
Application Report
SPRA848A − September 2004

1

Using the Power Scaling Library

ABSTRACT

Power consumption is a key concern for embedded system developers. By developing
low-power solutions, developers can deliver products that have longer battery life. One
technique that can be used to save power is frequency and voltage scaling of the processor.

Since the power consumption of a DSP is proportional to the system clock switching speed,
running the device at the lowest possible frequency, while continuing to meet all of the
application’s timing requirements, can save power by minimizing the idle time. In addition,
batteries have a non-linear discharge pattern, where higher currents drain the battery
quicker. Thus, executing at lower frequencies can extend battery life. Since lower frequencies
require less voltage, an even greater decrease in power consumption can be achieved if the
voltage is also lowered when the frequency is lowered.

This application report describers the power scaling library (PSL) and how to use it in your
own C55x applications.

Do note that this tooling currently supports the C5503, C5507, C5509A, and C5510 Rev 2.x
silicon only.

Contents

1 Overview 2 .
1.1 PSL Functionality 3 .
1.2 PSL Configuration Data 3 .
1.3 User Characteristics 4 .
1.4 Constraints 4 .
1.5 Power Savings Example Using the PSL 4 .

2 Getting Started 5 .
2.1 Using the PSL 5 .
2.2 Using the PSL With Custom Boards 5 .

3 Frequency Scaling in DSP/BIOS Applications 7 .

4 Configuration Data 8 .
4.1 PSLclk_cfg_<chip or board>.c 8 .
4.2 PSLvolt_cfg_<board>.c 10 .
4.3 Voltage Regulator Control 12 .

4.3.1 Default Support 12 .
4.3.2 Alternative Control Methods 12 .

5 Modifying the Configuration Data 13 .

Trademarks are the property of their respective owners.

SPRA848A

2 Using the Power Scaling Library

6 PSL API 15 .
6.1 PSL Types 15 .

6.1.1 PSL_ClkID 15 .
6.1.2 PSL_Setpoint 15 .
6.1.3 PSL_Status 16 .
6.1.4 PSL_PrologueFunc 16 .
6.1.5 PSL_EpilogueFunc 16 .
6.1.6 PSL_ClkMode 17 .

6.2 PSL Functions Overview 17 .
6.3 PSL Functions Descriptions 18 .

7 PSL NoChecks Library 30 .

8 Examples 31 .
8.1 Example 1: Basic Usage 31 .
8.2 Example 2: Reprogramming Peripherals 34 .
8.3 Example 3: Query Operations 37 .

Appendix A evm5509a Voltage Regulator Setup Reference 40 .
A.1 1.6 Power Supply 40 .

List of Figures

Figure 1. Effects of Scaling on Power Consumption 4 .

List of Tables

Table 1. PSL Functions 17 .

1 Overview

The Power Scaling Library (PSL) is a software library that allows embedded systems
programmers to manage both frequency and voltage scaling through an easy to use API. The
PSL provides hardware abstraction, portability, and a standard API that can be used among
different TI devices. The result is shortened development time for the end user.

Included in the API are routines that initiate scaling operations, and various query routines that
provide information on current settings and available frequency/voltage settings. Frequency
changes are initiated directly by the user. Voltage changes are performed indirectly by the PSL
when a frequency change occurs. Specifically, the PSL will automatically scale the voltage to the
minimum level required by a frequency. Since voltage changes are only initiated indirectly, the
PSL can ensure a legal frequency/voltage setting at all times.

This document illustrates the frequency/voltage scaling features.

The PSL is delivered as libraries for large model only:

• PSL _<chip>.a55L

• PSL_NoChecks_<chip>.a55L

• PSL_cfg_<chip>.a55L

• PSL_cfg_<board>.a55L

SPRA848A

3 Using the Power Scaling Library

PSL_<chip>.a55L contains the actual implementation of the power scaling library. A different
PSL_ <chip>.a55L is required for each device/voltage regulator control scheme combination.
This is necessary because different devices across an instruction set architecture (ISA) may
have different clock generators, and different regulators may have different methods of control.
Although PSL_ <chip>.a55L is device/regulator and control/scheme-specific, a separate library
containing user configurable data will enable it to be used with custom target boards.

PSL_NoChecks_<chip>.a55L contains the same implementation of the power scaling library
with the exception that error returns are not checked. This reduces the footprint of this library
and increases execution speed. This library should be used in place of PSL_<chip>.a55L.

PSL_cfg_<chip or board>.a55L provides system and board-specific data to the PSL. The
source files that were used to build it are also delivered to users, who can then modify the data
in these files and rebuild the library so that the PSL can be used with custom boards.
Alternatively, users can modify these files and include them directly in their applications.

1.1 PSL Functionality

The PSL provides the following functionality:

• Scaling operation to scale frequency and voltage or frequency only

• Query operations that return current frequency and voltage settings

• Query operations that return available frequencies settings and the required voltage settings
for those frequencies

• Query operation that returns the latencies associated with a scaling operation

• Callbacks to user code before and after scaling operations. These callbacks will enable
users to perform any necessary peripheral modifications that may be required as a result of
the upcoming/just completed scaling operation.

1.2 PSL Configuration Data

The PSL provides the following configuration data:

• Input frequency

• Maximum frequency

• Table of supported frequencies (including clock mode)

• Frequency/voltage table
Note: This table is subject to change.

• Latencies associated with frequency and voltage scaling

• Information relating to voltage regulator control, such as address of control register, or the
exact GPIO pins that are used to control the regulator. This will add some flexibility to the
default voltage regulator implementation that is supplied with the PSL.

• Hook functions to override the default voltage regulator control implementation. This will
allow the PSL to be used in systems that require a voltage regulator control implementation
that is different than that described in the reference design.

SPRA848A

4 Using the Power Scaling Library

1.3 User Characteristics

The expected user of the PSL has the following characteristics:

• Understands the timing and scheduling issues of the system, knows when frequency can be
decreased, and when it must be increased

• Understands the effects that frequency scaling may have on the peripherals, and how to
reprogram the peripherals accordingly

1.4 Constraints

The PSL has the following constraints:

• Voltage scaling cannot be done unless a voltage regulator is present. Note that frequency
scaling can still be done without voltage scaling.

• Must have code generation tools to rebuild configuration data

• The PSL cannot be used on the simulator

The PSL does not control any of the peripheral clocks. It only controls the main CPU clock(s).

1.5 Power Savings Example Using the PSL

Figure 1 shows how the power consumption can be affected by frequency and voltage scaling.
The graph below shows the power savings on the evm5509a that were obtained when scaling
only the frequency, and the power savings that were obtained when scaling both the frequency
and the voltage. In this example, the power savings achieved by lowering the frequency from
192 MHz to 72 MHz was 62 percent. Additional savings were realized when the voltage was
also lowered from 1.6 v to 1.2 v. In this case, the overall power savings were 77 percent.

Power

250 mW

200 mW

150 mW

100 mW

50 mW

PSL time
~664 µs~70 µs

PSL time

192 MHz @ 1.6 V

72 MHz @ 1.6 V

72 MHz @ 1.2 V

Voltage regulator
transitioning

User
code

PSL
User code

PSL

User
code

Time

Figure 1. Effects of Scaling on Power Consumption

SPRA848A

5 Using the Power Scaling Library

The graph also shows the execution flow of a scaling operation and the amount of time spent in
the PSL. In the case where both the frequency and voltage are scaled, the user code calls into
the PSL to lower the frequency from 192 MHz to 72 MHz. The PSL lowers the frequency to
72 MHz and automatically lowers the voltage to 1.2V, which is the lowest voltage required for
72 MHz. We can see that the PSL waits for the new frequency to be reached, but not the
voltage. The time spent in the PSL in this case was ~70 µs, which is the amount of time it takes
the PLL to lock to the new frequency.

Looking at the second call to the PSL, the user code calls into the PSL to scale the frequency
from 72 MHz to 192 MHz. First, the PSL will automatically increase the voltage to 1.6V, and then
increases the frequency to 192 MHz. The PSL does not return until both the voltage and
frequency have been increased. In this case, the PSL must wait for the voltage increase to
complete because it must be increased before the frequency is increased. The time spent in the
PSL was ~664 microseconds (~500 for the voltage increase, and ~164 for the PLL to lock to the
new frequency).

2 Getting Started

2.1 Using the PSL

The configuration library that is delivered for specific chips and boards may be used without
modification. In this case, follow the steps below to use the PSL in your application:

1. Include the header file PSL.h in all files that will reference the PSL API.

2. Modify your source code to initialize the PSL library by adding a call to the PSL_initialize
function. This function should be called before any other PSL function.
Note: The initial clock frequency on the evm5509a is 12 MHz. The initial voltage following
power-up is 1.2v. These values should be specified in the call to PSL_initialize. See
the description of the PSL_initialize function for more details.

3. Modify your source code to call other PSL functions as needed.

4. For applications built with the large memory model, include PSL _<chip>.a55L and
PSL_cfg_<chip or board>.a55L.

5. Add the directory containing the PSL header files to your “include” search path so that the
required header files can be located.

6. Rebuild your application.

Although no changes are required to use the delivered configuration libraries you may want to
change the set of default frequencies that the library supports. To modify the frequencies, the
frequency table that is located in the file PSLclk_cfg_<chip or board>.c will need to be modified.
See sections 4 and 5 for more details.

2.2 Using the PSL With Custom Boards

Before using the PSL on a custom board, the configuration data in the files PSLclk_cfg_<chip or
board> .c and PSLvolt_cfg_<board> .c must be reviewed. If the values specified in these files
are not correct for your board, then you must modify these files prior to using them in your
application. See sections 4 and 5 for more details. In this case, follow the steps below to use the
PSL in your application:

SPRA848A

6 Using the Power Scaling Library

1. Review the data in the configuration files PSLclk_cfg_<chip or board>.c and
PSLvolt_cfg_<board>.c.

2. Change the data in these files to the values that are appropriate for your system.

3. Either rebuild the configuration library or include the configuration files directly in your
application build.

4. Include the header file PSL.h in all files that will reference the PSL API.

5. Modify your source code to initialize the PSL library. Adding a call to the PSL_initialize
function does this. This function should be called before any other PSL function.

6. Modify your source code to call other PSL functions as needed.

7. For applications built for the large memory model, include PSL_<chip>.a55L and
PSL_cfg_<board>.a55L. Note: if you are including the modified configuration files directly
in your application, then there is no need to include the configuration library.

8. Add the directory containing the PSL header files to your include search path so that the
required header files can be located.

9. Rebuild your application.

SPRA848A

7 Using the Power Scaling Library

3 Frequency Scaling in DSP/BIOS Applications

The frequency scaling operations in DSP/BIOS applications as described below are for
demonstration and evaluation purposes only (at this time). Future DSP/BIOS and PSL revisions
may eliminate the restrictions noted.

The frequency scaling operations performed by the PSL will directly impact the timekeeping and
scheduling operations within a typical DSP/BIOS application. Specifically, the following will be
affected:

1. Low and high resolution CLK APIs (CLK_gethtime and CLK_getltime) will return invalid
values.

2. User clock functions that have been configured to run on each clock interrupt may run
faster or slower than expected.

3. Periodic functions scheduled to run periodically based on system clock ticks may run
faster or slower than expected.

4. Timeouts for blocking API calls (e.g., SEM_pend, etc.) may return early or late.

5. The CPU load graph and other RTA displays will be in error.

6. Any drivers managing peripheral devices driven by the scaled clock will need to be
updated to reprogram the peripheral registers around a frequency scaling operation. The
application will need to coordinate this with the individual drivers.

If you are building a BIOS application and making direct calls to the PSL, turn off the BIOS Clock
Manager to eliminate the above uncertainties. To do this,

• Right click on the PRD − Periodic Function Manager, and select Properties.

• Uncheck the box, Use CLK Manager to drive PRD. Click OK.

• Right click on the CLK − Clock Manager Properties.

• Select Properties, and uncheck the box, Enable CLK Manager.

• Click OK.

Turning off the clock manager will result in the following:

1. CLK APIs will return (non−incrementing) “stuck” time values.

2. User clock functions will not run.

3. Periodic functions will not run.

4. Blocking API calls will never timeout.

5. RTA displays will be in error.

The application must be modified to accommodate these limitations.

If an external clock is available that is not affected by the PSL frequency scaling operation, this
signal could be configured to provide the system ticks (see section 4.8 , Timers, Interrupts, and
the System Clock, in SPRU423). Using an external clock in this fashion, periodic functions
could be made to run, and blocking APIs could time out.

SPRA848A

8 Using the Power Scaling Library

4 Configuration Data

The PSL is delivered as separate libraries, one of which is a configuration library. The
configuration library, PSL_cfg_<chip or board>.a55L, provides system and target board-specific
data to the PSL. The PSL_cfg_<chip or board>.a55L library is built with configuration data that is
both device and target board-specific. It may be used without modification. The source files that
are used to build this library are also supplied as part of the PSL. You can modify the data in
these files and rebuild the library so that the PSL can be used on custom boards. Alternatively,
you can modify these files and include them directly in your application. The configuration data
files are:

• PSLclk_cfg_<chip or board>.c

• PSLvolt_cfg_<board>.c

• PSLvolt_cfg_null.c

The file PSLclk_cfg_<chip or board>.c contains configuration data relating to the clock(s) that
will be controlled by the PSL. The data in this file is device-specific, but typically, it will include
items such as input frequency, maximum operating frequency, the table of operating frequencies
that will be supported by the PSL, and perhaps some latency information relating to frequency
scaling operations. The variable declarations for this data, as well as the type definitions that
define the structure of this data, are provided in PSLclk_cfg.h. See section 4.1 for more details.

The file PSLvolt_cfg_<board>.c contains configuration data relating to the operating voltages
that are supported by the device, and data relating to the voltage regulator controller. This file
will typically include a table of voltages and their corresponding maximum frequencies, data that
specifies how the voltage regulator is controlled, and latency information relating to voltage
scaling operations. The variable declarations for this data, as well as the type definitions that
define the structure of this data, are provided in PSLvolt_cfg.h.

The file PSLvolt_cfg_null.c contains configuration data for a device that does not have a voltage
regulator.

The PSL does not require a specific voltage regulator control scheme. The PSL provides built-in
support for a default control scheme, and a mechanism that allows users to override the built-in
support with their own support. See section 4.3 for more details.

4.1 PSLclk_cfg_<chip or board>.c

The file PSLclk_cfg_<chip or board>.c contains configuration data relating to the clock(s) that
will be controlled by the PSL. The variable declarations for this data, as well as the type
definitions that define the structure of this data, are provided in PSLclk_cfg.h. The remainder of
this section describes the clock configuration data for the C5509a device, along with the initial
values that are used for the evm5509a. Note that in the case of the C5509a, there is only one
clock.

const unsigned PSL_clkmdRegAddr = 0x1C00;

PSL_clkmdRegAddr specifies the address of the clock mode register in I/O space.

const float PSL_cpuInputFreq = 12.0f;

PSL_cpuInputFreq specifies the input frequency (CLKIN) in MHz units. The input frequency on
the evm5509a is 12 MHz.

SPRA848A

9 Using the Power Scaling Library

const float PSL_cpuMaxFreq = 200.0f;

PSL_cpuMaxFreq specifies the maximum frequency, in MHz units, at which it is safe to operate
the CPU. The maximum frequency of the CPU on the evm5509a DSK is 200 MHz. The
maximum frequency should be obtained from the device’s data sheet.

const unsigned PSL_cpuFreqCnt = 16;

PSL_cpuFreqCnt specifies the number of frequencies that will be supported by the PSL. It also
specifies the number of entries in the frequency table that is shown below. Acceptable values
are those in the range 1 ...16.

PSL_CPUFreq PSL_cpuFreqTable[] = {

 {0, 0, 3, PSL_BYPASS}, // 3 MHz (input freq / 4), bypass mode

 {0, 0, 1, PSL_BYPASS}, // 6 MHz (input freq / 2), bypass mode

 {0, 0, 0, PSL_BYPASS}, // 12 MHz (input freq / 1), bypass mode

 { 4, 0, 0, PSL_LOCK}, // 48 MHz (input freq * (4 / 1)), lock mode

 { 5, 0, 0, PSL_LOCK}, // 60 MHz (input freq * (5 / 1)), lock mode

 { 6, 0, 0, PSL_LOCK}, // 72 MHz (input freq * (6 / 1)), lock mode

 { 7, 0, 0, PSL_LOCK}, // 84 MHz (input freq * (7 / 1)), lock mode

 { 8, 0, 0, PSL_LOCK}, // 96 MHz (input freq * (8 / 1)), lock mode

 { 9, 0, 0, PSL_LOCK}, // 108 MHz (input freq * (9 / 1)), lock mode

 { 10, 0, 0, PSL_LOCK}, // 120 MHz (input freq * (10 / 1)),lock mode

 { 11, 0, 0, PSL_LOCK}, // 132 MHz (input freq * (11 / 1)), lock mode

 { 12, 0, 0, PSL_LOCK}, // 144 MHz (input freq * (12 / 1)), lock mode

 { 13, 0, 0, PSL_LOCK}, // 156 MHz (input freq * (13 / 1)), lock mode

 { 14, 0, 0, PSL_LOCK}, // 168 MHz (input freq * (14 / 1)), lock mode

 { 15, 0, 0, PSL_LOCK}, // 180 MHz (input freq * (15 / 1)), lock mode

 { 16, 0, 0, PSL_LOCK}, // 192 MHz (input freq * (16 / 1)), lock mode

};

PSL_cpuFreqTable contains the frequencies that will be supported by the PSL. This table can
contain from 1 to 16 frequencies. Internally, the PSL will create a setpoint for each frequency.
The ordering of the setpoints will match the ordering of the frequencies in the table. See the
description of the PSL_Setpoint type for more information on setpoints. Each entry in the table is
of type PSL_CPUFreq, which is defined in the file PSLclk_cfg.h. The definition of PSL_CPUFreq
is:

typedef struct {

 unsigned PLL_mult;

 unsigned PLL_div;

 unsigned bypass_div;

 PSL_ClkMode mode;

} PSL_CPUFreq;

PLL_mult is a value in the range 2 ... 31. This value, in conjunction with the input frequency and
PLL_div, determines the CPU clock frequency when operating in lock mode.

SPRA848A

10 Using the Power Scaling Library

PLL_div is a value in the range 0 ... 3. This value, in conjunction with the input frequency and
PLL_mult, determines the CPU clock frequency when operating in lock mode.

bypass_div is a value in the range 0 ... 3. It specifies the input frequency divider when operating
in bypass mode.

The clock generator on the evm5509a device has two operating modes: bypass and lock mode.
The type PSL_ClkMode, which is defined in PSLclk_cfg.h, represents these modes. The
definition of PSL_ClkMode is:
typedef enum { // clock’s operating mode

 PSL_BYPASS,

 PSL_LOCK

} PSL_ClkMode;

In PSL_BYPASS mode, the PLL is bypassed and the frequency of the output clock signal is
equal to the frequency of the input clock signal divided by 1, 2, 3, or 4. Because the PLL is
disabled in this case, this mode consumes less power. In PSL_LOCK mode, the input frequency
can be both multiplied and divided to produce the desired output frequency.

In bypass mode, the clock frequency can be calculated using the following equation:

Clock frequency �
input frequency

(bypass_div � 1)

In lock mode, the clock frequency can be calculated using the following equation:

Clock frequency �
PLL_mult

(PLL_div � 1)
* input frequency

See chapter 2 of the TMS320C55x DSP Peripherals Reference Guide (SPRU317) for more
information on the clock generator.

4.2 PSLvolt_cfg_<board>.c

The file PSLvolt_cfg_<board>.c contains configuration data relating to the operating voltages
that are supported by the device, and data relating to the voltage regulator controller. The
variable declarations for this data, as well as the type definitions that define the structure of this
data, are provided in PSLvolt_cfg.h. The remainder of this section describes the configuration
data and initial values that are used for the evm5509a.

const unsigned PSL_voltCnt = 3;

PSL_voltCnt specifies the number of voltage points that are supported by the voltage regulator.
The evm5509a has three different voltages at which it can operate, so the value PSL_voltCnt is
3 in this case.
PSL_GpioVoltRegTable PSL_gpioVoltRegTable[] = {

 {1.2f, 0x00}, // set GPIO bit 5 to a 1, bit 6 to a 0 for 1.2v

 {1.4f, 0x40}, // set GPIO bit 5 to a 0, bit 6 to a 1 for 1.4v

 {1.6f, 0x60}, // set GPIO bit 5 to a 1, bit 6 to a 1 for 1.6v

};

PSL_voltTable lists the supported voltage points and their associated maximum frequencies.
These values should be obtained from the device’s data sheet. The voltages must be listed in
increasing order starting with the smallest. Each entry in the table is of type PSL_VoltTable,
which is defined in the file PSLvolt_cfg.h. The definition of PSL VoltTable is:

SPRA848A

11 Using the Power Scaling Library

typedef struct {

 float volt; // voltage

 float freq; // frequency for PSL_CPU_CLK

}
 PSL_VoltTable;

where volt specifies a voltage point, and freq specifies the maximum operating frequency for this
voltage. The maximum operating frequency for a given voltage should be obtained from the
device’s data sheet.

PSL_voltDecreaseLatency = 2000; // 2.0 millisecond latency on voltage drop

PSL_voltIncreaseLatency = 500; // 500 microsecond latency on voltage increase

These variables specify the maximum latencies incurred during voltage scaling operations. The
latency is given in microseconds. Following the initiation of a voltage scaling operation, the
latency is the time required before the new voltage has been reached. These latencies are
system-specific and will have to be measured for each different target board.

PSL_VoltRegInitFunc PSL_voltRegInitFunc = PSL_gpioVoltRegInit_<board>;

PSL_voltRegInitFunc specifies the function that performs any one-time initialization that may be
required before the voltage regulator can perform scaling operations. If the default
implementation, which uses the GPIO pins to control the regulator, is NOT being used, the
initialization function should be changed to the correct user-supplied initialization function.

Note that the GPIO implementation contains some functionality that is board specifc. Use the
initialization routine, PSL_gpioVoltRegInit_<board>, whose source code is delivered with the
PSL, for a board-generic GPIO implementation that will work with custom boards. See section
4.3.2, Alternative Control Methods, for more details.

PSL_VoltRegScaleFunc PSL_voltRegScaleFunc = PSL_gpioVoltRegScale_<board>;

PSL_voltRegScaleFunc specifies the function that performs voltage scaling. If the default
implementation, which uses the GPIO pins to control the regulator, is NOT being used, the
scaling function should be changed to the correct user-supplied scaling function.

Note that the GPIO implementation contains some functionality that is specific to that board. Use
the voltage scaling routine, PSL_gpioVoltRegScale_<board>, whose source code is delivered
with the PSL, for a board-generic GPIO implementation that will work with custom boards. See
section 4.3.2, Alternative Control Methods. for more details.

const unsigned PSL_gpioIodirAddr = 0x3400;

const unsigned PSL_gpioIodataAddr = 0x3401;

These variables specify the addresses of GPIO IODIR and IODATA registers in I/O space. They
are only used if the default implementation, which uses the GPIO pins to control the regulator, is
being used.

const unsigned PSL_gpioPinsMask = 0x60; // GPIO bits 5 and 6

PSL_gpioPinsMask is a mask that specifies which GPIO pin(s) is/are used to control the voltage
regulator. The mask is only used if the default implementation, which uses the GPIO pins to
control the regulator, is being used.

SPRA848A

12 Using the Power Scaling Library

PSL_GpioVoltRegTable PSL_gpioVoltRegTable[] = {

 {1.2f, 0x00}, // set GPIO bit 5 to a 1, bit 6 to a 0 for 1.2v

 {1.4f, 0x40}, // set GPIO bit 5 to a 0, bit 6 to a 1 for 1.4v

 {1.6f, 0x60}, // set GPIO bit 5 to a 1, bit 6 to a 1 for 1.6v

};

The GPIO voltage regulator table contains the GPIO bit settings for each voltage that is
supported by the regulator. This table is used only if the default implementation, which uses the
GPIO pins to control the regulator, is being used.

4.3 Voltage Regulator Control

The PSL does not require a specific voltage regulator control scheme. The PSL provides built-in
support for a default control scheme, and a mechanism that allows users to override the built-in
support with their own support. These two cases are described further in the following sections.

4.3.1 Default Support

PSL provides built-in support for controlling the voltage regulator via the GPIO pins.

If the voltage regulator on your board is controlled via GPIO pins, the configuration data in
PSLvolt_cfg_<board>.c allows you to specify the GPIO pin(s) that will be used to control the
regulator and the pin values for each voltage. As an example, consider the default values that
are provided in PSLvolt_cfg_evm5509a.c for the evm5509a, where the voltage regulator is
controlled by GPIO pins 5 and 6 and supports three voltage points. The values for
PSL_gpioPinsMask and PSL_gpioVoltRegTable are:

const unsigned PSL_gpioPinsMask = 0x60; // GPIO bits 5 and 6

PSL_GpioVoltRegTable PSL_gpioVoltRegTable[] = {

 {1.2f, 0x00}, // set GPIO bit 5 to a 1, bit 6 to a 0 for 1.2v

 {1.4f, 0x40}, // set GPIO bit 5 to a 0, bit 6 to a 1 for 1.4v

 {1.6f, 0x60}, // set GPIO bit 5 to a 1, bit 6 to a 1 for 1.6v

};

where PSL_gpioPinsMask specifies the GPIO pins and PSL_gpioVoltRegTable specifies the
value of the GPIO pin for each supported voltage. In this case, the regulator is controlled by a
two pins, which are GPIO pin 5 and pin 6.

4.3.2 Alternative Control Methods

The PSL allows users to override the default voltage regulator support with their own support.
The configuration data provides function pointers that enable users to supply their own voltage
regulator control functions. In the case of the evm5509a, the function pointers refer to the
functions that use GPIO pins to control the regulator. The default implementation can be
overridden by changing the function pointers to refer to user-supplied functions. Two functions
are required: an initialization function and a scaling function.

SPRA848A

13 Using the Power Scaling Library

The initialization function is of type PSL_VoltRegInitFunc, which is defined as:

Performs any one-time initializationPSL_VoltRegInitFunc

Function typedef void (* PSL_VoltRegInitFunc)(void);

Description Function that performs any one-time initialization that may be required before
the voltage regulator can perform scaling operations.

Parameters none

Return Value none

The scaling function of type PSL_VoltRegScaleFunc, which is defined as:

Scales the voltage to the specified voltagePSL_VoltRegScaleFunc

Function typedef void (* PSL_VoltRegScaleFunc)(float currVoltage,

 float newVoltage,

 float currFrequency,

 int wait);

Description Function that scales the voltage to the specified voltage. If wait is TRUE, wait
until the new voltage has been reached.

Parameters currVoltage [in] The current voltage.

newVoltage [in] The new voltage.

currFrequency [in]The current clock frequency of the device that is
executing this routine. The frequency may be needed to
implement a delay loop in cases where wait is TRUE and
the voltage regulator provides no notification as to when
the new voltage has been reached.

wait [in] TRUE if this routine should wait for the new voltage to
reach the regulation point. FALSE otherwise.

Return Value none

5 Modifying the Configuration Data

The PSL configuration data is contained in files PSLclk_cfg_<chip or board>.c and
PSLvolt_cfg_<board>.c. The values specified in these files can be modified as necessary so that
the PSL can be used on custom target boards. Once these files have been modified, you can
either rebuild the appropriate configuration library, or include the files directly in your application.

SPRA848A

14 Using the Power Scaling Library

The libraries can be rebuilt within gmake style make files, which are provided to rebuild
PSL_cfg_<chip>.a55L and PSL_cfg_<chip or board>.a55L.

As an alternative to rebuilding the configuration library, the configuration files can be rebuilt
directly into your application. In this case, there is no need to link the configuration library into
your application. The configuration files are rebuilt with the rest of your application. However,
you must add the PSL include directory to your “include” search path so that the required header
files can be located.

If the voltage regulator setup on your target board requires you to override the default voltage
regulator support, you must supply your own implementation of the PSL_voltRegInitFunc and
PSL_voltRegScaleFunc functions (see section 4.3.2, Alternative Control Methods, for details).
When doing so, you may add these functions to the configuration library or directly to your
application. These functions can be added to the configuration library by adding the appropriate
source files to the gmake style makefile.

SPRA848A

15 Using the Power Scaling Library

6 PSL API

6.1 PSL Types

There are several PSL types that are used by the PSL API:

• PSL_ClkID

• PSL_Setpoint

• PSL_Status

• PSL_PrologueFunc

• PSL_EpilogueFunc

• PSL_ClkMode

These types are described below.

6.1.1 PSL_ClkID

typedef enum {

 PSL_CPU_CLK = 0

} PSL_ClkID;

PSL_ClkID defines the different clocks that are supported by the PSL. In the case of the
C5509a, there is only one clock. Multi-core devices that have more than one clock will define
multiple clocks. The definition of PSL_ClkID is located in PSLclk_cfg.h.

6.1.2 PSL_Setpoint

typedef unsigned PSL_Setpoint;

PSL_Setpoint is an unsigned integer type that is used to refer to a discrete frequency and
voltage operating point (i.e., a setpoint) that is supported by the PSL. The voltage of a setpoint is
the minimum operating voltage that is required to support the frequency of the setpoint.

All PSL operations are performed on setpoints. Each clock that is supported by the PSL has a
separate set of setpoints. The number of setpoints associated with a specific clock corresponds
directly to the number of entries in the clock’s frequency table, which is located in
PSLclk_cfg_<chip or board>.c. The ordering of the setpoints also corresponds directly to the
ordering specified by the frequency table. For the evm5509a device, the PSL supports one
clock, which is referred to as PSL_CPU_CLK. Thus, the evm5509a device has only one set of
setpoints. This type is defined in PSL.h.

SPRA848A

16 Using the Power Scaling Library

6.1.3 PSL_Status
typedef enum {

 PSL_OK,

 PSL_INVALID_CLK,

 PSL_INVALID_FREQ,

 PSL_INVALID_INITIAL_FREQ,

 PSL_INVALID_INITIAL_VOLTAGE,

 PSL_INVALID_SETPOINT,

 PSL_MAX_FREQ_EXCEEDED,

 PSL_MAX_VOLTAGE_EXCEEDED,

 PSL_INCOMPATIBLE_VOLTAGE,

 PSL_INCOMPLETE_INITIALIZATION,

 PSL_CANNOT_CHANGE_SETPOINT

 PSL_NOT_INITIALIZED

} PSL_Status;

PSL_Status specifies the return status of several PSL functions. If the return status is PSL_OK,
the function executed without error. A return value other than PSL_OK indicates that the function
encountered an error during execution. This type is defined in PSL.h.

6.1.4 PSL_PrologueFunc
typedef void (* PSL_PrologueFunc)(unsigned count,

 PSL_ClkID *clks,

 PSL_Setpoint *currentSetpoints,

 PSL_Setpoint *newSetpoints);

PSL_PrologueFunc is a pointer to a function that is called immediately before a scaling
operation (i.e., immediately before a setpoint change). This callback allows users to perform any
necessary peripheral modifications that may be required as a result of the upcoming scaling
operation. For example, the user may need to stop a timer prior to changing the clock frequency.
This type is defined in PSL.h.

6.1.5 PSL_EpilogueFunc

typedef void (* PSL_EpilogueFunc)(unsigned count,

 PSL_ClkID *clks,

 PSL_Setpoint *oldSetpoints,

 PSL_Setpoint *currentSetpoints);

PSL_EpilogueFunc is a pointer to a function that is called immediately after a scaling operation
(i.e., immediately after a setpoint change). This callback allows users to perform any necessary
peripheral modifications that may be required as a result of the just completed scaling operation.
For example, the user may need to reprogram and restart a timer after changing the clock
frequency. This type is defined in PSL.h.

SPRA848A

17 Using the Power Scaling Library

6.1.6 PSL_ClkMode

typedef enum { // clock’s operating mode

 PSL_BYPASS,

 PSL_LOCK

} PSL_ClkMode;

This type specifies the different operating modes of the CPU clock. The clock on the C5509A
devices can operate in either bypass or lock mode. The definition of PSL_ClkMode is located in
PSLclk_cfg.h.

6.2 PSL Functions Overview

Table 1. PSL Functions

Function Description

PSL_initialize Initializes the PSL.

PSL_getNumSetpoints Returns the number of valid setpoints for the specified clocks. If a clock has n valid
setpoints, the valid setpoints for that clock are those in the range 0 ... n−1.

PSL_getSetpoints Returns the current setpoint for each of the specified clocks.

PSL_changeSetpoints For each of the specified clocks, initiates a scaling operation to the new set point. This
includes setting the CPU clock frequency and clock mode, and possibly the voltage to
those specified by the clock’s new setpoint.

PSL_querySetpoints Returns the clock frequency, clock mode, and voltage that are associated with each of
the specified setpoints.

PSL_querySetpointFrequencies Returns the clock frequency that is associated with each of the specified set points.

PSL_querySetpointVoltages Returns the voltage that is associated with each of the specified setpoints.

PSL_querySetpointModes Returns the clock mode that is associated with each of the specified setpoints.

PSL_querySetpointTransitions Returns the maximum scaling latencies that are associated with each of the specified
setpoints changes.

PSL_getFrequencies Returns the current clock frequency for each of the specified clocks.

PSL_getModes Returns the current clock mode (e.g. PSL_BYPASS or PSL_LOCK) for each of the
specified clocks.

PSL_getVoltage Return the current voltage.

SPRA848A

18 Using the Power Scaling Library

6.3 PSL Functions Descriptions

Performs any initialization required by the power scaling libraryPSL_initialize

Function PSL_Status PSL_initialize(unsigned count,

 PSL_ClkID *clks,

 unsigned *initFrequencies,

 float initVoltage)

Description Perform any initialization required by the power scaling library.

The initial clock frequency and operating mode for each clock are determined
according to the values specified in the initFrequencies array. The values in
this array are indexes into a clock’s associated frequency table, which is part
of the user configurable data located in PSLclk_cfg_<chip or board>.c. This
routine does actually change the frequency of any clock. An initial frequency
MUST be supplied for every clock that is defined by the enum type
PSL_ClkID, which is located in PSLclk_cfg.h. The initial voltage is specified
by initVoltage. This routine does change the voltage. The initial voltage must
match one of the voltages specified in the voltage table located in
PSLvolt_cfg_<board>.c.

The initial setpoint for each clock will specify the clock’s initial frequency and
the minimum voltage required for that frequency.

This routine should be called once during target initialization. If this routine
is called multiple times, all calls after the first successful call will return
PSL_OK. In this case, no re-initialization occurs and the current setpoints are
not changed. If none of the previous calls were successful, subsequent calls
will attempt initialization as described above.

Parameters

count [in] Specifies the number of clocks pointed to by clks. The count
MUST specify the number of clocks defined by the enum type
PSL_ClkID, which is located in PSLclk_cfg.h.

*clks [in] Pointer to locations that specify the clocks. The number of clocks
referred to by the pointer should match the count. Every clock
that is defined by the enum type PSL_ClkID, which is located in
PSLclk_cfg.h, MUST be present in the array.

SPRA848A

19 Using the Power Scaling Library

*initFrequencies [in] Pointer to locations that specify the initial frequency of each clock.
The values in this array are indexes into a clock’s associated
frequency table, which is part of the user configurable data
located in PSLclk_cfg.c. The initial frequency for clks[0] is
specified by initFrequencies[0], the initial frequency for clks[1] is
specified by initFrequencies[1],etc.

initVoltage [in] The initial voltage.

Return Value

PSL_OK If all initialization required for the correct
operation of the scaling library
succeeds. If initialization does not
succeed, all setpoints for all clocks are
considered invalid.

PSL_INVALID_CLK If any of the specified clocks are invalid.

PSL_INVALID_FREQ If any of the clock frequencies tables
are empty, there are more than 16
entries in any of the frequecies tables,
or any of the values (mult, div, mode) for
a specific clock are invalid. The clock
frequency tables are part of the user
configurable data located in
PSLclk_cfg.c.

PSL_INVALID_INITIAL_FREQ If any of the values specified in the
initFrequencies array are invalid
indexes into the corresponding clock’s
frequency table. The clock frequency
tables are part of the user configurable
data located in PSLclk_cfg.c.

PSL_MAX_FREQ_EXCEEDED If any of the frequencies specified in a
clock’s frequency table exceed the
maximum operating frequency of the
device that the clock is controlling. The
maximum requencies are part of the
user configurable data located in
PSLclk_cfg_<cpu or board>.c.

PSL_INCOMPATIBLE_VOLTAGE If the initial voltage as specified by
initVoltage is less than the voltage
required by any of the initial setpoints.

PSL_INVALID_INITIAL_VOLTAGE If the intial voltage as specified by
initVoltage is not one of the voltages
specified in the voltage table located in
PSLvolt_cfg_<board>.c.

SPRA848A

20 Using the Power Scaling Library

PSL_MAX_VOLTAGE_EXCEEDED If any of the values in the user
configurable data located in
PSLvolt_cfg.c are beyond the maximum
supported voltage.

PSL_INCOMPLETE_INITIALIZATION If an initial frequency is not supplied for
every clock that is defined by the enum
type PSL_ClkID, which is located in
PSLclk_cfg.h.

Returns the number of valid setpoints for the specified clocksPSL_getNumSetpoints

Function PSL_Status PSL_getNumSetpoints(unsigned count,

 PSL_ClkID *clks,

 unsigned *numSetpoints)

Description This function returns the number of valid setpoints for the specified clocks.
If a clock has n valid setpoints, the valid setpoints for that clock are those in
the range (0…n−1). No setpoint for any clock is considered valid until the
power scaling library has been successfully initialized.

Parameters

count [in] Specifies the number of clocks pointed to by clks.

*clks [in] Pointer to locations that specify the clocks. The number of clocks
referred to by the pointer should match the count.

*numSetpoints
[out]

Pointer to locations to store the setpoint count for each of the clocks
referred to by the clks pointer. The number of valid setpoints for
clks[0] will be returned in numSetpoints[0], the valid number of
setpoints for clks[1] will be returned in numSetpoints[1], etc.

Return Value

PSL_OK If all of the specified clocks are valid.

PSL_INVALID_CLK If any of the specified clocks are invalid.

PSL_NOT_INITIALIZED If PSL has not been initialized.

Returns the current setpoint for each of the specified clocksPSL_getSetpoints

Function PSL_Status PSL_getSetpoints(unsigned count,

 PSL_ClkID *clks,

 PSL_Setpoint *setpoints)

Description This function returns the current setpoint for each of the specified clocks.

SPRA848A

21 Using the Power Scaling Library

Parameters

count [in] Specifies the number of clocks pointed to by clks.

*clks [in] Pointer to locations that specify the clocks. The number of clocks
referred to by the pointer should match the count.

*setpoints [out] Pointer to locations to store the current setpoint for each of the clocks
referred to by the clks pointer. The current setpoint for clks[0] will be
returned in setpoints[0], the current setpoint for clks[1] will be returned
in setpoints[1], etc.

Return Value

PSL_OK If all of the specified clocks are valid.

PSL_INVALID_CLK If any of the specified clocks are invalid.

PSL_NOT_INITIALIZED If PSL has not been initialized.

Initiates a scaling operation to the new setpointPSL_changeSetpoints

Function PSL_Status PSL_changeSetpoints(unsigned count,

 PSL_ClkID *clks,

 PSL_Setpoint *newSetpoints,

 int scaleVoltage,

 int waitForVoltScale,

 PSL_PrologueFunc prologueFunc,

 PSL_EpilogueFunc epilogueFunc)

Description For each of the specified clocks, this function initiates a scaling operation to
the new setpoint. This includes setting the CPU clock frequency and clock
mode to those specified by the clock’s new setpoint.

If scaleVoltage is TRUE and the current voltage is not sufficient for any of the
new setpoints, then the voltage will be increased to the lowest level that will
support all the new setpoints. In this case, the new voltage will also be suffi-
cient for any current setpoint that is not being changed. If a lower voltage is
sufficient for all new setpoints as well as all current setpoints that are not be-
ing changed, the voltage will be decreased to the lowest level that will support
all of these setpoints.

This routine will not return until the clocks are generating the new frequencies
specified by the setpoints. If waitForVoltScale is TRUE and the voltage was
actually scaled, then this routine will also wait until the new voltage is reach-
ed. In addition, if a voltage increase was required as part of the setpoint
changes, or if the device is in an unstable state until the new voltage is
reached, then this routine will also wait for the voltage scaling to complete,

SPRA848A

22 Using the Power Scaling Library

regardless of waitForVoltScale.

Prior to initiating any scaling operations, this routine will call the function ref-
erenced by prologueFunc. If prologueFunc is NULL, no function is called.

Similarly, following the scaling operations, this routine will call the function re-
ferred to by epilogueFunc. The call to epilogueFunc will not occur until the
clocks are generating the new frequencies. If this routine must wait for the
new voltage to be reached, then the call to epilogueFunc will not occur until
the voltage has been reached. If epilogueFunc is NULL, no function is called.

Parameters

count [in] Specifies the number of clocks pointed to by clks.

*clks [in] Pointer to locations that specify the clocks. The number of clocks
referred to by the pointer should match the count.

*newSetpoints [in] Pointer to locations that specify the new setpoint for each of the
clocks referred to by the clks pointer. The new setpoint for clks[0]
is specified by newSetpoints[0], the new setpoint for clks[1] is
specified by newSetpoints[1], etc.

scaleVoltage [in] TRUE if the voltage should be scaled when necessary.
FALSE if the voltage should not be scaled.

waitForVoltScale [in] TRUE if this routine should wait for the new voltage to be reached
after initiating the voltage scaling.
FALSE if waiting is not required. Note that this parameter is
ignored if a voltage increase is required or if the device is in an
unstable state until the new voltage is reached. In these cases,
this routine will always wait for the voltage scaling to complete.

prologueFunc [in] Function called prior to scaling operations. NULL if no function is
to be called.

epilogueFunc [in] Function called after the scaling operations have completed.
NULL if no function is to be called.

Return Value

PSL_OK If the setpoint changes were successful.

PSL_INVALID_CLK If any of the specified clocks are invalid.

PSL_INVALID_SETPOINT If any of the new setpoints are invalid. A
clock’s valid setpoints are those in the
range (0 … n–1), where n is the number
of valid setpoints returned by
PSL_getNumSetpoints(). No scaling
operations are performed if any of the
setpoints are invalid.

SPRA848A

23 Using the Power Scaling Library

PSL_INCOMPATIBLE_VOLTAGE If scaleVoltage is FALSE and the
current voltage is less than the voltage
required by any of the new setpoints.
No scaling operations are performed in
this case.

PSL_CANNOT_CHANGE_SETPOINT If the setpoint could not be changed.

PSL_NOT_INITIALIZED If PSL has not been initialized.

Returns the clock frequency, clock mode, and voltagePSL_querySetpoints

Function PSL_Status PSL_querySetpoints(unsigned count,

 PSL_ClkID *clks,

 PSL_Setpoint *setpoints,

 float *frequencies,

 float *voltages,

 PSL_ClkMode *modes)

Description This functions returns the clock frequency, clock mode, and voltage that are
associated with each of the specified setpoints.

Parameters

count [in] Specifies the number of clocks pointed to by clks.

*clks [in] Pointer to locations that specify the clocks. The number of clocks
referred to by the pointer should match the count.

*setpoints [in] Pointer to locations that specify the setpoints that are being queried.
The setpoint for clks[0] is specified by setpoints[0], the setpoint for
clks[1] is specified by setpoints[1], etc.

*frequencies
[out]

Pointer to locations to store the frequency associated with each
setpoint. The frequency for setpoints[0] will be returned in
frequencies[0], the frequency for setpoints[1] will be returned in
frequencies[1], etc.

*voltages [out] Pointer to locations to store the voltages associated with each setpoint.
A setpoint’s voltage is the minimum voltage required for the setpoint’s
frequency. Note that this voltage may not be equal to the current
voltage if voltage scaling was not performed during
PSL_changeSetpoint, or if the current setpoint for another clock
required a higher voltage. The voltage for setpoints[0] will be returned
in voltages[0], the voltage for setpoints[1] will be returned in voltages[1],
etc.

*modes [out] Pointer to locations to store the clock mode associated with each
setpoint (e.g. PSL_BYPASS or PSL_LOCK). The clock mode for
setpoints[0] will be returned in modes[0], the clock mode for
setpoints[1] will be returned in modes[1], etc.

SPRA848A

24 Using the Power Scaling Library

Return Value

PSL_OK If the specified clocks and setpoints are valid.

PSL_INVALID_CLK If any of the specified clocks are invalid.

PSL_INVALID_SETPOINT If any of the setpoints are invalid. A clock’s valid
setpoints are those in the range 0 … n−1, where n is
the number of valid setpoints returned by
PSL_getNumSetpoints().

PSL_NOT_INITIALIZED If PSL has not been initialized.

Returns the clock frequencyPSL_querySetpointFrequencies

Function PSL_Status PSL_querySetpointFrequencies(unsigned count,

 PSL_ClkID *clks,

 PSL_Setpoint *setpoints,

 float *frequencies)

Description This function returns the clock frequency that is associated with each of the
specified setpoints.

Parameters

count [in] Specifies the number of clocks pointed to by clks.

*clks [in] Pointer to locations that specify the clocks. The number of clocks
referred to by the pointer should match the count.

*setpoints [in] Pointer to locations that specify the setpoints that are being queried.
The setpoint for clks[0] is specified by setpoints[0], the setpoint for
clks[1] is specified by setpoints[1], etc.

*frequencies
[out]

Pointer to locations to store the frequency associated with each
setpoint. The frequency for setpoints[0] will be returned in
frequencies[0], the frequency for setpoints[1] will be returned in
frequencies[1], etc.

Return Value

PSL_OK If the specified clocks and setpoints are valid.

PSL_INVALID_CLK If any of the specified clocks are invalid.

PSL_INVALID_SETPOINT If any of the setpoints are invalid. A clock’s valid
setpoints are those in the range 0 … n−1, where n is
the number of valid setpoints returned by
PSL_getNumSetpoints().

PSL_NOT_INITIALIZED If PSL has not been initialized.

SPRA848A

25 Using the Power Scaling Library

Returns the voltagePSL_querySetpointVoltages

Function PSL_Status PSL_querySetpointVoltages(unsigned count,

 PSL_ClkID *clks,

 PSL_Setpoint *setpoints,

 float *voltages)

Description This function returns the voltage that is associated with each of the specified
setpoints.

Parameters

count [in] Specifies the number of clocks pointed to by clks.

*clks [in] Pointer to locations that specify the clocks. The number of clocks
referred to by the pointer should match the count.

*setpoints [in] Pointer to locations that specify the setpoints that are being queried.
The setpoint for clks[0] is specified by setpoints[0], the setpoint for
clks[1] is specified by setpoints[1], etc.

*voltages [out] Pointer to locations to store the voltages associated with each setpoint.
A setpoint’s voltage is the minimum voltage required for the setpoint’s
frequency. Note that this voltage may not be equal to the current
voltage if voltage scaling was not performed during
PSL_changeSetpoint, or if the current setpoint for another clock
required a higher voltage. The voltage for setpoints[0] will be returned
in voltages[0], the voltage for setpoints[1] will be returned in voltages[1],
etc.

Return Value

PSL_OK If the specified clocks and setpoints are valid.

PSL_INVALID_CLK If any of the specified clocks are invalid.

PSL_INVALID_SETPOINT If any of the setpoints are invalid. A clock’s valid
setpoints are those in the range 0 … n−1, where n is
the number of valid setpoints returned by
PSL_getNumSetpoints().

PSL_NOT_INITIALIZED If PSL has not been initialized.

Returns the clock modePSL_querySetpointModes

Function PSL_Status PSL_querySetpointModes(unsigned count,

 PSL_ClkID *clks,

 PSL_Setpoint *setpoints,

 PSL_ClkMode *modes)

Description This function returns the clock mode that is associated with each of the speci-
fied setpoints.

SPRA848A

26 Using the Power Scaling Library

Parameters

count [in] Specifies the number of clocks pointed to by clks.

*clks [in] Pointer to locations that specify the clocks. The number of clocks
referred to by the pointer should match the count.

*setpoints [in] Pointer to locations that specify the setpoints that are being queried.
The setpoint for clks[0] is specified by setpoints[0], the setpoint for
clks[1] is specified by setpoints[1], etc.

*modes [out] Pointer to locations to store the clock mode associated with each
setpoint (e.g. PSL_BYPASS or PSL_LOCK). The clock mode for
setpoints[0] will be returned in modes[0], the clock mode for
setpoints[1] will be returned in modes[1], etc.

Return Value

PSL_OK If the specified clocks and setpoints are valid.

PSL_INVALID_CLK If any of the specified clocks are invalid.

PSL_INVALID_SETPOINT If any of the setpoints are invalid. A clock’s valid
setpoints are those in the range 0 … n−1, where n is
the number of valid setpoints returned by
PSL_getNumSetpoints().

PSL_NOT_INITIALIZED If PSL has not been initialized.

Returns the maximum scaling latenciesPSL_querySetpointTransitions

Function PSL_Status PSL_querySetpointTransitions(unsigned count,

 PSL_ClkID *clks,

 PSL_Setpoint *fromSetpoints,

 PSL_Setpoint *toSetpoints,

 unsigned *freqScalingLatencies,

 unsigned *voltageScalingLatency)

Description This function returns the maximum scaling latencies that are associated with
each of the specified setpoints changes.

Parameters

count Specifies the number of clocks pointed to by clks.

*clks [in] Pointer to locations that specify the clocks. The number of
clocks referred to by the pointer should match the count.

*fromSetpoints [in] Pointer to locations that specify the source setpoints. The
source setpoint for clks[0] is specified by
fromSetpoints[0], the source setpoint for clks[1] is
specified by fromSetpoints[1], etc.

SPRA848A

27 Using the Power Scaling Library

*toSetpoints [in] Pointer to locations that specify the destination Setpoints.
The destination setpoint for clks[0] is specified by
toSetpoints[0], the destination setpoint for clks[1] is
specified by toSetpoints[1], etc.

*freqScalingLatencies [out] Pointer to locations to store the maximum latencies
associated with each of the frequency scaling operations
that will occur during the specified setpoint changes. The
latencies are specified in microseconds. Following the
initiation of a frequency scaling operation, the latency is
the time required before the clock starts generating the
new frequency. The latency for the setpoint change
associated with clks[0] is specified by
freqScalingLatencies[0], the latency for the setpoint
change associated with clks[1] is specified by
freqScalingLatencies[1], etc.

*voltageScalingLatency [out] Location to store the maximum latency associated with
the voltage scaling that may occur during the specified
setpoint changes. The latency is given in microseconds.
Following the initiation of the voltage scaling operation,
the latency is the time required before the new voltage
has been reached.

Return Value

PSL_OK If the specified clocks and setpoints are valid.

PSL_INVALID_CLK If any of the specified clocks are invalid.

PSL_INVALID_SETPOINT If any of the setpoints are invalid. A clock’s valid
setpoints are those in the range (0 ... n–1), where n is
the number of valid setpoints returned by
PSL_getNumSetpoints().

PSL_NOT_INITIALIZED If PSL has not been initialized.

SPRA848A

28 Using the Power Scaling Library

Returns the current clock frequencyPSL_getFrequencies

Function PSL_Status PSL_getFrequencies(unsigned count,

 PSL_ClkID *clks,

 float *frequencies)

Description This function returns the current clock frequency for each of the specified
clocks.

Parameters

count [in] Specifies the number of clocks pointed to by clks.

*clks [in] Pointer to locations that specify the clocks. The number of clocks
referred to by the pointer should match the count.

*frequencies
[out]

Pointer to locations to store the current frequency of each of the
specified clocks. The current frequency of a clock is the same as the
frequency returned by PSL_querySetpointFrequencies for that clock
when that function is called with the clock’s current setpoint (i.e., the
current frequency of a clock is always the same as the frequency of the
clock’s current setpoint). The current frequency for clks[0] will be
returned in frequencies[0], the current frequency for clks[1] will be
returned in frequencies[1], etc.

Return Value

PSL_OK If all of the specified clocks are valid.

PSL_INVALID_CLK If any of the specified clocks are invalid.

PSL_NOT_INITIALIZED If PSL has not been initialized.

SPRA848A

29 Using the Power Scaling Library

Returns the current clock modePSL_getModes

Function PSL_Status PSL_getModes(unsigned count,

 PSL_ClkID *clks,

 PSL_ClkMode *modes)

Description This function returns the current clock mode (e.g., PSL_BYPASS or
PSL_LOCK) for each of the specified clocks.

Parameters

count [in] Specifies the number of clocks pointed to by clks.

*clks [in] Pointer to locations that specify the clocks. The number of clocks
referred to by the pointer should match the count.

*modes [out] Pointer to locations to store the current mode of each of the specified
clocks. The current operating mode of a clock is the same as the mode
returned by PSL_querySetpointModes when that function is called with
the clock’s current setpoint (i.e., the current mode of a clock is always
the same as the mode of the clock’s current setpoint). The current
mode for clks[0] will be returned in modes[0], the current mode for
clks[1] will be returned in modes[1], etc.

Return Value

PSL_OK If all of the specified clocks are valid.

PSL_INVALID_CLK If any of the specified clocks are invalid.

PSL_NOT_INITIALIZED If PSL has not been initialized.

Returns the current voltagePSL_getVoltage

Function float PSL_getVoltage()

Description This function returns the current voltage.

Return Value This function returns the current voltage. If voltage scaling was not performed
in any of the calls to PSL_changeSetpoint, the current voltage is assumed
to be the initial voltage as specified in the user configurable data located in
PSLvolt_cfg.c. If voltage scaling is being done, the current voltage will be the
lowest voltage that is sufficient for all of the current setpoints.

SPRA848A

30 Using the Power Scaling Library

7 PSL NoChecks Library

By default, the PSL performs many error checks that prevent the device from running at
unsupported frequencies and voltages and unsupported frequency/voltage combinations. These
checks guard against situations such as overclocking and other situations that could cause
damage to the device. However, these error checks do increase the code size of the PSL. For
this reason, separate libraries are provided that do not contain these error checks. These
libraries are located in the same directory as PSL_<chip>_a55L. PSL_NoChecks_<chip>.a55 is
provided for the large memory model.

These libraries do not check for the following errors:

1. PSL_INVALID_CLK

2. PSL_INVALID_FREQ

3. PSL_INVALID_INITIAL_FREQ

4. PSL_INVALID_INITIAL_VOLTAGE

5. PSL_INVALID_SETPOINT

6. PSL_MAX_FREQ_EXCEEDED

7. PSL_MAX_VOLTAGE_EXCEEDED

8. PSL_INCOMPATIBLE_VOLTAGE

9. PSL_INCOMPLETE_INITIALIZATION

Error checking should only be omitted in cases where there is no possibility that the error
conditions listed above will occur. It is recommended that initial development be done using the
default libraries that contain the error checks. You should only switch to the libraries that perform
no error checking after ensuring there is no possibility of these errors occurring.

SPRA848A

31 Using the Power Scaling Library

8 Examples

The examples below assume that the configuration library was built using the configuration data
shown here (note that only the data required to follow the examples is shown).

const float PSL_cpuInputFreq = 12.0f; // 12 MHz input clock (CLKIN)

 // frequency

const float PSL_cpuMaxFreq = 200.0f; // 200 MHz max operating

 // frequency

PSL_CPUFreq PSL_cpuFreqTable[] = {
 {0, 0, 3, PSL_BYPASS}, // 3 MHz (input freq / 4), bypass mode
 {0, 0, 1, PSL_BYPASS}, // 6 MHz (input freq / 2), bypass mode
 {0, 0, 0, PSL_BYPASS}, // 12 MHz (input freq / 1), bypass mode

 { 4, 0, 0, PSL_LOCK}, // 48 MHz (input freq * (4 / 1)), lock mode
 { 5, 0, 0, PSL_LOCK}, // 60 MHz (input freq * (5 / 1)), lock mode
 { 6, 0, 0, PSL_LOCK}, // 72 MHz (input freq * (6 / 1)), lock mode
 { 7, 0, 0, PSL_LOCK}, // 84 MHz (input freq * (7 / 1)), lock mode
 { 8, 0, 0, PSL_LOCK}, // 96 MHz (input freq * (8 / 1)), lock mode
 { 9, 0, 0, PSL_LOCK}, //108 MHz (input freq * (9 / 1)), lock mode
 {10, 0, 0, PSL_LOCK}, //120 MHz (input freq * (10 / 1)), lock mode
 {11, 0, 0, PSL_LOCK}, //132 MHz (input freq * (11 / 1)), lock mode
 {12, 0, 0, PSL_LOCK}, //144 MHz (input_freq * (12 / 1)), lock mode
 {13, 0, 0, PSL_LOCK}, //156 MHz (input freq * (13 / 1)), lock mode
 {14, 0, 0, PSL_LOCK}, //168 MHz (input_freq * (14 / 1)), lock mode
 {15, 0, 0, PSL_LOCK}, //180 MHz (input freq * (15 / 1)), lock mode
 {16, 0, 0, PSL_LOCK}, //192 MHz (input_freq * (16 / 1)), lock mode
};

PSL_VoltTable PSL_voltTable[] = {
 {1.2f, 108.0f}, // 0 MHz up to, and including 08 MHz, require a
 // a minimum voltage of 1.2v.
 {1.4f, 144.0f}, //frequencies > 108 MHz up to and including 144 MHz
 // require a minimum voltage of 1.4v.
 {1.6f, 200.0f}, // frequencies > 144 MHz up to the max frequency
 // require a minimum voltage of 1.6V.
};

All examples assume that the initial frequency and voltage at system startup are 192 MHz and
1.6v respectively. (Note that these are also the reset frequency and voltage settings on the
evm5509a.) The call to the PSL initialization routine specifies these initial settings. The initial
frequency is specified by supplying an index to an entry in PSL_cpuFreqTable[]. In the
configuration data shown here, 192 MHz is entry 15 in the table.

8.1 Example 1: Basic Usage

The first example highlights some of the basic PSL operations. It shows how the PSL is
initialized, and how frequency and voltage changes are initiated by the changing of a setpoint.

This example will call three functions: func1, func2, and func3. It will execute func1 and func3 at
192 MHz and 1.6v. It will execute func2 at 72 MHz and 1.2v.

SPRA848A

32 Using the Power Scaling Library

#include ”PSL.h”

extern void func1();
extern void func2();
extern void func3();

void main (void)

{
 PSL_Status status;

 // Variable specifying PSL_ClkID that will be used
 // in all PSL calls.
 PSL_ClkID clk = PSL_CPU_CLK;

 // Index into PSL_cpuFreqTable[] that specifies initial freq
 // of 192 MHz.
 unsigned initFreqIndex = 15;

 // PSL_cpuFreqTable[5] represents 72 MHz
 // PSL_cpuFreqTable[15] represent 192 MHz
 PSL_Setpoint _72MHzSetpoint = 5;
 PSL_Setpoint _192MHzSetpoint = 15;

 // Initialize the PSL. The frequency following reset is
 // specified by PSL_cpuFreqTable[15]. The voltage following
 // reset is 1.6v.
 status = PSL_initialize(1, &clk, &initFreqIndex, 1.6f);

 if (status != PSL_OK)

 {
 // handle error;
 ...
 return;
 }

 // Execute func1 at 192 MHz (i.e., the initial frequency)
 func1();

 //Change frequency to 72 MHz
 status = PSL_changeSetpoints(1,
 &clk,
 &_72MHzSetpoint,
 TRUE, // change voltage also
 FALSE,
 NULL, NULL);
 if (status != PSL_OK) {
 // handle error
 ...
 return;
 }
 // Execute func2 at 72 MHz
 func2();

 // Change frequency back to 192 MHz
 status = PSL_changeSetpoints(1,
 &clk,

SPRA848A

33 Using the Power Scaling Library

 &_192MHzSetpoint,
 FALSE, // do not change voltage
 FALSE,
 NULL, NULL);

 if (status != PSL_OK) {
 // handle error
 ...
 return;
 }

 // Execute func3 at 192 MHz
 func3();
}

When the required frequencies are statically known, as is the case in this example, the setpoints
can be assigned values that correspond to indexes into PSL_cpuFreqTable[].

This is possible because the ordering of the setpoints will directly match the ordering of the
frequencies in PSL_cpuFreqTable[]. Therefore, locating the setpoint that corresponds to a
particular frequency does not require calls to the query routines in this case. For example, the
setpoint _72MhzSetpoint is assigned the value 5 since PSL_cpuFreqTable[5] corresponds to
72 MHz. Similarly, the setpoint _192MHzSetpoint is assigned the value 15, which corresponds to
the frequency specified by PSL_cpuFreqTable[15].

Separate calls are not required to change both the frequency and the voltage. Instead users
initiate a frequency, and possibly a voltage change, through a single call to
PSL_changeSetpoints. If the user instructs PSL_changeSetpoints to change the voltage, the
voltage will be changed automatically to the voltage specified by the setpoint. This voltage will
be the lowest voltage that is required to support the new frequency. In the above example, the
initial frequency is 192 MHz and 1.6v. When the frequency is changed to 72 MHz, the voltage is
automatically changed to 1.2v by the PSL. Similarly, when the frequency is changed back to
192 MHz, the PSL will automatically increase the voltage to 1.6v.

The PSL can operate in a mode that changes frequency only. This mode is useful if your target
board does not have a voltage regulation capability. The fourth parameter of
PSL_changeSetpoints specifies whether voltage scaling should be done. So for example, if the
following call had been used to change the frequency to 72 MHz, the frequency would have
been changed to 72 MHz, but the voltage would have remained at 1.6v.

status = PSL_changeSetpoints(1,
 &clk,
 &_72MHzSetpoint,
 FALSE, // do not change voltage
 FALSE,
 NULL, NULL);

A very important feature of the PSL is that it will always maintain a valid frequency/voltage
setting. In the above example, the PSL would not allow the user to enter a state where the
frequency is 192 MHz and the voltage is 1.2v . For example, if the second call to
PSL_changeSetpoints had been:

SPRA848A

34 Using the Power Scaling Library

status = PSL_changeSetpoints(1,
 &clk,
 &_192MHzSetpoint,
 FALSE, // do not change voltage
 FALSE,

 NULL, NULL);

The return status would have been PSL_INCOMPATIBLE_VOLTAGE and no scaling operations
would have been performed. This is because the frequency/voltage setting at the point of the
call is 72 MHz and 1.2v. This call instructs the PSL to increase the frequency to 192 MHz, and
leave the current voltage of 1.2v unchanged. However, since 192 MHz requires 1.6v, the PSL
will not perform the frequency change and will return an error.

8.2 Example 2: Reprogramming Peripherals

When changing the frequency, one must consider the effects that the frequency change will
have on the rest of the system. Obviously, frequency changes will affect the amount of time it
takes to complete a certain operation. Therefore, frequency changes can only occur if the
application’s timing requirements continue to be satisfied. Frequency changes can also effect
the operation of the peripherals. For example, the timer period or the EMIF may need to be
reprogrammed as a result of a frequency change.

This example shows how to use the PSL’s callback hooks to perform any necessary peripheral
modifications that may be required as a result of an upcoming/just completed scaling operation.
Callback hooks are simply function pointers that are called by the PSL_changeSetpoints
function immediately before a scaling operation is initiated and immediately after the scaling
operation completes. A function that is called immediately before a scaling operation has the
following type:

typedef void (* PSL_PrologueFunc)(unsigned count,
 PSL_ClkID *clks,
 PSL_Setpoint *currentSetpoints,
 PSL_Setpoint *newSetpoints);

A function that is called immediately after a scaling operation completes is of type:

typedef void (* PSL_EpilogueFunc)(unsigned count,
 PSL_ClkID *clks,
 PSL_Setpoint *oldSetpoints,
 PSL_Setpoint *currentSetpoints);

In this example, a function of type PSL_PrologueFunc is used to stop Timer0 immediately before
the scaling operation. A function of type PSL_EpilogueFunc is used to reprogram and restart
Timer0 when the scaling operation completes. This example uses the CSL to program the timer.
Note that the timer setup code is not shown below.

#include ”PSL.h”

TIMER_Handle timer0Handle;

//−−−
// Function to stop the timer. Called immediately before a
// scaling operation is initiated.
//−−−

SPRA848A

35 Using the Power Scaling Library

void StopTimer0(unsigned count,
 PSL_ClkID *clks,
 PSL_Setpoint *currentSetpoints,
 PSL_Setpoint *newSetpoints) {

 TIMER_stop(timer0Handle);

}

//−−−
// Function to reprogram and restart the timer. Called
// immediately after a scaling operation completes.
//
// Assumes that Timer0 is alreadly stopped
//−−−
void RestartTimer0(unsigned count,
 PSL_ClkID *clks,
 PSL_Setpoint *oldSetpoints,
 PSL_Setpoint *currentSetpoints) {

 float currFreq;
 unsigned long cycles;

 Uint16 timer0TCR;

 // Set timer loading (TLB) bit prior to initializing the period
 // and prescale registers.
 timer0TCR = TIMER_RGETH(timer0Handle, TCR);
 timer0TCR |= TIMER_FMK(TCR,TLB,1); // TLB = 1;
 TIMER_RSETH(timer0Handle, TCR, timer0TCR);

 // Reprogram the period and prescale register such that the
 // interrupt period is 10 microseconds. The actual number of
 // CPU cycles is determined based on the current CPU frequency.

 PSL_querySetpointFrequencies(1, clks, currentSetpoints, &currFreq);
 cycles = (unsigned long)(10.0f * currFreq);

 // Write PRD register
 TIMER_FSETH(timer0Handle, PRD, PRD, cycles & 0xFFFF);

 // Write TDDR field of PRSC register
 TIMER_FSETH(timer0Handle, PRSC, TDDR, (cycles >> 16) & 0xF);

 // Restart the timer
 TIMER_start(timer0Handle);
}

#include ”PSL.h”

extern void func1();
extern void func2();
extern void func3();

void main (void)

{

SPRA848A

36 Using the Power Scaling Library

 PSL_Status status;

 // Variable specifying PSL_ClkID that will be used
 // in all PSL calls.
 PSL_ClkID clk = PSL_CPU_CLK;
 // Index into PSL_cpuFreqTable[] that specifies initial freq
 // of 192 MHz.
 unsigned initFreqIndex = 15;

 // PSL_cpuFreqTable[5] represents 72 MHz
 // PSL_cpuFreqTable[15] represent 192 MHz
 PSL_Setpoint _72MHzSetpoint = 5;
 PSL_Setpoint _192MHzSetpoint = 15;

 // Initialize the PSL. The frequency following reset is
 // specified by PSL_cpuFreqTable[15]. The voltage following
 // reset is 1.6v.
 status = PSL_initialize(1, &clk, &initFreqIndex, 1.6f);

 if (status != PSL_OK)
 {
 // handle error;
 ...
 return;
 }

 // Execute func1 at 192 MHz (i.e., the initial frequency)
 func1();

 //Change frequency to 72 MHz. Stop/Restart the Timer before/after the
 // scaling operation.
 status = PSL_changeSetpoints(
 1,
 &clk,
 &_72MHzSetpoint,
 TRUE, // change voltage also
 FALSE,
 StopTimer0, // Stop timer before scaling operation
 RestartTimer0); // Reprogram and start timer after scaling

 if (status != PSL_OK) {
 // handle error
 ..
 return;
 }
 // Execute func2 at 72 MHz
 func2();

 // Change frequency to 192 MHz. Stop/Restart the Timer before/after the
 // scaling operation.
 status = PSL_changeSetpoints(
 1,
 &clk,
 &_192MHzSetpoint,
 TRUE, // change voltage also
 FALSE,

SPRA848A

37 Using the Power Scaling Library

 StopTimer0, // Stop timer before scaling operation
 RestartTimer0); // Reprogram and start timer after scaling

 if (status != PSL_OK) {
 // handle error
 ..
 return;
 }

 // Execute func3 at 192 MHz;
 func3();
}

The prologue and epilogue functions are passed to the PSL as the last two parameters of
PSL_changeSetpoints. In this example, StopTimer0, the prologue function, is called immediately
before the scaling operation is initiated. RestartTimer0, the epilogue function, is called
immediately after the scaling has completed. Notice that the prologue function is passed the
current and new setpoints, and the epilogue function is passed the old and current setpoints.
Since the StopTimer0 function simply stops the timer, it does not use these parameters.
However, the RestartTimer0 function determines the frequency of the current setpoint so that the
period register of the timer can be reprogrammed correctly.

This example handles only one peripheral. Multiple peripherals can be handled by supplying a
wrapper function that calls other routines to adjust the peripherals as necessary. For example,
an epilogue function that restarts Timer0 and reprograms the EMIF might resemble the
following:

void EpilogueFunc (unsigned count,
 PSL_ClkID *clks,
 PSL_Setpoint *oldSetpoints,
 PSL_Setpoint *currentSetpoints) {

 // Determine frequency of current setpoint
 float freq;
 PSL_getSetPointFrequencies(1, clks, currSetpoints, &freq);

 // Reprogram and restart Timer1 based on the current frequency
 RestartTimer0(freq);

 // Reprogram EMIF based on current frequency
 ReprogramEMIF(freq);
}

8.3 Example 3: Query Operations

In the first two examples, the frequencies were statically known. In both cases the program
switched back and forth between 192 MHz and 72 MHz. Since the frequencies were known
upfront, the setpoints were directly assigned values that corresponded to indexes into
PSL_cpuFreqTable[]. Locating the setpoint that corresponds to a particular frequency did not
require the use of the query routines.

SPRA848A

38 Using the Power Scaling Library

However, there may be certain situations where the frequency is dynamically determined.
Consider an application that dynamically determines the lowest possible frequency based on
information relating to the system’s timing requirements and the timing information of each task
or operation. In this case, after calculating the lowest possible frequency, the application must
determine the setpoint that corresponds to the closest frequency that is greater than or equal to
the calculated frequency. For example, assuming the configuration data shown earlier, if the
calculated frequency were 70 MHz, the setpoint that corresponds to 72 MHz would have to be
used since there is no setpoint that corresponds to 70 MHz.

The sample routine FindSetpoint shown below illustrates how to find the correct setpoint by
using the query routines that are supplied by the PSL. The sample routine ChangeToLowestFreq
further illustrates how query functions can be used.

//−−−
// Function to find a setpoint that corresponds to the
// closest frequency that is greater than or equal to the
// specified frequency.
//−−−
PSL_Setpoint FindSetpoint (float desiredFreq)
{
 unsigned i, numSetpoints;

 float freq,

 float closetFreq = PSL_cpuMaxFreq;
 PSL_Setpoint closestSetPoint;

 // Determine number of setpoints
 PSL_getNumSetpoints(1, &clk, &numSetpoints);

 for (i = 0; i < numSetpoints; i++) {
 // Determine frequency of setpoint i
 PSL_querySetpointFrequencies(1, &clk, &i, &freq);

 if ((freq >= disiredFreq) && (freq < closestFreq) {
 closestSetPoint = i;
 closestFreq = freq;
 }
 }

 return closestSetPoint;
}

//−−−
// Function that changes setpoint to lowest frequency that
// still meets real−time requirements.
//−−−

void ChangeToLowestFreq () {

 float currFreq, desiredFreq;

 unsigned freqScalingLatency, voltScalingLatency;

 PSL_Setpoint currSetpoint, desiredSetpoint,

 // Determine lowest frequency that meets timing requirements

 desiredFreq = CalcLowFreq();

SPRA848A

39 Using the Power Scaling Library

 // Find nearest setpoint whose frequency is greater than or

 // equal to the desired frequency

 desiredSetpoint = FindSetpoint(desiredFreq);

 // Is the desired setpoint equal to the current setpoint?

 PSL_getSetpoints(1, &clk, &currSetpoint);

 if (currSetpoint == desiredSetpoint) {

 // nothing to change

 return;

 }

 // Determine the latencies involved when scaling from the current

 // setpoint to the new setpoint

 PSL_querySetpointTransitions(1,

 &clk,

 &currSetpoint,

 &desiredSetpoint,

 &freqScalingLatency,

 &voltScalingLatency);

 // Determine if real−time requirements are still met

 // when latencies are considered

 if (!CanScale(freqScalingLatency + voltScalingLatency)) {

 return;

 }

 // Change setpoint

 status = PSL_changeSetpoints(
 1,
 &clk,
 &desiredSetpoint,
 TRUE, // change voltage also
 FALSE,
 NULL,
 NULL);

 if (status != PSL_OK) {
 // handle error
 ..
 return;

 }

}

SPRA848A

40 Power Scaling Library

Appendix A evm5509a Voltage Regulator Setup Reference

A.1 1.6 Power Supply

The evm5509a operates from a single +5V external power supply connected to the main power
input (J5). Internally, the +5V input is converted into +1.6V and +3.3V using a dual voltage
regulator. The +1.6V supply is used for the DSP core while the +3.3V supply is used for the
DSP’s I/O buffers and all other chips on the board. The power connector is a 2.5mm barrel−type
plug.

The core voltage on the evm5509a is selectable based on the output of GPIO5 and GPIO6 or
CPLD control registers. If GPIO5 and GPIO6 are high or configured as an input the core voltage
will remain at +1.6V. If GPIO5 and GPIO6 are driven low the voltage will drop to +1.2V.

GPIO6 GPIO5 Core Voltage Selected

0 0 1.2v

0 1 1.4v

1 0 1.4v

1 1 1.6v

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2004, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

