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ABSTRACT

As more and more system components become embedded within the system processor
chip, new techniques are required for debug. Signals and busses that were historically
available for probe connection at external package pins, are now hidden from the users
within the processor package. This problem is referred to as vanishing visibility meaning
that the user can no longer employ traditional techniques to see into the system activity.
To restore visibility, debug triggers such as breakpoints, watchpoints, counters and other
debug tools must now also be embedded to allow access to the embedded signals. This
application report instructs the user on how to take advantage of the advanced event
triggering (AET) embedded components available on TI’s new digital signal processors.

1. Introduction

The terms embedded system and system on a chip have become so over-used that many forget what the
terms really mean. What is actually embedded about the system? To explain this, look at todays typical
system designs compared to those of only a few years ago:

Older systems were based on many discrete components. They had a microcontroller chip surrounded
by peripherals, all of which were some form of separate DIP package. Debugging such systems was
typically a matter of locating the signals on one or more pins within the circuit board, hooking a scope
lead onto the appropriate pins, and tracing the signal on a logic analyzer or oscilloscope.

As technology progressed, the components on the printed-circuit board have become surface-mount
packages in the form of thin quad flat packages (TQFP) - whose pins are very difficult to probe, or ball
grid array packages (BGA) - whose pins are impossible to probe. Additionally, many of the peripherals
have been integrated into the microprocessor such that their signals are no longer available at the pins.
The only chance of getting trace access to these signals is to view them as they are being passed to/from
off-chip memory. Furthermore, the single-bus microcontroller has been replaced with a multi-bus
digital signal processor, with ever-increasing amounts of on-chip memory. Many of these busses are
not visible to the outside world at the pins.

The entire system has become embedded in this single package, and may be truly called a system on a
chip (SOC).
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An SOC offers many advantages to the system developer. These include lower cost, higher
performance, higher reliability, lower power consumption, smaller size, and lighter weight. Along with
these advantages come disadvantages in regard to system debug, primarily lack of access to embedded
signals and busses. TI refers to this problem as vanishing visibility. The user can no longer see into the
system with traditional debug techniques. New instrumentation techniques are required.

To restore visibility, we must now embed debug components also. Event triggers such as breakpoints,
watchpoints, counters, and state sequencers are now being designed into the chip, alongside the
embedded busses and signals. This restores visibility to the users by physically co-locating the debug
event triggers and critical system signals. TI refers to these embedded debug components as embedded
emulation components (EEC). The EEC, along with the XDS510TM/XDS560TM emulator, plus
associated control and user interface software, combine to provide advanced event triggering (AET)
capability to the user. User access to AET is provided through TI’s Code Composer StudioTM

integrated development environment. The integrated AET delivery system is pictured below.

This application note provides a guided tour of the advanced event triggering capability available with
TI’s TMS320C6211TM DSP generation and TMS320C6711TM generation digital signal processor chips,
the XDS510/XDS560 emulator, and Code Composer Studio version 2.0/2.1.
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2. On-Chip Debug Capabilities

On-chip capabilities have traditionally consisted of simple comparators, which allow the user to set
program or data hardware breakpoints. Advanced capabilities today include counters, event detectors,
and state sequencers.

2.1 Hardware Breakpoints/Data Watchpoints

Hardware breakpoints are very useful when debugging embedded systems because they allow the user
to monitor bus (data or program) activity for a certain value or a range of values, and break (stop the
CPU) when the bus contains that value.

In the case of program hardware breakpoints, on-chip comparators are used to compare a desired
program address with the each fetched program address. When they match, the CPU is halted for debug
purposes.

Similarly, data hardware watchpoints can use a desired data address and/or data value and compare it to
each running memory access. When the address and/or data values meet, the processor is halted for
debug purposes.

A good example of when hardware breakpoints can be beneficial is when tracking system hangs.
Typically, a system hang occurs when the program counter branches into an invalid memory address.
Usually, by the time we halt the processor, checking the value of the program counter or any registers
would be futile, because they would have already been overwritten by invalid opcodes. But by setting a
hardware breakpoint to monitor the program bus, we can detect immediately when the processor tries to
execute an invalid section of memory and analyze the state of our system to determine the cause of the
invalid branch.

2.2 Complex/Chained Breakpoints

It is common, upon halting the CPU, to interrogate the contents of specific registers, data, or memory
and decide whether to continue running until the next breakpoint is hit. This is a form of stop-mode
emulation, in which we would rather not really stop the processor until all of the specific criteria have
been met to indicate a condition in which we would like to halt the processor for deeper debug.

The ability to recognize multiple conditions and/or a sequence of events entails use of an on-chip state
sequencer. By combining debug logic and enabling enough capability with the tool itself, we can allow
the target CPU to run and detect a series of events, and only halt when all conditions have been met to
indicate an error in the application.

For example, if we are trying to detect when a specific memory location is getting corrupted, it may be
possible to put a breakpoint in typical debug tools to halt the CPU whenever that memory location is
being accessed. Better yet, we could only halt when that memory location is being written to. However,
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if this memory location is accessed several times within a subroutine, and is getting corrupted
somewhere outside of that routine, then we would have to stop the processor every time a write was
performed – even when the write is supposed to happen.

Then after stopping the debugger each time to see if the program is within the proper subroutine, you
have to restart the processor. Eventually you should catch the problem. But if the problem is
intermittent and only occurs after an extended time, halting the processor may prevent the error from
ever occurring because real-time processing has been disrupted.

A better means of detecting a problem such as this would be to set up a breakpoint that stops the CPU
only if a write is done to the address of concern, when the CPU is outside of the subroutine. This
requires a more complex breakpoint, and the tools must be able to accommodate such capabilities.

2.3 Counters/Event Detectors/Action Points

It is sometimes unnecessary and/or undesirable to halt the application when an event occurs. Instead, it
may simply be useful to know if an event happens at all, and if so, how often. In this case, it is not
breakpoints that are needed, but simply event detectors and counters. For example, when tuning an
algorithm, it may be useful to detect such events as cache misses. In the case of trying to debug a
system and determine if timing and design objectives are being met, one may only want to detect how
often the application is getting cache misses by counting the number of times it happens within a
specific code segment.

Counting events can be accomplished by adding a variable and incrementing the variable inside your
function. However, this would change the timing of the system and may cause the problem to go away.
By using the counters supplied with the debugging hardware, you can count function execution without
affecting the performance of your system.

You can also use counters to break only every so often. For example, if you want to stop every tenth
time the system hit a specific breakpoint, you can combine counters and breakpoints to perform this
action.

Just as counters/event detectors can halt the CPU after certain criteria are met, they can also be used to
set other system actions in motion. For instance, you may want to drive a pin high or low after a certain
number of times through a range of code.

2.4 State Sequencing

Sometimes the problem we are trying to uncover is more difficult to detect. It may be that a certain
memory location gets an incorrect value written to it. However, that value is written from within the
proper subroutine. We cannot set a breakpoint to halt the CPU every time the address is written.
Instead, we need to try detecting other events that occur coincident with this error.

As control code operates, it can take different paths through our executable program. This results in
some code that rarely gets executed. In an attempt to make sure that we have covered all paths within a
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module of control code, we may want to check the data at the address in question only after it has gone
through a specific code sequence. In this case, we would want to detect if a specific set of instructions
are executed, then the address in question is written to. This is referred to as a state sequence.

3. TI’s Advanced Event Triggering (AET) Debug System

Integrated with Code Composer Studio, TI’s AET debug system allows the user to easily program the
on-chip debug modules. AET is accessible to the user through three mechanisms:

• Context-sensitive menus in the source code window
• Event analysis plug-in for simple debug tasks
• Event sequencer plug-in for complex sequence set-up and monitoring

3.1 Basic Concepts

Individual AET debug actions are referred to as jobs in the AET menus and plug-ins.

Jobs may be set in any of three places:
• Context-sensitive menus in the source code window
• Event analysis plug-in
• Event sequencer plug-in

The AET menus and plug-ins abstract the user presentation from the underlying hardware
implementation. Using the AET facilities requires no detailed knowledge of underlying on-chip
hardware. That is, the user does not have to know how many comparators, counters, etc are on his/her
DSP chip in order to setup breakpoints, watchpoints, and other more complex jobs.

Source code menus are made visible by right-clicking in the source code window and selecting
Advanced Event Triggering:

The event analysis plug-in and event sequencer plug-in are accessed by selecting Tools -> Advance
Event Triggering from the code composer studio Tools menu:
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All jobs are tracked in the event analysis plug-in. Here they may be added, tracked, enabled, disabled,
removed, or renamed to suit the user’s needs:

AET icons appear in the left margin of the source code window to indicate AET job locations and
status:



SPRA387

Using Advanced Event Triggering to Debug Real-Time Problems in High Speed Embedded Microprocessor
Systems 7

Drag and drop of source code line numbers, data variable names, and desired job actions is enabled in
both event analysis and event sequencer plug-ins. This minimizes the amount of typing needed to set up
a job.

Because on-chip hardware adds gates (and therefore cost) to the chip, these facilities are naturally
limited in quantity. The user is only able to setup a few jobs at a time. If you try to set up a job that
exceeds the capability of your chip, the AET software displays an error message:
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When possible AET suggests disabling other jobs to free enough resources for the current request:



SPRA387

Using Advanced Event Triggering to Debug Real-Time Problems in High Speed Embedded Microprocessor
Systems 9

Getting Detailed Help:

Detailed online help and a tutorial is available in code composer studio version 2.0 and later. To access
these, select Help -> Contents or Help -> Tutorial in code composer studio and look for the Advanced
Event Triggering section. An example program is also included in the <root>:\ti\tutorial\aet folder.
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3.2 Context-sensitive menus in the Source Code Window

Because the user spends most of his/her debug time working with code in the source code window, TI
has placed the ability to access most common jobs here. To access the AET context sensitive menus,
right click anywhere in the source code window and select Advanced Event Triggering.
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Some examples of the menu items are:

Program menu items appear as appropriate when one or more source code lines are selected:
• Add Chained HW Breakpoint... (Wait for cpu to get to location 1, then when cpu reaches location 2,

halt.)
• Add Program HW Action Point… (Wait for cpu to get to location 1, then perform a debug action -

halt CPU, Drive a pin high or low, etc.)
• Watchdog Timer… (Tell me if it takes more than N cycles to go through a range of code.)

Data menu items appear when a variable name or expression are selected:
• Add HW Watch Point… (Halt the CPU if a variable changes, a commonly used action.)
• Add Data HW Action Point… (Perform one or more actions if a variable changes.)
• Count Data Accesses… (Count Read or Write accesses to a variable.)

Counter/Timer Menu Items are available at all times, regardless of code selected:
• Count… (Count the #occurrences of or #cycles spent in Cache Misses, Cache Hits, NOPs, etc., then

optionally perform one or more actions.)
• Timer… (Wait a specified amount of time, then perform one or more actions.)

3.3 The Event Analysis Plug-In

Jobs are set up in the event analysis plug-in by right-clicking in the job name field and selecting the
desired job type. Below, a new hardware breakpoint job is being added:

After adding the job, it is configured by making appropriate selections in the right hand pane. In this
case, the user must either type in an absolute address for the breakpoint, or drag and drop the source
code line number from the source code window. The user also has the option of breaking on the first or
nth time the breakpoint is hit:
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All job are statused and tracked within the event analysis window. Below are the explanations of the
job status codes:
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3.4 The Event Sequencer Plug-In Features:

The sequencer plug-in is used to perform the more complex debug functions that involve sequences of
events and/or program history. Every sequencer state is essentially an If-Then statement.

If (some event occurs) Then (perform some action)

The event sequencer window display opens with a blank program window as shown below:

The toolbar button descriptions are as follows:
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The first step in creating a sequencer program is usually adding the first step in a series of program
actions. This is done by clicking the add a state icon or by right-clicking in the window, and selecting
Add State:

Now, we have the skeleton of our first if-then statement:

Next, we must fill-in-the blanks.

Here is a simple case: The user has noticed that a certain data variable is getting corrupted, but only
after going through a particular loop in his program. Set State #1 to trigger after going through the loop
in lines 123 to 128 of our source code:
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The event statement: program is in main.c within lines 123 to 128 was created by selecting lines 123-
128 in the source code window and dragging and dropping those lines into the sequencer window on
top of the previous undefined event statement.

Now we set up the action that we want to happen after the loop is hit. In this case, we want to go to a
second state, so the action is go to state 2. The go to state is created by dragging and dropping Go To
State from the right-hand pane actions list.

State 2 is set up to stop the CPU for debug after the data variable MyInt changes:



SPRA387

16 Using Advanced Event Triggering to Debug Real-Time Problems in High Speed Embedded Microprocessor
Systems

Once again, drag and drop is used to pull the MyInt symbol from the source code and the halt CPU
action from the right hand pane actions list.

By setting up this simple sequence and running our program, we can halt the program for debug
precisely when the data variable is being corrupted.

4 Special Notes regarding available on-chip resources

It is important to note that early instantiations of AET on-chip resources, such as those available on the
C6211TM DSP and C6711TM DSP devices are relatively limited. Many useful debug operations can be
performed with these devices, but complex state sequence equations are not possible. This is due to the
small number of comparators, counters, etc available at the time of development of these devices.
When requesting a job that is outside of the capability of your particular device, the user sees error
messages such as:

When possible, AET suggests disabling other jobs to free enough resources for the current request:

Newer devices such as TMS320C6400TM DSP platform versions 1.1 and later, should contain much
richer implementations of the AET capabilities.
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5 Summary

Embedded systems cannot be debugged with traditional tools. System busses and probe points are now
hidden within the device, causing vanishing visibility. To restore debug visibility, the debug tools must
also be embedded.

TI’s advanced event triggering debug system provides these embedded debug tools, and gives the user
access to them through the XDS510/XDS560 emulator and the Code Composer Studio IDE.

The advanced event triggering system provides the facilities to use the on-chip components, without
requiring detailed knowledge of the underlying hardware.

The most common debug jobs, such as hardware breakpoints and data watchpoints can be set directly in
the source code window, where the developer spends most of his/her time. More complex jobs are
setup using the two AET plug-ins – the event analysis and event sequencer plug-ins.

Early versions of the AET tools are found on TI’s C6211TM DSP and C6711TM DSP devices. New
device families will build on these and bring broader and richer visibility options to the user
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