
Application Report
SPNA145–January 2012

FlexRay Transfer Unit (FTU) Setup
Peter Steffan ..................................................................................................................................

ABSTRACT

This application report summarizes the necessary steps to setup the FlexRay Transfer Unit (FTU) to
transfer data between the FlexRay Message RAM and the data RAM of the microcontroller. Detailed code
examples are provided as guidelines for the different setup steps.

Acronym Description
CC Communication Controller
FTU FlexRay Transfer Unit
IBF Input Buffer Register Set of the FlexRay Core (Eray)
OBF Output Buffer Register Set of the FlexRay Core (Eray)
IBFS Input Buffer Shadow Reguster Set of the FlexRay Core (Eray)
OBFS Output Buffer Shadow Register Set of the FlexRay Core (Eray)
SM System Memory (or Data RAM)
TCR Transfer Configuration RAM

Contents
1 Basic Steps to Setup an FTU Transfer ................................................................................... 2
2 FTU Data Transfers ....................................................................................................... 11
3 Code Examples ............................................................................................................ 14
Appendix A Listing of Further Useful Functions ............................................................................. 19
Appendix B Listing of FlexRay Message Header Structure ............................................................... 21
Appendix C Listing of FTU Register Structure .............................................................................. 23

List of Figures

1 Message RAM Configuration Example................................................................................... 2

2 Data Package Storage Order in Data RAM ............................................................................. 3

3 FTU Data Addressing ...................................................................................................... 5

4 FlexRay Message Buffer Address Calculation Example............................................................... 7

5 FTU Read Transfer of 6 Words.......................................................................................... 12

6 FTU Write Transfer of 6 Words.......................................................................................... 13

List of Tables

1 Header Information Read Location ....................................................................................... 4

2 FTU Event Trigger Generation .......................................................................................... 13

All trademarks are the property of their respective owners.

1SPNA145–January 2012 FlexRay Transfer Unit (FTU) Setup
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


00000000

00000000

00000000
00000000

00000000

00000000

00000000

00000000
00000000

00000000

00000000

00000000

00000000

00000000
00000000

00000000

00000000

00000000

00000000
00000000

00000000

00000000

00000000

00000000
00000000

00000000

00000000

00000000

FlexRay RAM

• Transfer of 3 headers from device system memory to the

FlexRay Message RAM through FTU

• No payload is transferred, only header

• The headers are transferred using TCR channel 0, 1, 2 which

corresponds to FlexRay message buffer 0, 1, 2

00000005

00120000
0000000C

00000000

00000006

00120000

00000018

00000000
00000007

00120000

00000024

00000000

00000005

00120000
0000000C

00000000

00000006

00120000

00000018

00000000
00000007

00120000

00000024

00000000

tra
nsfe

r header 1

tra
nsfer header 2

tra
nsfer header 3

Start of

Message RAM

Data RAM

D
a

ta
P

o
in

te
r

D
a

ta
P

o
in

te
r

D
a
ta

P
o

in
te

r

D
a

ta
P

o
in

te
r

D
a

ta
P

o
in

te
r

D
a
ta

P
o

in
te

r

Header Portion

Payload Portion

Header Portion

Payload Portion

Basic Steps to Setup an FTU Transfer www.ti.com

1 Basic Steps to Setup an FTU Transfer

In order to use the FTU for data transfer between the FlexRay message RAM and the device data RAM,
the module needs to be setup properly. The following bullets show the different basic steps that need to
be performed to do this. Each item is discussed in detail in the following sections of this document.

• Proper configuration of the FlexRay message RAM

• Setup proper data buffer structure in the device System Memory (SM)

• Initialize FlexRay message buffers

• Define valid data RAM address space for FTU transfer

• Set data transfer base address

• Setup transfer direction in the configuration RAM (TCR)

• Enable FTU transfer interrupts (optional)

• Enable FTU

• Trigger FTU transfers

• Get transfer ready notification

1.1 FlexRay Message RAM Configuration

The header configuration of the FlexRay buffers in the FlexRay message RAM can be done through the
conventional Input Buffer Register (IBF)/Output Buffer Register (OBF) set of the FlexRay module or by
using the FTU.

Details about the configuration of the FlexRay Message RAM can be found in the E-Ray FlexRay IP
Module Application Note -- AN003 Message RAM Configuration from Bosch. This document can be
downloaded from the Bosch FlexRay IP webpage:
(http://www.semiconductors.bosch.de/en/ipmodules/flexray/flexray.asp).

In order to use the FTU to configure the FlexRay message RAM, a proper data buffer structure has to be
setup in the device system memory, as defined in Section 1.2. The header portion of the message buffers
can be transferred to the FlexRay message RAM through the FTU as shown in Figure 1.

Figure 1. Message RAM Configuration Example

2 FlexRay Transfer Unit (FTU) Setup SPNA145–January 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.semiconductors.bosch.de/en/ipmodules/flexray/flexray.asp
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


always 4 words

depends on the

payload length
configured in the

Header

Header 1

Header 2

Header 3

Payload 1

31 0

Payload 2

Payload 64

Buffer Status

always 4 wordsalways 4 words

depends on the

payload length
configured in the

Header

depends on the

payload length
configured in the

Header

Header 1

Header 2

Header 3

Payload 1

31 0

Payload 2

Payload 64

Buffer Status

Header 1

Header 2

Header 3

Payload 1

31 0

Payload 2

Payload 64

Buffer Status

www.ti.com Basic Steps to Setup an FTU Transfer

1.2 Setup Data Buffer Structure in the Device System Memory

In order to setup a proper data buffer structure in the data RAM, the following structure needs to be
defined:

• 4 words for the Header information

• X halfwords for the Payload information

The length of payload X is identical for all FlexRay message buffers in the static segment. For FlexRay
messages in the dynamic segment, this value can vary from buffer to buffer. The exact numbers are
dependent on the FlexRay bus system setup and are typically defined during the FlexRay bus system
definition phase.

For each FlexRay message buffer to be transferred by the FTU, the following data structure must be
allocated in the data RAM:

Figure 2. Data Package Storage Order in Data RAM

Header segments are always 4 words, 3 header words and 1 buffer status word. The buffer status is
transferred only from the FlexRay communication controller to the system memory, usually as status
information of a received frame. However, the buffer status word must be considered in the data structure
definition, whether this information is used or not.

3SPNA145–January 2012 FlexRay Transfer Unit (FTU) Setup
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


Basic Steps to Setup an FTU Transfer www.ti.com

The following code sequence shows the data structure of a FlexRay message buffer to be allocated in the
data RAM. For details about the used FlexRay Message Header Structure (FRAY_HEADER), see
Appendix A.

typedef volatile struct
{

FRAY_RAM_ST FRAY_HEADER;
unsigned int FRAY_DATA[FLEX_PAYLOAD];

}FLEX_MSG;

NOTE: Since the minimum data package of an FTU transfer is a burst of 4 words (4x32 bit), it must
be ensured that the payload size of the data structure ends on a 4 word boundary.

1.3 Initialize FlexRay Message Buffers

Before starting any FTU transfer, it is essential that at least the header information is setup properly.
Depending on the transfer direction, the FTU reads the header information either from the FlexRay
message buffer of the FlexRay communication controller or from the data buffer structure in the system
memory.

Table 1. Header Information Read Location

Transfer Type Transfer Direction Header Read Location

Header + Data SM to CC SM

Header + Data CC to SM CC

Header only SM to CC SM

Header only CC to SM CC

Data only SM to CC SM

Data only CC to SM CC

The header should contain at least the following information:

• Frame ID

• Data Pointer

• Payload Length

int ConfFlexHdr(FLEX_MSG * msg, T_U16 DataPtr, T_U16 FrameID, T_U8 length)
{

if ((FrameID > 2048) | (DataPtr > 2048) | (length > 127))
{
return 1;

}

msg->FRAY_HEADER.HEADER1_UN.HEADER1_ST.FrameID = FrameID;
msg->FRAY_HEADER.HEADER3_UN.HEADER3_ST.Data_Ptr = DataPtr;
msg->FRAY_HEADER.HEADER2_UN.HEADER2_ST.PLC = length;

return 0;
}

4 FlexRay Transfer Unit (FTU) Setup SPNA145–January 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


Transfer Base

Address (TBA)

FTU

+
14 bit offset

TCR 1

TCR 2

TCR 3

TCR 4

TCR 128

Transfer

Configuration RAM

FlexRay

Message RAM

Message Buffer 1

Message Buffer 2

Message Buffer 3

Message Buffer 4

Message Buffer 128

Data RAM

Header / Data

Message Buffer 4

P
ro

te
ct

ed

Protected

SAMP

EAMP

A
rr

a
y

o
f

D
a
ta

B
u
ff

e
r

S
tr

u
c
tu

re

Transfer Base

Address (TBA)

FTU

+
14 bit offset

TCR 1

TCR 2

TCR 3

TCR 4

TCR 128

Transfer

Configuration RAM

FlexRay

Message RAM

Message Buffer 1

Message Buffer 2

Message Buffer 3

Message Buffer 4

Message Buffer 128

Data RAM

Header / Data

Message Buffer 4

P
ro

te
ct

ed

Protected

SAMP

EAMP

Transfer Base

Address (TBA)

Transfer Base

Address (TBA)

FTU

++
14 bit offset14 bit offset

TCR 1

TCR 2

TCR 3

TCR 4

TCR 128

Transfer

Configuration RAM

TCR 1

TCR 2

TCR 3

TCR 4

TCR 128

Transfer

Configuration RAM

FlexRay

Message RAM

Message Buffer 1

Message Buffer 2

Message Buffer 3

Message Buffer 4

Message Buffer 128

Data RAM

Header / Data

Message Buffer 4

Data RAM

Header / Data

Message Buffer 4

P
ro

te
ct

ed

Protected

SAMP

EAMP

A
rr

a
y

o
f

D
a
ta

B
u
ff

e
r

S
tr

u
c
tu

re
A

rr
a

y
o
f

D
a
ta

B
u
ff

e
r

S
tr

u
c
tu

re

www.ti.com Basic Steps to Setup an FTU Transfer

1.4 Define Valid Data RAM Address Space for FTU Transfer

After reset, the whole address space is protected against FTU accesses. Therefore, a dedicated data
RAM address space must be defined before the first FTU transfer. One memory region can be defined by
the FTU registers: Start Address of Memory Protection (SAMP) and the End Address of Memory
Protection (EAMP), which allows read and write accesses for the FTU.

// Data RAM accessible from 0x08001000 to 0x08002000
FTU_Ptr->SAMP_UL = 0x08001000; // start address no memory protection for FTU
FTU_Ptr->EAMP_UL = 0x08002000; // end address no memory protection for FTU

1.5 Set Data Transfer Base Address

The data transfer base address defined in the Transfer Base Address Register (TBA) is a 32-bit pointer
that points to the start address of the data buffer structure in the device system memory.

int FTU_TBA(FLEX_MSG * frame)
{
// set source base address
FTU_Ptr->TBA_UL = (unsigned long)frame;

return 0;
}

1.6 Setup Transfer Configuration RAM

The transfer configuration RAM (TCR) consists of 128 entries. Each message buffer in the FlexRay
message buffer RAM has one TCR entry assigned to it, i.e., message buffer 1 is assigned to TCR1,
message buffer 2 is assigned to TCR2 and so on.

Figure 3 shows an example for FTU data addressing for message buffer 4.

Figure 3. FTU Data Addressing

5SPNA145–January 2012 FlexRay Transfer Unit (FTU) Setup
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


Basic Steps to Setup an FTU Transfer www.ti.com

Each TCR entry defines:

• The direction of the FTU transfer (SM to CC or CC to SM)

• Data transfer size (header + data, header only or data only)

• If the data, which has been transferred to the CC, should be sent out to the FlexRay bus by the
FlexRay communication controller

• The 14-bit buffer address offset, which, in combination with the base address defined in the TBA
register, specifies the start of the according FlexRay message buffer in the device system memory.

/*--------------------------------------------------------------------------*/
/* TCR transfer initialization */
/* int TCR_Init(int channel, int header, int payload, int offset, int dir) */
/* */
/* int channel:FTU channel */
/* int header: 1: transfers header */
/* 0: no header transfer */
/* int payload: 1: transfers payload */
/* 0: no payload transfer */
/* int offset: transfer start offset */
/* int dir: 1: transfer direction is to SM */
/* 0: transfer direction is to CC */
/* */
/* returns 0 */
/*--------------------------------------------------------------------------*/

int TCR_Init(int channel, int header, int payload, int offset, int dir)
{
int value = 0;

if (dir != 0) // if direction is other than to CC
dir = 2; // direction will be SM

value = value + (header << (15 + dir));
value = value + (payload << (14 + dir));
value = value + offset;

TCR_Ptr->FTUTCR_ST[channel].TCR_UN.TCR_UL = value;

return(0);
}

NOTE: It is recommended to clear the whole TCR before configuration, in order to avoid unexpected
transfer behavior due to old configuration contents or random TCR RAM contents after
power on reset.

1.6.1 FTU Address Calculation of a FlexRay Message Buffer in the System RAM

The resulting address in system RAM is computed by adding the 32-bit aligned buffer address offset
(TSO[13:0] = buffer address offset bits 15:2 in TCR) to the base address defined in the TBA register. In
other words, the 14-bit buffer address offset defined in the TCR will be multiplied by 4, before adding it to
the TBA value.

6 FlexRay Transfer Unit (FTU) Setup SPNA145–January 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


TCR
Entry

1

2

3

4

5

6

7

8

9

10

11

14-bit buffer

address offset

i.e. TCR5[13:0] = 20h
x 4

TBA i.e. TBA[31:0] = 08001000h

+
08001000h

+ 00000080h

System RAM

Message Buffer Offset = 08001080h

TCR
Entry

1

2

3

4

5

6

7

8

9

10

11

14-bit buffer

address offset

i.e. TCR5[13:0] = 20h
x 4

TBA i.e. TBA[31:0] = 08001000h

+
08001000h

+ 00000080h

System RAM

Message Buffer Offset = 08001080h

www.ti.com Basic Steps to Setup an FTU Transfer

Figure 4. FlexRay Message Buffer Address Calculation Example

1.7 Enable FTU Transfer Interrupts

In order to get an interrupt notification when an FTU transfer sequence is finished, transfer interrupts can
be generated. For each of the 128 FlexRay message buffers a transfer interrupt can be generated. There
are two sets of four registers each: a Transfer to the System Memory Interrupt Enable Register (TSMIEx)
set and a Transfer to Communication Controller Interrupt Enable Register (TCCIEx) set, to enable
dedicated interrupts.

This gives you high flexibility in generating interrupts according to your needs, i.e.,:

• After each transfer

• After a dedicated transfer is finished

• After each or dedicated transfers to SM

• After each or dedicated transfers to CC

• At the end of a transfer sequence

An interrupt can be generated after the transmission of a certain message buffer to indicate the
completion of a transfer sequence. The FTU transfers message buffers from low buffer number to high
buffer number.

7SPNA145–January 2012 FlexRay Transfer Unit (FTU) Setup
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


Basic Steps to Setup an FTU Transfer www.ti.com

The following code sequences show the setup for interrupts in both directions to system memory and
communication controller:

int FTU_Multiple_Interrupt_TSMIE(int TSMIE0val, int TSMIE1val, int TSMIE2val, int TSMIE3val)
{
// transfer to SM
TSMIES_Ptr[0] = TSMIE0val;
TSMIES_Ptr[2] = TSMIE1val;
TSMIES_Ptr[4] = TSMIE2val;
TSMIES_Ptr[6] = TSMIE3val;

return 0;
}

int FTU_Multiple_Interrupt_TCCIE(int TCCIE0val, int TCCIE1val, int TCCIE2val, int TCCIE3val)
{
// transfer to CC
FTU_Ptr->TCCIES1_UL = TCCIE0val;
FTU_Ptr->TCCIES2_UL = TCCIE1val;
FTU_Ptr->TCCIES3_UL = TCCIE2val;
FTU_Ptr->TCCIES4_UL = TCCIE3val;
return 0;
}

NOTE: When using interrupts, it has to be ensured that the according interrupt line is enabled in the
Global Control Register (GC) of the FTU. In addition, the global device interrupt generation
must be setup and enabled properly. For more information about this topic, see the
device-specific data sheet.

1.8 Enabling the FTU

The FTU is disabled after reset by default. During module initialization or re-initialization, the FTU should
be disabled by the transfer unit enable bit in the global control register in order to avoid unexpected
behaviors.

Disabling the FTU holds the transfer unit state machine in transfer idle state, but does not reset the
module register's contents or the TCR. So, after re-enabling the TU, no further re-configuration is required.

After complete initialization, the FTU should be enabled by the transfer unit enable bit in the global control
register.

void TU_enable()
{
FTU_Ptr->GCS_UN.GCS_UL = TU_ENA;// enable FTU

}

1.9 Trigger FlexRay Buffer Transfers

Each of the 128 FlexRay buffers can be configured to be transferred individually. The transfer can be
triggered either by the CPU or event triggered.

1.9.1 Transfer Trigger by CPU

Buffer transfers can be triggered by the CPU in both directions, from FlexRay message RAM of the
FlexRay communication controller (CC) to the system memory (SM) of the microcontroller and vice versa,
by using the Trigger Transfer to Communication Controller Register (TTCCx) and Trigger Transfer to
System Memory Register (TTSMx) sets.

8 FlexRay Transfer Unit (FTU) Setup SPNA145–January 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


www.ti.com Basic Steps to Setup an FTU Transfer

Each register set consists of 4 32-bit wide registers in order to represent all of the 128 possible FlexRay
message buffers.

NOTE: The transfer triggered by TTSMx or TTCCx only occurs if the according transfer flags
(THTSM, TPTSM, THTCC, TPTCC) are set in the TCR.

int FTU_Multiple_Trigger_TTCC(int TTCC0val, int TTCC1val, int TTCC2val, int TTCC3val)
{
// transfer to buffer
TTCC_Ptr[0] = TTCC0val;
TTCC_Ptr[2] = TTCC1val;
TTCC_Ptr[4] = TTCC2val;
TTCC_Ptr[6] = TTCC3val;

return 0;
}

. int FTU_Multiple_Trigger_TTSM(int TTSM0val, int TTSM1val, int TTSM2val, int TTSM3val)
{
// transfer to buffer
TTSMS_Ptr[0] = TTSM0val;
TTSMS_Ptr[2] = TTSM1val;
TTSMS_Ptr[4] = TTSM2val;
TTSMS_Ptr[6] = TTSM3val;

return 0;
}

A transfer of the same buffer in both directions is also possible. The transfer direction priority can be
determined by the PRIO bit in the global control register. An example for the use of this feature is a data
write to a buffer in the FlexRay message RAM and the read back of the same to check data constancy.

1.9.2 Event Triggered Transfer

Besides the manual trigger by the CPU, it is possible to transfer buffers from the FlexRay message RAM
to the system memory 'on event'.

The general rule for the event triggering is: As soon as a FlexRay message is received by the FlexRay
communication controller and has been stored in the FlexRay message RAM, the FTU is triggered to
transfer this message buffer to the system memory. For more details concerning the FTU event trigger
generation, see Table 2.

Event driven buffer transfers can be enabled individually for all 128 FlexRay buffers by using the enable
transfer on the Event to System Memory Registers (ETESMx).

int FTU_Multiple_Event_ETESMS(int ETESM0val, int ETESM1val, int ETESM2val, int ETESM3val)
{
// transfer to SM
ESESMS_Ptr[0] = ETESM0val;
ESESMS_Ptr[2] = ETESM1val;
ESESMS_Ptr[4] = ETESM2val;
ESESMS_Ptr[6] = ETESM3val;

return 0;
}

With the clear on the event to system memory registers (CESMx), it can be determined for each of the
128 buffers if the FTU transfer is continuous on every event or if the transfer stops after one event.

9SPNA145–January 2012 FlexRay Transfer Unit (FTU) Setup
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


Basic Steps to Setup an FTU Transfer www.ti.com

1.10 Transfer Complete Indication

There are two possible ways to indicate completed FTU transfers to the CPU:

• By generating an interrupt

• By polling transfer occurred flags

The most efficient way to indicate competed FTU transfers in terms of CPU load is to generate an
interrupt, i.e., at the end of an FTU transfer sequence. Section 1.7 describes the different options for
transfer interrupt generation and how to set them up.

The second possibility of transfer complete indication is the Transfer to Communication Controller
Occurred (TCCOx) and the Transfer to System Memory Occurred (TSMOx) registers. There are four
registers of each type (TCCOx and TSMOx) to be able to indicate the transfer of each of the128 buffers
for both of the possible transfer directions. The flags of the TCCOx registers indicate completed transfers
from the system memory to the FlexRay communication controller, whereas, the TSMOx flags show
completed transfers from the FlexRay communication controller to the system memory.

The CPU can poll on a certain bit in order to see if a transfer sequence has been finished. The FTU
transfer message buffers from low buffer number to high buffer number.

The following code sequences show polling for transfer completion:

/*--------------------------------------------------------------*/
/* Multiple FTU Transfer to Communication Controller Completed */
/* int FTU_Multiple_TCCC () */
/* */
/* returns 1 if FTU transfers completed */
/*--------------------------------------------------------------*/
int FTU_Multiple_TCCC(int TTCC0val, int TTCC1val, int TTCC2val, int TTCC3val)
{
T_U32 value0, value1, value2, value3;

value0 = FTU_Ptr->TCCO1_UL;
value1 = FTU_Ptr->TCCO2_UL;
value2 = FTU_Ptr->TCCO3_UL;
value3 = FTU_Ptr->TCCO4_UL;

if ((value0 == TTCC0val)&&(value1 == TTCC1val)&&(value2 == TTCC2val)&&(value3 == TTCC3val))
{
FTU_Ptr->TCCO1_UL = value0;
FTU_Ptr->TCCO2_UL = value1;
FTU_Ptr->TCCO3_UL = value2;
FTU_Ptr->TCCO4_UL = value3;

return(1);
}
else
{
return (0);
}

/*--------------------------------------------------------------*/
/* Multiple FTU Transfer to System Memory Completed */
/* int FTU_Multiple_TCSM () */
/* */
/* returns 1 if FTU transfers completed */
/*--------------------------------------------------------------*/
int FTU_Multiple_TCSM(int TTSM0val, int TTSM1val, int TTSM2val, int TTSM3val)
{
T_U32 value0, value1, value2, value3;

value0 = FTU_Ptr->TSMO1_UL;

10 FlexRay Transfer Unit (FTU) Setup SPNA145–January 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


www.ti.com FTU Data Transfers

value1 = FTU_Ptr->TSMO2_UL;
value2 = FTU_Ptr->TSMO3_UL;
value3 = FTU_Ptr->TSMO4_UL;

if ((value0 == TTSM0val)&&(value1 == TTSM1val)&&(value2 == TTSM2val)&&(value3 == TTSM3val))
{
FTU_Ptr->TSMO1_UL = value0;
FTU_Ptr->TSMO2_UL = value1;
FTU_Ptr->TSMO3_UL = value2;
FTU_Ptr->TSMO4_UL = value3;

return(1);
}
else
{
return (0);
}

2 FTU Data Transfers

The following section describes how the FTU data transfer works.

2.1 Transfer Options

A data buffer can be divided into two sections: the header and payload. The sections of the message
buffer that get transferred by the FTU can be configured in the TCR.

• Header and payload

• Header only

• Payload only

The size of the header section is always 4 words, whereas, the size of the payload section can vary from
0 to 127 half-words (254 bytes). The size of the payload is defined in the buffers header section and is
read by the FTU from the same location. Therefore, the payload length must be defined in the header
partition before an FTU transfer can be started, even if the header section is not part of the FTU transfer
(see Table 2 for details).

2.1.1 Header and Payload Versus Payload Only Transfer

One special case is the ‘payload only’ transfer from the FlexRay message RAM to the system memory.
Even if the header information of 4 words are not transferred in this mode; the FTU has to read the header
information from the message buffer header in order to determine the payload length of the data to be
transferred. Therefore, the ‘payload only’ transfer does not gain much transfer time performance versus
the transfer with header and payload.

2.2 Transfer Bursts

The FTU always transfers 4 words aligned, or in other words, in 4 word bursts. Therefore, it makes no
difference, if the payload size is, i.e., 2, 3 or 4 words. The FTU always transfers 4 word aligned data
packages and fills the additional words to the next 4 word boundary with 0.

11SPNA145–January 2012 FlexRay Transfer Unit (FTU) Setup
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


Message Buffer Y

Output Buffer

Registers Data RAM

word x

word x+1

word x+2

word x+3

word x+4

word x+5

word x+6

word x+7

word x

word x+1

word x+2

word x+3

word x+4

word x+5

undefined x

undefined x+1

undefined x+2

word x

word x+1

word x+2

word x+3

word x+4

word x+5

undefined x

undefined x+1

4
w

o
rd

b
u
rs

t
4

w
o
rd

b
u
rs

t

FTU transfer

internal E-Ray
transfer

Message Buffer Y

Output Buffer

Registers Data RAM

word x

word x+1

word x+2

word x+3

word x+4

word x+5

word x+6

word x+7

word x

word x+1

word x+2

word x+3

word x+4

word x+5

undefined x

undefined x+1

undefined x+2

word x

word x+1

word x+2

word x+3

word x+4

word x+5

undefined x

undefined x+1

4
w

o
rd

b
u
rs

t
4

w
o
rd

b
u
rs

t

FTU transfer

internal E-Ray
transfer

FTU Data Transfers www.ti.com

Figure 5 shows a 6 word FTU transfer from FlexRay message RAM to data RAM.

Figure 5. FTU Read Transfer of 6 Words

The transfer can be divided in two parts: the internal E-Ray transfer and the real FTU transfer.

During the internal E-Ray transfer, the requested data are copied to the E-Ray output buffer register set by
the E-Ray internal message handler state machine. The subsequent FTU transfer copies the data from
the output buffer register set (OBF) to the data RAM of the microcontroller.

In the example above, 6 data words of 32 bit size are transferred. After the FTU requests the 6 data words
of Message Buffer Y, the E-Ray internal message handler state machine copies this information from the
FlexRay message buffer to the output buffer register set of the E-Ray to make the data readable for the
FTU.

In the second step, the FTU starts to copy the data from the output buffer register set to the data RAM
location defined by the TBA register and the TCR entry contents (see Figure 2 for more details). Since the
FTU is transferring 4 word bursts, finally 8 data words get copied from the output buffer register set to the
data RAM. The two additional copied data words have undefined contents and need to be ignored.

Timing wise there are two components: the E-Ray internal transfer time from the message buffer to the
output buffer register set and the FTU transfer itself. If more than 1 message buffer transfer is triggered,
the FTU requests the subsequent message buffer data from the E-Ray, while copying the data from the
output buffer register set (OBF) to the system memory. With this, the E-Ray internal message handler
state machine can copy the next data to a output buffer shadow register set (OBFS), while the FTU
transfer of the current message buffer data is ongoing. This parallel data copy mechanism ensures
optimized FTU transfer performance.

The FTU transfer from the system memory to the FlexRay message RAM basically works the same way
using the input buffer register set (IBF) and a input buffer shadow register set (IBFS). Table 2 shows that
FTU overwrites two additional words in the input buffer register set, but does not transfer the additional
words further to the FlexRay message buffer Y.

12 FlexRay Transfer Unit (FTU) Setup SPNA145–January 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


Message Buffer Y

Input Buffer

RegistersData RAM

word x

word x+1

word x+2

word x+3

word x+4

word x+5

word x

word x+1

word x+2

word x+3

word x+4

word x+5

undefined x

undefined x+1

undefined x+2

word x

word x+1

word x+2

word x+3

word x+4

word x+5

undefined x

undefined x+1

undefined x+2

4
w

o
rd

b
u

rs
t

4
w

o
rd

b
u

rs
t

FTU transfer

internal E-Ray

transfer

Message Buffer Y

Input Buffer

RegistersData RAM

word x

word x+1

word x+2

word x+3

word x+4

word x+5

word x

word x+1

word x+2

word x+3

word x+4

word x+5

undefined x

undefined x+1

undefined x+2

word x

word x+1

word x+2

word x+3

word x+4

word x+5

undefined x

undefined x+1

undefined x+2

4
w

o
rd

b
u

rs
t

4
w

o
rd

b
u

rs
t

FTU transfer

internal E-Ray

transfer

www.ti.com FTU Data Transfers

Figure 6. FTU Write Transfer of 6 Words

2.3 Transfer of NULL Frames and Empty Frames

Table 2 summarizes the exact conditions the FTU triggers an event.

Table 2. FTU Event Trigger Generation (1)

Frame Belonging to Frame Belonging to Bus Activity Bus Activity
Static Segment or Dynamic Segment, Detected on Detected on

Event on Event on First Slot of Dynamic Except First Slot of Channel A Channel B
Channel A Channel B Segment Dynamic Segment (MBS.ESA = 0) (MBS.ESB = 0)

FTU Event Trigger X X
for Receive

X XMessage Buffers
X X X

X X X

FTU Event Trigger X X
for Transmit

X XMessage Buffers

(1) All conditions per row, marked with 'X,' must match to trigger an FTU transfer.

The handling of NULL frames and empty frames by the FTU can be summarized as:

• For a received message, the buffer in the static segment NULL frames or empty frames generate an
FTU trigger. It depends on the settings in the TCR whether the header and/or payload get transferred
by the FTU. The corresponding bit in the Transfer to System Memory Occurred Register (TSMO) gets
set in all cases, even if neither header nor payload get transferred.

• No event trigger is generated for an empty receive message in the dynamic segment.

13SPNA145–January 2012 FlexRay Transfer Unit (FTU) Setup
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


Code Examples www.ti.com

3 Code Examples

3.1 Transfer Message Data Structures in Polling Mode

3.1.1 Transfer to System Memory (Polling)

//========== Transfer Message Data Structures to FlexRay Message RAM =================

// disable FTU
TU_disable();
//Clear Event to System Memory register
TU_ETESM_clear();
//Clear Trigger Transfer to Communication Controller register
TU_TTCC_clear();
//Clear Trigger Transfer to System Memory register
TU_TTSM_clear();

// setup Transfer Config RAM for transfer to E-Ray message buffer
for (y=0; y< FLEX_BUFFERS ;y++)

//int TCR_Init(int channel, int header, int payload, int offset, int dir)
TCR_Init(y, 1, 1, y*(FLEX_PAYLOAD_32 + HDR_LENGTH), SM2CC);

// set data buffer base address
FTU_TBA(data_buffer);

// enable FTU
TU_enable();

// trigger multiple transfers
//int FTU_Multiple_Trigger_TTCC(int TTCC0val, int TTCC1val, int TTCC2val, int TTCC3val)
FTU_Multiple_Trigger_TTCC(0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF);

// wait for multiple TCCC (Transfer to CC Completed)
while (FTU_Multiple_TCCC(0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF) == 0);

//============================================================================

3.1.2 Transfer in both Directions (Polling)

//========== Simultaniously transfer in both directions ==============

// disable FTU
TU_disable();
//Clear Event to System Memory register
TU_ETESM_clear();
//Clear Trigger Transfer to Communication Controller register
TU_TTCC_clear();
//Clear Trigger Transfer to System Memory register
TU_TTSM_clear();

// setup Transfer Config RAM for transfer to E-Ray message buffer
for (y=0; y< FLEX_BUFFERS/2 ;y++)

//int TCR_Init(int channel, int header, int payload, int offset, int dir)
TCR_Init(y, 1, 1, y*(FLEX_PAYLOAD_32 + HDR_LENGTH), SM2CC);

for (y=FLEX_BUFFERS/2; y< FLEX_BUFFERS ;y++)
//int TCR_Init(int channel, int header, int payload, int offset, int dir)

TCR_Init(y, 1, 1, y*(FLEX_PAYLOAD_32 + HDR_LENGTH), CC2SM);

// trigger multiple transfers
//int FTU_Multiple_Trigger_TTCC(int TTCC0val, int TTCC1val, int TTCC2val, int TTCC3val)

14 FlexRay Transfer Unit (FTU) Setup SPNA145–January 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


www.ti.com Code Examples

FTU_Multiple_Trigger_TTCC(0xFFFFFFFF,0xFFFFFFFF,0,0);

// trigger multiple transfers
//int FTU_Multiple_Trigger_TTSM(int TTSM0val, int TTSM1val, int TTSM2val, int TTSM3val)
FTU_Multiple_Trigger_TTSM(0,0,0xFFFFFFFF,0xFFFFFFFF);

// set data buffer base address
FTU_TBA(data_rx_buffer);

// enable FTU
TU_enable();

3.2 Transfer Message Data Structures in Interrupt Mode

3.2.1 Enable FTU Interrupts

// enable IRQ and FIQ
irq_fiq_enable();

// enable FTU int0 interrupt line
ftu_int0_enable();
ftu_int1_enable();

3.2.2 Transfer to Communication Controller (Interrupt)

//========== Transfer Message Data Structures to FlexRay Message RAM =================

// disable FTU
TU_disable();
//Clear Event to System Memory register
TU_ETESM_clear();
//Clear Trigger Transfer to Communication Controller register
TU_TTCC_clear();
//Clear Trigger Transfer to System Memory register
TU_TTSM_clear();

// setup Transfer Config RAM for transfer to E-Ray message buffer
for (y=0; y< FLEX_BUFFERS ;y++)

//int TCR_Init(int channel, int header, int payload, int offset, int dir)
TCR_Init(y, 1, 1, y*(FLEX_PAYLOAD_32 + HDR_LENGTH), SM2CC);

// trigger multiple transfers
//int FTU_Multiple_Trigger_TTCC(int TTCC0val, int TTCC1val, int TTCC2val, int TTCC3val)
FTU_Multiple_Trigger_TTCC(0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF);

// Transfer to CC interrupt enable
FTU_Multiple_Interrupt_TCCIE(0, 0, 0, 0x80000000);

// set data buffer base address
FTU_TBA(data_buffer);

// enable FTU
TU_enable();

15SPNA145–January 2012 FlexRay Transfer Unit (FTU) Setup
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


Code Examples www.ti.com

3.2.3 Transfer to System Memory (Interrupt)

//========== Transfer Message Data Structures to Receive Data Buffer =================

// disable FTU
TU_disable();
//Clear Event to System Memory register
TU_ETESM_clear();
//Clear Trigger Transfer to Communication Controller register
TU_TTCC_clear();
//Clear Trigger Transfer to System Memory register
TU_TTSM_clear();

for (y=0; y< FLEX_BUFFERS ;y++)
//int TCR_Init(int channel, int header, int payload, int offset, int dir)

TCR_Init(y, 1, 1, y*(FLEX_PAYLOAD_32 + HDR_LENGTH), CC2SM);

// trigger multiple transfers
//int FTU_Multiple_Trigger_TTSM(int TTSM0val, int TTSM1val, int TTSM2val, int TTSM3val)
FTU_Multiple_Trigger_TTSM(0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF);

// Transfer to SM interrupt enable
FTU_Multiple_Interrupt_TSMIE(0, 0, 0, 0x80000000);

// set data buffer base address
FTU_TBA(data_rx_buffer);

// enable FTU
TU_enable();

3.2.4 Transfer in Both Directions (Interrupt)

//========== Simultaniously transfer in both directions ==============

// disable FTU
TU_disable();
//Clear Event to System Memory register
TU_ETESM_clear();
//Clear Trigger Transfer to Communication Controller register
TU_TTCC_clear();
//Clear Trigger Transfer to System Memory register
TU_TTSM_clear();

// setup Transfer Config RAM for transfer to E-Ray message buffer
for (y=0; y< FLEX_BUFFERS/2 ;y++)

//int TCR_Init(int channel, int header, int payload, int offset, int dir)
TCR_Init(y, 1, 1, y*(FLEX_PAYLOAD_32 + HDR_LENGTH), SM2CC);

for (y=FLEX_BUFFERS/2; y< FLEX_BUFFERS ;y++)
//int TCR_Init(int channel, int header, int payload, int offset, int dir)

TCR_Init(y, 1, 1, y*(FLEX_PAYLOAD_32 + HDR_LENGTH), CC2SM);

// trigger multiple transfers
//int FTU_Multiple_Trigger_TTCC(int TTCC0val, int TTCC1val, int TTCC2val, int TTCC3val)
FTU_Multiple_Trigger_TTCC(0xFFFFFFFF,0xFFFFFFFF,0,0);

// trigger multiple transfers
//int FTU_Multiple_Trigger_TTSM(int TTSM0val, int TTSM1val, int TTSM2val, int TTSM3val)
FTU_Multiple_Trigger_TTSM(0,0,0xFFFFFFFF,0xFFFFFFFF);

// Interrupt when last transfer to SM interrupt enable
FTU_Multiple_Interrupt_TSMIE(0, 0, 0, 0x80000000);

16 FlexRay Transfer Unit (FTU) Setup SPNA145–January 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


www.ti.com Code Examples

// set data buffer base address
FTU_TBA(data_rx_buffer);

// enable FTU

3.2.5 Interrupt Enable and Handler Routines

void ftu_int0_enable()
{
FTU_Ptr->GCS_UN.GCS_UL = INT0_ENA;// enable int0

}

void ftu_int1_enable()
{
FTU_Ptr->GCS_UN.GCS_UL = INT1_ENA;// enable int1

}

void handle_FTU_int0(){

tu_busy = 1;
// clear all pending TSMO bits
FTU_Ptr->TSMO1_UL = 0xffffffff;
FTU_Ptr->TSMO2_UL = 0xffffffff;
FTU_Ptr->TSMO3_UL = 0xffffffff;
FTU_Ptr->TSMO4_UL = 0xffffffff;

// clear all pending TCCO bits
FTU_Ptr->TCCO1_UL = 0xffffffff;
FTU_Ptr->TCCO2_UL = 0xffffffff;
FTU_Ptr->TCCO3_UL = 0xffffffff;
FTU_Ptr->TCCO4_UL = 0xffffffff;

// clear all pending TSMIE bits
FTU_Ptr->TSMIER1_UL = 0xffffffff;
FTU_Ptr->TSMIER2_UL = 0xffffffff;
FTU_Ptr->TSMIER3_UL = 0xffffffff;
FTU_Ptr->TSMIER4_UL = 0xffffffff;

// clear all pending TCCIE bits
FTU_Ptr->TCCIER1_UL = 0xffffffff;
FTU_Ptr->TCCIER2_UL = 0xffffffff;
FTU_Ptr->TCCIER3_UL = 0xffffffff;
FTU_Ptr->TCCIER4_UL = 0xffffffff;
}

3.3 Event Driven Transfer of Message Data Structures

3.3.1 Event Triggered Transfer

//========== Transfer Message Data Structures to Receive Data Buffer =================

// disable FTU
TU_disable();
//Clear Event to System Memory register
TU_ETESM_clear();
//Clear Trigger Transfer to Communication Controller register
TU_TTCC_clear();
//Clear Trigger Transfer to System Memory register
TU_TTSM_clear();

17SPNA145–January 2012 FlexRay Transfer Unit (FTU) Setup
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


Code Examples www.ti.com

for (y=0; y< FLEX_BUFFERS ;y++)
int TCR_Init(int channel, int header, int payload, int offset, int dir, int send)

// trigger multiple event transfers
FTU_Multiple_Event_ETESMS(0x000000f,0x00000000,0x00000000,0x00000000);

// Transfer to SM interrupt enable
//FTU_Multiple_Interrupt_TSMIE(0, 0, 0, 0x80000000);

// set data buffer base address
FTU_TBA(data_rx_buffer);

// enable FTU
TU_enable();

18 FlexRay Transfer Unit (FTU) Setup SPNA145–January 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


www.ti.com

Appendix A Listing of Further Useful Functions

/*--------------------------------------------------------------*/
/* Clear Event to System Memory register*/
/* void TU_ETESM_clear() */
/*--------------------------------------------------------------*/
void TU_ETESM_clear()
{
FTU_Ptr->GCS_UN.GCS_UL = 1<<14;// disable FTU
FTU_Ptr->GCR_UN.GCR_UL = 1<<14;// disable FTU

}

/*---------------------------------------------------------------*/
/* Clear Trigger Transfer to Communication Controller register */
/* void TU_TTCC_clear() */
/*---------------------------------------------------------------*/
void TU_TTCC_clear()
{
FTU_Ptr->GCS_UN.GCS_UL = 1<<13;// disable FTU
FTU_Ptr->GCR_UN.GCR_UL = 1<<13;// disable FTU

}

/*---------------------------------------------------------------*/
/* Clear Trigger Transfer to System Memory register */
/* void TU_TTSM_clear() */
/*---------------------------------------------------------------*/
void TU_TTSM_clear()
{
FTU_Ptr->GCS_UN.GCS_UL = 1<<12;// disable FTU
FTU_Ptr->GCR_UN.GCR_UL = 1<<12;// disable FTU

}

19SPNA145–January 2012 FlexRay Transfer Unit (FTU) Setup
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


20 FlexRay Transfer Unit (FTU) Setup SPNA145–January 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


www.ti.com Appendix B

Appendix B Listing of FlexRay Message Header Structure

// FlexRay header in message RAM

typedef volatile struct fray_ram_header
{
union h1
{
unsigned long HEADER1_UL;
struct
{

unsigned : 2;
unsigned MBI : 1;
unsigned TXM : 1;
unsigned NME : 1;
unsigned CFG : 1;
unsigned CHB : 1;
unsigned CHA : 1;
unsigned : 1;
unsigned Cycle_Code: 7;
unsigned : 5;
unsigned FrameID : 11;

} HEADER1_ST;
} HEADER1_UN;

union h2
{
unsigned long HEADER2_UL;
struct
{

unsigned : 1;
unsigned PLR : 7;
unsigned : 1;
unsigned PLC : 7;
unsigned : 5;
unsigned crc : 11;

} HEADER2_ST;
} HEADER2_UN;

union h3
{
unsigned long HEADER3_UL;
struct
{

unsigned : 2;
unsigned RES : 1;
unsigned PPI : 1;
unsigned NFI : 1;
unsigned SYN : 1;
unsigned SFI : 1;
unsigned RCI : 1;
unsigned : 2;
unsigned RCcnt : 6;
unsigned : 5;
unsigned Data_Ptr : 11;

} HEADER3_ST;
} HEADER3_UN;

union h4
{
unsigned long HEADER4_UL;
struct
{

21SPNA145–January 2012 FlexRay Transfer Unit (FTU) Setup
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


Appendix B www.ti.com

unsigned : 19;
unsigned MLST : 1;
unsigned ESB : 1;
unsigned ESA : 1;
unsigned TCIB : 1;
unsigned TCIA : 1;
unsigned SVOB : 1;
unsigned SVOA : 1;
unsigned CEOB : 1;
unsigned CEOA : 1;
unsigned SEOB : 1;
unsigned SEOA : 1;
unsigned VFRB : 1;
unsigned VFRA1 : 1;

} HEADER4_ST;
} HEADER4_UN;
}FRAY_RAM_ST;

22 FlexRay Transfer Unit (FTU) Setup SPNA145–January 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


www.ti.com

Appendix C Listing of FTU Register Structure

typedef volatile struct
{
unsigned long PICC_UL;

unsigned long GSN_UL;

unsigned int:32;
unsigned int:32;

union
{
unsigned long GCS_UL;
struct
{

unsigned intENDVBM_B1 :1;
unsigned intENDVBS_B1 :1;
unsigned intENDRx_B2 :2;
unsigned intENDHx_B2 :2;
unsigned intENDPx_B2 :2;
unsigned int :2;
unsigned intPROI_B1 :1;
unsigned intPFT_B1 :1;
unsigned intPALx_B2 :1;
unsigned int :1;
unsigned intCETESM_B1 :1;
unsigned intCTTCC_B1 :1;
unsigned intCTTSM_B1 :1;
unsigned int :2;
unsigned intETSM_B1 :1;
unsigned int :2;
unsigned intSILE_B1 :1;
unsigned intEILE_B1 :1;
unsigned int :2;
unsigned intTUH_B1 :1;
unsigned intTUE_B1 :1;

} GCS_ST;
} GCS_UN;

union
{
unsigned long GCR_UL;
struct
{

unsigned intENDVBM_B1 :1;
unsigned intENDVBS_B1 :1;
unsigned intENDRx_B2 :2;
unsigned intENDHx_B2 :2;
unsigned intENDPx_B2 :2;
unsigned int :2;
unsigned intPROI_B1 :1;
unsigned intPFT_B1 :1;
unsigned intPALx_B2 :1;
unsigned int :1;
unsigned intCETESM_B1 :1;
unsigned intCTTCC_B1 :1;
unsigned intCTTSM_B1 :1;
unsigned int :2;
unsigned intETSM_B1 :1;
unsigned int :2;
unsigned intSILE_B1 :1;
unsigned intEILE_B1 :1;

23SPNA145–January 2012 FlexRay Transfer Unit (FTU) Setup
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


Appendix C www.ti.com

unsigned int :2;
unsigned intTUH_B1 :1;
unsigned intTUE_B1 :1;

} GCR_ST;
} GCR_UN;

union
{
unsigned long TSCB_UL;
struct
{

unsigned int :11;
unsigned intTSMS_B5 :5;
unsigned int :3;
unsigned intSTUH_B1 :1;
unsigned int :3;
unsigned intIDLE_B1 :1;
unsigned int :1;
unsigned intBN_B7 :1;

} TSCB_ST ;
} TSCB_UN;
unsigned long LTBCC_UL;

unsigned long LTBSM_UL;

unsigned long TBA_UL;

unsigned long NTBA_UL;

unsigned long BAMS_UL;

unsigned long SAMP_UL;

unsigned long EAMP_UL;

unsigned int:32;
unsigned int:32;

unsigned long TSMO1_UL;
unsigned long TSMO2_UL;
unsigned long TSMO3_UL;
unsigned long TSMO4_UL;

unsigned long TCCO1_UL;
unsigned long TCCO2_UL;
unsigned long TCCO3_UL;
unsigned long TCCO4_UL;

union
{
unsigned long TOFF_UL;
struct
{

unsigned int : 23;
unsigned int TDIR_B1 : 1;
unsigned int OFF_B8 : 8;

}TOFF_ST ;
} TOFF_UN;
unsigned int:32;
unsigned int:32;
unsigned int:32;

unsigned long PEADR_UL;

union
{

24 FlexRay Transfer Unit (FTU) Setup SPNA145–January 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


www.ti.com Appendix C

unsigned long TEIR_UL;
struct
{

unsigned int : 14;
unsigned int MPV_B1 : 1;
unsigned int PE_B1 : 1;
unsigned int : 5;
unsigned int RSTAT_B3 : 3;
unsigned int : 1;
unsigned int SSTAT_B3 : 3;
unsigned int : 2;
unsigned int TNR_B1 : 1;
unsigned int FAC_B1 : 1;

}TEIR_ST ;
} TEIR_UN;

union
{
unsigned long TEIRES_UL;
struct
{

unsigned int : 21;
unsigned int RSTAT_B3 : 3;
unsigned int : 1;
unsigned int SSTAT_B3 : 3;
unsigned int : 2;
unsigned int TNR_B1 : 1;
unsigned int FAC_B1 : 1;

}TEIRES_ST ;
} TEIRES_UN;

union
{
unsigned long TEIRER_UL;
struct
{

unsigned int : 21;
unsigned int RSTAT_B3 : 3;
unsigned int : 1;
unsigned int SSTAT_B3 : 3;
unsigned int : 2;
unsigned int TNR_B1 : 1;
unsigned int FAC_B1 : 1;

}TEIRER_ST ;
} TEIRER_UN;

unsigned long TTSMS1_UL;
unsigned long TTSMR1_UL;
unsigned long TTSMS2_UL;
unsigned long TTSMR2_UL;
unsigned long TTSMS3_UL;
unsigned long TTSMR3_UL;
unsigned long TTSMS4_UL;
unsigned long TTSMR4_UL;

unsigned long TTCCS1_UL;
unsigned long TTCCR1_UL;
unsigned long TTCCS2_UL;
unsigned long TTCCR2_UL;
unsigned long TTCCS3_UL;
unsigned long TTCCR3_UL;
unsigned long TTCCS4_UL;
unsigned long TTCCR4_UL;

unsigned long ETESMS1_UL;
unsigned long ETESMR1_UL;

25SPNA145–January 2012 FlexRay Transfer Unit (FTU) Setup
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


Appendix C www.ti.com

unsigned long ETESMS2_UL;
unsigned long ETESMR2_UL;
unsigned long ETESMS3_UL;
unsigned long ETESMR3_UL;
unsigned long ETESMS4_UL;
unsigned long ETESMR4_UL;

unsigned long CESMS1_UL;
unsigned long CESMR1_UL;
unsigned long CESMS2_UL;
unsigned long CESMR2_UL;
unsigned long CESMS3_UL;
unsigned long CESMR3_UL;
unsigned long CESMS4_UL;
unsigned long CESMR4_UL;

unsigned long TSMIES1_UL;
unsigned long TSMIER1_UL;
unsigned long TSMIES2_UL;
unsigned long TSMIER2_UL;
unsigned long TSMIES3_UL;
unsigned long TSMIER3_UL;
unsigned long TSMIES4_UL;
unsigned long TSMIER4_UL;

unsigned long TCCIES1_UL;
unsigned long TCCIER1_UL;
unsigned long TCCIES2_UL;
unsigned long TCCIER2_UL;
unsigned long TCCIES3_UL;
unsigned long TCCIER3_UL;
unsigned long TCCIES4_UL;
unsigned long TCCIER4_UL;
} FTU_ST;

26 FlexRay Transfer Unit (FTU) Setup SPNA145–January 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA145


IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://www.ti.com/wirelessconnectivity
http://e2e.ti.com

	FlexRay Transfer Unit (FTU) Setup
	1 Basic Steps to Setup an FTU Transfer
	1.1 FlexRay Message RAM Configuration
	1.2 Setup Data Buffer Structure in the Device System Memory
	1.3 Initialize FlexRay Message Buffers
	1.4 Define Valid Data RAM Address Space for FTU Transfer
	1.5 Set Data Transfer Base Address
	1.6 Setup Transfer Configuration RAM
	1.6.1 FTU Address Calculation of a FlexRay Message Buffer in the System RAM

	1.7 Enable FTU Transfer Interrupts
	1.8 Enabling the FTU
	1.9 Trigger FlexRay Buffer Transfers
	1.9.1 Transfer Trigger by CPU
	1.9.2 Event Triggered Transfer

	1.10 Transfer Complete Indication

	2 FTU Data Transfers
	2.1 Transfer Options
	2.1.1 Header and Payload Versus Payload Only Transfer

	2.2 Transfer Bursts
	2.3 Transfer of NULL Frames and Empty Frames

	3 Code Examples
	3.1 Transfer Message Data Structures in Polling Mode
	3.1.1 Transfer to System Memory (Polling)
	3.1.2 Transfer in both Directions (Polling)

	3.2 Transfer Message Data Structures in Interrupt Mode
	3.2.1 Enable FTU Interrupts
	3.2.2 Transfer to Communication Controller (Interrupt)
	3.2.3 Transfer to System Memory (Interrupt)
	3.2.4 Transfer in Both Directions (Interrupt)
	3.2.5 Interrupt Enable and Handler Routines

	3.3 Event Driven Transfer of Message Data Structures
	3.3.1 Event Triggered Transfer


	Appendix A Listing of Further Useful Functions
	Appendix B Listing of FlexRay Message Header Structure
	Appendix C Listing of FTU Register Structure


