
Application Report
SPRA862 - January 2003

1

www.spiritDSP.com/CST

Client Side Telephony (CST) Chip Flex Mode,
Flex Examples Description

Leonid Purto
Maxim Silchev

SPIRIT CORP

ABSTRACT

This document describes basic flex examples, located in the CST software development kit
(SDK), in directory CST\Src\FlexExamples\.

The flex examples are intended to illustrate integration of your applications into the SPIRIT’s
Client Side Telephony (CST) Framework. The examples show how to use the CST action
interface in the flex mode.

This document does not describe the CST action interface, nor does it contain any other
fragments of the CST specification. The document also does not describe how to modify the
examples to adjust their functionality, build the applications and download them into the DSP,
reconfigure the CST Framework to work with your firmware, and so on. To get acquainted with
the CST flex mode and learn CST, read [1].

For related documents please see section 3.

Go to http://www.spiritDSP.com for the latest version of the CST documentation and patch.

Contents

1 Introduction 2.
1.1 Abbreviations 3.

2 Flex Examples 3.
2.1 Template for Flex Application – main1 (empty app).c 3.

2.1.1 Initialization to Run Under DSP/BIOS 5.
2.2 “Hello!” Application – main2 (hello).c 6.
2.3 ON/OFF HOOK Processing – main3 (mute).c 7.
2.4 Music Playback Control – main4 (music on hold).c 10.
2.5 Recording and Playback – main5 (record & play).c 14.
2.6 Configuring VAD on the Fly – main5a (+VAD manipulation).c 17.
2.7 DTMF Echo – main6 (DTMF toy).c 19.
2.8 DTMF/CPTG Toy – main6a (DTMF toy).c 22.
2.9 Intensive Modem Tx – main7 (modem tx spam).c 24.
2.10 Modem Terminal – main8 (modem terminal).c 28.
2.11 Modem Throughput – main9 (modem throughput).c 31.
2.12 CID Data Receiving – main10 (Caller ID).c 34.

3 References 35.

Trademarks are the property of their respective owners.

SPRA862

2 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

List of Figures

Figure 1. Empty Application 6.

Figure 2. “Hello!” String Output 7.

Figure 3. OFF/ON HOOK Processing 10.

Figure 4. Music Playing Control 14.

Figure 5. Recording and Playback 17.

Figure 6. VAD Reconfiguration on the Fly 19.

Figure 7. DTMF Toy 21.

Figure 8. DTMF/CPTG Toy 24.

Figure 9. Modem Tx Spam 27.

Figure 10. Modem Terminal 31.

Figure 11. Modem Throughput 34.

Figure 12. CID Data Receiving 35.

List of Tables

Table 1. Accepted DTMF Symbols for Music Playback Control 10.

Table 2. Accepted DTMF Symbols for Configuring VAD on the Fly 18.

Table 3. Accepted DTMF Symbols for DTMF/CPTG Toy 22.

Table 4. Dial Symbols 28.

1 Introduction

Unlike many modem chipsets, the CST chip grants you the opportunity to develop your own
applications, download them into the chip, and control the CST solution inside. Thus, there are
two main modes of operation of the CST chip – chipset mode and flex mode.

In the chipset mode, only the CST software is running inside the CST chip. It can be controlled
externally by assembly test (AT) commands transferred over the serial link between the CST
on-chip universal asynchronous receiver/transmitter (UART) and your host. In this mode, the
CST chip can be used as a standard data modem with voice features, including duplex voice
transfers, as all standard functionality of the CST Software is also accessible through AT
commands.

In the flex mode, your code is downloaded into the CST chip, where it runs, using the CST
Software in read-only memory (ROM) as a library. This mode gives you a more flexible access
to the CST software, as it is possible to interact with its components directly when your control
software is contained inside the chip as well. The flex mode also allows you to build applications
using only the CST chip, without the need for any host controller and processing the AT
commands and responses to them.

This document describes twelve standard flex applications, located in the directory,
Src\FlexExamples\.

SPRA862

3 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

1.1 Abbreviations

For the purposes of this API description, the following abbreviations are used:

CID Caller ID

Chipset mode Mode of CST chip operation when it is controlled only externally, by AT commands
sent over serial link.

CPTD Call progress tone detector

CST Client side telephony. Also means the CST chip solution.

DTMF Dual-tone modulated frequency signal

Flex mode Mode of CST chip operation when it is controlled internally by your program,
downloaded into internal or external memory of the CST chip.

UART Universal asynchronous receiver/transmitter, the chip which allows data exchange
over serial link

UMTD Universal multi-tone detector

XDAIS,
XDAS

TMS320 DSP Algorithm Standard (also known as eXpressDSP).

2 Flex Examples
The flex examples are intended to illustrate integration of your applications into the SPIRIT’s
CST Framework. The examples show how to use the CST action interface in the flex mode.

The examples are presented in order of increasing complexity. Each example can also work
under DSP/BIOS . To learn how to compile and run the examples, read the section “Flex Mode
Quick Start” in [1].

2.1 Template for Flex Application – main1 (empty app).c

This is the first example. It contains an empty project and can be used as a template for flex
applications. All described examples are based on this template, so the listed source code of the
following examples will contain only differences from the template. The source annotation is
shown below.

#include ”..\Framework\CSTChannel.h”
#include ”..\Framework\CSTAction.h”

#ifdef _CST_WITH_BIOS
#define BIOS_APPLICATION 1
#else
#define BIOS_APPLICATION 0
#endif

#if !BIOS_APPLICATION
 //Prevent improper compilation
 #define MyPeriodicThread _MyPeriodicThread
 asm(”__sys_memory .usect \”.sysmem\”,0”);
#endif //!BIOS_APPLICATION
 asm(”__STACK_BEGINNING .usect \”.stack\”,0”);

This C-preprocessor definition is used to build the
example for the DSP BIOS environment. Make sure it is
defined in the project if you want to run the application
under DSP BIOS.

DSP/BIOS is a trademark of Texas Instruments.

SPRA862

4 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

static bool MyCallback (tCSTChannel* pChannel,
 tCSTExternalMsgEvent CSTExternalMsgEvent,int
Data,int16 *pData)
{
 switch (CSTExternalMsgEvent)
 {
 //////////////////
 //USER’S CODE...//
 //////////////////
 }
 return 1;
}

Implementation of the main callback function called from
CST. Each CST action-oriented program should
implement this method. Almost all data and information
messages go through this callback routine.

For information about the function arguments see the
section entitled “User’s Callback Function to Process
CST Commander Messages” in [1].

void MyPeriodicThread ()
{
 CSTAction_Process (&Ch0);

 //////////////////
 //USER’S CODE...//
 //////////////////
}

Your periodic thread function. The thread has its own
internal time synchronization and will call your callback
function, MyCallback().

In the case of BIOS configuration, the thread function is
normally called from a software interrupt (SWI). If it is not
called from a periodically posted SWI, it should be called
as often as possible. Frequent calls do not lead to
noticeable overhead because all time consuming tasks are
executed every 10 new samples (sampling frequency is
8 kHz). If there are not 10 new samples, the function will
do nothing.

Calling this function too seldom will cause failures in
time-sensitive state machines, such as distributed
application architecture (DAA) ring detector and samples
losses.

void MyInitialization ()
{
 //////////////////
 //USER’S CODE...//
 //////////////////
}

Your initialization function.

You can insert custom initialization code here.

#define EVM54CST_59MHZ_MULT 4
#define EVM54CST_118MHZ_MULT 8

void main ()
{

Standard main function. The function code fits most of
flex applications, so you do not need to change it.

#if !BIOS_APPLICATION

 //Processor boot init.

 CST_DSPInit ();

#else

 initBiosConst();

#endif //BIOS_APPLICATION

 CST_bssInit (); CST internal data sections initialization.

SPRA862

5 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

 TargetBoardInit (BIOS_APPLICATION,

 EVM54CST_118MHZ_MULT,

 2);

Target board initialization. This function is specifically for
the EVM5406 board, and you may need to change it
according to your board hardware specification.

 CSTAction_Init (&Ch0,BIOS_APPLICATION,

 MyCallback);

CST Framework initialization

 CSL_init(); CSL initialization

 TargetPeriphInit (BIOS_APPLICATION, 1); Target board’s peripheral initialization.

You may need to change this according to your UART
and codec installed on the board, if they are different
from the TMS320C54CST on-chip UART and DAA.

 #if !BIOS_APPLICATION

 asm (” rsbx INTM”);

 #endif //BIOS_APPLICATION

 MyInitialization (); Perform your specific initialization.

 #if !BIOS_APPLICATION

 while (1)

 {
 MyPeriodicThread ();

 }

 #endif //BIOS_APPLICATION

Main loop.

}

2.1.1 Initialization to Run Under DSP/BIOS

The initialization in DSP/BIOS-based flex applications is different from the initialization in
non-DSP/BIOS applications (see Figure 1). The differences are listed below.

• You should call a DSP/BIOS processor initialization function on boot.

#if !BIOS_APPLICATION
 CST_DSPInit ();
#else
 initBiosConst();
#endif //BIOS_APPLICATION

• You should not enable hardware interrupts during initialization; the DSP/BIOS will do that at
the right time later.

#if !BIOS_APPLICATION
 asm (” rsbx INTM”);
#endif //BIOS_APPLICATION

SPRA862

6 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

• You should call the periodic thread function from an SWI rather than from the main()
function. See Figure 1.

#if !BIOS_APPLICATION
 while (1)
 {
 MyPeriodicThread ();
 }
#endif //BIOS_APPLICATION

IDLE

1

Framework
Initialization

NOTE: State transitions marked with “1” are unconditional transitions.

1

Figure 1. Empty Application

2.2 “Hello!” Application – main2 (hello).c

If using a terminal program other than CSTHost, the following settings are required:

Bits per second: 115200
Data bits: 8
Parity: None
Stop bits: 1
Flow control: Hardware

The idea of this example is to output the message “Hello!” to the UART (see Figure 2). To
observe the results of this example application execution, you should connect the EVM5406
board to the PC with a COM cable, and run a terminal program. The source annotation is shown
below.

void MyInitialization ()
{
 //////////////////
 //USER’S CODE...//
 //////////////////

 //Just print out to the UART
 UartPutString (&Ch0,”Hello!\r\n”);
}

Your initialization.

In this example, the string “Hello!” has just been output
to the UART.

The string “Hello!” should appear in the terminal program’s window after executing this example.
See Figure 2.

SPRA862

7 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

IDLE

1

Framework Your

Outputs “Hello!”

Initialization Initialization

String to UART

NOTE: State transitions marked with “1” are unconditional transitions.

1 1

Figure 2. “Hello!” String Output

2.3 ON/OFF HOOK Processing – main3 (mute).c

If using a terminal program other than CSTHost, the following settings are required:

Bits per second: 115200
Data bits: 8
Parity: None
Stop bits: 1
Flow control: Hardware

This example demonstrates OFF/ON HOOK processing. It contains a simple state machine. The
example outputs notification messages to the terminal via the UART to inform you of RING or
BUSY detection.

For correct OFF/ON HOOK processing, you should add handlers for external event messages
eme_PERIPH_DATA and eme_CPTD_DATA in the function MyCallBack(). The source
annotation is shown below.

 typedef enum {
 ms_WAIT_FOR_RING,
 ms_GO_OFF_HOOK,
 ms_WAIT_FOR_BUSY,
 ms_TURN_OFF_GO_ON_HOOK
 } tMainState;
tMainState MainState=ms_WAIT_FOR_RING;

Defining state machine states.

State Machine State Description

ms_WAIT_FOR_RING Initial state

ms_GO_OFF_HOOK Rings detected.

ms_WAIT_FOR_BUSY Wait for busy.

ms_TURN_OFF_GO_ON_HOOK Go on hook, and to
the initial state.

SPRA862

8 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

static bool DoStandardOperation (
 tCSTStandardOperationType OperationType,
 uint8 *pData)
{
 tCSTAction Action;
 int ITemp;

 Action.ActionType=cat_STANDARD_OPERATION;
 Action.Action.CSTStandardOperation.
 OperationType = OperationType;
 Action.Action.CSTStandardOperation.

All described flex examples use existing scripts of
atomic commands to perform standard operations.

OperationType specifies the script to perform a standard
operation.

This routine can be used in most of standard flex
applications without any modifications.

 if (pData)
 for(ITemp=0;
 ITemp<CST_STANDARD_OPERATION_DATA_LEN;
 ITemp++)
 Action.Action.CSTStandardOperation.aData[
 ITemp] = pData[ITemp];

 return CSTAction (&Ch0,&Action) !=
 cmr_TRY_AGAIN;
}

Parameter Description

OperationType Selects a script
pData Attached data depends on the

operation type (e.g., phone number
or custom script.
Zero value of pData means
absence of additional data for the
operation.

static bool MyCallback (tCSTChannel* pChannel,

 tCSTExternalMsgEvent CSTExternalMsgEvent,int

 Data,int16 *pData)

{

 switch (CSTExternalMsgEvent)

 {

External messages callback function. It receives
messages from CST and processes only
eme_PERIPH_DATA, eme_CPTD_DATA, and
eme_AUTOTURNOFF_ALL messages.

 case eme_PERIPH_DATA:

 if (Data==cpe_RING)

 {

 MainState=ms_GO_OFF_HOOK;

 ...

 }

 break;

Switch state machine’s state to ms_GO_OFF_HOOK
upon RING signal detection.

 case eme_CPTD_DATA:

 if (Data==ICPTDDET_BUSY)

 {

 MainState=ms_TURN_OFF_GO_ON_HOOK;

 ...

 }

 break;

BUSY signal detection terminates the connection.
CST will turn off everything automatically (see
eme_AUTOTURNOFF_ALL) when BUSY signal is
detected, so in most cases it is not necessary to have a
handler for BUSY signal detection.

SPRA862

9 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

 case eme_AUTOTURNOFF_ALL:
 MainState=ms_TURN_OFF_GO_ON_HOOK;
 break;
 }
 return 1;
}

If you do not want CST to automatically turn off all and
hang up upon busy detection, the function should return
0 instead of 1.

 if (Data==atk_BUSY)
 return 0;

Some applications (like this) do not not need to process
this message.

void MyInitialization ()
{
 UartPutString (&Ch0,
 ”Please, call to the phone\r\n”);
}

Your initialization.
Just output the string “Please, call to the phone” to the
UART.

void MyPeriodicThread ()
{
 CSTAction_Process (&Ch0);

 switch (MainState)
 {
 case ms_GO_OFF_HOOK:
 if (DoStandardOperation(sot_OFF_HOOK,0))
 {
 MainState=ms_WAIT_FOR_BUSY;
 ...
 }
 break;

When the RING message arrives, the sot_OFF_HOOK
standard operation executes. The corresponding script
(aOffHook) also activates the DTMF and CPTD
detectors.
(The script aOffHook is described in CSTAtomic.c).

 case ms_TURN_OFF_GO_ON_HOOK:
 if (DoStandardOperation(
 sot_TURNOFF_ALL,0))
 {
 MainState=ms_WAIT_FOR_RING;
 ...
 }
 break;

In case of BUSY signal detection, all active algorithms
are turned off by executing the standard operation,
sot_TURN_OFF_ALL. The application comes back to
the initial state upon completing the script execution.
(The corresponding script aTurnOffAll is described in
CSTAtomic.c).

 }
}

WAIT_FOR_RING is the initial state. The state machine is waiting for RING signal detection.
Upon RING detection, the application performs OFF HOOK processing and stops in the
WAIT_FOR_BUSY state. The CPTD detector will start automatically. The application will be in
this state until BUSY signal is detected. You will usually make your own processing here. When
the BUSY signal is detected, CST performs ON HOOK processing and turns off all active
algorithms, so it is not necessary for you to process BUSY messages. After ON HOOK
processing, the state machine comes back to the initial state. See Figure 3.

SPRA862

10 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

WAIT_FOR_RING

OFF HOOK

RING BUSY

ON HOOK

1

No BUSY

WAIT_FOR_BUSY

1

No RING

NOTE: State transitions marked with “1” are unconditional transitions

Figure 3. OFF/ON HOOK Processing

2.4 Music Playback Control – main4 (music on hold).c

If using a terminal program other than CSTHost, the following settings are required:

Bits per second: 115200
Data bits: 8
Parity: None
Stop bits: 1
Flow control: Hardware

This example is based on the previous one. The difference is that it plays a number of short
sounds (pseudo music) in a loop, while being off hook. Music playing is controlled by DTMF
symbols you may send from a phone by pressing buttons. Table 1 shows accepted DTMF
symbols and their purposes. The source annotation follows.

Table 1. Accepted DTMF Symbols for Music Playback Control

DTMF Symbol Purpose

0 Decreases loudness

1 Increases loudness

* Stops playback

Proceeds to playback

SPRA862

11 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

static void SetRegister (int InternalSReg,int
Value)
{
 tCSTAction Action;

 Action.ActionType=cat_SET_REGISTER;
 Action.Action.CSTConfigCommand.InternalSReg=
 InternalSReg;
 Action.Action.CSTConfigCommand.Value=Value;
 CSTAction (&Ch0,&Action);
}

This function is used to set a new S-register value. To
set an S-register value, you should call this function with
the S-register number and its new value.

static int GetRegister (int InternalSReg)
{
 tCSTAction Action;

 Action.ActionType=cat_GET_REGISTER;
 Action.Action.CSTConfigCommand.InternalSReg=
 InternalSReg;
 return (int)CSTAction (&Ch0,&Action);
}

This function is used to get an S-register value. To get
the S-register value you should call this function with the
S-register number.

static void SendVoiceData ()
{
 ...
 while (DataAction.Action.CSTServiceMessage.
 DataLength<CST_MAXDATALENGTH)
 {
 DataAction.Action.CSTServiceMessage.aData[
 DataAction.Action.CSTServiceMessage.
 DataLength++]=
 pMusic[MusicSoundPos++];
 ...
 }

This function prepares music bitstream for playing. At
first, fill the action message data field.

ActionResult=CSTAction (&Ch0,&DataAction);

if ((ActionResult==cmr_RESULTOK)||
 (ActionResult==cmr_EXECUTING))
 DataAction.Action.CSTServiceMessage.
 DataLength=0;
}

The action message will be sent to the CST action when
its filling is complete.

Upon cmr_RESULTOK or cmr_EXECUTING result
codes, new data can be put, instead of the old.

static bool MyCallback (tCSTChannel* pChannel,
 tCSTExternalMsgEvent CSTExternalMsgEvent,int
 Data,int16 *pData)
{
 switch (CSTExternalMsgEvent)
 {

External messages callback function. It receives
messages from CST and processes only
eme_PERIPH_DATA, eme_CPTD_DATA, and
eme_AUTOTURNOFF_ALL messages.

 case eme_PERIPH_DATA:
 ..
 case eme_CPTD_DATA:
 ..
 case eme_AUTOTURNOFF_ALL:
 ..

Processing of these messages is the same as in the
previous examples.

SPRA862

12 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

 case eme_DTMF_DATA:
 if (MainState==ms_TURN_OFF_GO_ON_HOOK)
 break;

TURN OFF protection. Process DTMF symbols in the
off-hook state only.

 switch (Data)

 {

 case ’*’:
 MainState=ms_TURNOFF_VOICE_TXDATA;
 ...
 break;

DTMF symbol ‘*’ detection stops music playing.
It changes the state of the state machine to turn the
voice TX data path off.

 case ’#’:
 if (MainState!=ms_PLAY_MUSIC)
 {
 MainState=ms_TURNON_VOICE_TXDATA;
 ...
 }
 break;

DTMF symbol ‘#’ detection starts music playing.
It changes the state of the state machine to turn the
voice transmit (TX) data path on.

 case ’0’:
 ITemp=GetRegister (srd_VOICE_GAIN);
 if (ITemp<30)
 ITemp++;
 SetRegister (srd_VOICE_GAIN,ITemp);
 ...
 break;

DTMF symbol ‘0’ decreases the music’s volume.

 case ’1’:
 ITemp=GetRegister (srd_VOICE_GAIN);
 if (ITemp>0)
 ITemp––;
 SetRegister (srd_VOICE_GAIN,ITemp);
 ...
 break;
 }
 break;
 }
 return 1;
}

DTMF symbol ‘0’ increases the music’s volume.

void MyPeriodicThread ()
{
 CSTAction_Process (&Ch0);

 switch (MainState)
 {

 case ms_GO_OFF_HOOK:
 if (DoStandardOperation(sot_OFF_HOOK,0))
 {
 MainState=ms_TURNON_VOICE_TXDATA;

 SetRegister (srd_VOICE_GAIN,0);
 SetRegister (srd_VOICE_BPS,8);
 ...
 }
 break;

OFF HOOK action (to be performed by
DoStandardOperation() function) executes a standard
script for going off hook.

The maximum voice volume level and voice bit rate are
then set, and the application transitions to the next state.

SPRA862

13 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

 case ms_TURNON_VOICE_TXDATA:
 if (DoStandardOperation(
 sot_TURNON_VOICE_TXDATA,0))
 {
 MusicSoundPos=0;

 DataAction.ActionType=
 cat_CSTSERVICE_MESSAGE;
 DataAction.Action.CSTServiceMessage.
 Task=cstst_VOICE_DATA;
 DataAction.Action.CSTServiceMessage.
 IsItTxTask=1;
 DataAction.Action.CSTServiceMessage.
 SubEvent=cse_DATA;
 DataAction.Action.CSTServiceMessage.
 DataLength=0;

 MainState=ms_PLAY_MUSIC;
 ...
 }
 break;

Activate voice TX path.

Set pointer to the beginning of the music vector.

Prepare the action message for voice TX path data.

Switch to the next state.

 case ms_PLAY_MUSIC:
 SendVoiceData ();
 break;

This is the music playback loop. Playback parameters
can be adjusted by DTMF symbols (see the function
MyCallBack()).

 case ms_TURNOFF_VOICE_TXDATA:
 if (DoStandardOperation(
 sot_TURNOFF_VOICE_DATA,0))
 MainState=ms_KEEP_SILENCE;
 break;

Turn the voice TX path off and switch the state machine
to the SILENCE state.

The application does nothing in the SILENCE state.

 case ms_TURN_OFF_GO_ON_HOOK:
 if (DoStandardOperation(
 sot_TURNOFF_ALL,0))
 {
 MainState=ms_WAIT_FOR_RING;
 ...
 }
 break;

In case of BUSY signal detected, it turns off all active
algorithms by executing the standard operation,
sot_TURN_OFF_ALL, and then comes back to the initial
state.

(The corresponding script aTurnOffAll is described in
CSTAtomic.c).

 }

}

Busy detection is not displayed, in order to simplify Figure 4. Busy detection is performed in all
but IDLE states of flex application. The application returns to the initial (IDLE) state upon BUSY
signal detection.

In the IDLE state the system is waiting for a RING signal to be detected. Upon RING detection, it
performs OFF HOOK processing, which automatically starts CPT detector and switches to the
next state. TURN ON VOICE TX turns the Tx voice path on and switches the state machine to
the next state.

The system is in the PLAY MUSIC state now. You hear the music in this state. The DTMF
detector is active and symbols “0”, “1”, “*” and “#” are accepted. Symbols “0” and “1” adjust the
music’s volume – this is depicted as going to the state VOLUME ADJUST. The symbol “*” turns
the voice Tx path off. In the state KEEP SILENCE, you do not hear music. The symbol “#”
returns the system to the state PLAY MUSIC and you will be able to hear the music again.

SPRA862

14 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

IDLE

OFF HOOK TURN ON PLAY

KEEP TURN OFF

RING

1
1

DTMF *

1

DTMF Not

No RING

VOLUME

DTMF Not

DTMF #

DTMF 0
DTMF 1

DTMF 0
DTMF 1

1

1

Detected

VOCE TX MUSIC

VOCE TXSILENCE

Detected

ADJUST

NOTE: State transitions marked with “1” are unconditional transitions.

Figure 4. Music Playing Control

2.5 Recording and Playback – main5 (record & play).c

If using a terminal program other than CSTHost, the following settings are required:

Bits per second: 115200
Data bits: 8
Parity: None
Stop bits: 1
Flow control: Hardware

This example shows how to build a simple auto answering machine. The example can record
and playback voice messages. See the source annotation below.

static void SendVoiceData ()
{
 ...
}

This function sends a message to CST action. The
attached data contains recoded voice for playing. This
function is analogous to the function from the previous
example.

static bool MyCallback (tCSTChannel* pChannel,
 tCSTExternalMsgEvent CSTExternalMsgEvent,int
 Data,int16 *pData)
{
 switch (CSTExternalMsgEvent)
 {

External messages call back function. It receives
messages from CST and processes only
eme_PERIPH_DATA, eme_CPTD_DATA,
eme_AUTOTURNOFF_ALL and eme_VOICE_DATA
messages.

SPRA862

15 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

 case eme_PERIPH_DATA:
 ..
 case eme_CPTD_DATA:
 ..
 case eme_AUTOTURNOFF_ALL:
 ..

Processing of these messages is the same as in the
previous example.

 case eme_VOICE_DATA:
 if (MainState!=ms_RECORD_MESSAGE)
 break;
 while (Data––)
 {
 if (pMessageRecChar>=
 pMessageBuffer+MESSAGE_BYTES–1)
 {
 MainState=ms_TURNOFF_VOICE_RXDATA;
 ...
 break;
 }
 if (IsHighByte)
 *pMessageRecChar=*pData++<<8;
 else
 *pMessageRecChar++|=*pData++;
 IsHighByte=!IsHighByte;
 }
 break;

Voice message processing is performed only in the
RECORD state.

Voice data is stored in the buffer until the buffer is full.
Transition to the next state occurs upon buffer filling
completion.

 }
 return 1;
}

void MyPeriodicThread ()
{
 CSTAction_Process (&Ch0);

 switch (MainState)
 {
 case ms_GO_OFF_HOOK:
 if (DoStandardOperation(sot_OFF_HOOK,0))
 {
 MainState=ms_TURNON_VOICE_TXDATA;
 }

 break;

SPRA862

16 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

 case ms_TURNON_VOICE_TXDATA:

 if (DoStandardOperation(

 sot_TURNON_VOICE_TXDATA,0))

 {
 MusicSoundPos=0;

 DataAction.ActionType=
 cat_CSTSERVICE_MESSAGE;
 DataAction.Action.CSTServiceMessage.
 Task=cstst_VOICE_DATA;
 DataAction.Action.CSTServiceMessage.
 IsItTxTask=1;
 DataAction.Action.CSTServiceMessage.
 SubEvent=cse_DATA;
 DataAction.Action.CSTServiceMessage.
 DataLength=0;

 MainState=ms_PLAY_MESSAGE;
 ...
 }
 break;

Set pointer to the beginning of the music vector.

Prepare message for voice TX path creation.

Switch to the next state.

 case ms_PLAY_MUSIC:
 SendVoiceData ();
 break;

This is the music playback loop.

 case ms_TURNOFF_VOICE_TXDATA:
 if (DoStandardOperation(
 sot_TURNOFF_VOICE_DATA,0))
 {
 MainState=ms_TURNON_VOICE_RXDAT
 ...
 }
 break;

Turn the voice path off, and switch the state machine to
prepare for the RECORD state.

 case ms_TURNON_VOICE_RXDATA:
 if (DoStandardOperation(
 sot_TURNON_VOICE_RXDATA,0))
 {
 pMessageRecChar=pMessageBuffer;
 IsHighByte=1;
 MainState=ms_RECORD_MESSAGE;
 ...
 }
 break;

Prepare buffer for saving voice bitstream.

 case ms_TURNOFF_VOICE_RXDATA:
 if (DoStandardOperation(
 sot_TURNOFF_VOICE_DATA,0))
 MainState=ms_TURNON_VOICE_TXDATA;
 break;

Switch to PLAYBACK preparation mode.

SPRA862

17 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

 case ms_TURN_OFF_GO_ON_HOOK:
 if (DoStandardOperation(
 sot_TURNOFF_ALL,0))
 {
 MainState=ms_WAIT_FOR_RING;
 ...
 }
 break;

In case of BUSY signal detected, it turns off all active
algorithms by executing the script corresponding to the
sot_TURN_OFF_ALL standard operation, and returns to
the initial state.

(The script is aTurnOffAll; it is described in
CSTAtomic.c).

 }
}

Busy detection is not shown in Figure 5, in order to simplify the figure. Busy detection is
performed on all stages of the flex application execution. The application returns to the initial
(IDLE) state in case of BUSY signal detection.

The system is waiting for a RING signal in the initial state. When RING is detected, the system
performs OFF HOOK processing and turns the Rx voice path on. The system now is in the
RECORD state and recording a new message. Recording is performed until the buffer is full.
The voice Rx path will be turned off, and voice Tx path will be turned on. Then, the system
switches back to the PLAYBACK state.

IDLE

OFF HOOK TURN ON

RECORD

TURN ONTURN OFF

TURN OFF

PLAYBACK

RING

1

1

1

Buffer is

1Buffer is

1

Buffer Is

No RING Buffer is not

VOCE RX

VOCE TX VOCE TX

VOCE RX

EMPTY

FULL

Not EMPTY

FULL

NOTE: State transitions marked with “1” are unconditional transactions.

Figure 5. Recording and Playback

2.6 Configuring VAD on the Fly – main5a (+VAD manipulation).c

This flex example extends the previous one by adding the possibility of reconfiguring the
value-added distributor (VAD) on the fly (changes are applied on the next iteration of the state
machine cycle). Table 2 shows accepted DTMF symbols and their purpose. The source
annotation follows this table.

SPRA862

18 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

Table 2. Accepted DTMF Symbols for Configuring VAD on the Fly

DTMF Symbol Purpose

1 Enables VAD, 1 LPC coefficient

2 Enables VAD, 2 LPC coefficients

… …

9 Enables VAD, 9 LPC coefficients

0 Enables VAD, 10 LPC coefficients

Disables VAD

static bool MyCallback (tCSTChannel* pChannel,
 tCSTExternalMsgEvent CSTExternalMsgEvent,int
 Data,int16 *pData)
{
 switch (CSTExternalMsgEvent)
 {

External messages callback function (see the previous
example). It receives messages from CST.

 case eme_PERIPH_DATA:
 ..
 case eme_CPTD_DATA:
 ..
 case eme_AUTOTURNOFF_ALL:
 ..
 case eme_VOICE_DATA:
 ..

Processing of these messages is the same as in the
previous examples.

 case eme_DTMF_DATA:
 switch (Data)
 {
 case ’#’:
 SetRegister (srd_VAD,0);
 ...
 break;
 default:
 LPCCount=Data–’0’;
 if ((LPCCount>=0) && (LPCCount<=9))
 {
 SetRegister (srd_VAD,1);
 ...
 if (LPCCount==0)
 LPCCount=10;
 IVAD_PARAMS.cngOrder=LPCCount;
 ...
 }
 }
 break;

Received DTMF symbols are used to change VAD
parameters. The parameters are set via the S-register.
They will take effect when recording a new (next) voice
message, i.e., these changes do not take effect
immediately.

 }
 return 1;
}

The flow chart shown in Figure 6 is almost the same as in the previous example.

SPRA862

19 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

IDLE

OFF HOOK TURN ON

RECORD

TURN ONTURN OFF

TURN OFF

PLAYBACK

RING

1

1

1

Buffer is

1Buffer is

1

No RING

Buffer

Buffer

VAD,

DTMF

DTMF

1

1

NOTE: State transitions marked wtih “1” are unconditional transitions.

VOCE RX

VOCE TX

VOCE RX

VOCE TX

VOICE
Parameters

Adjust

FULL

is Not
FULL

EMPTY

is Not
EMPTY

Figure 6. VAD Reconfiguration on the Fly

2.7 DTMF Echo – main6 (DTMF toy).c

This example detects 5 DTMF symbols sent by you and regenerates them back with preserving
pause durations between the symbols. The source annotation is shown below.

static bool MyCallback (tCSTChannel* pChannel,
 tCSTExternalMsgEvent CSTExternalMsgEvent,int
 Data,int16 *pData)
{
 switch (CSTExternalMsgEvent)
 {

External messages call back function. It receives
messages from CST and processes some of them.

 case eme_PERIPH_DATA:
 ..
 case eme_CPTD_DATA:
 ..
 case eme_AUTOTURNOFF_ALL:
 ..

Processing of these messages is the same as in previous
examples.

SPRA862

20 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

 case eme_DTMF_DATA:
 if (Ch0.CSTService.pDTMFGenHandle)
 break;

Check DTMF generator activity. Receive DTMF symbols
only when in the state ms_RECEIVE_DTMF, so you will
not get your own symbols during generation.

 if (DataAction.Action.CSTServiceMessage.
 DataLength)
 {
 DataAction.Action.CSTServiceMessage.
 aData[DataAction.Action.
 CSTServiceMessage.DataLength++]=
 Max (50,Min (4000,
 DTMFDurationInterval/8/2));
 }

Save the time elapsed since previous DTMF detection.
Duration is measured in 8-kHz samples.

 DataAction.Action.CSTServiceMessage.aData[
 DataAction.Action.CSTServiceMessage.
 DataLength++]=Data;

Save detected DTMF symbol.

 ...

 if (DataAction.Action.CSTServiceMessage.
 DataLength==DTMF_SYMBOLS*2–1)
 {
 DataAction.Action.CSTServiceMessage.
 aData[DataAction.Action.
 CSTServiceMessage.DataLength++]=
 100; //default

 MainState=ms_GENERATE_DTMF;
 ...
 }

Switch the state machine to the DTMF generation state
after you have received 5 symbols.

 DTMFDurationInterval=0;
 break;

 case eme_TICK:
 DTMFDurationInterval+=Data;
 break;

Increment sample counter.

 }
 return 1;
}

void MyPeriodicThread ()
{
 CSTAction_Process (&Ch0);

 switch (MainState)
 {

 case ms_GO_OFF_HOOK:
 if (DoStandardOperation(sot_OFF_HOOK,0))
 {
 MainState=ms_RECEIVE_DTMF;
 DataAction.ActionType=
 cat_CSTSERVICE_MESSAGE;
 DataAction.Action.CSTServiceMessage.
 Task=cstst_DTMF;
 DataAction.Action.CSTServiceMessage.
 IsItTxTask=1;

Perform OFF HOOK and start the CPTD and DTMF
detectors.

SPRA862

21 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

 DataAction.Action.CSTServiceMessage.
 SubEvent=cse_DATA;
 DataAction.Action.CSTServiceMessage.
 DataLength=0;
 ...
 }
 break;

 case ms_GENERATE_DTMF:
 if (SendDTMFData ())
 {
 DataAction.Action.CSTServiceMessage.
 DataLength=0;
 MainState=ms_RECEIVE_DTMF;
 ...
 }
 break;

Send DTMF symbols with same time intervals as
received.

DTMF generator turns on and off automatically. It
depends on presence of data for the DTMF generator.

 case ms_TURN_OFF_GO_ON_HOOK:
 if (DoStandardOperation(
 sot_TURNOFF_ALL,0))
 MainState=ms_WAIT_FOR_RING;
 break;

Go ON HOOK and stop everything.

Result checking for sot_TURNOFF_ALL is not necessary
because this action will be accepted and executed
anyway.

 }
}

Busy detection is not shown in Figure 7, in order to simplify the figure. Busy detection is
performed on all stages of the flex application execution. The application returns to the initial
(IDLE) state in case of BUSY signal detection.

IDLE

OFF HOOK
RECEIVE

GENERATE

RING

1

Received DTMF

No RING

Generated DTMF

Received DTMF

Generated DTMF
Count = 5

Count < 5

Count < 5

5 DTMF
Symbols

5 DTMF
Symbols

Count = 5

NOTE: State transitions marked with “1” are unconditional transitions.

Figure 7. DTMF Toy

SPRA862

22 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

2.8 DTMF/CPTG Toy – main6a (DTMF toy).c

This example application is somewhat similar to the previous one. The idea of this application is
to show how to use the CPT generator and how to tune it to custom CPT signals. The
application detects a DTMF symbol produced by you, and generates a CPT signal
corresponding to the detected DTMF symbol (see Table 3). The CPT signals can be heard on
the phone (see Figure 8). The source annotation is shown below this table.

Table 3. Accepted DTMF Symbols for DTMF/CPTG Toy

DTMF Symbol Purpose

0 Ring signal

1 Dial signal

2 Busy signal

3 Fast busy signal

4 SIT signal

5 ANS signal

static bool MyCallback (tCSTChannel* pChannel,
 tCSTExternalMsgEvent CSTExternalMsgEvent,int
 Data,int16 *pData)
{
 switch (CSTExternalMsgEvent)
 {

External messages call back function. It receives
messages from CST and processes some of them.

 case eme_PERIPH_DATA:
 ..
 case eme_CPTD_DATA:
 ..
 case eme_AUTOTURNOFF_ALL:
 ..

Processing of these messages is the same as in
previous examples.

 case eme_DTMF_DATA:
 if (!Ch0.CSTService.pCPTDGenHandle)
 {
 MainState=ms_TURN_OFF_GO_ON_HOOK;
 UartPutString (&Ch0,”Abnormal ”
 ”termination...\r\n”);
 break;
 }

 UMTG_setSignal
 (Ch0.CSTService.pCPTDGenHandle,
 Data+0x1000);

 UartPutString (&Ch0,”DTMF symbol ”
 ”detected...\r\n”);
 break;

Abort if CPT generator has not been created.

Set signal for generation according to the received
DTMF symbol.

SPRA862

23 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

 }
 return 1;
}

void MyPeriodicThread ()
{
 CSTAction_Process (&Ch0);

 switch (MainState)
 {

 case ms_GO_OFF_HOOK:
 if (DoStandardOperation (sot_OFF_HOOK,0))
 {
 MainState = ms_GEN_CREATE;

 DataAction.ActionType=
 cat_CSTSERVICE_MESSAGE;
 DataAction.Action.CSTServiceMessage.
 Task=cstst_CPTD;
 DataAction.Action.CSTServiceMessage.
 IsItTxTask=1;
 DataAction.Action.CSTServiceMessage.
 SubEvent=cse_ON;
 DataAction.Action.CSTServiceMessage.
 DataLength=0; // empty

 UartPutString (&Ch0,”Press DTMF ”
 ”button\r\n”);
 }
 break;

Perform OFF HOOK and start CPT generator.

 case ms_GEN_CREATE:
 if (SendGenData ())
 {
 MainState=ms_RECEIVE_DTMF;
 }
 break;

Send message with CPT generator signal.

 case ms_TURN_OFF_GO_ON_HOOK:
 if (DoStandardOperation (sot_TURNOFF_ALL,
 0))
 MainState=ms_WAIT_FOR_RING;
 break;

Go ON HOOK and stop everything.

Result checking for sot_TURNOFF_ALL is not
necessary because this action will be accepted and
executed anyway.

 }
}

void MyUserOperation (tCSTChannel*pChannel,
 int16*pInput, int16*pOutput,
 int AmountOf8KHzSamples)
{
 tCSTService *pCSTService =
 &pChannel–>CSTService;

 if(pChannel–>CSTService.pCPTDGenHandle)
 UMTG_genSignal(pCSTService–>pCPTDGenHandle,
 pOutput, INPUT_OUTPUT_LENGTH);

New UserOperation() function. This is used to put
samples generated by the CPT generator to the output
buffer.

The function overrides the original UserOperation()
function.

SPRA862

24 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

 CSTAction_UserOperation(pChannel, pInput,
 pOutput, AmountOf8KHzSamples);
}

void MyInitialization ()
{
 UartPutString (&Ch0,”DTMF Toy\r\n”);
 UartPutString (&Ch0,”Please, call to the”
 ” phone\r\n”);

 IUMTG_CPTDParams.pSeries[0].
 pParam–>pSignals=
 (IUMTG_Signal*)&signals_My;
 IUMTG_CPTDParams.pSeries[0].
 pParam–>signalsCount=
 sizeof(signals_My)/sizeof(IUMTG_Signal);

 CSTFxns.pCSTUserOperation = MyUserOperation;
}

Assign a new CPT signal table to the CPT generator.

Override the original UserOperation() function.

IDLE

OFF HOOK
RECEIVE

Set New

RING

1

No DTMF

No RING

1

DTMF

NOTE: State transitions marked wtih “1” are unconditional transitions.

Symbol

DTMF,
Generate

CPT
Symbol

CPT
Signal

Figure 8. DTMF/CPTG Toy

2.9 Intensive Modem Tx – main7 (modem tx spam).c

This example begins the series of applications that deal with the build-in modem. This demo
sends pseudo-random data after establishing a modem connection (see Figure 9). The source
annotation is shown below.

SPRA862

25 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

char GetRand ()
{
 ...
}

Simple random number generator function.

void MakeNewString ()
{
 ...
}

Fills a string of length STRING_LEN with one of the
following: random data, report message or farewell
message.

static void SendModemData ()
{
 tCSTMessageResult ActionResult;
 char CurChar;

This function sends modem data to CST action layer
It will be redirected to CST service layer.

 while (DataAction.Action.CSTServiceMessage.
 DataLength<CST_MAXDATALENGTH)
 {
 CurChar=aString[CurStrPos++];

 if (!aString[CurStrPos])
 MakeNewString ();
 if (!CurChar)
 break;

 DataAction.Action.CSTServiceMessage.Data[
 DataAction.Action.CSTServiceMessage.
 DataLength++]=CurChar;

 if ((ByteCounter++ & 0x3FF)==0)
 NeedToPrintAmountOfBytes=1;
 }

Fill the action message with random data until the
message is full.

 if (DataAction.Action.CSTServiceMessage.
 DataLength)
 ActionResult=CSTAction (&Ch0,&DataAction);

Try to send the action message to the CST action layer.
It will be forwarded to the CST service layer.

 if ((ActionResult==cmr_RESULTOK) ||
 (ActionResult==cmr_EXECUTING))
 DataAction.Action.CSTServiceMessage.
 DataLength=0;
}

Reset the buffer length when data have been accepted.
Otherwise, the action message will be pushed again
later.

static bool MyCallback (tCSTChannel* pChannel,
 tCSTExternalMsgEvent CSTExternalMsgEvent,int
 Data,int16 *pData)
{
 switch (CSTExternalMsgEvent)
 {

 case eme_PERIPH_DATA:
 ..
 case eme_AUTOTURNOFF_ALL:
 ..

Processing of these messages is the same as in
previous examples.

 case eme_MODEM_CONNECT:
 ...
 break;

This message informs you about successful modem
connection.

SPRA862

26 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

 case eme_MODEM_DISCONNECT:
 MainState=ms_WAIT_FOR_RING;
 break;

This message informs you about modem disconnection.

 case eme_TICK:
 if (MainState==ms_MODEM_TX)
 {
 Timer+=Data;
 if (Timer>WORK_TIME)
 HasTimeExpired=1;
 if (Timer>WORK_TIME+1000L)
 {
 ...
 MainState=ms_TURN_OFF_GO_ON_HOOK;
 }
 }
 break;

Increment timer. Switches the state machine state when
time is expired.

 }
 return 1;
}

void MyPeriodicThread ()
{
 CSTAction_Process (&Ch0);

 switch (MainState)

 case ms_MODEM_ANS:
 if (DoStandardOperation (
 sot_TURNON_MODEM_ANS,0))
 {
 MainState=ms_MODEM_TX;
 DataAction.ActionType=
 cat_CSTSERVICE_MESSAGE;
 DataAction.Action.CSTServiceMessage.
 Task=cstst_MODEM;
 DataAction.Action.CSTServiceMessage.
 IsItTxTask=1;
 DataAction.Action.CSTServiceMessage.
 SubEvent=cse_DATA;
 DataAction.Action.CSTServiceMessage.
 DataLength=0;
 Timer=
 ByteCounter=
 NeedToPrintAmountOfBytes=
 HasTimeExpired=
 HasSaidBye=0;
 MakeNewString ();
 }
 break;

Now you are expecting modem connection. CPTD will
be activated.

Most of message fields are set here. The
cat_CSTSERVICE_MESSAGE key is used to inject a
portion of data to the modem algorithm through the CST
service layer. The action message cannot be allocated
in stack because CST may not be able to take the whole
message at once. In such a case, the message should
be kept in memory for awhile, to be sent again.

 case ms_MODEM_TX:
 SendModemData ();

 if (HasSaidBye &&
 !DataAction.Action.CSTServiceMessage.
 DataLength)
 MainState=ms_TURN_OFF_GO_ON_HOOK;
 break;

Try to push data into the modem.

Turn off all when requested.

SPRA862

27 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

 case ms_TURN_OFF_GO_ON_HOOK:
 if (DoStandardOperation (
 sot_SOFT_TURNOFF_ALL,0))
 {
 MainState=ms_WAIT_FOR_RING;
 ...
 }
 break;

Perform standard operation to turn off all and go on
hook. Set the state machine to the initial state.

 }
}

#define USE_ASYMMETRIC_V42BIS 0

#if USE_ASYMMETRIC_V42BIS
#include ”..\MODINT\DMController.h”
#endif //USE_ASYMMETRIC_V42BIS

You do not have to use data compression in both
directions; therefore, the spared memory can be spent
for bigger V.42bis dictionary size in one direction. For
this particular application, only Tx throughput matters,
and thus, Rx compression can be disabled.

NOTE: Not all modems work correctly with asymmetric
V.42bis.

void MyInitialization ()
{
 ...
#if USE_ASYMMETRIC_V42BIS
 Ch0.CSTCommanderSettings.IsV42bis=1;

 V42Params.V42bisParams.dictionarySize=1024;
#endif //USE_ASYMMETRIC_V42BIS
}

To disable RX compression, the S-register, srd_V42BIS,
should be set to 0x01 instead of 0x03.
Lines Ch0.CSTCommanderSettings.IsV42bis=1
and SetRegister (srd_V42BIS,1) have the same result.

To double V.42bis dictionary size, the initialization
parameter dictionarySize should be set to 1024
instead of 512.

See S-register assignment in the file CSTSReg.c.

IDLE

OFF HOOK

RING

ON HOOK
TURN OFF

1

No (BUSY ||

SPAM!

1

No RING

NOTE: State transitions marked with “1” are unconditional transitions.

Has Said Bye)

ALL

Figure 9. Modem Tx Spam

SPRA862

28 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

2.10 Modem Terminal – main8 (modem terminal).c

This example establishes modem connection with a remote modem, whose phone number is
received from the serial port. The dial symbols are shown in Table 4, and the source annotation
is shown below this table. After connection, it works like a simple terminal processor. See
Figure 10.

Table 4. Dial Symbols

Dial Symbols Description

0–9 Phone number digits

ABCD Digits that can be dialed only in the tone mode

P Pulse-mode dialing modifier

T Tone-mode dialing modifier

, Long pause

/ Short pause

W Dial-tone waiting

R Response/answer mode

“Enter” (0x0D) “Enter” (end of the phone number)

NOTE: The UART is not a part of the CST action interface. Therefore, in the flex mode, the serial port can
be freely used.

static void SendModemData (char UARTChar)
{
 tCSTMessageResult ActionResult;

This function sends modem data to the CST action layer
(it will be redirected to the CST service layer).

 if ((DataAction.Action.CSTServiceMessage.
 DataLength<
 CST_MAXDATALENGTH))
 DataAction.Action.CSTServiceMessage.Data[
 DataAction.Action.CSTServiceMessage.
 DataLength++]=UARTChar;

Put new data byte into the action message until the
message is full.

 ActionResult=CSTAction (&Ch0,&DataAction); Try to push the data message into the modem.

 if ((ActionResult==cmr_RESULTOK) ||
 (ActionResult==cmr_EXECUTING))
 DataAction.Action.CSTServiceMessage.
 DataLength=0;
}

Verify whether the message has been sent successfully
or not.

static bool MyCallback (tCSTChannel* pChannel,
 tCSTExternalMsgEvent CSTExternalMsgEvent,int
 Data,int16 *pData)
{

External messages callback function. It receives
messages from CST and processes some of them.

 switch (CSTExternalMsgEvent)
 {
 case eme_MODEM_CONNECT:
 ...
 break;

This message informs you about successful modem
connection.

SPRA862

29 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

 case eme_AUTOTURNOFF_ALL:
 ..

Processing of these messages is the same as in
previous examples.

 case eme_MODEM_DISCONNECT:
 UartReset (Ch0.UartRxChanHandle, NULL);
 MainState=ms_GET_NUMBER;
 aPhoneNumber[0]=0;
 break;

Discard the UART RX buffer, and return to the initial
state.

 case eme_MODEM_DATA:
 UartWrite (Ch0.UartTxChanHandle,
 (unsigned char*)pData, Data);
 break;

Send data from modem to UART.

CAUTION:
The UART TX buffer can overflow. See the next

example to learn how to do this more accurately.
 }
 return 1;
}

void MyPeriodicThread ()
{
 int UARTChars,ITemp;
 char UARTChar;

 CSTAction_Process (&Ch0);
 switch (MainState)
 case ms_GET_NUMBER:
 UARTChars=
 UartReadAvail (Ch0.UartRxChanHandle);

 while (UARTChars––)
 {
 //Read a char
 UartRead (Ch0.UartRxChanHandle,
 (unsigned char*)&UARTChar, 1);

Get number of unread characters in UART RX buffer
and read them.

 {
 static const char *pDialSymbols=
 ”0123456789ABCD”
 ”PT,/W”
 ”R”
 ”\xD”;

 if (!strchr(pDialSymbols,UARTChar))
 continue;

 UartWrite (Ch0.UartTxChanHandle,
 (unsigned char*)&UARTChar, 1);

Validate the received character. Check whether it
belongs to the set. Discard the char if it does not
belongs to the set; otherwise, send it back to the host.

NOTE: Validation is not necessary because it is already
done in the CST Commander (see aDialSymbols in
CSTCommander.c).

 if (UARTChar==0x0D)
 {
 MainState=ms_MODEM_CALL;
 ...
 break;
 }

Dial the number if the “Carriage Return” (0x0D) symbol
has been received from the UART.

SPRA862

30 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

 ITemp=strlen (aPhoneNumber);
 if (ITemp<
 CST_STANDARD_OPERATION_DATA_LEN)
 {
 aPhoneNumber[ITemp++]=UARTChar;
 aPhoneNumber[ITemp]=0;
 }
 }
 }
 break;

Add the character to the phone-number string.

 case ms_MODEM_CALL:
 if (DoStandardOperation (
 sot_TURNON_MODEM_CALL_X,
 (uint8*)aPhoneNumber))
 {
 MainState=ms_TERMINAL_CONNECT;

 DataAction.ActionType=
 cat_CSTSERVICE_MESSAGE;
 DataAction.Action.CSTServiceMessage.
 Task=cstst_MODEM;
 DataAction.Action.CSTServiceMessage.
 IsItTxTask=1;
 DataAction.Action.CSTServiceMessage.
 SubEvent=cse_DATA;
 DataAction.Action.CSTServiceMessage.
 DataLength=0;
 }
 break;

Run the script, performing a modem call to the specified
number. The CPTD and DTMF detectors will be
activated.

Perform modem data action initialization.

 case ms_TERMINAL_CONNECT:
 UARTChars=
 UartReadAvail (Ch0.UartRxChanHandle);

 while (UARTChars––)
 {
 UartRead (Ch0.UartRxChanHandle,
 (unsigned char*)&UARTChar, 1);

 SendModemData (UARTChar);
 }
 break;

Warning: It is recommended to limit quantity of
characters to be read and send per time frame (for
example, see the function CSTUserOperation() in
the file ATParser.c) or use a low priority thread.
Otherwise, we may get off real-time.

Get the characters from the UART Rx buffer and send
them to the modem.

 }
}

SPRA862

31 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

Get Phone

Modem

“Enter”
BUSY ||

Disconnect

1

No (BUSY ||

TERMINAL

1

No “Enter”

NOTE: State transitions marked wtih “1” are unconditional transitions.

Number
From UART

Disconnect)

Disconnect

Call

Figure 10. Modem Terminal

2.11 Modem Throughput – main9 (modem throughput).c

This example can be used to measure the modem throughput. This application receives the
incoming modem data and echoes it back. Current throughput is measured and reported on the
regular basis, with a period of one second. The source annotation is shown below, and a flow
chart of this example is shown in Figure 11.

NOTE: To prevent data loss due to possible difference between Rx and Tx throughputs, a
separate modem callback function is used. Initially, the modem callback function is set by the
CST action layer to common CST action callback, which forces you to accept all data even if you
are not able to process it.

static void SendModemData (uint8 *pData,int
 Count)
{
 tCSTMessageResult ActionResult;
 int Result=Count;

This function sends modem data to the CST action
layer. It will be redirected to the CST service layer).

 while ((DataAction.Action.CSTServiceMessage.
 DataLength<CST_MAXDATALENGTH) &&
 Count)
 {
 DataAction.Action.CSTServiceMessage.aData[
 DataAction.Action.CSTServiceMessage.
 DataLength++]=*pData++;
 Count––;
 ByteCounter++;
 }

Put new byte into the action message until the message
is full.

 ActionResult=CSTAction (&Ch0,&DataAction); Trying to push the data message into the modem.

SPRA862

32 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

 if ((ActionResult==cmr_RESULTOK) ||
 (ActionResult==cmr_EXECUTING))
 DataAction.Action.CSTServiceMessage.
 DataLength=0;

Verify whether the message has been sent successfully
or not.

 return Result–Count;
}

Return the number of bytes put to the message.

static bool MyCallback (tCSTChannel* pChannel,
 tCSTExternalMsgEvent CSTExternalMsgEvent,int
 Data,int16 *pData)
{

External messages callback function. It receives
messages from the CST and processes some of them.

 switch (CSTExternalMsgEvent)
 {
 case eme_PERIPH_DATA:
 if (Data==cpe_RING)
 {
 MainState=ms_MODEM_ANS;
 ...
 }
 break;

RING detected, start answering.

 case eme_MODEM_CONNECT:
 ...
 break;

This message informs you about successful modem
connection.

 case eme_AUTOTURNOFF_ALL:
 ..

CST automatically turns off all active algorithms and
hangs up upon busy detection.

To disable this behavior, return 0 instead of 1.

 case eme_MODEM_DISCONNECT:
 UartReset (Ch0.UartRxChanHandle, NULL);
 MainState=ms_GET_NUMBER;
 aPhoneNumber[0]=0;
 break;

Discard UART Rx buffer data and return to the initial
state.

 case eme_TICK:
 if (MainState!=ms_MODEM_ECHO_LOOP)
 break;

 Timer+=Data;
 if (Timer>8000)
 {
 char aIToA[20];

 UartPutString (&Ch0,
 ”Current throughput is ”);
 UartPutString(&Ch0,
 IToA(ByteCounter,aIToA));
 UartPutString (&Ch0,” byte/sec\r\n”);

 Timer–=8000;
 ByteCounter=0;
 }
 break;

TICK counting is performed only in
ms_MODEM_ECHO_LOOP state.

Print current throughput (byte per sec) every second.

SPRA862

33 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

 }
 return 1;
}

void MyPeriodicThread ()
{
 CSTAction_Process (&Ch0);

 switch (MainState)
 case ms_MODEM_ANS:
 if (DoStandardOperation(
 sot_TURNON_MODEM_ANS,0))
 {
 MainState=ms_MODEM_ECHO_LOOP;

 DataAction.ActionType=
 cat_CSTSERVICE_MESSAGE;
 DataAction.Action.CSTServiceMessage.
 Task=cstst_MODEM;
 DataAction.Action.CSTServiceMessage.
 IsItTxTask=1;
 DataAction.Action.CSTServiceMessage.
 SubEvent=cse_DATA;
 DataAction.Action.CSTServiceMessage.
 DataLength=0;
 Timer=
 ByteCounter=0;
 }
 break;

Now you are expecting modem connection. The CPT
detector will be activated.

Modem data action initialization.

 case ms_MODEM_ECHO_LOOP:
 SendModemData (0,0);
 break;

No data will be put into message, just attempt to resend
any unsent messages to the modem.

 }
}

void MyInitialization ()
{
 DMController_setTransferDataFunc(
 MyGetDataFromModem);
 ...
}

Register custom modem callback function instead of the
default CST action’s routine.

SPRA862

34 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

IDLE

OFF HOOK

RING
BUSY ||

ON HOOK

1

No (BUSY ||

ECHO

1

no RING

NOTE: State transitions marked with “1” are unconditional transitions.

Turn Off
All

Modem
Data

Disconnect)

Disconnect

Figure 11. Modem Throughput

2.12 CID Data Receiving – main10 (Caller ID).c

This example illustrates how to obtain and print out Caller-ID information. The program waits for
an incoming ring, and then displays the Caller-ID information. The source annotation is shown
below, and the flow chart can be seen in Figure 12.

static bool MyCallback (tCSTChannel* pChannel,
 tCSTExternalMsgEvent CSTExternalMsgEvent,int
 Data,int16 *pData)
{

External messages call back function. It receives
messages from CST and processes some of them.

 switch (CSTExternalMsgEvent)
 {
 case eme_PERIPH_DATA:
 if (Data==cpe_RING)
 UartPutString (&Ch0,
 ”Ring detected\r\n”);
 break;

Just inform about RING detection.

 case eme_CID_DATA:
 if (Data==CID_NOERROR)
 {
 UartPutString (&Ch0,
 ”Caller ID information”
 “ completed\r\n”);

CID_NOERROR result means that CID processing has
successfully finished.

SPRA862

35 Client Side Telephony (CST) Chip Flex Mode, Flex Examples Description

 if (CIDParseGetString(
 Ch0.CSTService.
 pCIDPresentationMessage,
 aLabelStr, aContextStr,
 CID_VALIDCALLINGLINEIDENTITY))
 {
 UartPutString (&Ch0,”The number: ”);
 UartPutString (&Ch0,aContextStr);
 UartPutString (&Ch0,”\r\n”);
 }
 else
 UartPutString (&Ch0,
 ”The number is not”
 “ recognized\r\n”);
 }
 break;

Decoded Caller-ID data is not attached to the
eme_CID_DATA event message. You may select the
type and form of CLI data you need and get it directly
from the Caller-ID Parser. Here you are interested in the
calling line identity (identifies the origin of the call) in
decoded ASCII format.

 }
 return 1;
}

void MyPeriodicThread ()
{
 CSTAction_Process (&Ch0);
}

My periodic thread performs only CST action
processing.

IDLE Print CID

1

No CID

CID

NOTE: State transitions marked wtih “1” are unconditional transitions.

Information

Figure 12. CID Data Receiving

3 References
1. Client Side Telephony (CST) Chip Software User’s Guide (SPRU040).

2. CST Hands-on Lab (download from http://www.spiritDSP.com).

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2003, Texas Instruments Incorporated

