on the contents.

To unzip the example into a directory of your choice, either use the unzip command in Linux or
use WinZip in Windows.

When following this procedure for your own application, simply replace the numbers with your
own memory map, and use the corresponding sizes and base addresses for it.

SPRAAK7

Mastering the Art of Memory Map Configuration for DaVinci-Based Systems 15

3.1 Determining the Version of Codec Engine

Knowing the version of CE (and DSPLink) is important, because it determines the steps to
follow. CE 1.20 (or above) uses DSPLink 1.40+, while versions of CE prior to that uses DSPLink
1.30+.

If you do not know which version of CE you are using, you can easily find it out by looking at the
name of the CE installation directory. For example, if the directory name is codec_engine_1_20,
it means you are using CE 1.20. When this document was written, DVEVM and DVSDK software
versions up through 1.20 were bundled with versions of CE older than CE 1.20.

3.2 Rebuilding DSPLink 1.30

DSPLink is a software component that enables the ARM and the DSP to communicate. Version
1.30 of DSPLink requires rebuilding the entire DSPLink when the DSP memory map is changed.
DSPLink version 1.40, which is used by Codec Engine 1.20 and above, is more dynamic and
requires no rebuilding.

If your DSPLink version is 1.40 or higher, you can skip to the next section. There is one much
simpler replacement step you need to do when you configure the application; it is described in
Section procedure, in Section 3.5, “Rebuilding the ARM-side Application—If You Use DSPLink
1.40”.

Rebuilding DSPLink is the most involved step in the sequence. Its sub-steps are listed here:
1. Move (cd) to the <DVEVM>/dsplink_1_30_*/packages/dsplink directory. All the paths in the

remainder of this section are given relative to this directory.

2. Open the DSPLink configuration file in a text editor: config/all/CFG_Davinci.TXT.

3. Search for the "RESUMEADDR" text entry. You will see, by default, the value of 0x8FF00020.
Change that number to the beginning of your RESET_VECTOR segment + 0x20. In this
example, it should be 0x83F00020.

4. Search for the “RESETVECTOR” entry. Change its value to the beginning your
RESET_VECTOR segment, which is 0x83F00000 in this example.

Note: Large hex numbers with lots of zeroes are commonly mistyped to omit one zero! Make
sure the hex number is exactly eight characters wide.

SPRAAK7

16 Mastering the Art of Memory Map Configuration for DaVinci-Based Systems

5. Search for the "MEMTABLE0" set of entries. There you will find some entries that resemble
your memory map, and some that don't. The ones to look for are DSPLINKMEM, RESETCTRL
(same as RESET_VECTOR) , and DDR. Change their addresses (ADDRDSPVIRTUAL and
ADDRPHYSICAL, which are the same) and sizes to match your new memory map. Do not
worry that DDRALGHEAP isn't there—that’s because DSPLink doesn't need to know about it
since its content only exists while the DSP runs and is never accessed by the ARM. The
resulting MEMTABLE0 entries for this example are as follows:

[MEMTABLE0]

[0]
ENTRY

|

N

|

0

Entry number

ABBR | S | DSPLINKMEM # Abbreviation of the table name
ADDRDSPVIRTUAL | H | 0x83F00080 # DSP virtual address
ADDRPHYSICAL | H | 0x83F00080 # Physical address
SIZE | H | 0xFFF80 # Size of the memory region
MAPINGPP
[/0]

| B | TRUE # Map in GPP address space?

[1]
ENTRY

|

N

|

1

Entry number

ABBR | S | RESETCTRL # Abbreviation of the table name
ADDRDSPVIRTUAL | H | 0x83F00000 # DSP virtual address
ADDRPHYSICAL | H | 0x83F00000 # Physical address
SIZE | H | 0x00000080 # Size of the memory region
MAPINGPP
[/1]

| B | TRUE # Map in GPP address space?

[2]
ENTRY

|

N

|

2

Entry number

ABBR | S | DDR # Abbreviation of the table name
ADDRDSPVIRTUAL | H | 0x83C00000 # DSP virtual address
ADDRPHYSICAL | H | 0x83C00000 # Physical address
SIZE | H | 0x00300000 # Size of the memory region
MAPINGPP
[/2]

| B | TRUE # Map in GPP address space?

Do not worry about other segments listed in the file.
6. Edit the file make/Linux/davinci_mvlpro4.0.mk, which contains DSPLink build instructions

for its ARM binaries, on a Linux host. Edit the following fields to match your DVEVM installation,
noting the location of the Linux kernel and the ARM compiler tools:

• BASE_BUILDOS: location of the Linux kernel. The directory usually ends with "/lsp/ti-davinci".

• BASE_CGTOOLS: location of the ARM tools. The directory usually ends with " arm/v5t_le/bin".
7. Edit the file make/DspBios/c64xxp_5.xx_linux.mk, which contains DSPLink build instructions

for its DSP binaries, on a Linux host. Edit the following fields to match your DVEVM and
DSP/BIOS installation:

• BASE_SABIOS: location of your DSP/BIOS installation. The directory usually ends with
"/bios_5_21_01" or another version number.

• BASE_CGTOOLS: location of your C64P compiler tools that run on Linux. The directory can
end in different ways, but it invariably contains subdirectories "bin", "include", and "lib".

SPRAAK7

Mastering the Art of Memory Map Configuration for DaVinci-Based Systems 17

gmake -C gpp/src
gmake -C dsp/src

8. Set the environment variable DSPLINK to the directory
<DVEVM>/dsplink_1_30_*/packages/dsplink.

9. From the current ($DSPLINK) directory, type:

10. Find the newly-built DSPLink kernel module in
gpp/export/BIN/Linux/Davinci/RELEASE/dsplinkk.ko, and copy it to your DVEVM file
system.

These steps should build a link server configured specifically for the memory layout you need.
Keep in mind that if you ever build multiple servers, this build of DSPLink won't work for them
anymore!

If you have more than one server, and they have different memory configurations, one approach
you may use is to clone the entire top-level DSPLink directory under a different name, then apply
all the previous steps in that directory. You will then have a DSPLink build dedicated entirely to
one specific memory map.

If you chose to do so, remember that you must specify which DSPLink build you are using in the
"XDCPATH", that would be the xdcpaths.mak file in Codec Engine examples if you build just
Codec Engine examples, and Rules.make file in DVEVM installation directory if you build real
DSP servers. The kernel module (dsplinkk.ko) also applies to just one specific memory layout.

Because of this complexity, DSPLink 1.40 eliminates all these steps and only uses one
dsplinkk.ko kernel driver and one build for any DSP memory layout.

3.3 Rebuilding the DSP Server

Every DSP server has a DSP/BIOS configuration file (.tcf file) that defines the memory layout on
the DSP, among other things. It also has a Codec Engine configuration file (.cfg file) that lists
what codecs to include in the image.

Our DSP server is found in the Codec Engine examples/servers/video_copy (or
examples/ti/sdo/ce/examples/servers/video_copy in more recent versions of CE). Please adjust
the path appropriately for the remainder of this procedure.

The server configuration file (video_copy.cfg) lists what codecs to include. There are only two in
the list, and we need both, so we don't change anything in this file.

However, if the codecs were real, the first step would be to edit this file and remove all the
codecs we don't need. That would reduce the size of the DDR segment and allow us to make it
shorter than the default of 4 MB. The only file we need to edit right now is the video_copy.tcf file.
If you open that file in a text viewer, you will see that it imports the contents of another DSP
server's .tcf file (all_codecs.tcf) because the contents are the same for both servers. Since we
want to modify the video_copy example only, do the following:

1. Move (cd) to the Codec Engine examples/servers/video_copy directory.

2. From inside the video_copy/ directory, copy ../all_codecs/all.tcf to video_copy.tcf.

SPRAAK7

18 Mastering the Art of Memory Map Configuration for DaVinci-Based Systems

"DSPLINK: off-chip memory reserved for DSPLINK code and data",
"DSPLINKMEM",
0x83F00080, // 63 MB + 128 B
0x000FFF80, // 1 MB - 128 B
"code/data"

// 63 MB
// 128 B

0x83F00000,
0x00000080,
"code/data"

"RESET_VECTOR: off-chip memory for the reset vector table",
"RESET_VECTOR",

// 60 MB
// 3 MB

0x83C00000,
0x00300000,
"code/data"

"DDR: off-chip memory for application code and data",
"DDR",

// 56 MB
// 4 MB

0x83800000,
0x00400000,
"code/data"

"DDRALGHEAP: off-chip memory for dynamic algmem allocation",
"DDRALGHEAP",

var mem_ext = [
{

comment:
name:
base:
len:
space:

},
{

comment:
name:
base:
len:
space:

},
{

comment:
name:
base:
len:
space:

},
{

comment:
name:
base:
len:
space:

},
];

/* ==
* Set all data sections to use DDR
* ==*/

bios.setMemDataNoHeapSections (prog, bios.DDR);
bios.setMemDataHeapSections (prog, bios.DDR);

/* ==
* MEM : Global
* ==*/

//prog.module("MEM").BIOSOBJSEG = bios.DDR; //comment line out if present
//prog.module("MEM").MALLOCSEG = bios.DDR; //comment line out if present

/* ==
* TSK : Global
* ==*/
//prog.module("TSK").STACKSEG = bios.DDR; //comment line out if present

3. Edit video_copy.tcf and edit the "mem_ext" array for the newly-chosen memory map. That code
should look like this:

Note! CE 1.20 uses "DDR2" instead of "DDR" in its examples.

4. Since we have defined and sized DDRALGHEAP to be a space that is solely used to store
algorithm memory requests, you should change all sections, including BIOSOBJSEG,
MALLOCSEG and STACKSEG to use DDR as follows (if not already done):

SPRAAK7

Mastering the Art of Memory Map Configuration for DaVinci-Based Systems 19

ofd6x –x myImage.x64P | perl sectti.pl

3.4 Optional: Splitting the DDR Section to Reduce Trampoline Occurrences

Trampolines are linker-generated function calls that allow code to make jumps to points further
than 4 MB apart (that is, far calls). These can occur on DSP servers that are large in terms of
code and data size, when points of code that call each other are separated by large chunks of
static data and other code. Trampolines may cause some performance loss or other problems;
consequently, it is better to tell the linker to place all code apart from all data, to minimize the
number of trampolines necessary, given that the code would then be more compact. Separating
code from data may be beneficial for other reasons as well (for example, better cache use).

To find out how much code vs. data you have, you can use the “cg_xml” tool, which is available
at https://www-a.ti.com/downloads/sds_support/applications_packages/cg_xml/index.htm. It is a
collection of Perl scripts, which complements the codegen tools, providing more information
about compiled binaries.

One of the scripts provided as part of cg_xml is sectti.pl, which lists all output sections in a given
compiled binary. You can run this script on your DSP image as follows:

The script summarizes your code and data sizes. For example:

The totals may need to be adjusted to discount sections not placed in DDR. For instance,
DSP/BIOS may add sections marked as type “N/A” that are neither counted as data or code. If
they are placed in the DDR section, they need to be added to the total data memory size.

Coming back to the .tcf file, to separate code from data, split the DDR segment into two
segments: DDR that contains data only, and DDRCODE that contains code only.

To carve off a portion of DDR for strictly for code placement, change the above DDR declaration
in the “mem_ext” array to the following instead:

--
Totals by section type
--

Uninitialized Data : 961084 0x000EAA3C
Initialized Data : 462114 0x00070D22

Code : 1169504 0x0011D860

}, {
comment: "DDRCODE: off-chip mem. for code",
name: "DDRCODE",
base: 0x83DB0000,
len: 0x00150000, // 1.3MB
space: "code/data"

}

"DDR: off-chip memory for data",
"DDR",
0x83C00000,
0x001B0000, // 1.7MB
"code/data"

comment:
name:
base:
len:
space:

{

https://www-a.ti.com/downloads/sds_support/applications_packages/cg_xml/index.htm

SPRAAK7

20 Mastering the Art of Memory Map Configuration for DaVinci-Based Systems

Your effective memory map would then become:

Figure 4. Resulting Memory Map After Splitting DDR
Note that it is not necessary to inform DSPLink of this change, as DDR and DDRCODE are
contiguous and can be treated as a monolithic segment of writeable external memory for the
DSPLink loader.

After splitting DDR, change the following line, which places most code sections in DDRCODE:

Running sectti.pl from the Code Generation Tools XML Output Utility Scripts on the resulting
executable can show all code sections that are not yet placed in DDRCODE. All sections in the
video_copy example are already placed using the line above. However, in case your application
has some extra non-placed sections (due to the section name missing the prefix ‘.text:’), here’s
an example output from sectti.pl for your reference:

Name : Size (dec) Size (hex) Type Load Addr Run Addr
---- : ---------- ---------- ---- ---------- ---------
.randomCode : 54816 0x0000d620 CODE 0x8fd99740 0x8fd99740

Assuming you have a section similar to .randomCode that lies outside of DDRCODE, you would
need to manually place it in DDRCODE in the server's link.cmd file.

After you are finished with all necessary modifications, save and close the file. Rebuild the
server by typing these commands from the current directory:

Then copy the rebuilt server image (video_copy.x64P) to your target file system.

make clean
make

bios.setMemCodeSections (prog, bios.DDRCODE);

SECTIONS {
.randomCode > DDRCODE

}

SPRAAK7

Mastering the Art of Memory Map Configuration for DaVinci-Based Systems 21

3.5 Rebuilding the ARM-side Application—If You Use DSPLink 1.40

Users of DSPLink 1.40 did not have to rebuild Link, but they have to rebuild their ARM-side
application. Users of DSPLink 1.30 can skip this section.

The change to be made is in examples/apps/video_copy/dualcpu/ceapp.cfg, the application
configuration file. It needs a configuration file setting that specifies what the memory map is.

1. Open the ceapp.cfg file and add or otherwise make sure the following code exists in the file:

2. Save and close the ceapp.cfg file.
3. Rebuild the application by executing make.

3.6 Copying Other Necessary Files to Target File System

In the final steps, we copy the remaining bits and pieces of the video_copy application to the
target file system:

1. Move (cd) to the Codec Engine examples/apps/video_copy/dualcpu/ directory. This is
where the ARM application is located.

2. Copy the app.out executable to the target file system. Note that you do not have to rebuild it if
you have not changed the Linux kernel supplied with the DVEVM/DVSDK software (unless you
use DSPLink 1.40).

3. Copy the in.dat file, a sample input file for the application, from the current directory to the target
filesystem.

4. Have your cmemk.ko CMEM kernel module available on your target file system. You must have
rebuilt it for your Linux kernel in order to run any other Codec Engine application. If you haven't
changed your Linux kernel, you can use a copy of cmemk.ko in the Codec Engine
examples/apps/system_files/davinci directory.

5. If you are using DSPLink 1.40, copy your dsplinkk.ko kernel module to your target file system.
You might have rebuilt it for your Linux kernel in order to run any other Codec Engine
application. If you haven't changed your Linux kernel, you can use a copy of dsplinkk.ko in the
Codec Engine examples/apps/system_files/davinci directory.

6. Have your kernel modules loading script (loadmodules.sh) available on your target file system.
You can also find a copy of the script in the Codec Engine
examples/apps/system_files/davinci directory.

osalGlobal.armDspLinkConfig = {
memTable: [

["DDRALGHEAP", {addr: 0x83800000, size: 0x00400000, type: "other"}],
["RESET_VECTOR", {addr: 0x83F00000, size: 0x00000080, type: "reset"}],
["DDR2", {addr: 0x83C00000, size: 0x00300000, type: "main" }],
["DSPLINKMEM", {addr: 0x83F00080, size: 0x000FFF80, type: "link" }],

],
};

SPRAAK7

22 Mastering the Art of Memory Map Configuration for DaVinci-Based Systems

3.7 Modifying the loadmodules.sh Script

The loadmodules.sh script loads the kernel module dsplinkk.ko and tells it where to put the DDR
and DDRALGHEAP segments. That is the only flexibility DSPLink 1.30 allows without rebuilding.
The DDR segment can be anywhere and of any length, and can be announced to DSPLink at
the time the kernel module is loaded. DDRALGHEAP can be anywhere and of any length.
However, the DSPLINKMEM and RESET_VECTOR segments cannot be moved or resized
without rebuilding DSPLink.

1. Edit the loadmodules.sh script and remove the arguments following the “insmod
dsplinkk.ko” text, so the command says:

A note about the loadmodules.sh and dsplinkk.ko arguments:
– DSPLink 1.30 supports an optional argument pair ddr_start and ddr_size, which

allow you to load and run DSP images that have a different DDR segment than the
default. However, it still expects the DSPLINKMEM and RESET_VECTOR segments
to match DSPLink 1.30's configuration file. This is useful when you want to
experiment with increasing the DSP image's size of the DDR segment at the
expense of other segments’ sizes (excluding DSPLINKMEM and RESET_VECTOR),
or vice versa, without having to go through the process of rebuilding DSPLink 1.30
every time. However, it doesn't help if you need to change the limits of the entire
memory map. In this case, having changed the text configuration file and rebuilt
DSPLink, the ddr_start and ddr_size arguments are no longer necessary since the
DSPLink 1.30 memory map configuration matches the memory map of the DSP
image—though you can still use them if you subsequently want to experiment with
changing the position and size of DDR.

– DSPLink 1.40 supports dynamic memory map configuration, so changing the start
address and size of the DDR section is only a matter of modifying the ARM-side
application’s .cfg file and rebuilding the application itself. Hence there is no need to
specify these parameters in loadmodules.sh.

2. Next, you change the CMEM memory description that follows as the arguments to the
insmod cmemk.ko command. Specify phys_start and phys_end to match your new
CMEM address and size, then specify pools to match the buffer requirement of your
application. The pools are configured using an NxSize syntax where N is the number of
buffers in the pool, and Size is the size of these buffers. For the video_copy example, the
following configuration would be more than sufficient for CMEM:

insmod dsplinkk.ko

insmod cmemk.ko phys_start=0x83400000 phys_end=0x83800000
pools=20x4096,10x131072

SPRAAK7

Mastering the Art of Memory Map Configuration for DaVinci-Based Systems 23

3.8 Changing the Boot Srgument in your Linux Bootloader

When the Linux kernel is booted, we limit the amount of physical memory available to the kernel
using the mem=boot argument. If you use uboot, change that portion of the bootargs variable to
read mem=52M using the setenv command as follows:

Note! This step is critical—if Linux tries to use memory above 52 MB, it will corrupt the CMEM
data and the data will corrupt the kernel. That would likely result in a quick crash.

3.9 Rebooting and Running the Application

After the system boots, type the following:

Look for this line of application output to confirm the procedure worked:

4 Troubleshooting
If you did everything in the previous procedures correctly, the application should run and you can
skip this section. Otherwise, this section provides a few troubleshooting tips to find out more
about your system with the new memory map.

4.1 Checking How Much CMEM Memory is Available or Used

After running loadmodules.sh, directly enter the following command at the command prompt in
Linux. This shows whether you have set up CMEM with the correct buffer pools.

To verify the amount of memory allocated from the CMEM pools at any point in your application
execution (for example, when a Memory_contigAlloc call fails), you can add this line to your
ARM-side application’s source code:

> setenv bootargs ‘console=ttyS0,115200n8 root=/dev/nfs mem=52M
nfsroot=192.168.1.101:/opt/montavista/pro/devkit/arm/v5t_le/target,nolock’

sh loadmodules.sh
./app.out

Application finished successfully.

/bin/cat /proc/cmem

system(“/bin/cat /proc/cmem”);

SPRAAK7

24 Mastering the Art of Memory Map Configuration for DaVinci-Based Systems

4.2 Memory Map Mismatch

If there is a mismatch between the memory map used by the DSP/BIOS .tcf file and the DSPLink
configuration, often this would result in a failure in the first Engine_open() call, which loads the
DSP with the DSP server executable. If this occurs, compare the settings in the mem_ext array
in the .tcf file with the ones in the DSPLink configuration (which resides in the CFG_Davinci.txt
file in DSPLink 1.30 or in your application’s .cfg file in DSPLink 1.40). It is possible there is a
mismatch between the two.

In fact, it is a good practice to double-check the two configurations after you go through all the
steps in the procedure of memory map configuration. It can save valuable debugging time.

4.3 Heap Sizes Too Small

One common problem is that estimated heap sizes might be too small. This could happen if the
sizes were underestimated or miscalculated, resulting in memory allocation failures on the DSP.

Looking at the CE trace files and locating the point of failure should give you some indication
about which heap ran out of space. For example, if the trace shows a failure while creating an
algorithm using DSKT2 (part of the Framework Components), this points to a potential lack of
space in the DDRALGHEAP. If the failure occurs while allocating/creating some other object,
then it is likely that the DDR heap is too small. You can turn on the highest verbosity level in CE
trace by specifying the following command line when running your executable:

Replace app.out with the name of your application executable. This should produce two log files
corresponding to the ARM and the DSP which you can inspect after the application runs. More
details on how to use the CE trace can be found in the Codec Engine Application Developer
User’s Guide.

CE_TRACE="*=01234567" TRACEUTIL_DSP0TRACEMASK="*=01234567"
TRACEUTIL_DSP0TRACEFILE="cedsp0log.txt" CE_TRACEFILEFLAGS="w"
CE_TRACEFILE="cearmlog.txt" TRACEUTIL_REFRESHPERIOD=200 ./app.out

SPRAAK7

Mastering the Art of Memory Map Configuration for DaVinci-Based Systems 25

5 A Real World Example
This section describes an actual case in which a customer tried to resize their memory map.

The application is a four-channel CIF MPEG4 Simple Profile (or H.264 Baseline Profile) Digital
Video Recorder (DVR) based on the DM6446 with 64 MB of DDR2. Four channels of CIF video
are encoded and one channel of CIF video is decoded. The MPEG4 (or H.264) and audio
encoder and decoder conform to xDM.

In this discussion, we will focus on the video codecs. So, four CIF encoding instances and one
CIF decoding instance will be created by calling the VISA API’s. This example is based on
Codec Engine 1.02 and DSPLink 1.30.08.02.

Here is the system block diagram:

Figure 5. System Block Diagram

The final 64 MB memory map looks like this:

How did we arrive at this memory map? First of all, 1 MB DSPLINKMEM is the default size for
DSPLink 1.30.08.02. It is important to correctly allocate the right memory size for CMEM,
DDRALGHEAP and DDR. Then we will have enough space for DSP software and the Linux OS.

DDR2 BT656 4 Video In

ATA DM6446 USB 2.0

IR
Det

IR Remote
Input

GPIOs

AEMIF
DSP-Based SOC

Line in /out

25MHz
RS232

CVBS

Phy Xfmr RJ45

Audio
Codec

NOR Flash

MSP430

HDD

DDR SDRAM
2 x 32MB16-bit

Techwell

2834

0x80000000 .. 0x83200000-1 (0-50MB; size 50MB): Linux: booted with MEM = 50M
0x83200000 .. 0x83A00000-1 (50-58MB; size 8MB): CMEM: shared ARM/DSP I/O buffers
0x83A00000 .. 0x83C00000-1 (58-60MB; size 2MB): DDRALGHEAP: codec dynamic memory
0x83C00000 .. 0x83E00000-1 (60-62MB; size 2MB): DDR: code, stack, system data
0x83E00000 .. 0x83F00000-1 (62-63MB; size 1MB): DSPLINKMEM: memory for DSPLINK
0x83F00000 .. 0x83F00080-1 (63-63MB; size 128B): RESET_VECTOR: reset vectors
0x83F00080 .. 0x84000000-1 (63-64MB; size 1MB): Unused memory

SPRAAK7

26 Mastering the Art of Memory Map Configuration for DaVinci-Based Systems

The next diagram illustrates the system application data flow.

• Encoding data flow. VPFE puts the video input data (to-be-encoded data) in CMEM. The
encoder running on the DSP outputs the encoded data to CMEM. The encoded data is
stored on the hard disk.

• Decoding data flow. To-be-decoded data is copied from the hard disk to CMEM first. Then,
the decoder decompresses the data and outputs the result into decoded data buffers. The
VPBE output resolution is CIF. Sometimes, we can use the resizer of the VPFE peripheral
on DM6446 to get D1 resolution. So we need to allocate a buffer for resizer results in
CMEM too.

Figure 6. System Application Data Flow

5.1 Allocating CMEM Memory Space

As for to-be-encoded data buffers, the size is ((352 * 288) * 4 * 2B) * 3 = 2433024 B.
352*288 is CIF resolution, 4 means 4 channels, one pixel in YUV4:2:2 needs 2 bytes and three
(352 * 288) * 4 * 2B buffers are allocated for the encoder algorithm. The size of decoded
data buffers is same: 2433024 bytes.

Because we encode 4 channels CIF, you can calculate the size of encoded data buffers by 50%
D1 ((720 * 576 * 3 / 2) / 2 = 303.75 KB, YUV4:2:0) or the standard MPEG4
compression ratio. Here we allocate 256 KB (262144 bytes) for encoded data buffers less than
303.75 KB. This is chosen based on experience. So, we configure three 256 KB buffers (786432
bytes) for to-be-decoded data buffers accordingly. As for the buffer of resizer result, we need
720 * 576 * 2B = 829440B in YUV4:2:2. So, the insmod cmemk command looks like the
following:

insmod cmemk.ko phys_start=0x83200000 phys_end=0x83A00000 pools=1x262144,
2x2433024, 1x829440,1x786432

SPRAAK7

Mastering the Art of Memory Map Configuration for DaVinci-Based Systems 27

REPORT FOR FILE: codec_server.x64P

Totals by section type (about 416KB)
Uninitialized Data: 212958 0x00033fde
Initialized Data : 30080 0x00007580

Code : 182976 0x0002cac0

5.2 Allocating DDRALGHEAP Memory Space

DDRALGHEAP is the memory allocated for codec dynamic memory requests.

Both encoder and decoder process and accept data with YUV4:2:0. One channel CIF data in
YUV4:2:0 is 352 * 288 * 3 / 2 B (one pixel with YUV4:2:0 format needs 3/2 byte). Encoder
and decoder algorithms need the current frame and previous frame data. To compress or
decompress one channel CIF, we need to allocate 352 * 288 * 3 / 2 * 2 B memory for
encoder and decoder respectively.

Four channels CIF will be encoded and one channel CIF will be decoded. So, the encoder needs
352 * 288 * 3 / 2 * 2 * 4B (about 1.16 MB) of dynamic memory and the decoder needs
352 * 288 * 3 / 2 * 2 * 1B (about 297 KB) of dynamic memory. The total of them is about
1.45 MB. To allow some extra space, 2 MB DDRALGHEAP is allocated in this example.

5.3 Allocating DDR Memory Space

DDR is the DSP-side segment including all the system code, data, stack, heaps and code and
static data for the codecs. The code size for the most complex video codecs is less than several
hundred KBs. We can use the script sectti.pl to determine DDR section size as follows:

The script generates a report file showing that we can get about 416 KB of the totals of data and
code. So 2 MB DDR of this application is enough.

Name : Size (dec) Size (hex) Type Load Addr Run Addr
MPEG4ENC : 23840 0x00005d20 CODE 0x83c71000 0x83c71000
MPEG4DEC : 10784 0x00002a20 CODE 0x83c82000 0x83c82000
.bss : 910 0x0000038e UDATA 0x83c88000 0x83c88000
.hwi_vec : 512 0x00000200 CODE 0x83c70c00 0x83c70c00
.far : 204920 0x00032078 UDATA 0x83c00000 0x83c00000
.bios : 22912 0x00005980 CODE 0x83c76d20 0x83c76d20
.text : 123136 0x0001e100 CODE 0x83c52080 0x83c52080
.cinit : 8196 0x00002004 DATA 0x83c84a20 0x83c84a20
.sysinit : 1792 0x00000700 CODE 0x83c70180 0x83c70180
.const : 21288 0x00005328 DATA 0x83c7c6a0 0x83c7c6a0
.stack : 4096 0x00001000 UDATA 0x83c86a28 0x83c86a28

5.4 Allocating Linux OS Memory Space

We computed sizes by calculating the DSP needs first and subtracting that from the total amount
of memory available. We know the production system has only 64 MB of memory. Given that we
need 1 MB for DSPLINKMEM, 2 MB for DDR, 2 MB for DDRALGHEAP, 1 MB for
RESET_VECTOR and unused memory and 8 MB for CMEM, that gives a total of 14 MB for DSP
and shared buffers, leaving 50 MB for Linux.

ofd6x -x codec_server.x64P | perl c:\temp\cg_xml\ofd\sectti.pl >
codec_server.x64P.sectti.csv

SPRAAK7

28 Mastering the Art of Memory Map Configuration for DaVinci-Based Systems

6 Conclusion
Memory map configuration for DaVinci-based systems can be systematically performed after you
have designed the memory map to suit the amount of memory available. In order for the
procedure to go smoothly, a reminder is to:

• Know your system. Plan the memory map based on how many and which codec instances
will need to be available at the same time in different modes of execution in the application.
Calculate or measure the size for each segment and write down the desired memory map.

• Be thorough. Apply the mechanical steps to adapt the DSP server, ARM application,
DSPLink, CMEM and boot loader to match the desired memory map. Always double-check
the changes to ensure all numbers agree with each other.

7 References

• Codec Engine Application Developer User's Guide (SPRUE67)

• Codec Engine Server Integrator User's Guide (SPRUED5)

• Codec Engine Algorithm Creator User's Guide (SPRUED6)

• DSP/BIOS Link User Guide (LNK 058 USR)

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	ABSTRACT
	Contents
	4 Troubleshooting 23
	5 A Real World Example 25
	6 Conclusion 28
	7 References 28
	1 Introduction
	1.1 Why Do Codec Engine Applications Consume 256 MB of Memory Out of the Box?
	1.2 Physical Sharing of DDR2 Memory between the ARM and the DSP
	1.3 Linux Partition
	1.4 CMEM: Contiguous Memory Allocator
	1.5 The DDRALGHEAP and DDR Sections
	1.6 The DSPLINKMEM Section
	1.7 The RESET_VECTOR Segment

	2 Designing the Memory Map
	2.1 The Procedure
	Figure 1. Before and After Memory Maps

	2.2 It’s (Mostly) All About Video
	2.3 Determining the Size of DDRALGHEAP
	2.3.1 Measuring DDRALGHEAP Size via Engine_getUsedMem() API
	2.3.2 Measuring DDRALGHEAP Size via Server_getMemStat() API
	2.3.3 Measuring DDRALGHEAP Size via External ALGUTIL Utility

	2.4 Determining the Size of the DDR Section
	2.5 Sizing and Partitioning CMEM Memory
	2.5.1 Calculating CMEM Size and Partitions
	2.5.2 Measuring CMEM Size and Partitions

	2.6 Optional: Using CMEM to Dynamically Size DDRALGHEAP
	2.7 Optional: Reducing the DSPLINKMEM Segment Size from 1 MB to 512 KB
	2.8 Arranging the Segments in Correct Order and Alignment
	Figure 2. Example Memory Map Plan After Calculations

	3 Memory-map Adaptation Instructions
	Figure 3. Modified video_copy Memory Map
	3.1 Determining the Version of Codec Engine
	3.2 Rebuilding DSPLink 1.30
	3.3 Rebuilding the DSP Server
	3.4 Optional: Splitting the DDR Section to Reduce Trampoline Occurrences
	Figure 4. Resulting Memory Map After Splitting DDR

	3.5 Rebuilding the ARM-side Application—If You Use DSPLink 1.40
	3.6 Copying Other Necessary Files to Target File System
	3.7 Modifying the loadmodules.sh Script
	3.8 Changing the Boot Srgument in your Linux Bootloader
	3.9 Rebooting and Running the Application

	4 Troubleshooting
	4.1 Checking How Much CMEM Memory is Available or Used
	4.2 Memory Map Mismatch
	4.3 Heap Sizes Too Small

	5 A Real World Example
	Figure 5. System Block Diagram
	Figure 6. System Application Data Flow
	5.3 Allocating DDR Memory Space
	5.4 Allocating Linux OS Memory Space

	6 Conclusion
	7 References

