Test Data
 For PMP7969
 3/9/2015

惟 Texas Instruments

Test SPECIFICATIONS

Vin Min.	9V DC
Vin Max.	16V DC
Vout	24 V DC
lout	$25 \mathrm{~A} \mathrm{Max}$.
Target Switching Frequency	1.6 MHz (400KHz per phase)

Circuit Description

PMP7969 is a 4-Phase Synchronous Boost Converter with the added capability of enabling and disabling each individual phase either manually, via 5 pin jumper, or using an MCU or other control circuitry. It is designed to accept an input range of 9VDC-to-16VDC. The output is set to 24VDC and can supply a maximum of 25 A of current to the load.

Note that hiccup mode will function only when all four phases are enabled. If three or less phases are enabled switching of all enabled phases will stop, all FETs will be OFF, and current will conduct through the body diode of all four synchronous FETs and the output voltage will be the input voltage minus the voltage drop of the four paralleled synchronous FET body diodes.

FABRICATION

Board Dimensions: 4.5" x 7"

Board Photo (Top)

INSTRUMENTS

Board Photo (Bottom)

Thermal Data

IR thermal image taken at steady state at 18A load and Vin $=9 \mathrm{~V}$ with no airflow (thermal image taken is upside-down relative to photo of board displayed above; for improved thermal performance, it is recommended to use $\mathbf{2 o z}$ Copper or heavier, heatsinks for the FETs, and/or airflow)

IR thermal image taken at steady state at Full (25A) load and Vin $=16 \mathrm{~V}$ with no airflow (thermal image taken is upside-down relative to photo of board displayed above; for improved thermal performance, it is recommended to use $\mathbf{2 o z}$ Copper or heavier, heatsinks for the FETs, and/or airflow)

TYPICAL PERFORMANCE

EFFICIENCY

Efficiency Data

$\operatorname{Vin}(\mathrm{V})$	$\operatorname{lin}(\mathrm{A})$	$\operatorname{Vout}(\mathrm{V})$	$\operatorname{lout}(\mathrm{A})$	Efficiency(\%)
9.008	0.31	24.026	0	0
9.008	4.2	24.023	1.42	90.165
9.007	6.95	24.022	2.42	92.867
9.007	9.76	24.021	3.42	93.452
9.007	12.58	24.02	4.42	93.699
9.006	15.32	24.019	5.42	94.355
9.006	18.08	24.017	6.42	94.694
9.006	20.86	24.016	7.42	94.855
9.005	23.63	24.015	8.42	95.027
9.005	26.4	24.014	9.42	95.154
9.004	29.2	24.012	10.42	95.165
9.004	32.02	24.011	11.42	95.109
9.004	34.83	24.01	12.42	95.088
9.003	37.65	24.008	13.42	95.051
9.003	40.5	24.007	14.42	94.943

INSTRUMENTS

9.003	43.37	24.006	15.42	94.804
9.002	46.24	24.004	16.42	94.689
9.002	49.1	24.003	17.42	94.6
9.002	51.99	24.002	18.42	94.467
9.001	54.9	24	19.42	94.319
9.001	57.82	23.999	20.44	94.255

Vin(V)	$\operatorname{lin}(\mathrm{A})$	Vout(V)	lout(A)	Efficiency(\%)
12.01	0.28	24.029	0	0
12.008	3.18	24.027	1.42	89.349
12.009	5.21	24.026	2.42	92.929
12.008	7.25	24.025	3.42	94.38
12.009	9.32	24.024	4.42	94.873
12.009	11.4	24.024	5.42	95.111
12.008	13.5	24.022	6.42	95.135
12.007	15.56	24.021	7.42	95.401
12.007	17.61	24.02	8.42	95.651
12.009	19.66	24.019	9.42	95.833
12.007	21.72	24.018	10.42	95.964
12.006	23.8	24.016	11.42	95.982
12.006	25.87	24.015	12.42	96.031
12.006	27.93	24.014	13.42	96.105
12.005	30.02	24.013	14.42	96.081
12.005	32.11	24.012	15.42	96.053
12.005	34.2	24.011	16.44	96.144
12.005	36.28	24.009	17.42	96.027
12.004	38.37	24.008	18.42	96.013
12.004	40.48	24.007	19.42	95.945
12.004	42.59	24.006	20.44	95.977
12.004	44.7	24.005	21.44	95.916
12.004	46.8	24.003	22.44	95.877
12.004	48.93	24.002	23.44	95.786
12.003	51.07	24.001	24.44	95.692
12.003	53.2	24	25.44	95.615

$\operatorname{Vin}(\mathrm{V})$	$\operatorname{lin}(\mathrm{A})$	$\operatorname{Vout}(\mathrm{V})$	$\operatorname{lout}(\mathrm{A})$	Efficiency(\%)
16.009	0.22	24.03	0	0
16.011	2.37	24.029	1.42	89.92
16.009	3.9	24.027	2.42	93.129

16.009	5.42	24.027	3.42	94.703
16.008	6.95	24.026	4.42	95.451
16.008	8.49	24.025	5.42	95.812
16.008	10.06	24.024	6.42	95.773
16.008	11.61	24.023	7.42	95.91
16.008	13.13	24.022	8.42	96.232
16.007	14.65	24.021	9.42	96.493
16.007	16.19	24.02	10.42	96.579
16.008	17.72	24.019	11.42	96.699
16.007	19.25	24.018	12.42	96.809
16.007	20.78	24.017	13.42	96.898
16.007	22.32	24.016	14.42	96.931
16.007	23.87	24.015	15.42	96.918
16.007	25.41	24.014	16.44	97.063
16.006	26.94	24.013	17.42	97.009
16.006	28.49	24.012	18.42	96.994
16.006	30.04	24.011	19.44	97.079
16.005	31.59	24.01	20.44	97.066
16.006	33.14	24.009	21.44	97.043
16.006	34.68	24.008	22.42	96.968
16.006	36.23	24.007	23.44	97.039
16.005	37.8	24.006	24.44	96.978
16.005	39.36	24.005	25.44	96.941

Waveforms

Switch Nodes

Switch Nodes of all 4 phases at Vin = 9V and 21A Load

Switch Nodes of all 4 phases at Vin = 11V and Full (25A) Load

Switch Nodes of all 4 phases at Vin = 13V and Full (25A) Load

Switch Nodes of all 4 phases at Vin = 16V and Full (25A) Load

Load Transient Response

Load Transient Response at Vin $=9 \mathrm{~V}$ with 50\%-to-100\% (12.5A-to-25A) Load Step

INSTRUMENTS

Load Transient Response at Vin = 11V with 50\%-to-100\% (12.5A-to-25A) Load Step

INSTRUMENTS

Load Transient Response at Vin $=13 \mathrm{~V}$ with 50%-to-100\% (12.5A-to-25A) Load Step

Load Transient Response at Vin = 16V with 50\%-to-100\% (12.5A-to-25A) Load Step

Startup

Startup into No Load (Vin = 9V)

Instruments

Startup into No Load (Vin = 11V)

INSTRUMENTS

Startup into No Load (Vin = 13V)

INSTRUMENTS

Startup into No Load (Vin = 16V)

INSTRUMENTS

Startup into 21A Load (Vin = 9V) Note: Load current limited by available supply current limit.

INSTRUMENTS

Startup into Full (25A) Load (Vin = 11V)

Instruments

Startup into Full (25A) Load (Vin = 13V)

Startup into Full (25A) Load (Vin = 16V)

Output Voltage Ripple and Switch Node Voltage

Output Voltage Ripple and Switch Node Voltage (Phase 1) at Vin =9V and 21A Load (Vripple \approx 330 mVp -p)

Output Voltage Ripple and Switch Node Voltage (Phase 1) at Vin = 11V and 25A Load (Vripple \approx 300mVp-p)

Output Voltage Ripple and Switch Node Voltage (Phase 1) at Vin = 13V and 25A Load (Vripple \approx 230mVp-p)

Output Voltage Ripple and Switch Node Voltage (Phase 1) at Vin = 16V and 25A Load (Vripple \approx 245mVp-p)

Control Loop Response

Control Loop Response at Vin =9V and OA Load; Phase Margin = $\mathbf{7 4}$ deg.; Gain Margin $=-45 \mathrm{~dB}$

Control Loop Response at Vin = 9V and 21A Load; Phase Margin = 59.6 deg.; Gain Margin = -9.8 dB

INSTRUMENTS

Control Loop Response at Vin = 16V and OA Load; Phase Margin = 65.4 deg.; Gain Margin =-36.3 dB

Control Loop Response at Vin = 16V and 25A Load; Phase Margin = 53.3 deg.; Gain Margin = -13.5 dB

Current Sharing

Test Condition = 16Vin and 25A Load	
Phase	Current (A)
Phase 1 (Master)	12.27
Phase 2	9.27
Phase 3	8.7
Phase 4	8.23

Current Cutoff Data

Input Voltage (V)	Enabled Phase	Cutoff Current (A)
16	Phase 1 Only (Master)	23.542
22	Phase 1 Only (Master)	24.87
16	Phase 1 (Master) and Phase 2	44.459
22	Phase 1 (Master) and Phase 2	46.062
16	Phase 1 (Master) and Phase 3	42.653
22	Phase 1 (Master) and Phase 3	45.128
16	Phase 1 (Master) and Phase 4	42.532
22	Phase 1 (Master) and Phase 4	45.617
N/A*	All four phases	N/A (Overcurrent hiccup should take place, but is not tested*)

*NOTE: The above cutoff current tests were performed at 16 Vin and 22 Vin and with only one or two phases enabled due to the current limitations of the input supply used/available. The term "cutoff current" implies that the controllers stopped switching at the noted input current values. During this time all FETs are OFF and the currents pass through the body diodes of all four synchronous FETs from the input to the output load. Hiccup mode should be enabled and working only with all four phases being enabled. This has not been tested, though, due to the current limitation of the input supply used.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to TI's Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

