
Application Report
SPRA617A - November 2000

1

ETSI Math Operations in C for the TMS320C62x
Richard Scales Digital Signal Processing Solutions

ABSTRACT

Many standard vocoders follow the European Telecommunications Standards Institute
(ETSI) for all math operations. One of the purposes of the ETSI math functions is to
standardize all math operations into a set of function calls that can be reused by many
different vocoders now and in the future.

The Global Systems for Mobile Communications (GSM) standard requires vocoders that
follow the ETSI standard. C code available for GSM includes a function for each math
operation and a function call to that function each time that math operation is performed. Each
math function can be mapped to one or more DSP instructions. Obviously, an actual function
all for every math operation is undesirable for performance reasons. The intent of providing
these functions is to provide the engineer with a clear specification of all fixed-point math
functionality.

When porting this C code to a particular DSP, an engineer will typically replace each math
function with one or more DSP instructions. This is usually done when porting the vocoder
to native assembly language of the DSP by hand. Although this is a precise method for
implementing a vocoder in assembly, it can be very time consuming. The TMS320C62x
compiler provides a way to avoid writing all of the code in hand coded assembly. By using
C instrinsics, vocoder code is quickly and easily optimized for high performance. Intrinsics
are special functions that map directly to inlined C62x instructions.

TMS320C62x and C62x are trademarks of Texas Instruments.

Contents

1 Design Problem 1.

2 Solution 2.

List of Examples

Example 1. Saturated Add Without Intrinsics 2.
Example 2. Saturated Add With Instrinsics 2.
Example 3. ETSI Functions Mapped To C62x Intrinsics 3.

1 Design Problem

Many standard vocoders follow the European Telecommunications Standards Institute (ETSI) for
all math operations. One of the purposes of the ETSI math functions is to standardize all math
operations into a set of function calls that can be reused by many different vocoders now and in
the future.

SPRA617A

2 ETSI Math Operations in C for the TMS320C62x

The Global Systems for Mobile Communications (GSM) standard requires vocoders that follows
the ETSI standard. C code available for GSM includes a function for each math operation and a
function call to that function each time that math operation is performed. Each math function can
be mapped to one or more DSP instructions. Obviously, an actual function call for every math
operation is undesirable for performance reasons. The intent of providing these functions is to
provide the engineer with a clear spec of all fixed-point math functionality.

When porting this C code to a particular DSP, an engineer will typically replace each math
function with one or more DSP instructions. This is usually done when porting the vocoder to
native assembly language of the DSP by hand. Although this is a precise method for
implementing a vocoder in assembly, it can be very time consuming.

2 Solution

The TMS320C62x compiler provides a way to avoid writing all of the code in hand coded assembly. By
using C intrinsics, vocoder code is quickly and easily optimized for high performance. Intrinsics are special
functions that map directly to inlined C62x instructions.

• Intrinsics are specified with a leading underscore and are accessed by calling them as you
do a function.

• All ETSI specific math operations, as well as others, which are not easily expressible in
C code are supported as intrinsics in the C compiler.

An example of a math operation not easily expressible in C is the saturate add.

Example 1. Saturated Add Without Intrinsics

int sadd(int a, int b)
{
 int result;

 result = a + b;
 if (((a ^ b) & 0x80000000) == 0){
 if ((result ^ a) & 0x80000000){
 result = (a < 0) ? 0x80000000 : 0x7fffffff;
 }
 }
 return (result);
}

This demonstrates how difficult simple DSP operations can be to represent in C. Not only that,
but the resulting code generated by the compiler will most likely be very inefficient.

On the C62x, the same operation can be represented by single C intrinsic.

Example 2. Saturated Add With Instrinsics
result = _sadd(a, b);

The _sadd intrinsic looks like a function call in C but actually maps directly to the C62x SADD
instruction and will not result in a function call.

In order to aide the engineer in writing C62x vocoder code, the following list of #define
statements can be included as a header file in every ETSI standard vocoder file to efficiently
replace all function calls with high performance, efficient C62x instructions.

SPRA617A

3 ETSI Math Operations in C for the TMS320C62x

Example 3. ETSI Functions Mapped To C62x Intrinsics

#include <stdlib.h>
#include <linkage.h>

extern int Overflow;
extern int Carry;

_IDECL int L_add_c (int, int);
_IDECL int L_sat (int);
_IDECL short div_s (short, short);

/**/
/* Macros for GSM operations */
/**/
#define L_add(a,b) (_sadd((a),(b))) /* int sat addition */
#define L_sub(a,b) (_ssub((a),(b))) /* int sat subtract */
#define L_sub_c(a,b) L_add_c((a),~(b)) /* integer subtraction */
#define L_negate(a) (_ssub(0,(a))) /* integer negation */
#define L_deposit_h(a) ((a)<<16) /* put short in upper 16 */
#define L_deposit_l(a) ((int)(a)) /* put short in lower 16 */
#define L_abs(a) (abs(a)) /* int absolute value */
#define L_mult(a,b) (_smpy((a),(b))) /* short sat mpy => 32 */
#define L_mac(a,b,c) (_sadd((a),L_mult(b, c))) /* saturated mpy & accum */
#define L_macNs(a,b,c) L_add_c((a),L_mult(b,c)) /* mpy & accum w/o saturat*/
#define L_msu(a,b,c) (_ssub((a),L_mult(b,c))) /* saturated mpy & sub */
#define L_msuNs(a,b,c) L_sub_c(a,L_mult(b,c)) /* mpy & sub w/o saturate */
#define L_shl(a,b) ((b) < 0 ? (a) >> (–b) : _sshl((a),(b)))
#define L_shr(a,b) ((b) < 0 ? _sshl((a),(–b)) : (a) >> (b))
#define L_shr_r(a,b) (L_shr((a),(b)) + ((b)>0 && (((a) & (1<<((b)–1))) != 0)))
#define abs_s(a) (abs((a)<<16)>>16) /* short absolute value */
#define add(a,b) (_sadd((a)<<16,(b)<<16)>>16) /* short sat add */
#define sub(a,b) (_ssub((a)<<16,(b)<<16)>>16) /* short sat subtract */
#define extract_h(a) ((unsigned)(a)>>16) /* extract upper 16 bits */
#define extract_l(a) ((a)&0xffff) /* extract lower 16 bits */
#define round(a) extract_h(_sadd((a),0x8000)) /* round */
#define mac_r(a,b,c) (round(L_mac(a,b,c))) /* mac w/ rounding */
#define msu_r(a,b,c) (round(L_msu(a,b,c))) /* msu w/ rounding */
#define mult_r(a,b) (round(L_mult(a,b))) /* sat mpy w/ round */
#define mult(a,b) (L_mult(a,b)>>16) /* short sat mpy upper 16 */
#define norm_l(a) (_norm(a)) /* return NORM of int */
#define norm_s(a) (_norm(a)–16) /* return NORM of short */
#define negate(a) (_ssub(0, ((a)<<16)) >> 16) /* short sat negate */
#define shl(a,b) ((b) < 0 ? (a) >> (–b) : (_sshl((a),(b+16))>>16))
#define shr(a,b) ((b) < 0 ? (_sshl((a),(–b+16))>>16) : ((a) >> (b)))
#define shr_r(a,b) ((b) < 0 ? (_sshl((a),(–b+16))>>16) : (b)==0 ? (a) : \
 ((a)+(1<<((b)–1))) >> (b))

SPRA617A

4 ETSI Math Operations in C for the TMS320C62x

#ifdef _INLINE
/**/
/* Integer (32–bit) add with carry and overflow testing. */
/**/
static inline int L_add_c (int L_var1, int L_var2)
{
 unsigned L_test = L_var1 + L_var2 + Carry;
 unsigned int uv1 = L_var1;
 unsigned int uv2 = L_var2;

 Overflow = ((~(uv1 ^ uv2)) & (uv1 ^ L_test)) >> 31;
 Carry = ((~L_test & (uv1 | uv2)) | (uv1 & uv2)) >> 31;

 return L_sat(L_test);
}

/**/
/* Saturate any result after L_addc or L_sub_c if overflow is set. */
/**/
static inline int L_sat (int L_var1)
{
 int cin = Carry;

 return !Overflow ? (Carry = Overflow = 0, L_var1) :
 (Carry = Overflow = 0, 0x7fffffff+cin);
}

/**/
/* Short (16–bit) divide. */
/**/
static inline short div_s (short var1, short var2)
{
 int iteration;
 unsigned int var1int;
 int var2int;

 if (var1 == 0) return 0;
 if (var1 == var2) return 0x7fff;
 var1int = var1 << 16;
 var2int = var2 << 16;

 for (iteration = 0; iteration < 16; iteration++)
 var1int = _subc(var1int,var2int);

 return var1int & 0xffff;
}
#endif

Notice that not all math operations need to be represented as intrinsics. Simple operations like
shifting and addition are easily represented in their native C form, (“>>” and “+”). The C62x
compiler will map all of the typical C type operations to the correct C62x instructions
automatically.

Example 3 also shows some double precision functions which were left in the form of actual
function calls but will be statically inlined to avoid the call overhead. These were left as functions
for the sake of clarity because they typically involve more ’C6x instructions.

By using the above #define statements and static inline functions vocoder performance of the
C62x C compiler is greatly improved. For more information on C intrinsics refer to the
TMS320C6x Optimizing C Compiler User’s Guide (SPRU187). For more information on further
C code optimizations refer to the TMS320C6x Programmer’s Guide (SPRU198).

http://www-s.ti.com/sc/techlit/spru187
http://www-s.ti.com/sc/techlit/spru198

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 2000, Texas Instruments Incorporated

	Abstract
	Contents
	1 Design Problem
	2 Solution
	IMPORTANT NOTICE

