
SPRAAN4A – June 2008 
Submit Documentation Feedback 

How to Use the EDMA3 Driver on a TMS320DM643x Device 1  

 

 
 
 
 
 
 
 
Zhengting He 

Application Report 
SPRAAN4A – June 2008 

 

How to Use the EDMA3 Driver on a TMS320DM643x 
Device 

 
ABSTRACT 

This application report describes how to use the existing enhanced direct memory 
access (EDMA3) driver on the TMS320DM643x devices. It also explains several 
complicated transfers required for certain real-life applications using the EDMA3. 
Project collateral and source code discussed in this application report can be 
downloaded from the following URL: http://www.ti.com/lit/zip/SPRAAN4. 

 
 

Contents 
1 Introduction ......................................................................................................................... 1 
2 Example A: Convert Image From YUV422 Format to YUV420 Format .............................. 4 
3 Example B: Copy a 2-D Array From External Memory to Internal Memory ........................ 6 
4 Example C: Convert a 2-D Image to 1-D Data ................................................................... 9 
5 Example D: PING-PONG Buffering Scheme .................................................................... 11 
6 Package Usage Guide ...................................................................................................... 12 
7 References ....................................................................................................................... 14 

 
 List of Figures  

1 EDMA3 Block Diagram ............................................................................ 2 
2 EDMA3 Driver Structure ........................................................................... 3 
3 NTSC D1 YUV422 Interleaved Format (UYVY) ................................................ 4 
4 NTSC D1 YUV420 Planar Format................................................................ 5 
5 Extract a 2-D Subset Array From an Input Image.............................................. 6 
6 Convert 2-D Image to 1-D Data .................................................................. 9 
7 PING-PONG Buffer Copy ................................................................................................. 11 

 
List of Tables 

1 Contents of the edma3test/driver Folder .......................................................................... 13 
2 Contents of the edma3test/test Folder .............................................................................. 13 

 
 
 
1 Introduction 

Four sets of examples are included with this document. The first set demonstrates how to convert an 
image in NTSC D1 resolution (720×480) from YUV422 interleaved format to YUV420 planar format. The 
second set demonstrates how to copy a two-dimensional array from external to internal memory, using the 
QDMA channel. The third set demonstrates how to convert two-dimensional data to one-dimensional data 
and copy them from external to internal memory, using the link feature. The fourth set demonstrates how  
to achieve a PING-PONG buffering scheme and optimize a transfer by taking advantage of the link and 
chain feature. 
It also reports the transfer performance for the provided examples. However, these performance numbers 
should not be interpreted as EDMA3 bench marking numbers. 
This document does not detail the EDMA3 hardware or application programming interfaces (APIs). 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAN4A
http://www.ti.com/lit/zip/SPRAAN4


2 How to Use the EDMA3 Driver on a TMS320DM643x Device SPRAAN4A – June 2008 
Submit Documentation Feedback 

 

 

 

Introduction www.ti.com 
 

1.1 Introduction to the EDMA3 
This section details important concepts for the EDMA3 hardware module in the TMS320DM643x devices. 
For more details on the EDMA3, see the TMS320DM643x DMP Enhanced Direct Memory Access 
(EDMA3) Controller User’s Guide (SPRU987) [1]. 
Figure 1 illustrates a block diagram of the EDMA3. 

 
Transfer 

Controllers 
 
 
 
 
 

To/From 
EDMA3 

Programmer 
 
 

EDMA3CC_INT[1:0] 
EDMA3CC_GINT 

EDMA3CC_ERRINT 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. EDMA3 Block Diagram 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EDMA3TC2 
ERRINT 

Read/Write 
Commands 
and Data 

 
 
 

Read/Write 
Commands 
and Data 

 
 
 

Read/Write 
Commands 
and Data 

 

The EDMA3’s primary purpose is to service user-programmed data transfers between two 
memory-mapped slave endpoints on the device. It consists of two principal blocks: 
• EDMA3 channel controller (EDMA3CC) 
• EDMA3 transfer controller(s) (EDMA3TC) 
The EDMA3CC is the user interface. It includes parameter RAM (PaRAM), channel control registers, and 
interrupt control registers. It prioritizes incoming software requests or events from peripherals, and submits 
transfer requests to an EDMA3TC based on the transfer parameter. 
The EDMA3TCs are slaves to the EDMA3CC, realizing data movement by issuing read/write commands 
to the source and destination addresses. 
The EDMA3CC has the following features: 
• Fully orthogonal transfer description 

– Supports one-dimensional (1-D), two-dimensional (2-D) and three-dimensional (3-D) transfers 
– Transfer can either be synchronized once each 1-D transfer is completed (A-sync), or once each 

2-D transfer is completed (AB-sync) 
– Independent indexes (offsets) on source and destination 
– Increment or constant addressing modes on source and destination 

• Flexible transfer definition 
– Linking mechanism allows automatic PaRAM set update after a transfer is completed by reloading 

the current PaRAM set from the linked PaRAM set 
– Chaining feature allows multiple transfers to be triggered automatically after the current transfer is 

completed 
• Interrupt generation for: 

– Intermediate or final transfer completion. A transfer can be split into multiple smaller transfers. For 
instance, a 3-D transfer can be split into multiple 2-D transfers. The final transfer is the last small 
transfer and an intermediate transfer is a small transfer that is not performed last. 

– Error conditions 
• 64 regular direct memory access (DMA) channels 
• Eight QDMA channels 
• 128 PaRAM sets. Each PaRAM set can be used for a DMA channel, QDMA channel, or as a Link set. 

MMR 

Channel Controller 

EDMA3TC0 
ERRINT 

MMR 

EDMA3TC1 
ERRINT 

MMR 

Completion 
and Error 
Interrupt 

Logic 

Transfer 
Request 

Submission 

 
Completion 
Detection 

 

PaRAM 
 

Event 
Queue 

DMA/QDMA 
Channel 

Logic 

 
 
TC0 

 
 
TC1 

 
 
TC2 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAN4A
http://www.ti.com/
http://www-s.ti.com/sc/techlit/SPRU987


SPRAAN4A – June 2008 
Submit Documentation Feedback 

How to Use the EDMA3 Driver on a TMS320DM643x Device 3 

 

 

User/Application Code 

EDMA3 Driver 

EDMA3 Resource Manager 

 

www.ti.com Introduction 
 

The EDMA3TC has following features: 
• Three transfer controllers with 64-bit wide read and write ports per transfer controller 
• Up to four in-flight transfer requests 
• Programmable priority level 
• Supports 2-D transfers with independent indexes on source and destination (EDMA3CC manages the 

third dimension) 
• Support for increment or constant addressing mode transfers 
• Interrupt and error support 
• Little-endian or big-endian operations 

 

1.2 Introduction to EDMA3 Driver 
This section introduces the EDMA3 driver. For more details, see the EDMA3 0.3.0 User’s Manual provided 
with the EDMA3 driver code [2]. 
Figure 2 shows the software structure of the EDMA3 driver. It allows other device drivers and applications 
to submit and synchronize EDMA3-based DMA transfers. To simplify the usage, this component internally 
uses the services of the EDMA3 Resource Manager and provides one consistent interface for applications 
or other device drivers. 
The EDMA3 Resource Manager includes the following parts: 
• Physical driver: Manages several resources within the EDMA3 peripheral, including TCC codes, 

PARAM entry, DMA and QDMA channels, all global EDMA3 registers, etc. 
• Interrupt manager: Handles EDMA3 interrupts by registering with the ported OS interrupt handling 

mechanism. Because interrupts are associated with TCC codes in the EDMA3 module, this module 
provides an option to accept application registration callbacks for TCC codes and calls the callback 
functions upon receipt of the given interrupt (TCC). Note that the application/driver using the EDMA3 
resource manager has to register/unregister the interrupt handlers with the underlying OS. The 
resource manager does not do this by itself. 

The EDMA3 hardware module can be used with different TI devices by changing a few resource 
configurations, such as the number of DMA and QDMA channels supported, the number of PARAM sets 
available, etc. Using the EDMA3 resource manager allows you to maintain one version of the EDMA3 
driver source code across different devices by providing the driver device-specific configuration 
information. Typically, each device runs an instance of the resource (and interrupt) manager and EDMA 
driver. It is also possible to have multiple instances of the resource manager or the EDMA driver running 
on the same device if the device has multiple EDMA3 hardware modules. 

 

 

 

Figure 2. EDMA3 Driver Structure 
 

The following are services provided by the EDMA3 driver: 
• Request and free DMA channel: This provides an interface that applications or other device drivers can 

use to request and free DMA channels. Channels in the EDMA3 module are categorized as: 
– Regular DMA channel (mapped to a hardware sync event) 
– Regular DMA channel (not mapped to a hardware sync event) 
– QDMA channel 
– Link channel (a PARAM set in EDMA3) 

EDMA3 
ISRs 

 
PaRAMs 

 
TCCs DMA/QDMA 

Channels 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAN4A
http://www.ti.com/


4 How to Use the EDMA3 Driver on a TMS320DM643x Device SPRAAN4A – June 2008 
Submit Documentation Feedback 

 

 

Y0,0 V0,0 Y0,1 U0,1 Y0,2 V0,1 Y0,3 

 
Y0,718 V0,359 Y0,719 

 

Y479,0 V479,0 Y479,1 

 
Y479,718 V479,359 Y479,719 

 

 

Example A: Convert Image From YUV422 Format to YUV420 Format www.ti.com 
 

• Program DMA channel: This provides an interface that applications or other device drivers can use to 
program a DMA transaction. This typically involves setting the DMA source and destination 
parameters. The following types of transactions are supported: 
– Event-triggered (peripheral driven transfers) 
– Chain-triggered (issuing a chain of transfers initiated by a single event) 
– Manual-triggered (CPU generated) 

• Start and synchronize with DMA transfers: This provides an interface that applications or other device 
drivers can use to start and synchronize with a DMA transaction. 

• Provide DMA transaction completion callback to applications: This provides an interface that 
applications or other device drivers can use to register a transaction completion (final or intermediate) 
callback. The EDMA3 driver calls this application or device driver callback with appropriate completion 
status. 

• Support link and chain feature: The EDMA3 peripheral provides link and chain services in hardware. 
The EDMA driver provides an interface so applications or other device drivers can use the service. 

 
2 Example A: Convert Image From YUV422 Format to YUV420 Format 

This section explains how to use the EDMA3 driver to convert an image in NTSC D1 resolution (720×480 
pixels) from the YUV422 interleaved format to YUV420 planner format. The input and output are assumed 
to be in the external memory. YUV422 to YUV420 conversion is often a necessary preprocessing step for 
video compression-based applications in which video signals captured from a charge-coupled device 
(CCD) camera are in a YUV422 format and they must be converted to a YUV420 format before being 
processed by the video encoder. This example shows how to offload the DSP core by performing the 
conversion task on the EDMA3. 
Figure 3 shows the data organization of an NTSC D1 resolution image in YUV422 format. In the provided 
example, YUV components are assumed in UYVY order although they can also be in YUYV order, 
depending on the video capture port. 

 

 

 

Figure 3. NTSC D1 YUV422 Interleaved Format (UYVY) 

U479,359 U479,0 

U0,359 U0,0 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAN4A
http://www.ti.com/


SPRAAN4A – June 2008 
Submit Documentation Feedback 

How to Use the EDMA3 Driver on a TMS320DM643x Device 5 

 

 

 

www.ti.com Example A: Convert Image From YUV422 Format to YUV420 Format 
 

Figure 4 shows the data organization of a NTSC D1 resolution image in YUV420 format. Compared to the 
YUV422 interleaved format, the main differences are: 
• The Y, U and V components are separated 
• U and V are down-sampled vertically by half 

 

 

 
  

 
  

 

   U0,359 

 
 

  

 
  

 

 
   

 
 

  

 
  

 

Figure 4. NTSC D1 YUV420 Planar Format 
 

The following steps show how to use the EDMA3 driver to copy the Y plane. 
1. Allocate a regular channel by calling EDMA3_DRV_requestChannel(). This API allocates a TCC code 

and a PaRAM set along with the regular channel to the caller. You need to provide a callback. The 
purpose of the callback is explained in step 3. 

2. Configure the PaRAM set associated with the allocated channel by calling the 
EDMA3_DRV_setSrcParams(). The values of the fields in the PaRAM set are shown below: 
• SRC should be the address of the first Y component of the input image. 
• DST should be the address of the output Y plane. 
• SRCBIDX = 2, SRCCIDX = 1440, DSTBIDX = 1 and DSTCIDX = 720. This indicates that the 

EDMA3 copies every other byte (the Y component) from the input image to the output Y plane 
buffer. The data in the Y plane buffer is contiguous. 

• ACNT = 1, BCNT = 720 and CCNT = 480. This indicates that the transfer is configured as a 3-D 
transfer. The 1-D transfer copies every Y component (1 byte). The 2-D transfer consists of 720 1-D 
transfers to copy a row. The 3-D transfer consists of 480 2-D transfers to copy the whole Y plane. 

• OPT.SYNCDIM = SYNC_AB, OPT.TCINTEN = ENABLE, OPT.ITCINTEN = ENABLE, and 
OPT.TCCMODE = NORMAL. This indicates that after each 2-D transfer is completed, you will be 
notified by an interrupt. 

3. Manually enable the first 2-D transfer by calling EDMA3_DRV_enableTransfer(). Once it is completed, 
an interrupt is generated. Inside the callback, you are expected to enable the next 2-D transfer until all 
480 rows have been copied. 

Y0,1 Y0,718 

Y479,0 

U239,0 U239,359 

V239,0 V239,359 

V0,359 V0,0 

Y479,719 Y479,718 

U0,0 

Y479,1 

Y0,719 Y0,0 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAN4A
http://www.ti.com/


6 How to Use the EDMA3 Driver on a TMS320DM643x Device SPRAAN4A – June 2008 
Submit Documentation Feedback 

Example B: Copy a 2-D Array From External Memory to Internal Memory www.ti.com 

 

 

 

The following steps show how to use the EDMA3 driver to copy the U plane. 
1. Allocate a regular channel by calling EDMA3_DRV_requestChannel() or reuse the same channel which 

is used to copy the Y plane. 
2. Configure the PaRAM set associated with the allocated channel by calling the 

EDMA3_DRV_setSrcParams(). The values of the fields in the PaRAM set are shown below: 
• SRC should be the address of the first U component of the input image. 
• DST should be the address of the output U plane. 
• SRCBIDX = 4, SRCCIDX = 2880, DSTBIDX = 1 and DSTCIDX = 360. This indicates that the 

EDMA3 copies one of every four bytes (the U component) in every odd row of the input image to 
the output U plane buffer. The data in the U plane buffer is contiguous. 

• ACNT = 1, BCNT = 360 and CCNT = 240. This indicates that the transfer is configured as a 3-D 
transfer. The 1-D transfer copies every U component (1 byte) in the odd row of the input image. 
The 2-D transfer consists of 360 1-D transfers to copy every odd row. The 3-D transfer consists of 
240 2-D transfers to copy the whole U plane. 

• OPT.SYNCDIM = SYNC_AB, OPT.TCINTEN = ENABLE, OPT.ITCINTEN = ENABLE, and 
OPT.TCCMODE = NORMAL. This indicates that after each 2-D transfer is completed, you will be 
notified by an interrupt. 

3. Manually enable the first 2-D transfer by calling EDMA3_DRV_enableTransfer(). Once it is completed, 
an interrupt is generated. Inside the callback, you are expected to enable the next 2-D transfer until all 
240 rows have been copied. 

Steps and parameters to copy the V plane are similar to the steps required to copy the U plane, except 
that SRC should be the address of the first V component of the input image and DST should be the 
address of the output V plane. 
After the output YUV420 image is generated, the regular EDMA channel is freed by calling 
EDMA3_DRV_freeChannel(). 

 
3 Example B: Copy a 2-D Array From External Memory to Internal Memory 

This section describes using the EDMA3 driver to extract a subset of a 2-D array from a Y plane image in 
NTSC D1 resolution (720×480). The input image is assumed to reside in the external memory and the 
output is in the internal memory, which can either be L1 data memory or L2 memory. The array size is 128 
by 128 bytes, although you can change it to any desirable value as long as the array fits in the internal 
memory (see Figure 5). 

 

720 
 
 
 
 

128 

 
 

Output Array in 
Internal Memory 

 
 
 
 

Input Image in External Memory 
 

Figure 5. Extract a 2-D Subset Array From an Input Image 

48
0 12

8 

128  

 

12
8 

 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAN4A
http://www.ti.com/


SPRAAN4A – June 2008 
Submit Documentation Feedback 

How to Use the EDMA3 Driver on a TMS320DM643x Device 7 

 

 

 

www.ti.com Example B: Copy a 2-D Array From External Memory to Internal Memory 
 

Two examples are provided. The first example uses a QDMA channel to perform the data transfer and an 
interrupt notifies you that the transfer is completed. Currently, the EDMA3 driver can only use interrupts to 
notify you that the transfer is complete. 
The second example shows how to program the EDMA3 IECR(H) register to disable the interrupt and poll 
the TCC bit in the IPR(H) register to check that the transfer is complete. Due to the interrupt handling 
overhead, the polling mode may be more efficient and easier to use for some applications. This example 
demonstrates a workaround solution that achieves better performance for the EDMA3 driver. TI strongly 
recommends that you use the updated version of the driver whenever possible. 

 

3.1 QDMA 2-D Copy – Interrupt Notification 
The following steps show how to use a QDMA channel to copy the 2-D array (128×128 bytes) from 
external memory to internal memory. 
1. Allocate a QDMA channel by calling EDMA3_DRV_requestChannel(). This API allocates a TCC code 

and a PaRAM set along with the QDMA channel to the caller. You need to provide a callback that is 
called when the transfer is completed. 

2. Set the QDMA trigger word to be the DST field in the PaRAM set. The trigger word can be any field in 
the PaRAM set. This example uses the DST field to demonstrate the QDMA usage. 

3. Configure the PaRAM set associated with the allocated channel by calling 
EDMA3_DRV_setSrcParams(). The values of the fields in the PaRAM set are as follows: 
• SRC should be the start address of the 128×128 array in the input image to be  extracted. 
• SRCBIDX = 720 and DSTBIDX = 128. This indicates that the offset between two neighboring rows 

of the 128×128 array in the input image and output buffer is 720 and 128, respectively. The values 
of SRCCIDX and DSTCIDX do not matter in this example because it is a 2-D copy. 

• ACNT = 128, BCNT = 128 and CCNT = 1. This indicates that the transfer is configured as a 2-D 
transfer. The 1-D transfer copies every row (128 bytes). The 2-D transfer consists of 128 1-D 
transfers to copy the 128×128 array. 

• OPT.SYNCDIM = SYNC_AB, OPT.TCINTEN = ENABLE, OPT.ITCINTEN = DISABLE, and 
OPT.TCCMODE = NORMAL. This indicates that after the 2-D transfer is completed, you will be 
notified by an interrupt. 

4. Manually enable the transfer by calling EDMA3_DRV_setPaRAMEntry(). The DST field, which is the 
trigger word, is set to the address of the output 2-D array in the internal memory. Once the transfer is 
completed, an interrupt is generated. 

5. After the example is finished, the QDMA channel is freed by calling EDMA3_DRV_freeChannel(). 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAN4A
http://www.ti.com/


8 How to Use the EDMA3 Driver on a TMS320DM643x Device SPRAAN4A – June 2008 
Submit Documentation Feedback 

Example B: Copy a 2-D Array From External Memory to Internal Memory www.ti.com 

 

 

 

3.2 QDMA 2-D Copy – Polling Transfer Completeness 
The following steps show how to use a QDMA channel to copy the 2-D array (128×128 bytes) from 
external memory to internal memory, using the polling method to check that the transfer is complete. 
1. Allocate a QDMA channel by calling EDMA3_DRV_requestChannel(). This API allocates a TCC code 

and a PaRAM set along with the QDMA channel to the caller. You do not need to provide a callback. 
2. Set the TCC bit in the EDMA3 IECR(H) register, which disables the interrupt to be generated when a 

transfer is completed. 
3. Set the QDMA trigger word to be the DST field in the PaRAM set. The trigger word can be any field in 

the PaRAM set. This example uses the DST field to demonstrate the QDMA usage. 
4. Configure the PaRAM set associated with the allocated channel by calling 

EDMA3_DRV_setSrcParams(). The values of the fields in the PaRAM set are as follows: 
• SRC should be the start address of the 128×128 array of the input image to be  extracted. 
• SRCBIDX = 720 and DSTBIDX = 128. This indicates that the offset between two neighboring rows 

of the 128×128 array in the input image and output image is 720 and 128, respectively. The values 
of SRCCIDX and DSTCIDX do not matter in this example because it is a 2-D copy. 

• ACNT = 128, BCNT = 128 and CCNT = 1. This indicates that the transfer is configured as a 2-D 
transfer. The 1-D transfer copies every row (128 bytes). The 2-D transfer consists of 128 1-D 
transfers to copy the 128×128 array. 

• OPT.SYNCDIM = SYNC_AB, OPT.TCINTEN = ENABLE, OPT.ITCINTEN = DISABLE, and 
OPT.TCCMODE = NORMAL. This indicates that after the 2-D transfer is completed, the TCC bit in 
the IPR(H) register is set. 

5. Manually enable the transfer by calling EDMA3_DRV_setPaRAMEntry(). The DST field, which is the 
trigger word, is set to the address of the output 2-D array in the internal memory. 

6. Poll the transfer status by reading the TCC bit in the IPR(H) register. Once the transfer is completed, 
the bit is raised to 1. The bit needs to be cleared by writing to the TCC bit in the ICR(H) register. 

7. After the example is finished, the QDMA channel is freed by calling EDMA3_DRV_freeChannel(). 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAN4A
http://www.ti.com/


SPRAAN4A – June 2008 
Submit Documentation Feedback 

How to Use the EDMA3 Driver on a TMS320DM643x Device 9 

 

 

720 

185 186 191 192 249 250 255 256 

MB (16 x 16) 
 

Input Image in External Memory 

 

www.ti.com Example C: Convert a 2-D Image to 1-D Data 
 

4 Example C: Convert a 2-D Image to 1-D Data 
This section describes how to copy each of the 8×8 2-D blocks in the original Y plane image in NTSC D1 
resolution (720×480) from the external memory to the internal memory, while converting them to 1-D data. 
The Y plane image consists of macroblocks (MBs) in size 16×16. Each MB is divided into four 8×8 blocks. 
When transferring a MB, the provided example also converts each 8×8 block to a 1-D vector, as shown in 
Figure 6. 

Many video encoders compress the image MB by MB, each of which is divided into four 8×8 blocks and 
processed separately. When implementing these video encoders, you should copy the blocks from the 
external memory to the internal memory and convert them to 1-D data before processing starts. This 
example shows you how to use EDMA3 to perform these tasks. 

 
 

   
      
      

         

      
    

1 2 7 8 65 66 71 72  
    

9 10  73 74   
    

     Output Array in 
Internal Memory 

 

57 58 63 64 121 122 127 128   

129 130 135 136 193 194 199 200   
137 138  201 202    

 
 
 
 
 
 
 

Figure 6. Convert 2-D Image to 1-D Data 
 

The Y plane image in NTSC D1 resolution consists of 45 MBs per row and 30 MBs per column. The 
provided example copies one MB each time. Thus, 1350 transfers are needed. To copy and convert each 
MB, two regular channels are used. The first channel copies the upper two 8×8 blocks in each MB and the 
second channel copies the lower two blocks. 
Using the DSP core to reprogram the PaRAM set each time after a transfer is completed is not efficient. In 
fact, all the field values of the PaRAM set should remain the same across consecutive transfers, except  
for the SRC and DST fields, which should be updated to point to the correct input and output buffer 
addresses. To reduce the overhead of reprogramming the PaRAM set, a link channel is allocated for each 
regular channel. The field values of its PaRAM set are the same as those of the PaRAM set  
corresponding to the regular channel. After each transfer is completed, the PaRAM set of the regular 
channel is reloaded from that of the link channel. By reprogramming only the SRC and DST fields, the  
next transfer can be started. 
The following steps demonstrate how to copy 2-D blocks in the original Y plane image from the external 
memory to the internal memory, while converting them to 1-D data. 
1. Allocate two regular channels by calling EDMA3_DRV_requestChannel() twice. This API allocates a 

TCC code and a PaRAM set along with the channel to the caller. You need to provide a callback for 
each allocation. The purpose of the callback is explained in step 3. 

2. Allocate two link channels by calling EDMA3_DRV_requestChannel() twice. You do not need to 
provide a callback here. 

48
0 

64 
1 2  63 64 

65 66  127 128 
129 130  191 192 

193 194  255 256 

 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAN4A
http://www.ti.com/


10 How to Use the EDMA3 Driver on a TMS320DM643x Device SPRAAN4A – June 2008 
Submit Documentation Feedback 

 

 

 

Example C: Convert a 2-D Image to 1-D Data www.ti.com 
 

3. Configure the PaRAM set associated with each regular channel by calling 
EDMA3_DRV_setSrcParams(). 
• The field values of the PaRAM set corresponding to the first regular channel are as follows: 

– SRC should be the start address of the input Y plane image. 
– DST should be the start address of the output buffer. 
– SRCBIDX = 720, SRCCIDX = 8, DSTBIDX = 8 and DSTCIDX = 64. This indicates that two 

upper 8×8 blocks are copied and converted to two vectors and the output buffer, with each 
vector length being 64. 

– ACNT = 8, BCNT = 8 and CCNT = 2. This indicates that the transfer is configured as a 3-D 
transfer. The 1-D transfer copies each row of the 8×8 block. The 2-D transfer consists of eight 
1-D transfers to copy the whole block. The 3-D transfer consists of two 2-D transfers to copy 
two upper blocks. 

– OPT.SYNCDIM = SYNC_AB, OPT.TCINTEN = ENABLE, OPT.ITCINTEN = ENABLE, and 
OPT.TCCMODE = NORMAL. This indicates that after one 8×8 block is transferred, you will be 
notified by an interrupt. Inside the callback, you should trigger a new transfer to copy the next 
block. 

• The field values of the PaRAM set corresponding to the second channel are as follows: 
– SRC should be the start address of the input Y plane image, plus 720×8 bytes. 
– DST should be the start address of the output buffer, plus 128 bytes. 
– Values of SRCBIDX, SRCCIDX, DSTBIDX, and DSTCIDX are the same as for the first channel. 
– Values of ACNT, BCNT, and CCNT are the same as for the first channel. 
– Values of OPT.SYNCDIM, OPT.TCINTEN, OPT.ITCINTEN, and OPT.TCCMODE are the same 

as for the first channel. 
4. For each regular channel, link it with the corresponding link channel by calling 

EDMA3_DRV_linkChannel(), then copy its PaRAM set content to the link channel’s PaRAM set. 
5. Manually enable the first transfer for each regular channel by calling EDMA3_DRV_enableTransfer(). 

As mentioned previously, once the first intermediate (2-D) transfer is completed, an interrupt is 
generated. Inside the callback, you are expected to enable the next 2-D transfer one more time to copy 
the next 8×8 block. The channel considers that the transfer is complete after the two 8×8 blocks are 
copied. 

6. After both channels have finished copying and converting the two 8×8 blocks, reprogram the SRC and 
DST fields in their PaRAM sets to the appropriate values. For instance, the SRC field of the first 
channel should point to the start address of the next MB in the input image. 

7. The transfer continues until all 1350 MBs have been copied. After that, all the channels need to be 
freed by calling EDMA3_DRV_freeChannel(). 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAN4A
http://www.ti.com/


SPRAAN4A – June 2008 
Submit Documentation Feedback 

How to Use the EDMA3 Driver on a TMS320DM643x Device 11 

 

 

 

www.ti.com Example D: PING-PONG Buffering Scheme 
 

5 Example D: PING-PONG Buffering Scheme 
This section explains how to use the PING-PONG buffering scheme that is required for many DSP 
applications. Two buffers reside in the internal memory. When the PING (or PONG) buffer is processed by 
the DSP, the PONG (or PING) buffer is filled by the EDMA3. By the time the PING (or PONG) buffer has 
been processed, the DSP can start processing the PONG (or PING) buffer without waiting for it to be  
filled. 

 

Driving EDMA3 to Copy Data 
 

Link 
 

 
 
 
 

Link 
 

 
Driving EDMA3 to Copy Data 

Figure 7. PING-PONG Buffer Copy 
 

This example uses the link and chain feature to automatically trigger the next transfer once the previous 
one is finished without using the DSP to reprogram any PaRAM set or reenable the transfer. The idea is 
illustrated in Figure 7. Two regular channels are allocated and fill the PING and PONG buffer,  
respectively. In addition, two link channels are allocated and linked to the corresponding regular channel. 
When the current transfer is finished, the regular channel PaRAM set can be reloaded from the link 
channel’s PaRAM set without DSP intervention. Two regular (link) channels are also chained to each  
other by programming the LINK field in their PaRAM sets. As a result, when the PING (or PONG) buffer is 
filled by channel 1, filling the PONG (or PING) buffer can be automatically started. Such an automatic 
transfer-trigger feature imposes a critical real-time requirement to the application. It implies that you have 
to make sure the processing time in each round is less than the data transfer time. 
In the provided example, both the internal and external PING (or PONG) buffer size are set to 4096 bytes. 
The element size is set to 32 bits. Each transfer copies 1K elements from the external PING (or PONG) 
buffer to the internal PING (or PONG) buffer. 
The following steps demonstrate the PING-PONG buffering scheme using the EDMA3 driver: 
1. Allocate two regular channels by calling EDMA3_DRV_requestChannel() twice. This API allocates a 

TCC code and a PaRAM set along with the channel to the caller. You need to provide a callback for 
each allocation. In this example, the only purpose of the callback is to notify you that the transfer is 
completed. 

2. Allocate two link channels by calling EDMA3_DRV_requestChannel() twice. You do not need to 
provide a callback here. 

PING 
Buffer 

Internal 

PONG 
Buffer 

External 

PONG 
Buffer 

Internal 

PING 
Buffer 

External 

Link 
Channel 2 

PaRAM 
Channel 2 

PaRAM 

Link 
Channel 1 

PaRAM 
Channel 1 

PaRAM 

C
ha

in
 

C
ha

in
 

C
ha

in
 

C
ha

in
 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAN4A
http://www.ti.com/


12 How to Use the EDMA3 Driver on a TMS320DM643x Device SPRAAN4A – June 2008 
Submit Documentation Feedback 

 

 

 

Package Usage Guide www.ti.com 
 

3. Configure the PaRAM set associated with each regular channel by calling 
EDMA3_DRV_setSrcParams(). 
• The field values of the PaRAM set corresponding to the first channel are as follows: 

– SRC should be the start address of the PING buffer in the external memory. 
– DST should be the start address of the PING buffer in the internal memory. 
– SRCBIDX = 4096, DSTBIDX = 4096, ACNT = 4096, BCNT = 1 and CCNT = 1. This indicates 

that each transfer is configured as a 1-D transfer copying 4096 bytes (1K elements). The 
values of SRCCIDX and DSTCIDX do not matter in this example. 

– OPT.SYNCDIM = SYNC_AB, OPT.TCINTEN = ENABLE, and OPT.TCCMODE = NORMAL. 
This indicates that after the PING buffer is copied, you will be notified by an interrupt. 

• The field values of the PaRAM set corresponding to the second channel are as follows: 
– SRC should be the start address of the input PONG buffer in the external memory. 
– DST should be the start address of the PONG buffer in the internal memory. 
– Values of SRCBIDX, SRCCIDX, ACNT, BCNT, and CCNT are the same as for the first 

channel. 
– Values of OPT.SYNCDIM, OPT.TCINTEN, and OPT.TCCMODE are the same as for the first 

channel. 
4. Chain the regular channels to each other by calling the EDMA3_DRV_chainChannel() twice. 
5. For each regular channel, link it with the corresponding link channel by calling 

EDMA3_DRV_linkChannel(), then copy its PaRAM set content to the linked channel’s PaRAM set. 
6. Manually enable the first transfer of the first channel to fill the PING buffer by calling 

EDMA3_DRV_enableTransfer(). Once it is completed, an interrupt is generated and the next transfer 
of the second channel to fill the PONG buffer is triggered automatically. When the PONG buffer is 
filled, the data in the PING buffer can be processed. 

7. The transfer continues for a specified number of times. After the example is finished, all the channels 
need to be freed by calling EDMA3_DRV_freeChannel(). 

 
6 Package Usage Guide 

 
6.1 Hardware and Software Requirement 

The following equipment and software are needed to compile and execute the provided example code. 
• A PC with Microsoft® Windows XP® operating system pre-installed 
• Texas Instruments Code Composer Studio™ 3.3 (CCStudio) software already installed on PC 
• A TMS320DM6437 evaluation module (EVM) board 

 

6.2 Package Contents 
The package provided is compressed as a file called spraan4.zip. Unzipping the package to the PC 
creates a folder called edma3test. There are six sub-folders in the edma3test folder: CSL_inc, driver, 
Debug, Release, test, and edma3test.CS_. 
The CSL_inc folder contains the chip support library (CSL) header files of all the peripherals on 
TMS320DM643x. These files implement the polling mode that checks that the transfer is complete, which 
works around the limitation of the current EDMA3 driver. These header files will not be needed if you use 
a future driver without the limitation. 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAN4A
http://www.ti.com/


SPRAAN4A – June 2008 
Submit Documentation Feedback 

How to Use the EDMA3 Driver on a TMS320DM643x Device 13 

 

 

 

www.ti.com Package Usage Guide 
 

The driver folder contains various libraries of the EDMA3 driver in object format. Table 1 lists the files in 
the driver folder. 

 

Table 1. Contents of the edma3test/driver Folder 
File(s) Description 

 

edma3_drv_bios_dbg.lib Debug version of the driver library. 
edma3_drv_bios_rel.lib Release version of the driver library. 
edma3_rm_bios_dbg.lib Debug version of the resource manager. The edma3_drv_bios_dbg.lib file depends on it. 
edma3_rm_bios_rel.lib Release version of the resource manager. The edma3_drv_bios_rel.lib file depends on it. 
bios_edma3_sample_cfg.c Defines the resource of the EDMA3 hardware module on the TMS320DM673x. It comes 

with the EDMA3 driver. If the driver needs to be reused for a different device, this file is the 
only place that you need to modify to correctly define the resource on the device. 

bios_edma3_sample_cs.c Implements the functions related to OS service required by the driver. It comes with the 
EDMA3 driver. 

bios_edma3_sample_init.c Implements the functions initializing the EDMA3 hardware module and the driver. It comes 
with the EDMA3 driver. 

bios_edma3_sample.h, Driver head files. To use the driver, you only need to include file bios_edma3_sample.h. 
edma3_common.h, edma3_drv.h, 
edma3_log.h, edma3_rl_cc.h, 
edma3_rl_tc.h, edma3_rm.h 

 

The Debug folder contains the binary code generated from compiling the debug version of the example 
package. The executable is edma3test.out. The memory map file is edma3test.map. 
The Release folder contains the binary code generated from compiling the release version of the example 
package. The executable is edma3test.out. The memory map file is edma3test.map. 
The test folder contains the source code that demonstrates how to program the EDMA3 driver to 
implement the examples that were previously described. Table 2 lists the files in the test folder. 

 
Table 2. Contents of the edma3test/test Folder 

File(s) Description 
 

callback.c Contains the callback routine that is called when an intermediate or a final transfer is 
completed. 

main.c Contains the main entry function of the examples. 
test.h Defines the data structure, function prototypes, and global variable prototypes used in the 

examples. 
test_2D1D.c Implements the example described in Section 4. 
test_2D2D.c Implements the example described in Section 3. 
test_422to420_conversion.c Implements the example described in Section 2. 
test_PingPong.c Implements the example described in Section 5. 
timer.lib Implements the function _C64P_getltime() to help measure the performance. 

 

The folder edma3 includes the following files, among others. 
• The edma3test.pjt project file is the Code Composer Studio (CCStudio) software project file. 
• The edma3test.tcf configuration file configures the DSP/BIOS™ software kernel foundation that is the 

operating system running on the TMS320DM643x. 
• The edma3test.cmd command file defines some memory buffer sections in the L1, L2, and external 

memory. 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAN4A
http://www.ti.com/


14 How to Use the EDMA3 Driver on a TMS320DM643x Device SPRAAN4A – June 2008 
Submit Documentation Feedback 

 

 

 

References www.ti.com 
 

6.3 How to Run the Example 
The following steps show how to run the example using Code Composer Studio: 
1. Start Code Composer Studio and open the project file edma3test.pjt. 
2. To run the debug (release) version of the example, you must load the .out file to the board. To load a 

file to the board, select File → Load Program, then choose the edma3test.out file from either the 
Debug or Release folder of the project. 

3. Reset the CPU by selecting Debug→Reset CPU. 
4. Restart the program by selecting Debug→Restart. 
5. Open the RTDX log window by selecting DSP/BIOS→Message Log. 
6. Hit the F5 key to run the program, or select Debug→Run. 
7. When the messages in the RTDX log window have been printed, stop the program using the shift+F5 

keys. The correct messages are shown below. 
 

Note: Your performance numbers may differ from the numbers shown below. 
 

0 Starting EDMA3 examples! 
 

1 test_422to420_conversion() started: 
2 cache operation cycles = 319982 
3 Tran(Y) cycles = 4751786 
4 Tran(U) cycles = 1300288 
5 Tran(V) cycles = 1308284 
6 test_422to420_conversion() passed! 

 
7 test_2D2D() started: 
8 cache operation cycles = 23514 
9 Tran cycles = 15316 
10 test_2D2D() to L2 mem passed! 

 
11 test_2D2D_nointr() started: 
12 cache operation cycles = 35276 
13 Tran cycles = 7462 
14 test_2D2D_nointr() to L2 mem passed! 

 
15 test_PINGPONG_LinkChain() started: 
16 cache operation cycles = 3204 
17 Tran cycles = 567987 
18 test_PINGPONG_LinkChain() passed! 

 
19 test_2D1D() started: 
20 cache operation cycles = 500167 
21 Tran cycles = 13053419 
22 test_2D1D() passed! 

 
23 All EDMA3 examples are done! 

 

6.4 How to Compile the Example 
To compile the example using Code Composer Studio: 
1. Start Code Composer Studio and open the project file edma3test.pjt. 
2. To compile the debug (or release) version of the example, select Debug (or Release) in the 

configuration window. Select Project → Build to build the code 
 
7 References 

1. DMP Enhanced Direct Memory Access (EDMA3) Controller User’s Guide (SPRU987) 
2. EDMA3 0 3.0 User’s Manual, included with the digital video software development kit (DVSDK) 

software package of the TMS320DM6437 EVM board 

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAN4A
http://www.ti.com/
http://www-s.ti.com/sc/techlit/SPRU987


IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	ABSTRACT
	1 Introduction
	1.1 Introduction to the EDMA3
	Figure 1. EDMA3 Block Diagram

	1.2 Introduction to EDMA3 Driver
	Figure 2. EDMA3 Driver Structure


	2 Example A: Convert Image From YUV422 Format to YUV420 Format
	Figure 3. NTSC D1 YUV422 Interleaved Format (UYVY)
	Figure 4. NTSC D1 YUV420 Planar Format

	3 Example B: Copy a 2-D Array From External Memory to Internal Memory
	Figure 5. Extract a 2-D Subset Array From an Input Image
	3.1 QDMA 2-D Copy – Interrupt Notification
	3.2 QDMA 2-D Copy – Polling Transfer Completeness

	4 Example C: Convert a 2-D Image to 1-D Data
	Figure 6. Convert 2-D Image to 1-D Data

	5 Example D: PING-PONG Buffering Scheme
	Figure 7. PING-PONG Buffer Copy

	6 Package Usage Guide
	6.1 Hardware and Software Requirement
	6.2 Package Contents
	Table 1. Contents of the edma3test/driver Folder
	Table 2. Contents of the edma3test/test Folder

	6.3 How to Run the Example
	6.4 How to Compile the Example

	7 References
	IMPORTANT NOTICE


