

Implementing DDR2 PCB Layout on the TMS320C6452 DSP

Michael R. Shust

High Speed HW Productization

ABSTRACT

This application report contains implementation instructions for the DDR2 interface contained on the TMS320C6452 digital signal processor (DSP) device. The approach to specifying interface timing for the DDR2 interface is quite different than on previous devices.

The previous approach specified device timing in terms of data sheet specifications and simulation models. The system designer was required to obtain compatible memory devices, as well as the device-specific data sheets and simulation models. This information would then be used to design the printed circuit board (PCB) using high-speed simulation to close system timing.

For the C6452 DDR2 interface, the approach is to specify compatible DDR2 devices and provide the PCB routing rule solution directly. TI has performed the simulation and system design work to ensure DDR2 interface timings are met. This document describes the required routing rules.

The C6452 EVM provides an example of a PCB layout following these routing rules that passes FCC EMI requirements. You may copy the DDR2 portion of this layout directly, but the intent is to allow enough flexibility in the routing rules to meet other PCB requirements.

	Contents
1	C6452
2	References
	List of Figures
1	DDR2 High Level Schematic
2	C6452 and DDR2 Device Placement
3	DDR2 Keepout Region5
4	VREF Routing and Topology9
5	CK and ADDR_CTRL Routing and Topology9
6	DQS and DQ Routing and Toplogy
7	DQGATE Routing
	List of Tables
1	Compatible JEDEC DDR2 Devices
2	C6452 Minimum PCB Stack Up
3	PCB Stack Up Specifications
4	Placement Specifications 5
5	Bulk Bypass Capacitors6
6	High-Speed Bypass Capacitors
7	Clock Net Class Definitions
8	Signal Net Class Definitions

9	DDR2 Signal Terminations	. 8
	CK and ADDR_CTRL Routing Specification	
11	DQS and DQ Routing Specification	11
12	DOGATE Routing Specification	12

1 C6452

1.1 DDR2 Interface

This section provides the timing specification for the DDR2 interface as a PCB design and manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable DDR2 memory system without the need for a complex timing closure process. For more information regarding guidelines for using this DDR2 specification, see application report (to be named later).

1.1.1 DDR2 Interface Schematic

Figure 1 shows the DDR2 interface schematic for a x32 DDR2 memory system. The x16 DDR2 system schematic is identical except that the high word DDR2 device is deleted. Pin numbers for the C6452 can be obtained from the pin description section of the *TMS320C6452 Digital Signal Processor Data Manual* (SPRS371) and the DDR2 device pin numbers can be obtained from their device-specific data sheets.

1.1.2 Compatible JEDEC DDR2 Devices

Table 1 shows the parameters of the JEDEC DDR2 devices that are compatible with this interface. Generally, the DDR2 interface is compatible with x16 DDR2-533 speed grade DDR2 devices.

Table 1.	Compatible JEDEC DDR2 D	evices

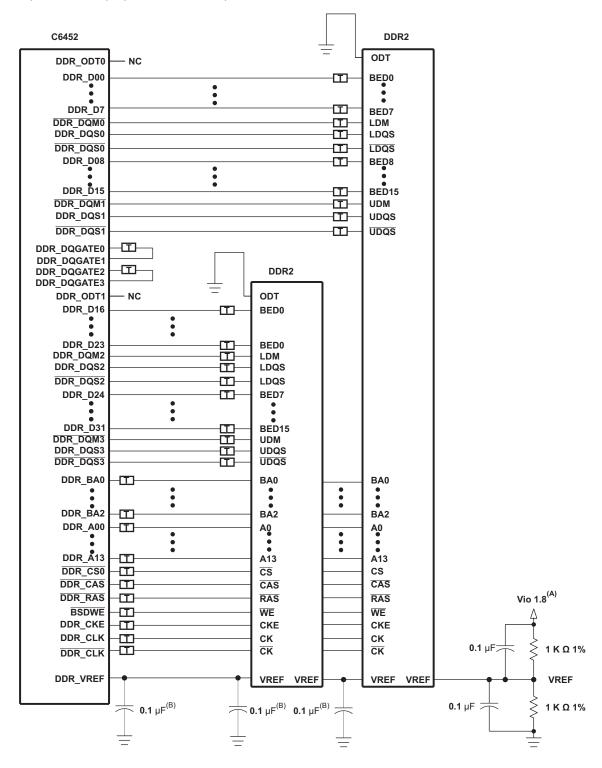
No.	Parameter	Min	Max	Unit	Notes
1	JEDEC DDR2 Device Speed Grade	DDR2-533			See Note (1)
2	JEDEC DDR2 Device Bit Width	x16	x16	Bits	
3	JEDEC DDR2 Device Count	1	2	Devices	See Note (2)
4	JEDEC DDR2 Device Ball Count	84	92	Balls	See Note (3)

Higher DDR2 speed grades are supported due to inherent JEDEC DDR2 backwards compatibility.

1 DDR2 device is used for 16 bit DDR2 memory system. 2 DDR2 devices are used for 32 bit DDR2 memory system.

1.1.3 PCB Stackup

The minimum stackup required for routing the C6452 is a six layer stack as shown in Table 2. Additional layers may be added to the PCB stack up to accommodate other circuity or to reduce the size of the PCB footprint.


Table 2. C6452 Minimum PCB Stack Up

Layer	Туре	Description
1	Signal	Top Routing Mostly Horizontal
2	Plane	Ground
3	Plane	Power
4	Signal	Internal Routing
5	Plane	Ground
6	Signal	Bottom Routing Mostly Vertical

^{(3) 92} ball devices retained for legacy support. New designs will migrate to 84 ball DDR2 devices. Electrrically the 92 and 84 ball DDR2 devices are the same.

Complete stack up specifications are provided in Table 3.

Terminator, if desired. See terminator comments.

Figure 1. DDR2 High Level Schematic

A Vio1.8 is the power supply for the DDR2 memory interface.

B One of these capacitors can be eliminated if the divider and its capacitors are placed near a device VREF pin.

See Note (3)

	Table 6.1 ob stack of openingations					
No.	Parameter	Min	Тур	Max	Unit	Notes
1	PCB Routing/Plane Layers	6				
2	Signal Routing Layers	3				
3	Full ground layers under DDR2 routing Region	2				
4	Number of ground plane cuts allowed within DDR routing region			0		
5	Number of ground reference planes required for each DDR2 routing layer	1				
6	Number of layers between DDR2 routing layer and reference ground plane			0		
7	PCB Routing Feature Size		4		Mils	
8	PCB Trace Width w		4		Mils	
8	PCB BGA escape via pad size		18		Mils	
9	PCB BGA escape via hole size		8		Mils	
10	DSP Device BGA pad size					See Note (1)
11	DDR2 Device BGA pad size					See Note (2)
12	Single Ended Impedance, Zo	50		75	Ω	

Z-5

Ζ

Z+5

Table 3. PCB Stack Up Specifications

1.1.4 Placement

Impedance Control

Figure 2 shows the required placement for the C6452 device as well as the DDR2 devices. The dimensions for Figure 2 are defined in Table 4. The placement does not restrict the side of the PCB that the devices are mounted on. The ultimate purpose of the placement is to limit the maximum trace lengths and allow for proper routing space. For a 16 bit DDR memory systems, the high word DDR2 device is omitted from the placement.

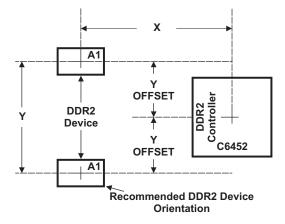
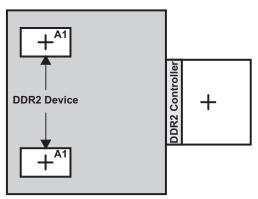


Figure 2. C6452 and DDR2 Device Placement

Please refer to the Flip Chip Ball Grid Array Package Reference Guide (SPRU811) for DSP device BGA pad size.

⁽²⁾ Please refer to the DDR2 device manufacturer documenation for the DDR2 device BGA pad size.

⁽³⁾ Z is the nominal singled ended impedance selected for the PCB specified by item 12.



No.	Parameter	Min	Max	Unit	Notes
1	X		1440	Mils	See Notes (1),
2	Υ		1030	Mils	See Notes (1),
3	Y Offset		525	Mils	See Notes (1).
4	DDR2 Keepout Region				See Note (4)
5	Clearance from non-DDR2 signal to DDR2 Keepout Region	4		w	See Note (5)

Table 4. Placement Specifications

1.1.5 DDR2 Keep Out Region

The region of the PCB used for the DDR2 circuitry must be isolated from other signals. The DDR2 keep out region is defined for this purpose and is shown in Figure 3. The size of this region varies with the placement and DDR routing. Additional clearances required for the keep out region are shown in Table 4.

Region should encompass all DDR2 circuitry and varies depending on placement. Non-DDR2 signals should not be routed on the DDR signal layers within the DDR2 keep out region. Non-DDR2 signals may be routed in the region provided they are routed on layers separated from DDR2 signal layers by a ground layer. No breaks should be allowed in the reference ground layers in this region. In addition, the 1.8 V power plane should cover the entire keep out region.

Figure 3. DDR2 Keepout Region

⁽¹⁾ See Figure 1 for dimension defintions.

⁽²⁾ Measurements from center of DSP device to center of DDR2 device.

⁽³⁾ For 16 bit memory systems it is recommended that Y Offset be as small as possible.

DDR2 Keepout region to encompass entire DDR2 routing area

Non-DDR2 signals allowed within DDR2 keepout region provided they are separated from DDR2 routing layers by a ground plane.

1.1.6 Bulk Bypass Capacitors

Bulk bypass capacitors are required for moderate speed bypassing of the DDR2 and other circuitry. Table 5 contains the minimum numbers and capacitance required for the bulk bypass capacitors. Note that this table only covers the bypass needs of the DSP and DDR2 interfaces. Additional bulk bypass capacitance may be needed for other circuitry.

Table 5. Bulk Bypass Capacitors

No.	Parameter	Min	Max	Unit	Notes
1	CV _{DD} Bulk Bypass Capacitor Count	6		Devices	See Note (1)
2	CV _{DD} Bulk Bypass Capacitor Total Capacitance	60		μF	
3	DV _{DD33} Bulk Bypass Capacitor Count	6		Devices	See Note (1)
4	DV _{DD33} Bulk Bypass Total Capacitance	60		μF	
5	DV _{DD18} Bulk Bypass Capacitor Count	3		Devices	See Note (1)
6	DV _{DD18} Bulk Bypass Total Capacitance	30		μF	
7	DV _{DDR2} #1 Bulk Bypass Capacitor Count	1		Devices	See Notes (1), (2)
8	DV _{DDR2} #1 Bulk Bypass Total Capacitance	10		μF	See Note (2)
9	DV _{DDR2} #2 Bulk Bypass Capacitor Count	1		Devices	See Notes (1), (1),
10	DV _{DDR2} #2 Bulk Bypass Total Capacitance	10		μF	See Note (2)

⁽¹⁾ These devices should be placed near the device they are bypassing, but preference should be given to the placement of the high-speed (HS) bypass caps.

 $^{^{(2)}}$ DV_{DDR2} is the supply voltage for the DDR2 memory devices.

1.1.7 High-Speed Bypass Capacitors

High-Speed (HS) bypass capacitors are critical for proper DDR2 interface operation. It is particularly important to minimize the parasitic series inductance of the HS bypass cap, DSP/DDR power, and DSP/DDR ground connections. Table 6 contains the specification for the HS bypass capacitors as well as for the power connections on the PCB.

1.1.8 Net Classes

Table 7 lists the clock net classes for the DDR2 interface. Table 8 lists the signal net classes, and associated clock net classes, for the signals in the DDR2 interface. These net classes are used for the termination and routing rules that follow.

Table 6. High-Speed Bypass Capacitors

No.	Parameter	Min	Max	Unit	Notes
1	HS Bypass Capacitor Package Size		0402	10 Mils	See Note (1)
2	Distance from HS bypass capacitor to device being bypassed		250	Mils	
3	Number of connection vias for each HS bypass capacitor	2		Vias	See Note (2)
4	Trace length from bypass capacitor contact to connection via	1	30	Mils	
5	Number of connection vias for each DSP device power or ground balls	1		Vias	
6	Trace length from DSP device power ball to connection via		35	Mils	
7 Number of connection vias for each DDR2 device power or ground balls		Vias	See Note (3)		
8	3 Trace length from DDR2 device power ball to connection via		35	Mils	See Note (3)
9	CV _{DD} HS Bypass Capacitor Count	40		Devices	See Note (4)
10	0 CV _{DD} HS Bypass Capacitor Total Capacitance 2.4 μF		μF		
11	DV _{DD33} HS Bypass Capacitor Count	40		Devices	See Note (4)
12	DV _{DD33} HS Bypass Capacitor Total Capacitance	2.4		μF	
13	DV _{DD18} HS Bypass Capacitor Count	20		Devices	See Note (4)
14	DV _{DD18} HS Bypass Capacitor Total Capacitance	1.2		μF	
15	DV _{DD18} #1 HS Bypass Capacitor Count	8		Devices	See Note (4)
16	16 DV _{DD18} #1 HS Bypass Capacitor Total Capacitance 0.4		μF		
17 DV _{DD18} #2 HS Bypass Capacitor Count 8 D		Devices	See Notes (4),		
18	DV _{DD18} #2 HS Bypass Capacitor Total Capacitance	0.4		μF	

⁽¹⁾ LxW, 10 mil units, i.e., a 0402 is a 40x20 mil surface mount capacitor

⁽²⁾ An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board.

⁽³⁾ DVDDR2 is the supply voltage for the DDR2 memory devices.

⁽⁴⁾ These devices should be placed as close as possible to the device being bypassed.

⁽⁵⁾ Only used on 32-bit wide DDR2 memory systems

Table 7.	Clock N	let Class	Definitions
----------	---------	-----------	-------------

Clock Net CLass	DSP Pin Names
СК	DDR_CLK/DDR_CLK
DQS0	DDR_DQS0/DDR_DQS0
DQS1	DDR_DQS1/DDR_DQS1
DQS2	DDR_DQS2/DDR_DQS2
DQS3	DDR_DQS3/DDR_DQS3

Table 8. Signal Net Class Definitions

Clock Net CLass	Associated Clock Net Class	DSP Pin Names
ADDR_CTRL	СК	DDR_BA[2:0], DDR_A[13:0], \overline{DDR_CS}, \overline{DDR_CAS}, \overline{DDR_RAS}, \overline{DDR_WE}, \overline{DDR_CKE}
DQ0	DQS0	DDR_DQ[7:0], DDR_DQM0
DQ1	DQS1	DDR_DQ[15:8], DDR_DQM1
DQ2	DQS2	DDR_DQ[16:23], DDR_DQM2
DQ3	DQS3	DDR_DQ[31:23], DDR_DQM3
DQGATEL	CK, DQS0, DQS1	DDR_DQGATE0, DDR_DQGATE1
DQGATEH	CK, DQS2, DQS3	DDR_DQGATE2, DDR_DQGATE3

1.1.9 DDR2 Signal Termination

No terminations of any kind are required in order to meet signal integrity and overshoot requirements. Serial terminators are permitted, if desired, to reduce EMI risk; however, serial terminations are the only type permitted. Table 9 shows the specifications for the series terminators.

Table 9. DDR2 Signal Terminations

No.	Parameter	Min	Тур	Max	Unit	Notes
1	CK Net Class	0		10	Ω	See Note (1)
2	ADDR_CTRL Net Class	0	22	Zo	Ω	See Notes (1),
3	Data Byte Net Classes (DQS0-DQS3, DQ0-DQ3)	0	22	Zo	Ω	See Notes (1), (2), (3), (4),
4	DQGATE Net Classes (DQGATEL, DQGATEH)	0	10	Zo	Ω	See Notes (1),

⁽¹⁾ Only series termination is permitted, parallel or SST specifically disallowed.

⁽²⁾ Terminator values larger than typical only recommended to address EMI issues.

⁽³⁾ Termination value should be uniform across net class.

When no termination is used on data lines (0 Ω s), the DDR2 devices must be programmed to operate in 60% strength mode.

1.1.10 VREF Routing

VREF is used as a reference by the input buffers of the DDR2 memories as well as the C6452's. VREF is intended to be 1/2 the DDR2 power supply voltage and should be created using a resistive divider as shown in Figure 1. Other methods of creating VREF are not recommended. Figure 4 shows the layout guidelines for VREF.



Figure 4. VREF Routing and Topology

1.1.11 DDR2 CK and ADDR_CTRL Routing

Figure 5 shows the topology of the routing for the CK and ADDR_CTRL net classes. The route is a balanced *T* as it is intended that the length of segments B and C be equal. In addition, the length of A should be maximized.

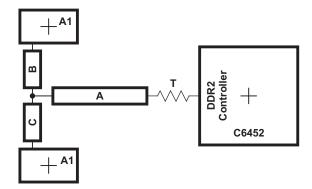


Figure 5. CK and ADDR_CTRL Routing and Topology

Table 10. CK and ADDR	_CTRL Routing	ng Specification (1)
-----------------------	---------------	----------------------

No	Parameter	Min	Тур	Max	Unit	Notes
NO	Farameter	IVIIII	тур	IVIAX	Unit	Notes
1	Center to center CK-CK spacing			2w		
2	CK A to B/A to C Skew Length Mismatch			25	Mils	See Note (1)
3	CK B to C Skew Length Mismatch			25	Mils	
4	Center to center CK to other DDR2 trace spacing	4w				See Note (2)
5	CK/ADDR_CTRL nominal trace length	CACLM-50	CACLM	CACLM+50	Mils	See Note (3)
6	ADDR_CTRL to CK Skew Length Mismatch			100	Mils	
7	ADDR_CTRL to ADDR_CTRL Skew Length Mismatch			100	Mils	
8	Center to center ADDR_CTRL to other DDR2 trace spacing	4w				See Note (2)
9	Center to center ADDR_CTRL to other ADDR_CTRL trace spacing	3w				See Note (2)
10	ADDR_CTRL A to B/A to C Skew Length Mismatch			100	Mils	See Note (1)
11	ADDR_CTRL B to C Skew Length Mismatch			100	Mils	

⁽¹⁾ Series terminator, if used, should be located closest to DSP.

Figure 6 shows the topology and routing for the DQS and DQ net classes; the routes are point to point. Skew matching across bytes is not needed nor recommended.

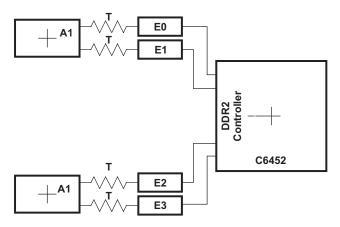


Figure 6. DQS and DQ Routing and Toplogy

⁽²⁾ Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing congestion.

⁽³⁾ CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes.

Table 11. DQS and DQ Routing Specification (1)								
Min Typ Max Unit								
DQS spacing			2w					
lismatch			25	Mils				

No.	Parameter	Min	Тур	Max	Unit	Notes
1	Center to center DQS-DQS spacing			2w		
2	DQS E Skew Length Mismatch			25	Mils	
3	Center to center DQS to other DDR2 trace spacing	4w				See Note (2)
4	DQS/DQ nominal trace length	DQLM-50	DQLM	DQLM+50	Mils	See Notes (1), (3), (4), (5)
5	DQ to DQS Skew Length Mismatch			100	Mils	See Notes (3), (4),
6	DQ to DQ Skew Length Mismatch			100	Mils	See Notes (3), (4),
7	Center to center DQ to other DDR2 trace spacing	4w				See Notes (2), (6)
8	Center to Center DQ to other DQ trace spacing	3w				See Notes (7), (2)
9	DQ E Skew Length Mismatch			100	Mils	See Notes (3), (4),

⁽¹⁾ Series terminator, if used, should be located closest to DDR.

Figure 7 shows the routing for the DQGATE net classes. Table 12 contains the routing specification.

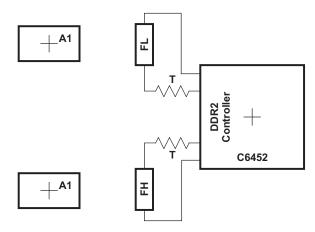


Figure 7. DQGATE Routing

⁽²⁾ Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing congestion.

A 16 bit DDR memory system will have two sets of data net classes, one for data byte 0, and one for data byte 1, each with an associated DQS (2 DQS's).

A 32 bit DDR memory system will have four sets of data net classes, one each for data bytes 0 through 3, and each associated with a DQS (4 DQS's).

⁽⁵⁾ There is no need and it is not recommended to skew match across data bytes, ie from DQS0 and data byte 0 to DQS1 and data byte 1.

⁽⁶⁾ DQ's from other DQS domains are considered other DDR2 trace.

DQLM is the longest Manhattan distance of each of the DQS and DQ net classes.

Table 12. DQGATE Routing Specification

No.	Parameter	Min	Тур	Max	Unit	Notes
1	DQGATEL Length F		CKB0B1			See Note (1)
2	DQGATEH Length F		CKB2B3			See Note (2)
3	Center to center DQGATE to any other trace spacing	4w				
4	DQS/DQ nominal trace length	DQLM-50	DQLM	DQLM+50	Mils	
5	DQGATEL Skew			100	Mils	See Note (3)
6	DQGATEH Skew			100	Mils	See Note (4)

CKB0B1 is the sum of the length of the CK net plus the average length of the DQS0 and DQS1 nets. CKB2B3 is the sum of the length of the CK net plus the average length of the DQS2 and DQS3 nets.

2 References

- TMS320C6452 Digital Signal Processor Data Manual (SPRS371)
- Flip Chip Ball Grid Array Package Reference Guide (SPRU811)

⁽²⁾

⁽³⁾ Skew from CKB0B1

⁽⁴⁾ Skew from CKB2B3

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications	
Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medical
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video & Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated