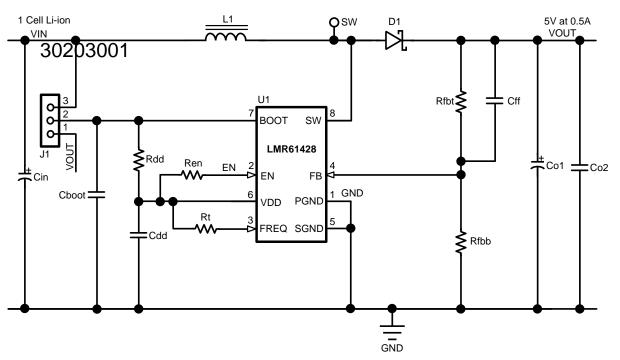


AN-2281 LMR61428 Evaluation Module


1 Introduction

The LMR61428 evaluation module is designed to provide the power supply design engineer with a fully functional regulator design. The evaluation module takes the input from a single Li-Ion battery and boosts the voltage up to 5V at a constant load capability of 500mA. The switching frequency of the boost regulator is set to about 1200 kHz which helps in reducing the solution size and keeping switching noise out of the AM radio band. The printed circuit board consists of 4 layers of copper on FR4 material. The first middle layer is a solid ground layer which helps in minimizing the AC current loop. This user's guide contains the evaluation module schematic, a quick setup procedure using a bench power supply, and a Bill-of-Materials (BOM). For complete circuit design information, see *LMR61428 SIMPLE SWITCHER* 14Vout, 2.85A Step-Up Voltage Regulator in VSSOP (SNVS815).

2 Features

- One cell Li-Ion battery for Input Voltage
- 5V Output Voltage at 500mA Output Current
- Switching Frequency of 1.2 MHz
- Small Solution Size: 2.287 × 1.058 inches (58.09 × 26.87 mm)

3 Evaluation Board Schematic

All trademarks are the property of their respective owners.

4 **Powering and Loading Considerations**

Read this entire section prior to attempting to power the evaluation board.

4.1 Quick Start Procedure

Step 1: Set the bench power supply current limit to 3A. Set the power supply voltage to 3.5V. Turn off the power supply output. Connect the power supply to the LMR61428 demo board. Positive connection to V_{IN} and negative connection to GND.

Step 2: Connect a load, as high as 0.5A, to the V_{OUT} terminal. Positive connection to V_{OUT} and negative connection to GND.

Step 3: Connect the shunt so as to short the pins 1 and 2 of the jumper J1. This sets the bootstrap to V_{OUT}

Step 4: The EN pin should be left open for normal operation.

Step 5: Turn on the bench power supply with no load applied to the LMR61428. If the shunt for the jumper J1 was in place, the V_{OUT} would be in regulation at a nominal 5V.

Step 6: Gradually increase the load and V_{OUT} should remain in regulation as the load is increased up to 0.5 Amps.

4.2 Shutdown Operation

The EVM includes a pull-up resistor Ren to enable the device. Use the EN post to disable the device by pulling this node to GND.

4.3 Bootstrap Operation

The EVM has a jumper installed to select the bootstrap option. The default condition is that the jumper be set such that the bootstrap voltage is obtained from the output. For more information, see *LMR61428 SIMPLE SWITCHER 14Vout, 2.85A Step-Up Voltage Regulator in VSSOP* (SNVS815).

4.4 Setting the Output Voltage

The output voltage of the step-up regulator can be set between 1.24V and 14V. But because of the gated oscillator scheme, the maximum possible input to output boost ratio is fixed. For a boost regulator,

$$V_{OUT} / V_{IN} = 1 / [1 - D]$$

(1)

(2)

The LMR61428 has a fixed duty cycle, D, of 70% typical. Therefore,

$$V_{OUT} / V_{IN} = 1 / 0.3$$

This sets the maximum possible boost ratio of V_{IN} to V_{OUT} to about 3 times. The user can now estimate what the minimum design inputs should be in order to achieve a desired output, or what the output would be when a certain minimum input is applied. For example, if the desired V_{OUT} was 14V, then the least V_{IN} should be higher than V_{OUT} / 3. If the input voltage fell below this threshold, the output voltage would not be regulated because of the fixed duty cycle. If the minimum V_{IN} was guaranteed at 2V, the max possible V_{OUT} would be V_{IN} × 3.

The V_{OUT} is set by connecting a feedback resistive divider made of R_{fbt} and R_{fbb} . The feedback resistor values are selected as follows:

$$R_{fbb} = R_{fbt} / [(V_{OUT} / 1.24) - 1]$$

(3)

A value of 150k Ω is suggested for R_{fbt}. Then, R_{fbb} can be selected using Equation 3. A 39pF capacitor (C_{ff}) connected across R_{fbt} helps in feeding back most of the AC ripple at V_{OUT} to the FB pin. This helps reduce the peak-to-peak output voltage ripple as well as improve the efficiency of the step-up regulator, because a set hysteresis of 30mV at the FB pin is used for the gated oscillator control scheme.

4.5 Typical Test Setup

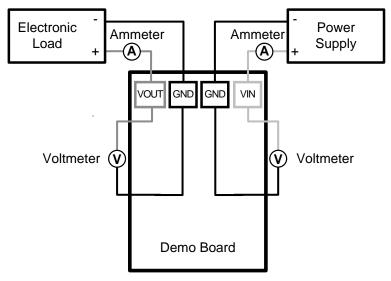


Figure 2. Efficiency Measurements

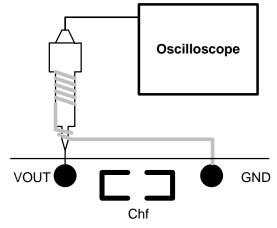
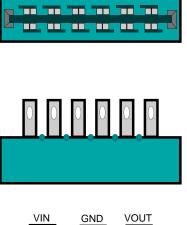



Figure 3. Voltage Ripple Measurements

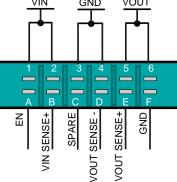


Figure 4. Edge Connector Schematic

4.6 Board Images

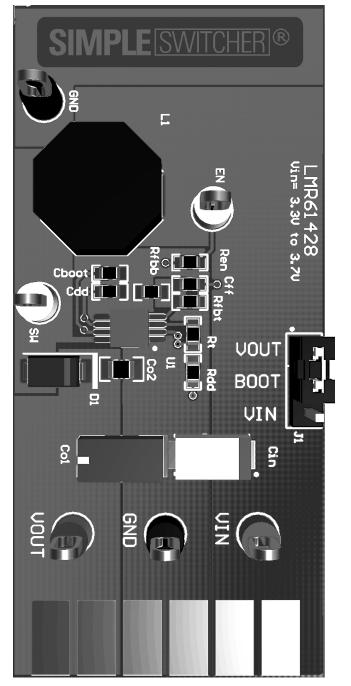


Figure 5. Top Side

Powering and Loading Considerations

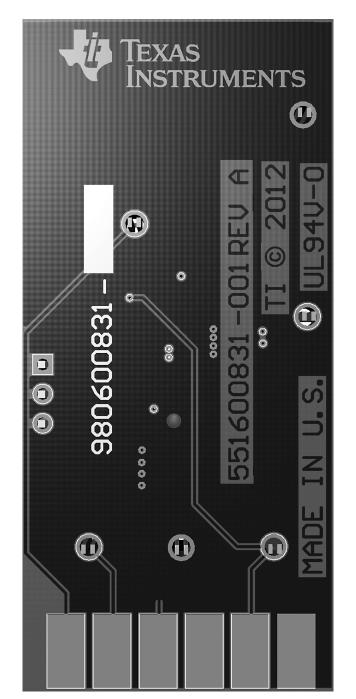
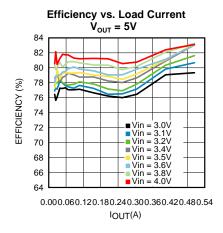
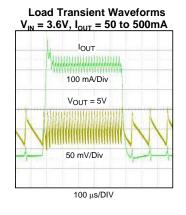
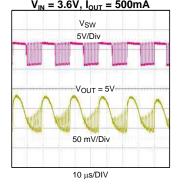
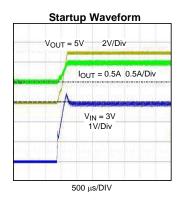




Figure 6. Bottom Side




5 Typical Performance Characteristics

Switching Node and Output Voltage Waveforms $V_{IN} = 3.6V, I_{OUT} = 500 \text{mA}$

6 Bill of Materials

ID	Part Number	Туре	Size	Parameters	Qty	Vendor
U1	LMR61428	Boost Regulator	SOT-23		1	Texas Instruments
L1	SRU1048-8R2Y	Inductor	SMD	8.2uH, 4.6A, 0.015 ohm,	1	Bourns
D1	B220A-13-F	Diode	SMA	Schottky, 20V, 2A	1	Toshiba
Cin	293D226X9010C2TE3	Capacitor	SMD	Tantalum, 22uF, 10V	1	Vishay- Sprague
Co1	594D686X0010C2T	Capacitor	SMD	Tantalum, 68uF, 10V	1	Vishay- Sprague
Co2	08053D105KAT2A	Capacitor	0805	Ceramic, 1uF, 25V, X5R	1	AVX
Cdd	C0603C105K4PACTU	Capacitor	0603	Ceramic, 1uF, 16V, X5R	1	Kemet
Cff	GRM1885C2A390JA01D	Capacitor	0603	Ceramic, 39pF, 100V, C0G/NP0	1	MuRata
Rfbt	RG1608P-154-B-T5	Resistor	0603	150 kΩ	1	Susumu Co Ltd
Rfbb	RG1608P-4992-B-T5	Resistor	0603	49.9 kΩ	1	Susumu Co Ltd
Rt	CRCW0603118KFKEA	Resistor	0603	118 kΩ	1	Vishay-Dale
Rdd	CRCW060349R9FKEA	Resistor	0603	49.9 Ω	1	Vishay-Dale
Ren	CRCW060310K0FKEA	Resistor	0603	10.0 kΩ	1	Vishay-Dale
EN	5014	Test Point Loop		Yellow	1	Keystone
VIN	5010	Test Point Loop		Red	1	Keystone
VOUT	5013	Test Point Loop		Orange	1	Keystone
GND	5011	Test Point Loop		Black	2	Keystone
SW	5012	Test Point Loop		White	1	Keystone
J1	PBC03SAAN	Header		100mil, 1x3	1	Sullins Connector Solutions
SH-J1	969102-0000-DA	Shunt		100mil, Black	1	3M

7 PCB Layout

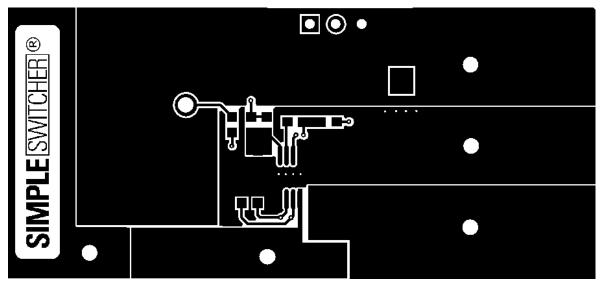


Figure 7. Top Copper

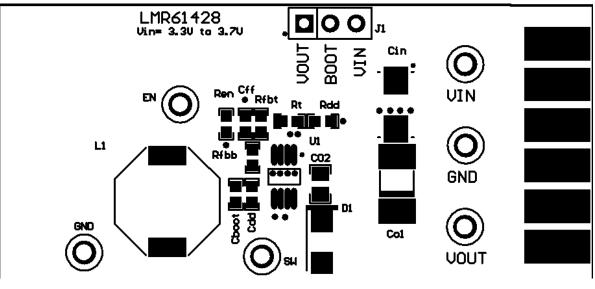


Figure 8. Top Overlay

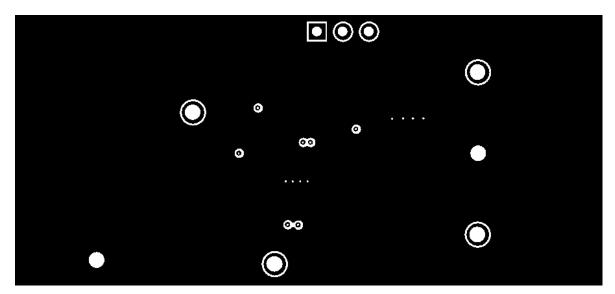


Figure 9. Internal Layer 1

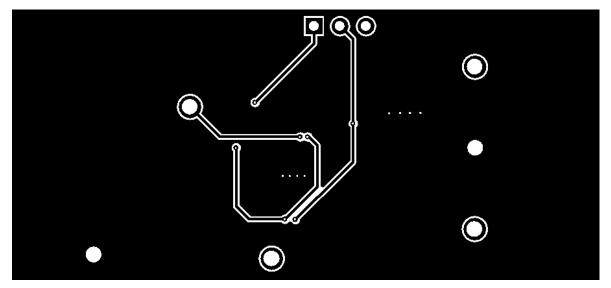


Figure 10. Internal Layer 2

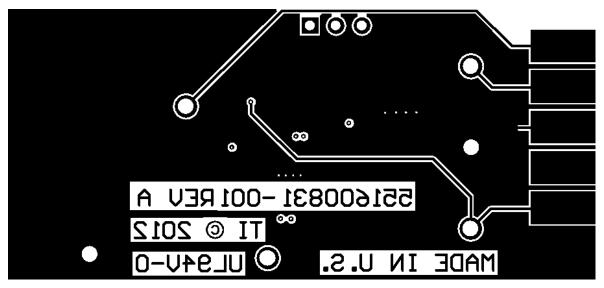


Figure 11. Bottom Copper

Figure 12. Bottom Overlay

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications			
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive		
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications		
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers		
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps		
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy		
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial		
Interface	interface.ti.com	Medical	www.ti.com/medical		
Logic	logic.ti.com	Security	www.ti.com/security		
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense		
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video		
RFID	www.ti-rfid.com				
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com		
Wireless Connectivity	www.ti.com/wirelessconnectivity				

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated