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ABSTRACT
A bootloader enables field updates of application firmware. A controller area network (CAN) bootloader
enables firmware updates over the CAN bus. The CAN bootloader described in this application report is
based on the Hercules™ ARM® Cortex™-R4 microcontroller. This application report describes the CAN
protocol used in the bootloader and details each supported command.

Project collateral and source code discussed in this application report can be downloaded from the
following URL: http://www.ti.com/lit/zip/spna184.
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1 Introduction
The CAN bootloader permanently resides in the first Flash block of target device. It enables programming
of the Hercules microcontroller through its CAN interface. The bootloader also helps designers update the
user application code for products already deployed in the field.

This document describes how to work with and customize the Hercules CAN bootloader application. The
bootloader is provided as source code which allows any part of the bootloader to be completely
customized.

The bootloader on the target device configures the CAN module in communication with PC host through
the CAN bus. The bootloader polls the CAN port for messages. After a message is received, the
bootloader attempts to decode the incoming commands for flash programming. After the internal flash has
successfully downloaded the binary image, the bootloader jumps to the starting address of the new
application image.

The target side bootloader has been built and validated using Code Composer Studio™ v5 on the RM48x
Hercules HDK. The bootloader host application which communicates with the target side bootloader is
developed with Visual C++ 2010. Figure 1 and Table 1 show an overview of the source code provided
with the bootloader.

Figure 1. Bootloader Process
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Table 1. List of Source Code Files Used in CAN Bootloader
sys_startup.c The start-up code used when TI’s Code Composer Studio compiler is being used to build the

bootloader.
sys_intvecs.asm Interrupt vectors
sys_core.asm Initialize the core registers, stack pointers , memory, and so forth
system.c Configure PLL, enable peripherals, and so forth
bl_main.c The main control loop of the bootloader
bl_can.c The functions for transferring data via the CAN1 port
bl_check.c The code to check if a firmware update is required, or if a firmware update is being requested.
hw_pinmux.c Function that defines the pinmux
sci_common.c Low-level SCI driver
bl_link.cmd The linker script used when the Code Composer Studio compiler is being used to build the

bootloader.
bl_flash.c The functions for erasing, programming the Flash, and functions for erase and program check
bl_commands.h The list of commands and return messages supported by the bootloader.
bl_config.h Bootloader configuration file. This contains all of the possible configuration values.
bl_flash.h Prototypes for Flash operations
bl_can.h Prototypes for the CAN transfer functions.
bw_can.h Prototypes for the low-level CAN transfer functions.
hw_pinmux.h Prototypes for pinmux functions

2 Hardware Requirements
The hardware required for configuration includes:
• Power supply: 12 V to HDK
• CAN bus: H, L and GND connecting to CAN1 or CAN2 header on HDK
• Hercules RM48x HDK
• NI USB 8473 high-speed CAN adaptor
• PC with windows XP for running VC++ project
• HyperTerminal for message display via RS232 connected to mini USB connector on HDK

– Bits/sec: 115200
– No parity: none
– Stop bit: 1
– Flow control: No
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Figure 2. Hardware Setup

3 CAN Settings
The Hercules CAN is compliant with the 2.0A specification with a bitrate up to 1 Mbit/s. It can receive and
transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. To
change the CAN settings for the bootloader, knowledge of the CAN protocol, revision 2.0 is assumed. For
details, see the CAN Protocol Revision 2.0 Specification (which is located where???). Figure 3 shows
the essential fields of the standard frame that is used in this CAN bootloader.

Figure 3. Standard CAN Frame Format

Table 2. Commands Used in Bootloader
Commands CMD Description
PING 0x00 See Section 9
DOWNLOAD 0x01 See Section 9
RUN 0x02 See Section 9
GET_STATUS 0x03 See Section 9
SEND_DATA 0x04 See Section 9
RESET 0x05 See Section 9
ACK 0x06 See Section 9

In this application, the CAN settings are:
• Standard identifier (not extended)
• Bitrate: at the default it is 125 kbps
• Functions used: CANInit()
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The transmit settings (from MCU to the host) are:
• Tx mailbox2: On -- #define MSG_OBJ_BCAST_TX_ID 1 in bl_can.c
• Tx mailbox1: Off -- #define MSG_OBJ_BCAST_RX_ID 2 in bl_can.c
• Tx identifier: 0x5A (device ID) + CMDs (0x00, 0x01, 0x02, v03, 0x04, 0x05, 0x06)
• Functions used: CANMessageSetTx(), and PacketWrite()

The receive settings (from the host to the MCU) are:
• Synchronization (ACK), 0x06, is in the RX identifier and not in the data field.
• RX identifier depends on the commands (0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06).
• Error checking: Host re-transmits the frames which have lost arbitration or have been disturbed by

errors during transmission.
• Incoming messages can contain from 1 to 8 data bytes.
• Functions used: CANMessageGetRx(), CANMessageSetRx(), and PacketRead()

CAN Bit timing setting:

Two clock domains are provided to the CAN module:
• VCLK: general module clock (system.c)
• VCLKA1: CAN core clock for generating the CAN Bit Timing (system.c)
• Functions used: CANInit()

Before configuring the CAN module, evaluate your system specifications such as system propagation
delay (wire length and transceiver delay), crystal tolerance, and re-synchronization jump width. To initialize
the CAN registers in CAN communication, you must define parameters such as baud rate, propagation
segment (Prog_Seg), time segment 1 (Phase_Seg1) and time segment 2 (Phase_Seg2). Using HalCoGen
is an easy way to get the correct BTR value. Figure 5 shows what CAN BTR calculations look like in
HalCoGen.

tprop = 2(tbus + ttransmitter + treceiver)

tbus = Bus Length (meter) * 5 ns/meter

ttransmitter and treceiver can be found from the transceiver data sheet (what is the lit number for this data
sheet???)

Figure 4. CAN Bit Timing
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Figure 5. CAN Bit Timing Calculation in HalCoGen

4 Software Coding and Compilation
• The bootloader code is implemented in C, ARM Cortex-R4F, assembly coding is used only when

absolutely necessary. The IDE is TI Code Composer Studio 5.4.
• The bootloader is compiled in the 32-bit ARM mode.
• The bootloader is compiled and linked with the TI TMS470 code generation tools V 5.1.

5 On Reset
On reset, the MCU enters in supervisor mode and starts executing the bootloader. The interrupt vectors
are setup as shown in Table 3.

Table 3. Vector Table in CAN Bootloader
Offset Vector Action
0x00 Reset Vector Branch to entry point of bootloader (c_int00 )
0x04 Undefined Instruction Interrupt Branch to application vector table
0x08 Software Interrupt Branch to application vector table
0x0C Abort (Prefetch) Interrupt Branch to application vector table
0x10 Abort (Data) Interrupt Branch to application vector table
0x14 Reserved Endless loop (branch to itself)
0x18 IRQ Interrupt Branch to VIM
0x1C FIQ Interrupt Branch to VIM
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6 During Bootloader Execution
During bootloader execution:
• MCU operates in supervisor mode
• MCU Clock is reconfigured and is maintained throughout the bootloader execution.

– Clock Source: OSCIN = 16 MHz
– System clock: HCLK = 80 MHz
– Peripheral clock: VCLK = 40 MHz

• No interrupts are used
• CAN bit timing: the basic baud rates such as 125000, 250000, 500000, 750000, and 1000000 are

supported. The default setting is 1250000. The baud rate is set in bl_config.h.
• SCI baudrate: The default setting is: 115200:8:N:1. The basic baud rates such as 9600, 19200, 38400,

57600, and 115200 are supported. The baud rate is set in bl_config.h.
• Fix point is used throughout the bootloader execution.
• F021 API V2.00.01 executes in RAM

For device configuration, see the RM48x 16/32-Bit RISC Flash Microcontroller Technical Reference
Manual (SPNU503) and HalCoGen.
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7 Bootloader Flow
Figure 6 shows the execution flow of the CAN Bootloader.

Figure 6. CAN Bootloader Flowchart
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8 CAN Bootloader Operation
1. Load the bootloader to Flash.

The CAN bootloader is built with Code Composer Studio 5.x and loaded through the JTAG port into the
lower part of the program memory at 0x0000.

Figure 7. The CAN Bootloader is Loaded Through the JTAG Port

2. Load the user application code.
After HDK reset, the start-up code copies the Flash API of bootloader from Flash to SRAM, and
executes the bootloader in Flash.
First, it checks to see if the GPIO_A7 pin is pulled low by calling CheckForceUpdate(). If GPIO-A7 is
pulled LOW, the application code is forced to be updated. The GPIO pin check can be enabled with
ENABLE_UPDATE_CHECK in the bl_config.h header file, in which case an update can be forced by
changing the state of a GPIO pin (with the push button S1 on HDK ).
Then, it checks the magic word or flag at 0x0007FF0. If the flag is a valid number (0x5A5A5A5A), the
bootloader jumps to the application code at 0x00020000. If the flag is not the valid number, it
configures CAN and SCI, then starts to update the application code by calling UpdaterCan(). After all
of the application code is programmed successfully, the magic work (flag) is also updated to
0x5A5A5A5A.
The CAN bootloader uses Message Box 2 to handle incoming messages; Message Box 1 is used for
handling the outgoing messages.

Figure 8. User Application Code is Loaded Through the CAN Bootloader
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3. User application is finally loaded and running after sending the reset command to the bootloader.

9 CAN Bootloader Protocol
Messages between a CAN bootloader host and the target use a simple command and acknowledge
(ACK) protocol. The host sends a command and within a timeout period the target responds with either an
ACK or with a NACK. The command data is combined into message ID. The standard 11 bit message ID
is used. Among the 11 bits, the bit 0 to bit 3 is for the bootloader commands, and bit 4 to bit 7 is used for
device ID, and the bit 8 to bit 11 is used for manufacturer ID.

The CAN bootloader provides a short list of commands that are used during the firmware update
operation. The definitions for these commands are provided in the file bl_commands.h. The description of
each of these commands is covered in this section.
• CAN_COMMAND_PING (0x00)

This command is used to receive an acknowledge command from the bootloader indicating that
communication has been established. This command has no data. If the device is present, it will
respond with a CAN_COMMAND_PING back to the CAN update application.

• CAN_COMMAND_DOWNLOAD (0x01)
This command sets the base address for the download as well as the size of the data to write to the
device. This command should be followed by a series of CAN_COMMAND_SEND_DATA that send
the actual image to be programmed to the device. The command consists of two 32-bit values. The
first 32-bit value is the address to start programming data into, while the second is the 32-bit size of the
data that will be sent.
This command also triggers an erasure of the full application area in the Flash. This Flash erase
operation causes the command to take longer to send the CAN_COMMAND_ACK in response to the
command, which should be taken into account by the CAN update application.
The format of the command is as follows:

unsigned char ucData[8];
ucData[0] = Download Address [7:0];
ucData[1] = Download Address [15:8];
ucData[2] = Download Address [23:16];
ucData[3] = Download Address [31:24];
ucData[4] = Download Size [7:0];
ucData[5] = Download Size [15:8];
ucData[6] = Download Size [23:16];
ucData[7] = Download Size [31:24];

• CAN_COMMAND_SEND_DATA (0x02)
This command should only follow a CAN_COMMAND_DOWNLOAD command or another
CAN_COMMAND_SEND_DATA command when more data is needed.
Consecutive send data commands automatically increment the address and continue programming
from the previous location. The transfer size is limited to 8 bytes at a time based on the maximum size
of an individual CAN transmission. The command terminates programming once the number of bytes
indicated by the CAN_COMMAND_DOWNLOAD command have been received.
The CAN bootloader sends a CAN_COMMAND_ACK in response to each send data command to
allow the CAN update application to throttle the data going to the device and not overrun the
bootloader with data.
This command also triggers the programming of the application area into the Flash. This Flash
programming operation causes the command to take longer to send the CAN_COMMAND_ACK in
response to the command, which should be taken into account by the CAN update application.
The LED D7 is flashing until the application update is complete.
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The format of the command is as follows:
unsigned char ucData[8];
ucData[0] = Data[0];
ucData[1] = Data[1];
ucData[2] = Data[2];
ucData[3] = Data[3];
ucData[4] = Data[4];
ucData[5] = Data[5];
ucData[6] = Data[6];
ucData[8] = Data[7];

• CAN_COMMAND_RESET (0x03)
This command is used to tell the CAN bootloader to reset the microcontroller. This is used after
downloading a new image to the microcontroller to cause the new application or the new bootloader to
start from a reset. The normal boot sequence occurs and the image runs as if from a hardware reset. It
can also be used to reset the bootloader if a critical error occurs and the CAN update application
needs to restart communication with the bootloader.

• CAN_COMMAND_REQUEST (0x05)
This command returns the status of the last command that was issued. This command has no data.

10 Create Application for Use With the Bootloader
In order to allow future upgrades using the bootloader, application images must be created with a starting
address of 0x20000 (default). The reason for this is that the bootloader itself occupies the Flash area
below this address. To achieve this, the default Flash start address defined in the linker command file
must be changed as shown in Figure 9.

Figure 9. The Linker File for Application
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To create an application using TI Code Composer Studio 5.x, use the linker files included with this
application report for your project. The included linker files set up the starting address of Vector Table and
Memory Regions to 0x20000 for the binary. In the project properties window, type the following command
in “Post-Built Steps Command”:
"${CCE_INSTALL_ROOT}/utils/tiobj2bin/tiobj2bin.bat"
"${BuildArtifactFileName}" "${BuildArtifactFileBaseName}.bin"
"${CG_TOOL_ROOT}/bin/ofd470.exe"
"${CG_TOOL_ROOT}/bin/hex470.exe"
"${CCE_INSTALL_ROOT}/utils/tiobj2bin/mkhex4bin.exe"

The resulting binary will be placed in your project folder, and binary file name is projectName.bin as
default.

Figure 10. Setup Project Property to Generate Binary File for Bootloader

11 Sample Code for PC-Side Application
The PC-side application is developed using VC++ 2010. The bl_command.h defines the commands used
for talking with the CAN bootloader on the MCU side. The library and header file for NI-CAN 8473 are
included in the project.

The can_bltest.c does all the tests for bootlader:
• Opens binary image (user application)
• Sends command to ping MCU bootloader
• Sends starting address and image size to the MCU bootloader
• Sends data of the image to the MCU bootloader
• Sends execution command to run the user application
• Sends Reset command to reset the MCU

Figure 11. VC++ Project for PC-Side Bootloader
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12 References
• RM48Lx50 16/32-Bit RISC Flash Microcontroller Data Manual (SPNS174)
• RM48x 16/32-Bit RISC Flash Microcontroller Technical Reference Manual (SPNU503)
• F021 Flash API Version 2.00.01 Reference Guide (SPNU501)
• Specification of NI USB-CAN 8473 Adaptor: http://sine.ni.com/nips/cds/view/p/lang/en/nid/203384
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